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ABSTRACT  

Hand (Motor) Movement Imagery Classification of EEG Using Takagi-Sugeno-Kang 

Fuzzy-Inference Neural Network 

Rory Larson Donovan 

 

Approximately 20 million people in the United States suffer from irreversible 

nerve damage and would benefit from a neuroprosthetic device modulated by a Brain-

Computer Interface (BCI). These devices restore independence by replacing peripheral 

nervous system functions such as peripheral control. Although there are currently devices 

under investigation, contemporary methods fail to offer adaptability and proper signal 

recognition for output devices. Human anatomical differences prevent the use of a fixed 

model system from providing consistent classification performance among various 

subjects. Furthermore, notoriously noisy signals such as Electroencephalography (EEG) 

require complex measures for signal detection. Therefore, there remains a tremendous 

need to explore and improve new algorithms. This report investigates a signal-processing 

model that is better suited for BCI applications because it incorporates machine learning 

and fuzzy logic. Whereas traditional machine learning techniques utilize precise 

functions to map the input into the feature space, fuzzy-neuro system apply imprecise 

membership functions to account for uncertainty and can be updated via supervised 

learning. Thus, this method is better equipped to tolerate uncertainty and improve 

performance over time. Moreover, a variation of this algorithm used in this study has a 

higher convergence speed. The proposed two-stage signal-processing model consists of 

feature extraction and feature translation, with an emphasis on the latter. The feature 
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extraction phase includes Blind Source Separation (BSS) and the Discrete Wavelet 

Transform (DWT), and the feature translation stage includes the Takagi-Sugeno-Kang 

Fuzzy-Neural Network (TSKFNN). Performance of the proposed model corresponds to 

an average classification accuracy of 79.4 % for 40 subjects, which is higher than the 

standard literature values, 75%, making this a superior model. 

 

Keywords: Brain-Computer Interface (BCI), Electroencephalography (EEG), Takagi-

Sugeno-Kang Fuzzy Neural Network (TSKFNN), Discrete Wavelet Transform (DWT). 



   

 

 

 

vi 

ACKNOWLEDGMENTS 

 I would like to give a special thank you to my wife, Alba Tapia, for keeping me 

out of trouble and keeping my eyes on target. Also, a thank you goes to my father, John, 

for showing me the value of hard work and supporting me through my journey. I would 

also like to thank my mother, Judy, for providing the food and shelter to get where I am. 

Lastly, thank you Dr. Yu for kindling my fervor for computational intelligence. Under 

your instruction, I have found this wonderful passion to supplement my incredible 

college experience. 



   

 

 

 

vii 

TABLE OF CONTENTS 

Page  

LIST OF TABLES………………………………………………………………………..ix 

LIST OF FIGURES…………….…………….…………….………..…………………...xi 

CHAPTER  

1: INTRODUCTION……………………………………………………………….………1 

 1.1: Statement of the Problem..……………………………………………………1 

 1.2: List of Terms………………………………………………………………….2 

 1.3: Purpose of Study……………………………………………………………...4 

2: LITERATURE REVIEW………………………………………………………………6 

 2.1: Previous Methods in Literature……………………………………………….6 

  2.1.1: Multivariate EMD & Common Spatial Patterns……………………7 

  2.1.2: Wavelet and Artificial Neural Network…………………..……….11 

  2.1.3: Support Vector Machine…………………………………………..19 

 2.2: Proposed Improvement to Methods in Literature…………………………...22 

3: BACKGROUND……………………………………………………………………...25 

 3.1: Electroencephalography…………………………………………………….25 

 3.2: PhysioNet Motor Movement & Imagery Database…………………………30 

 3.3: Feature Extraction…………………………………………………………...31 

  3.3.1: The Discrete Wavelet Transform………………………………….31 

  3.3.2: Blind Source Separation…………………………………………..35 

  3.3.3: Neural Oscillations Analysis……………………………………...40 

 3.4: Feature Translation………………………………………………………….42 



   

 

 

 

viii 

  3.4.1: Takagi-Sugeno-Kang Fuzzy-Inference……………………………42 

  3.4.2: TSK Fuzzy Neural Network………………………………………45 

  3.4.3: Hybrid Learning Algorithm……………………………………….51 

  3.4.4: Subtractive Clustering Algorithm…………………………………55 

4: APPROACH & RESULTS……………………………………………………………58 

 4.1: EEGLAB Introduction………………………………………………………60 

 4.2: 2D Plotting ERP and Channel Activity……………………………………..67 

 4.3: Feature Extraction Approach………………………………………………..69 

  4.3.1: FIR with Hamming Window as Band-Pass Filter………………...69 

  4.3.2: AAR Using the SOBI and CCA Algorithms ……………………..71 

  4.3.3: Independent Component Analysis………………………………...76 

 4.4: Spectral Analysis……………………………………………………………85 

 4.5: Takagi-Sugeno-Kang Fuzzy Neural Network………………………………89 

 4.6: Performance Results………………………………………………………...94 

  4.6.1: Case One (Individual Simulations)……………………………….96 

  4.6.2: Case Two (40 Subject Simulations)……………………………..100 

5: CONCLUSION AND FUTURE RESEARCH……………………………………...107 

BIBLIOGRAPHY……………………………………………………………………...109 

APPENDICES 

APPENDIX A – List of Acronyms…………………………………………….120 

APPENDIX B – MATLAB Code……………………………………………...121 

 annotate_auto.m:……………………………………………………….121 

 tskfnn.m:……………………………………………………………….146



   

 

 

 

ix 

LIST OF TABLES 

Table               Page 

1: Detail and approximation decomposition for frequency bands………………………12 

2: Characteristics used for measurement of EEG related time course data on detail  

     and coefficients cDi [30]……………………………………………………………..13 

3: Rhythmic activity bands in EEG……………………………………………………...26 

4: PhysioNet EEG MMI task list executed by each person, 3 x………………………...30 

5: Summary of the hybrid algorithm [17]……………………………………………….53 

6: Wavelet decomposition for 160 Hz EEG signal……………………………………...85 

7: TSKFNN inputs with 3 electrode locations, 3 energy percentage bandwidths  

for 4.1 second event-related time course……………………………………………..87 

8: Demonstration of a Training Session for ANFIS……………………………………..91 

9: Mean training classification performance by subject for 20 sessions on the naturally 

noisy 4.1-second EEG left hand and right hand fist contraction data from the 

PhysioNet MMI database …………………………………………………………….96 

10: Mean testing classification performance by subject for 20 sessions on the naturally 

noisy 4.1-second EEG left hand and right hand fist contraction data from the 

PhysioNet MMI database …………………………………………………………….97 

11: Comparison of the DWT-Energy-TSKFNN to Various Other Methods in Literature 

on the PhysioNet Data ………………………………………………………………..99 

12: Confusion matrix of average for 10 training sessions on the naturally noisy 

 PhysioNet MMI right and left hand clenching data for all test subjects, all  

 forty-five 4.1-second time courses ………………………………………………….102 



   

 

 

 

x 

13: Modified truth table of average for 5 training sessions on the naturally  

    noisy PhysioNet MMI right and left hand clenching data for all test subjects, all  

    forty-five 4.1-second time courses………………………………………………….103 

14: Confusion matrix of average for 10 training sessions on the naturally noisy  

    PhysioNet MMI right and left hand data for all test subjects, all forty-five 4.1- 

    second time courses, with FIR filtration and AAR…………………………………104 

15: Modified truth table of average for 5 training sessions on the naturally  

     noisy PhysioNet MMI right and left hand clenching data for all test subjects,  

     all forty-five 4.1-second time courses……………………………………………...104 

16: Confusion matrix of average for 10 training sessions on the naturally noisy  

     PhysioNet MMI right and left hand clenching data for all test subjects, all  

     forty-five 4.1-second time courses, with advanced signal processing method…….105 

17: Modified truth table of average for 5 training sessions on the naturally  

     noisy PhysioNet MMI right and left hand clenching data for all test subjects, all  

     forty-five 4.1-second time courses, with advanced signal processing method…….106 

 



   

 

 

 

xi 

LIST OF FIGURES 

Figure               Page 

1: DWT wavelet decomposition obtained [30]………………………………………….12 

2: Perceptron model as seen in (A) and representation of an ANN with and input 

 and an output layer in (B) [32]……………………………………………………….14 

3: Support Vector Machine classifier [36]………………………………………………19 

4: EEG Rhythmic Activity Bands [46]………………………………………………….26 

5: Suppression of pain response causal relationship with sensorimotor  

 alpha waves [49]……………………………………………………………………..27 

6: Internationally recognized methods for EEG placement. This figure demonstrates  

 (A) the high-density 10-10 system [12] and, (B) the low density 10-20 EEG [57]….28 

7: DWT sub-band decomposition [69]…………………………………………………..33 

8: Changes in time frequency power distribution calculated for ERD activity [80]…….41 

9: ANFIS Takagi-Sugeno-Kang Style Inference Neural Network [18]…………………45 

10: Subtractive clustering schematic [90]……………………………………………….57 

11: This figure illustrates the process through which the noise is reduced and the  

 signal is recognized…………………………………………………………………..58 

12: 2D illustration of the channel locations file………………………………………....67 

13: Labeled 64 channel data scroll……………………………………………………....68 

14: Activity spectrum demonstrating power-line corruption visible at 60 Hz on 

       electrode Cz removed with other artifact above the 60 Hz ………………………...69 

15: Activity spectrum demonstrating Hamming windowed FIR filtered data  …………70 

16: Demonstration of (a) before and (b) after SOBI and CCA noise reduction of  



   

 

 

 

xii 

 EOG and EMG artifact……………………………………………………………….72 

17: Demonstration of imagined right hand clenching for 4.1 seconds (a) before  

 and (b) after SOBI and CCA noise reduction of EOG and EMG artifact……………73 

18: Demonstration of imagined right hand clenching for 4.1 seconds (a) before  

 and (b) after SOBI and CCA noise reduction of EOG and EMG artifact……………73 

19: Demonstration of imagined right hand clenching for 4.1 seconds (a) before  

 and (b) after SOBI and CCA noise reduction of EOG and EMG artifact for the 

electrodes of interest……………………………………………………………….....74 

20: Schematic of trial epochs extracted from the concatenated data…………………….76 

21: This illustration depicts the electrodes that were used for (a) ICA as indicated  

 by the dark circles versus (b) DWT-Energy analysis. Adapted from [8]………….....77 

22: Topographical mapping of the components for imagination of fist clenching for  

 one of the test subjects……………………………………………………………….79 

23: Demonstration of EOG artifact in the activity spectrum, seen decreasing  

 smoothly in the bottom panel………………………………………………………...80 

24: ICA component for clenching of the right fist for one of the test subjects.  

 This figure depicts the power spectrum typical of EEG contaminated with  

 EMG components…………………………………………………………………….81 

25: Individual component activity spectrum for clenching of the left fist for one  

 of the test subjects…………………………………………………………………….82 

26: Spectrogram of the mu/beta activity observed using the Fast Fourier Transform  

 (FFT) with MATLAB’s spectrogram()………………………………………………82 



   

 

 

 

xiii 

27: Topographical map of transient time-course for high-density international 10-10 

system. Demonstration of the second pass of ICA using the runica in EEGLAB…...83 

28: (a) Before and (b) after iterative ICA decomposition. This figure demonstrates  

 alpha and beta in the activity spectrum seen as rounded peaks in the curve…………84 

29: The illustration depicts levels D4 through D6 of the 6 level decomposition  

 (subject 9) with the DWT function…………………………………………………...86 

30: ANFIS learning method flowchart…………………………………………………..89 



   

 

 

 

1 

CHAPTER 1: INTRODUCTION 

1.1: Statement of the Problem  

Roughly, 185,000 amputations are performed annually in the United States, 

primarily caused by diabetes and peripheral heart disease [1]. Nerve injuries correspond 

to an estimated $150 billion in healthcare expenditure [2]. Currently, a Brain Computer 

Interface (BCI) systems, a hardware-software integrated communication systems 

intended to interface the human brain or cranial epidermis, poses as a viable solution 

because this device is capable of treating, restoring, and augmenting peripheral nervous 

system and arm function disabled by amputation or other neuromuscular disorders [3]. 

For example, an amputee can regain the ability to grasp an object using a neuroprosthetic 

arm [4]. However, contemporary neuroprosthetic systems are not readily available on the 

market, likely because their recordings are unreliable [5] or have high associated risk (as 

a class III medical device) [6]; and are thus are more difficult to receive regulatory 

approval. Furthermore, they are designed exclusively for one individual at a time making 

it difficult to receive proper quality control [7]. As a result, the current state of this 

medical treatment is not reaching its full potential improvements are needed in the areas 

of information transfer speed, accuracy of detection, and adaptability to make these 

devices of sufficient quality to be extended to the total available market [8]. With these 

improvements, it is possible to provide a greater breadth of treatment to the various 

subjects affected by these neurological disorders. 
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1.2: List of Terms  

This study focuses on the signal processing steps in BCI, which includes feature 

extraction from neural data and the translation of those features into an output 

classification decision. The process begins with the acquisition of event-related 

potentials, recorded as electromotive forces. These values are collected from instruments 

such as electroencephalograms (EEG) and electrocorticograms (ECoG), recorded from 

the surface of the scalp and intracranial, respectively [9]. The primary difference between 

these two electrode placement systems being the intrusiveness and biocompatibility, refer 

to ISO 10993 [10]. The electroencephalograph (EEG) is a prime contender for 

electrophysiological measurement because its minimal cost and low level of invasiveness 

is highly appealing to researchers.  The EEG is used in this study due to the accessibility 

of the data. 

EEGs retain spatiotemporal information [11], while they are relatively 

inexpensive and non-invasive. Furthermore, EEGs are capable of transmitting neuronal 

signal to an external device in order to drive a prosthetic arm [12]. However, EEGs are 

notoriously noise [13] and therefore require extensive signal processing to a degree that is 

not currently achievable. Thus a multistep data analytical procedure for noise reduction is 

utilized, comparing and contrasting various filtration methods and feature translation 

methods in Chapter 2 to reduce the noise and the size of the feature space. Blind source 

separation (BSS) methods, including Automated Artifact Rejection (AAR) and 

Independent Component Analysis (ICA), reduce the noise. This method is advantageous 

over those that do not use find new projections of data because it reduces information that 

is contaminating the data results. 
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The Discrete Wavelet Transform (DWT) is a method of transforming data into the 

frequency domain, similar to the Discrete Fourier Transform (DFT). It is often utilized to 

extract features for spectral analysis. For example, spectral energy can be calculated at 

various frequency bandwidths from sets of detail and approximation coefficients [14], 

which are relatable to transient points on a compressed time scale.  This method is 

advantageous because it improves the balance between transient and frequency precision 

[15]. Therefore, the extracted feature more accurately reflects the original waveform than, 

for example, the sinusoidal waveforms of the Fast Fourier Transform (FFT). This method 

may also produce better results other methods such as the Hilbert Huang Transform 

(HHT), which produces inconsistent bandwidths for analysis [14]. Thus spectral analysis 

of the transient properties is inconsistent in reference. 

The Takagi-Sugeno-Kang Fuzzy-Neural Network (TSKFNN) is a network that 

incorporates fuzzy logic principles and machine learning. Inputs feed into predefined 

functions such as the Gaussian distribution to determine activation strength. The signal 

feeds forward and is met by connective resistance. The signals are linearly combined then 

transformed once in the premise layer, then once again in the consequence layer. The 

fuzzy inference mechanism, known as Takagi-Sugeno-Kang (TSK) fuzzy inference [16], 

allows precise inputs to be formulated degrees of uncertainty; yet precision to be 

achieved in the output. Machine makes guesses to reduce error classifications of future 

input learning with each new sample. 

The proposed method employs a hybrid back propagation algorithm and least 

squares error to learn and Takagi-Sugeno style fuzzy inference for increased convergence 

speed [17]. Wherein the standard learning techniques that use the back propagation are 
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slow to converge and are unstable, the hybrid method updates the consequence layer 

using the LSE. This ensures maximal classification accuracy on the training data by 

manipulating the consequence parameters alone and hastens the speed of convergence. 

The premise layer parameters are updated using the back propagation algorithm, which 

retains the online learning mechanism of the neural network. Thus, together these allow 

for adaptive learning as well as speedy convergence. 
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1.3: Purpose of Study  

This study investigates a state-of-the-art BCI signal-processing model for the 

purpose of increase classification accuracy of imagined hand motor movement of 

Electroencephalograms (EEG) recorded from a surface electrode. This implementation is 

part of the groundwork needed for improving treatment of amputations in a clinical 

setting. With the proposed implementation of fuzzy logic, the intended system is more 

tolerant for imprecision [17] and thus better suited for BCI adaption than current 

methods. Together, fuzzy-logic and machine learning make for a more robust 

classification system for the purpose of imagined motor movement identification than 

previous models such as the Artificial Neural Network (ANN) and the Support Vector 

Machine (SVM).  

The proposed approach consists of two stages, feature extraction and feature 

translation. The first stage incorporates Automated Artifact Rejection (AAR) and 

Independent Component Analysis (ICA) to separate the signal into independent sources, 

or components, based on statistical variance of the data. Component elimination increases 

the signal to noise ratio, making this model less prone to erroneous classification over the 

other methods. This process is followed by analysis of the Event Related (de) 

Synchronization (ERD/ERS) activity by means of the Discrete Wavelet Transform 

(DWT) to extract features for the machine-learning stage or feature translation stage. In 

this stage, the extracted features become the input, and binary identifiers are calculated 

via Takagi-Sugeno-Kang Fuzzy Inference Neural network (TSKFNN). These 

classification performance values are compared to the standard literature value to 

determine the superiority of this robust model. 
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CHAPTER 2: LITERATURE REVIEW 

2.1: Previous Methods in Literature 

 Various transformations are used to decode Electroencephalograms (EEG) 

characteristics in transient time course in the Brain-Computer Interface (BCI) literature. 

The Fast Fourier Transform (FFT) is utilized most often [18-20] because it is robust and 

has been successfully employed in the past. More recently, methods such as the Discrete 

Wavelet Transform (DWT) and the Hilbert Huang Transform (HHT) with Empirical 

Mode Decomposition (EMD) are making their way into the biological research 

community because of their basis functions, or lack thereof, and their ability to handle 

non-stationary, stochastic data [18][21]. Although the FFT has worked in the past, these 

new methods may be better suited for physiological signals such as the EEG for various 

reasons.  

First, the DWT is better able to reconstruct a wave, which is better for spectral 

estimation because the temporal representation more accurately models the original 

signal [22]. DWT also uses predefined basis functions, however that can be sharp or 

smooth, orthogonal or bi-orthogonal, symmetric or asymmetric, incorporating all sorts of 

properties [23]. Thus, this method is a better alternative for reconstructing waveforms 

with sharp peaks for decomposition than the FFT (in which the signal is always smooth 

and orthogonal). However, with this method, proper selection of the mother wavelet 

determines how accurate the reconstruction is going to be.  
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2.1.1 Multivariate Empirical Mode Decomposition 

The Hilbert-Huang Transform (HHT) is making its way into the biological 

research community, in addition to the Discrete Wavelet Transform (DWT), as a solution 

to the problems faced by using a priori assumptions of the data [21]. The authors of [19] 

are able to successfully implement a noise-assisted multivariate version of the Empirical 

Mode Decomposition model (NA-MEMD), achieving higher mean classification 

performance. They obtain superior results from NA-MEMD than from the synchronized 

wavelet transform (SST), continuous wavelet transform (CWT), and the Butterworth 

Filter (BF). In the study, mu and beta waves (those pertaining to the somatosensory 

cortex) are analyzed and neural activity is discriminated using the Common Spatial 

Patterns (CSP) algorithm. 

For decomposition, Empirical Mode Decomposition (EMD) determines time-

frequency localized information by decomposing the wave into basis functions to be 

superimposed on top of each other. Two envelopes are calculated, eu(t) and el (t) , by 

interpolating the maxima and minima values. Intrinsic mode functions (IMF) denoted as 

ci (t) are obtained from the mean of the two local extrema envelopes subtracted from the 

previous IMF, ci-1(t), where I is the order of the IMF [24].  

m(t) = (el (t)+eu(t)) / 2                                                 (1)                             

                                                     (2)
 

This process is iteratively repeated until the stopping criterion is met. The signal then 

becomes a monotonic residual signal and the original signal is reconstructed using Eq. 

(3), where M is the number of IMFs [24]. 
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v(t) = ci(t)+ r(t)
i=1

M

å
                                                   (3)

 

The Hilbert Huang Transformation (HHT) can be applied to obtain a time-frequency 

spectrogram as indicated in (4), where symbol P indicates the Cauchy principle value. 

The signal is then described using (5). The variables ai(t)  and qi (t)  denote the i'th 

amplitude and phase functions [25]. 

H (ci(t)) =
1

p
P
ci(t

' )

t - t '
dt /

-¥

¥

ò                                               (4) 

V(t) = (ci(t)+ jH (ci (t))) =
i=1

M

å ai(t)e
jqi (t )

i=1

M

å                                   (5) 

Through differentiation of the phase functions, the instantaneous frequency can be 

obtained using wi(t) = dqi(t) / dt . 

One major disadvantage for EMD is that the local frequency changes, in a process 

known as mode mixing. Mode mixing is instigated by time lag and noise and results in 

temporal property discrepancies and randomness between channels of EEG [17]. 

Therefore, frequency locked information would be difficult to achieve even if temporal 

properties information of the sources is known a priori. This is important for analyses in 

which a priori frequency information is known and amplitude estimation of the sources 

from a particular band is desired. Although the EMD method alone is precluded from 

being applied independently to multiple channels, the authors in this study [18] present a 

solution to these problems by suggesting the multivariate approach.  

In this study, features of the ensemble data analysis, with Gaussian white noise 

channels, are incorporated with bivariate empirical mode decomposition (BEMD) to 

achieve the noise-assisted multivariate EMD (NA-MEMD). This representation creates 
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similar bands amongst the data. In this form, the noise resides in a subspace separate 

from the original signals and is used to enforce a filterbank structure. The IMF subspace 

is retained while the noise subspace is eliminated which improves the ability of the 

algorithm to tolerate the noise in the original data and distinguish the trends. It is 

important to note that an increase in the number of channels results in a better estimation 

of envelopes and therefore better identifies common activity [26]. 

The Common Spatial Patterns algorithm is used to extract features by maximizing 

the variance in one class of signals while minimizing the variance in another class. This 

allows the determination of ERD and ERS activity based on subtle changes in power in 

the EEG data [27]. The features were translated using the support vector machine (SVM) 

with a Gaussian kernel. The PhysioNet data was divided into 32 input vectors for training 

and 13 input vectors for testing out of the original 45 input vectors [18]. The 

classification was repeated 100 times with random sampling. Classification performance 

77.7% for the NA-MEMD, whereas 64.9% for the synchronized-squeeze transform 

(SST), 72.3% for the continuous wavelet transform, and 74.8% for the fifth-order 

Butterworth Filter. The 11 channels selected for analysis include “FC3,” “FC4,” “C3, 

“CZ,” “C4,” “C5,” “C6,” “T7,” “T8,” “CP3,” and “CP4. The Morlet mother wavelet is 

selected for the CWT in the analysis. The CWT and SST scales are reconstructed to 

obtain the band-pass filter signals. Two noise channels are added to the data for 

decomposition and the Hilbert-Huang spectra is calculated.   

Overall, this mathematical technique is advantageous for multiple reasons. First, 

the empirical mode decomposition method is advantageous in that it does not require a 

priori knowledge of the data to decompose a biological signal for classification; it is fully 
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data driven. Thus, there is no need for selection of a predefined basis function to achieve 

accurate results. In addition, it obtains highly localized time-frequency estimation as each 

intrinsic mode function captures different temporal scale information that is intrinsic to 

the data. Furthermore, EMD can be modified for spectral estimation, presenting the 

signal as decomposed time-energy-frequency deterministic functions. Lastly, EMD with 

the HHT poses the ability to handle non-linear, stochastic transient time course for time-

frequency localization [29].  

However, the time-frequency localization fluctuation also poses as a disadvantage 

for multichannel biological signals such as EEG because each signal produces a different 

number of IMFs and various frequency bands [19]. Furthermore, these signals change 

their properties with respect to time posing as an obstacle for multiple signal analysis. 

The first issue can be addressed through techniques such as noise-assisted analysis, but 

the analyses are not temporally fixed to a specific band. The Discrete Wavelet Transform 

(DWT) is better for a reliable decomposition with fixed frequency bands across all of the 

channels. Thus, DWT may remain a better option when extracting spectral features 

because, in the case of EEG, a priori the frequency properties are known. 
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2.1.2: Wavelet and Artificial Neural Network 

The Discrete Wavelet Transform (DWT) is a powerful tool used to process 

spectral information. Much like the Discrete Fourier Transform (DFT), it can be used to 

represent signals in the frequency domain. However, the wavelets unique basis functions 

better reconstruct a signal with varying properties. Additionally, noise outside of the 

designated frequency can be eliminated in the frequency domain to improve event 

discrimination. With signal reconstruction, frequency fixed features can be extracted as 

previously demonstrated [29]-[31]. From the DWT, energy and various characteristics are 

calculated from details and approximations coefficients, see Chapter 4.2. These 

coefficients represent time points on a compressed scale, approximately half of the 

original size. Various calculations, such as those listed in Table 2, are performed on these 

values to obtain these features. 

First, the DWT decomposes the wave into a set of detail coefficients, cD, and 

approximation coefficients, cA. The first variable represents time points on half of the 

spectrum corresponding to the higher frequencies, whereas the second variable represents 

time points for the lower frequency band. This process is repeated on each approximation 

each time decomposing the signal into smaller segment details and approximation, as 

demonstrated in Fig. 1. 
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Fig. 1. DWT wavelet decomposition obtained [30] 

Table 1. Detail and approximation decomposition for frequency bands 

Signal Component Frequency Range 

cD1 40 – 80 Hz 

cD2 20 – 40 Hz 

cD3 20 – 20 Hz 

cD4  5  – 10 Hz 

cA4  0  –  5 Hz  

 

A 160 Hz signal is broken down to a 0 – 80 Hz band and an 80-160 Hz and an 80 Hz 

band is broken down to a 0 – 40 Hz and 40 – 80 Hz band. The detail and approximation 

coefficients from decomposition are then used in computation of the spectral features 

using (6-11) in Table 2. 
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Table 2. Characteristics used for measurement of EEG related time course data on detail 

and coefficients cDi [30] 

Name Formula 

Root Mean Square (RMS) 1

N
cDi

2 (n)
n=1

N

å                                          (6) 

Mean Absolute Value (MAV) 1

N
cDi(n)

n=1

N

å                                             (7) 

Integrated EEG (IEEG) 
cDi (n)

n=1

N

å                                                 (8) 

Simple Square Integral (SSI) 
cDi (n)

n=1

N

å
2

                                               (9) 

Variance of EEG (VAR) 1

N -1
cDi

2(n)
n=1

N

å                                     (10) 

Average Amplitude Change (AAC) 1

N
cDi(n+1)- cDi(n)

n=1

N

å                        (11) 

 

Together, the DWT and the Artificial Neural Network (ANN) can used to classify Motor 

Movement Imagery (MMI) data using the electrodes multiple electrodes. 

 The Artificial Neural Network (ANN) is used to decode the data in the method for 

the second comparative study [30]. An ANN imitates the structure of the brain modeling 

the neuron as a node. In Frank Rosenblatt’s perceptron model, an ANN model for 

information storage and organization, given in Fig. 2, the neurons mathematical 

representation consists of a linear combination of input values that undergo a non-linear 
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operation; this is the functional unit of an artificial neural network. This representation 

allows for the solution of non-linear classification decisions (such as the XOR benchmark 

test). This is accomplished using weighted combinations of the input, subjected to 

connective resistance. Then, a classification decision is made for each input vector. In 

this network, the first layer is the input layer and the last layer is the output layer, 

whereas all of the layers in between constitute the hidden layers.  

   (a)                               (b) 

 

 

 

 

 

 

Fig. 2. Perceptron model as seen in (a) and representation of an ANN with and 

input and an output layer in (b) [32] 

The back propagation algorithm allows the network to improve classification accuracy 

over time. The weights are updated by means of the gradient descent, minimizing the 

means square error of the output. There are two stages to the back propagation algorithm: 

feed forward and back propagation. In the forwarding feeding stage, the signals are 

conducted through the network meeting connective resistance. The output is calculated at 

each node until the signal reaches the outputs of the output layer, given in Algorithm 1.
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________________________________________________________________________ 

Algorithm 1 The Back Propagation Algorithm (BP)                  

1. Layer 1 (Input Layer) - Let the i'th input be described by the variable 𝑥𝑖  and the 

connective resistance be described by 𝑤𝑗𝑖  denoting that the signal is feeding from the 

input neuron 𝑖  to 𝑗 . The output can be describe as the weighted sum of the input 

undergoing a non-linear transformation 𝜑(∙) as given in the equation below, 

y j
1(N ) = f w ji

1 (N )xi(N )
i=0

m

å
ö

ø
÷

æ

è
çç                                               (12) 

where the variable 𝑚 is the number of neurons in the input layer, with the exception of 

the bias. The signal propagates into the j’th neuron of the first hidden layer. 

2. Layer 2 (Output Layer) - Next, in the output layer, the mathematical formula of the 

single neuron output is the given as the linear combination of the weighted sum of the 

hidden neurons represented as 

yk
2(N ) =O(N ) = wkj

2 (n)
i=1

n

å y j
1(n), i =1,..., l                                (13) 

where l represents the number on neurons in the hidden layer and k represents the output 

layer. 

________________________________________________________________________ 

After the output has been calculated from the input and the weight according to 

algorithm 1, the output is compared to a target value. The error signal is then conducted 

back through the network changing weights according to the delta rule. On-line learning 

requires recursively obtaining a gradient vector in which the elements are derivatives of 

the error with respect to the parameters of the network. For the proposed algorithm, 

which uses the supervised gradient descent method, the energy function is described as,  
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                                              E =
1

2
(dk - yk )

2 =
1

2
e2

k
                                                 (14) 

where d is the desired output, y is the actual output, k is the neuron, and e is the error 

term.  

________________________________________________________________________ 

Algorithm 2 Back Propagation Algorithm        

1. Layer 2 (Output Layer) - Then the learning algorithm is described as follows. 

According to the chain rule of calculus, the error signal calculated passing through the 

linear transformation function is as follows 

       dk
2 =

¶E(N)

¶vk
2(N)

= -
¶E

¶ek (N )

¶ek (N)

¶yk
2(N)

¶yk
2(N )

¶vk
2(N )

                                     (15) 

and the weights are calculated according to the delta rule, which can be expressed in the 

following way, 

Dwkj
2 = -h

¶E(N )

¶wkj (N )
  

= -h
¶E(N )

¶yk (N )

¶yk (N )

¶wkj (N )
  

=hdk
2yk

2
                                                            (16) 

where 𝜂 is the learning rate parameter. The weights are updated according to the 

following equation: 

wkj
2 (N +1) =wkj

2 (N)+Dwkj
2 (N)                    (17) 

The error propagates through the neurons with a non-linear activation function in this 

layer.  

d j
1 =j j

' (v j (N ))
¶E(N )

¶y j
1(N )

 



   

 

 

 

17 

=j j

' (v j (N ))ek (N)
¶ek (N )¶vk (N )

¶vk (N)¶y j
1(N )

                                          (18) 

Using the delta rule again, the equation for the updated weight becomes 

    wji
1 (N +1) =w ji

1 (N)+hd j
1y j

1
                                             (19) 

Once sufficient performance on the training data has been achieved from updating the 

weights, the test data is fed to the network to determine the classification performance. 

________________________________________________________________________ 

 

The authors of this study [30] compare the classification accuracy for the Coiflet, 

Symlet, and Debauchees wavelets. They use three detail coefficients, which correspond 

to cD2, cD3, and cD4 (5-10 Hz, 10-20 Hz, and 20-40 Hz, respectively) and three 

electrodes, C3, CZ, and C4. Thus, there were 9 features in each input vector 

corresponding to 3 channels with 3 levels of details (3 channels x 3 details = 9 features). 

With 100 subjects with 45 trials, of event related time courses, for each subject, this 

corresponds to a total of 4500 inputs to the neural network.  They achieve a maximum 

classification of 74.97% using an ANN with 20 hidden layers, mean absolute value, and a 

Coiflet with 4 vanishing moments. However, this process was repeated by the authors of 

[31] who were able to achieve 89.11% for the ANN with mean absolute value feature and 

Coiflet wavelets as their maximum classification performance. In this study, the AAR 

with the Blind Source Separation (BSS) algorithm of the EEGLAB toolbox was used in 

the MATLAB environment to automatically remove electromyographic (EMG) and 

electrooculargraphic (EOG) artifact. 
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In summary, ANN’s with back propagation have been making headway in 

research in which precise mathematical model or the probabilistic classifier is not known. 

The physiology of the brain varies for different people; therefore it is difficult to find one 

mathematical model that will distinguish EEG data pertaining to a motor imagery event 

for a large amount of people, using other conventions.  In the proposed ANN black box 

approach, an ANN learns to make classification decisions in a supervised learning 

manner without any a priori knowledge about the system. Additionally, it is better able to 

create reconstruct highly ordered polynomial equations to solve complex, non-linear 

classification problems.  

ANN with the DWT method has advantage over others, such as Naïve Bayes 

Classifier, k-nearest neighbors, and even Radial Basis Functions (RBF) and Support 

Vector Machines (SVM) that are not adaptive, or do not have the ability to update their 

parameters to improve performance over time. Using supervised learning, and learning 

rate parameterization, speed of learning can be adjusted to improve performance quicker 

or more stably [32]. Performance must increase over time by definition according to the 

gradient descent method. As a result, the back propagation is an adaptive model capable 

of online-learning, constantly updating to new inputs.  

However, there is a drawback to the standard ANN with BP, as the learning 

algorithm learning rate parameterization can greatly affect stability and convergence 

speed. Poor parameterization will lead to poor classification performance [32]. To add to 

this, this method of hard computation does not account for uncertainty, therefore the 

model (such as activation function) has to be known.  
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2.1.3: Support Vector Machine 

 Another classification technique that is often employed in BCI literature is the 

Support Vector Machine (SVM). By means of the kernel trick, a much larger class of 

functions can map non-linear functions onto a high-dimensional space. In this space, the 

ability of separation is likely increased [34]. The data set does not need to be linearly 

separable in the feature space, although it can be. A margin of separation is created from 

the hyper planes to the support vectors; through this arrangement the classification 

performance is optimized, as demonstrated in Fig. 3.  

 

Fig. 3. Support Vector Machine classifier [36] 

 

To achieve separation, the SVM relates a frequent pattern recognition problem involving 

the statistical optimization of a cost function for the data. The goal is reduce the 

probability of erroneous classification of future points based on the training data.  For 

cases that are not linearly separable, a soft margin is imposed on the data so that it that it 

can learn a classification rule. The cost function is given as (20) [36], 
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F(w,z ) =C z
i=1

N

å +
1

2
w
T
w                                              (20) 

where C is a user-defined parameter, z  is the slack parameter, and w is the weight 

vector. The dual representation of this formula is given in (21) [36]. 

Q(a) = a -
1

2
aia jdid jx

T

ix j
j=1

N

å
i=1

N

å
i=1

N

å                                       (21) 

where a  is the Lagrangian multiplier and d is the adjustment factor for adjusting the 

width of the margin between the hyper plane and the support vectors. which is subject to 

the following limitations [36], 

i. aidi = 0
i=1

N

å  

ii. 0 £a £C for i =1,2,...,N  

The discriminant function g(x) , which separates the data, is written in the feature space 

as (22) [36], 

g(x) = aidiK(xi,x
i=1

N

å )+b                                            (22) 

 For g(x) > 0 , x is in class 1 w1
 

 For g(x) < 0 , x is in class 2 w2
 

Selection of the kernel and the kernel parameters and soft margin parameter determines 

the effectiveness of the SVM method. The parameters are often selected with growing 

exponential sequences of the parameters. The optimal results are selected via cross 

validation.  
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 The RBF types Mercer kernel for SVM always satisfies Mercer’s theorem. It is 

given by (23) where s 2  is the width common to all kernels. 

k(x,xi ) = exp -
1

2s 2
|| x- x ||2

æ

è
ç

ö

ø
÷                                        (23) 

The main advantage of SVM is that it projects the data onto a higher space; 

therefore, it is more likely able to separate the data [34]. The presence of the higher 

dimensional space also decreases the risk of over fitting data, thereby reducing the 

classification error [37].  Although this higher dimensional feature space has desirable 

properties, this method has more neurons in the feature space, and therefore it increases 

the computational difficulty. Furthermore, the multi-class SVM is often reduced to 

several binary problems, which adds to the amount of computations that need to be 

performed [38]. Another problem is that the parameters that are obtained are difficult to 

comprehend [39]. 

In [40], the SVM machine is used to classify the PhysioNet MMI data from 

signals FC3, FC4, C3, C4, CP3, and CP4. The Debauchees mother wavelet is utilized 

with 4 vanishing moments. The SVM classifier with Gaussian kernel (RBF) is trained 

with the 360 training sets and tested with 90 sets for 10 subjects. Classification accuracy 

is reported as 75%. 
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2.2: Proposed Improvement to Methods in Literature  

There are various advantages and disadvantages of the aforementioned methods, 

see of Motor Movement Imagery (MMI) classification, which prompted the proposal of 

the method that is used in this report, refer to Table 3. First, for feature translation 

techniques, the NA-MEMD method has mode mixing and, therefore, contains different 

information in each band, which isn’t useful for a frequency fixed analysis. Because there 

is plenty of research behind neural oscillations and event related potentials, a priori 

knowledge of the system already exists. The frequency bands are already known and 

researchers know that they are looking for synchronization activity. Consequentially, the 

Discrete Wavelet Transform (DWT) is better for spectral analysis and specifically for 

determining spectral Event Related (De) Synchronization (ERS/ERD) because the 

frequency localizations are locked. 

Next, for feature extraction, although the selection of the mother wavelet is very 

important for the accuracy of the analysis, there has been research to suggest that a few of 

the wavelets such as Symlet and Debauchees are better for decomposition than the Morlet 

and Coiflet wavelets used in the previous studies. Therefore, the proposed method uses a 

Debauchee wavelet with 2 vanishing moments, as is it demonstrates better results in 

[41][42]. Also, the DWT is selected as a better alternative better than the FFT because 

these wavelets can achieve and are better able to construct a waveform with sharp peaks 

and asymmetric properties. 

Furthermore, the SVM method is problematic because it is only trained once. This 

means that this application would not achieve improved online performance.  Also, a  
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Table 3. Summary of the Various Feature Translation Algorithms Used in EEG 

 Method Advantages Disadvantages 

Feature 

Extraction 

MEMD Fully data-driven; 

good time-energy-

frequency analysis; 

good for stochastic 

signals 

Mode mixing 

 FFT Lot of research to 

support use of various 

methods 

Sinusoidal 

waveforms; does not 

do well with peaks 

and asymmetry 

 DWT Good for spectral 

analysis 

A priori knowledge of 

the waveform needed 

for accurate analysis 

Feature 

Translation 

SVM Higher classification 

performance 

Can only be trained 

once 

 ANN with BP Accuracy increases 

with time 

Slow convergence; 

may converge to local 

minimum 

 TSKFNN with 

Hybrid learning 

Tolerance for 

uncertainty; learning 

improves 

performance; quicker 

convergence 

May converge to local 

minimum 
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multi-class problem complexity is increased for two-category classification scenarios, 

which is undesirable because it is inefficacious. The SVM can be interpreted as a model 

that statistically separates the data using Gaussian kernels for the RBF type SVM, 

however the Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) has the ability to 

account for uncertainty in the modeling of the premise layer. Probabilistic functions can 

be used to determine clusters centers for a neural network, through Subtractive Clustering 

or other clustering methods, to represent the data in a smaller dimensional feature space. 

Furthermore, the membership functions can be updated via back propagation to improve 

the performance. Table 3. compares and contrasts the various strengths and weaknesses 

of the methods discussed in Chapter 2.1. 



   

 

 

 

25 

CHAPTER 3: BACKGROUND 

3.1: Electroencephalography 

Electroencephalograms (EEGs) are measurements of physiological signals of 

neural origins recorded from the surface of the scalp as a degree of electromotive force. 

These signals are ideal for BCI applications due to their low cost, ease of use, non-

invasiveness, and ability to extract information with high spatial-temporal resolution [11]. 

Despite these advantages, neuronal signals have to propagate through the Dura Mater and 

skull to get to the surface of the skin, and therefore have been more attenuated than other 

more invasive methods that use intracranial chronic electrodes. Furthermore, EEG signals 

are often more contaminated with electromyograms (EMG), electrooculargrams (EOG), 

power line, and environmental artifacts and have a very low signal to noise ratio [43][44].  

However, not only does implantation of the electrodes directly into the brain 

introduces the risk of infection [45]. The mechanical mismatch between the implant and 

the brain, such as Young’s Modulus (elastic modulus) inconsistency, instigates glial cell 

encapsulation that prevents chronic electrodes from conducting a signal through these 

scars within a couple weeks to months [45], which makes intracranial methods of 

recording less appealing for research. However, the high level of invasiveness comes 

with higher signal-to-noise ratio, which is important for being able to discriminate types 

of neural oscillations.  

Despite these limitations, methods such as spectral analysis have been developed 

to remove sources of noise using frequency properties inherent to them. Through 

transformation into the frequency domain, elimination of frequency bands, and 

decomposition of the waveform in the time course can give information such as Variance 
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of EEG (VAR), Mean Absolute Value (MAV), or Root Mean Square (RMS) for each 

frequency band, Table 3. Furthermore, information such as energy percentage at each 

bandwidth or the power spectral density can be calculated at each band. The frequency 

bands that are referred to in this study are listed in Table 3 and demonstrated in Fig. 4. 

This study utilizes the Discrete Wavelet Analysis (DWT) for feature extraction. The 

details will be discussed in Chapter 3.2.  

Table 3.  Rhythmic activity bands in EEG 

Bands Frequency (Hz) Associated With 

Theta 4-8 Drowsiness 

Alpha 8-13 Relaxation 

Beta 13-30 Active thinking 

Gamma 30-100  Cross-modal sensory 

processing 

 

 

Fig. 4. EEG Rhythmic Activity Bands [46] 
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Sensorimotor rhythms (SMRs) and slow cortical potentials (SCPs) are analyzed in 

this report. Of these two, SMRs, Fig. 5, are more efficacious for neuroprosthetic control 

in BCI because they offer a higher level of control, in the form of degrees of freedom 

[47]. Moreover, SMRs exist in both healthy and afflicted subjects such as amputees and 

have been demonstrated efficacious in motor movement imagery tasks [48]; thus making 

it is an area of focus for studies involving the brain through methods such as Event 

Related Desynchronization (ERD). Sensorimotor rhythms appear over the sensorimotor 

cortex and are detected in the beta/alpha wave band.  

 

Fig. 5. Suppression of pain response causal relationship with sensorimotor alpha 

waves [49] 

 

SCPs, on the other hand, originate from large cell assemblies in the upper cortical 

layer. They may be externally triggered or self-induced and are present during states of 

behavioral or cognitive preparation [50]. Activity of a thalamo-cortical-striatal circuit 
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encompassing the prefrontal cortex [51], primary, and supplementary motor areas [52], 

posterior parietal cortex [53], anterior cingulate cortex and thalamic nucleus [54] instigate 

contingent negative variation [55] in EEG. SCPs can be detected at the frequencies of 

theta and mu neural oscillations as negative shifts in transient time course. Regulation of 

SCPs appears to be attenuated for motor preparation [56]. 

In EEG, electrodes are usually placed according to systems best capture the 

signals of interest. SMRs are located most nearly in the motor cortex (PC3, PCZ, PC4) or 

somatosensory cortex (C3, CZ, C4) for hand imagery in ERD. For Movement Related 

Cortical Potentials (MRCP), electrodes are often used in both locations, Fig. 6. 

 

Fig. 6. Internationally recognized methods for EEG placement. This figure 

demonstrates (a) the high-density 10-10 system [12] and, (b) the low density 10-

20 EEG [57]  

 

Various EEG placement systems have been adopted with various densities 

selected, including 10-10 and 10-20. Less complex models such as 10-20, in Fig. 6 (a), 

can use 21 electrodes and is, therefore, less computationally demanding. High-density 
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placement systems such as the 10-10 international system, in Fig. 6 (b), which uses 64 

electrodes placed throughout the scalp and can provide higher resolution at the cost of 

computational complexity. Electrode systems derive their names from the distance 

between the adjacent electrodes. The numbers 10 and 20 indicate the distance between 

the electrodes front to back, and left to right; for example, 10 % or 20 % of the total 

distance of the skull, correspondingly. Both of these electrode placement systems will 

appear later in Chapter 3 and in Chapter 4. 
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3.2: PhysioNet Motor Movement & Imagery Database 

       The EEG data in this research comes from Motor Movement and Imagery (MMI) 

Database available online at PhysioNet [12]. The data consists of more than 1,500 EEG 

recordings acquired from 109 subjects; recorded at 160 Hz using the BCI2000 with 64-

channel EEG, performing a total of 14 experimental runs. Tests are included in Table 4:  

Table 4. PhysioNet EEG MMI task list executed by each person, 3 x 

Number Tasks 

1 1 min. baseline, eyes open  

2 1 min. baseline, eyes closed  

3 2 min. task 1 (open and close left or right fist) 

4 2 min. task 2 (imagine opening and closing left or right fist)  

5 2 min. task 3 (open and close both fists or both feet)  

6 2 min. task 4 (imagine opening and closing both fists or both feet) 

 

Baseline tests were performed one time per test subject for a one-minute period, whereas 

tasks 1 through 4 are performed three times for two-minute periods each. For Task 4, a 

target appears on either the left or right side of the screen, annotated T1 or T2 

respectively, which prompts the subject to open and close the corresponding fist until the 

target disappears after approximately 4.1 seconds (this is the event-related time course 

used in the study for the DWT energy calculation). Each trial was followed by 4.1 

seconds of rest, corresponding to 656 time points per electrode on each trial [8][12]. 

Overall, the left and right fist activity was engaged in a total of 15 trials for three separate 

periods.  
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3.3: Feature Extraction 

3.3.1: The Discrete Wavelet Transform 

Much of the noise in electroencephalograms (EEG) existing outside of the 0.01-

100 Hz can be removed using high-pass and low-pass filters [58]. Artifacts caused by 

sweating, drift in impedance, muscle contraction, aliasing, and power lines contribute 

significantly to recordings outside of this range. Sweating and drifts in electrode 

impedance gradually change the measured voltage leading to saturation in amplitude and 

distortions over event-related time course [59]. Additionally, muscle contraction artifacts, 

primarily electrooculargraphic (EOG) and electromyographic (EMG) exist in frequencies 

and above the 0.01-100 Hz neuronal EEG range [60], [61]. Also, a natural phenomenon 

called aliasing causes lower frequency artifacts that may require a little more attention, 

but in many cases can be filtered out using a low pass filter [62]. Lastly, power line noise 

occurs at 60 and sometimes 50 Hz and can be filtered out using a notch filter [63]. Once 

these noises are removed, the neuronal signals can more easily be discriminated.  

Two classes of filters analyzed for investigation, in this study, which include the 

Fast Fourier Transform (FFT) and the Discrete Wavelet Transform (DWT). Early EEG 

filtration utilizes FFT, however, this approach limits the spectrum of the EEG signal to 

four frequency bandwidths, including delta, theta, alpha, and beta [64]. The later 

development of DWT and numerous other methods has increased the popularity of the 

wavelet transform, as computation has become easier and more accurate. In recent 

literature, the wavelet has been a common method used for feature extraction. Based on 

its recommendation from various sources and the performances in [29][65], the DWT is 

used in the feature extraction phase of this analysis.  
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The DWT more accurately reconstructs higher order polynomial functions 

algebraically with its unique waveform properties. Based on a multi-resolutions 

operation, the wavelet characteristics of an adjustable window allow the extraction of all 

the components for every position by scaling and shifting. Consequentially, this achieves 

better representation of the original signal than would be possible with sinusoidal based 

waveforms as in the case of the FFT [22]. Additionally, the DWT retains the spectral 

analysis capabilities with of the FFT because features can be the signal can be converted 

into the frequency domain where it is reduced. Then frequency fixed information can be 

extracted from details and coefficients, such as energy, of the waveform representing the 

transient time course on a compressed scale. Thus the DWT is highly effective for feature 

extraction and signal representation, as is demonstrated in Chapter 4. 

Accurate reconstitution of bio-signals, however, requires proper selection of the 

mother wavelet. Shifting and scaling different wavelets will produce different 

representations of the signal, and therefore different resolution. The most popular class, 

the Debauchee wavelet, has properties that are ideal for a lot of applications. Based on 

high performance in the literature review, in [29][66], a Debauchee mother wavelet with 

2 vanishing moments was selected (‘db2’) as the wavelet; although, the Symlet family 

(rather intuitively, based on properties of asymmetry, orthogonality, and biorthogonality) 

is another good choice because and it has comparable results in literature [29][67]. The 

Coiflet family even produced higher classification accuracy in some studies. 

The Wavelet Transform analysis performs scaling and shifting a function called 

the mother wavelet to produce the daughter wavelets and is represented as follows [68]: 

 T(a,b) =
1

a
× x(t)y* t -b
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where y*  is the complex conjugate of the mother wavelet ya,b
 is the daughter wavelet, 

a-1/2 is the constant of energy normalization, l is the location factor, and a is the dilation 

factor. We use the convolution theorem to express the integral as a product in Fourier 

space. 

The Continuous Wavelet Transform scales continuous data, whereas setting the 

dilation and translation factor to discrete integer ( 𝑎, 𝑏 ≥ 1 ), produces the Discrete 

Wavelet Transforms [68] 

ym,n(t) =
1

a0

m
y
t -nb0a0

m

a0

m

æ

è
ç

ö

ø
÷                                         (25) 

where m and n are the wavelet dilation and translation. The variable 𝑘, 𝑡 (∈ 𝑍) and 𝑡 is 

the time localizations. The dyadic grid wavelet is obtained by substituting the constants 

𝑎0 = 2 and 𝑏0 = 1 into (25). 

ym,n(t) = 2-m/2y(2-m t -n)              (26) 

The discrete wavelets are chosen to be orthonormal and as such they are normalized to 

have unit energy, 

The formulation of the DWT gives way to the Multi-Resolution Analysis (MRA), 

which is schematically shown in Fig. 7, 

 

 
 Fig. 7. DWT sub-band decomposition [69] 
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Signal decomposition begins with specification of the waveform in terms of the 

low-pass filter h , which satisfies the quadrature mirror filter condition [17],             

H(z)H(z-1)+H(-z)H(-z-1) =1                     (27) 

where  H(z) is the  z-transform of h. Its associated high pass-filter can be represented as, 

G(z) = zH(-z-1)                                 (28) 

Consequentially, a sequence of filters is constructed with increasing lengths, 

Hi+1(z) =H(z2i )Hi(z)                                                (29) 

Gi+1(z) =G(z2i )Hi(z), i = 0,1,..., I -1                                    (30) 

The initial condition satisfies H0(z) = 1, and upscale filtration is by a factors of 2, denoted 

[. ]2↑, with equally sampled discrete times, k. 

hi+1(k) = [h]
­2i
hi(k)                             (31)

 

                         gi+1(k) = [g]
­2i
hi(k)                            (32) 

The normalized wavelet and scale basis functions are defined as, 

jm,nl (t) = 2-m/2hi(2
-m t -n)        (33) 

yi,l (t) = 2-m/2gi(2
-m t -n)                (34) 

where 2i/2  is the inner product normalization, i  is the translation parameter, and l  is the 

translation and scale parameters, respectively. Thus, 

ai(l) = x(k)ji,l (k)                   (35) 

          di(l) = x(k)y(k)           (36) 

where a and d are the approximations and detail coefficients. Thus concludes the 

derivation. 
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3.3.2: Blind Source Separation 

The composition of source activities at the same location of the scalp depends on 

orientation, distance, and amplitudes of cortical origins across the cortex [70]. As a result, 

area restricted brain activity can be identified using these pseudo-spatial filtration 

techniques as such. By assuming that the channels are combinations of transient signals 

traveling through the brain, skull, and scalp, artifacts such as those electrooculographic 

(EOG) and electromyographic (EMG) existing in the 0.01 to 100 Hz frequency range of 

EEG, these sources can be removed [43][44]. A sufficient starting point for the 

discussion of spatial filtration of EEG is a review of the collection of algorithms under 

the title of Blind Source Separation (BSS). 

The objective of BSS is to remove the correlation from the data and produce 

separation among signal sources. Let 𝐬(𝑡) = {𝑠1(𝑡), … , 𝑠𝑛(𝑡)]𝑇 be the signal sources and 

𝐱(𝑡) = [𝑥1(𝑡), … , 𝑥𝑚(𝑡)]𝑇 be the m observed mixtures of signals at the electrodes, both 

on the time course 𝑡=1,2,…,𝐿, then the signal at the j’th electrode can be modeled as [72]: 

x j (t) = a jisi(t)+
iÎGEMG

å a jisi(t)
iÎGEEG

å                          (37) 

where 𝑎𝑖𝑗 is the i’th source transfer coefficient to the j’th electrode and Γ is the set of all 

electromyographic and electroencephalographic indexes, respectively. The equation can 

be simplified in the following way [71], 

  x(t) = x j,EEG(t)+x j,EMG =AEEG(t)sEEG(t)+AEMG(t)sEMG(t)                    (38) 

where A is a matrix of the transfer coefficients. In this representation, the neuronal 

components can be separated from the non-neuronal if the artifacts are located. 



   

 

 

 

36 

Automated Artifact Removal (AAR) is a subdivision of BSS that indirectly spatial 

filters EEG and may be used for automated EOG and EMG artifact correction. It involves 

finding a new projection W of the data, called an unmixing matrix, that maximizes the 

correlation between sources, as is demonstrated by [72]: 

WX =AEEG
                         (39) 

After multiplication with the original data, X, W reveals the matrix time course A of 

neuronal components. The purpose of this transformation is to map the data into another 

space. 

       Contemporary AAR methods such as Second Order Statistics (SOS), 

including the Second Order Blind Identification algorithm (SOBI), assume that the 

original source signals are uncorrelated and time-lagged covariance matrices.  SOBI, for 

example, uses a non-zero time delay auto correlation (used in this study for EOG removal 

based on its performance in [43]). Under this assumption, the mixing matrix is diagonal 

with a set of p cross-correlation matrices [73]:  

R(t i ) = E[x(t)x(t -t )T ]                                    (39) 

where i =1,2,..., p and E[∙] is the expectation operator.  Using Sevcik’s algorithm, the 

waveform coordinate ( 𝑥𝑖 , 𝑦𝑖 ) are mapped into a unit square by x*

i = xi / xmax
 and 

y*

i = (yi - ymax ) / (ymax - ymin )  where xmax
 is the maximum xi  and ymax

and ymin
 are the 

maximum and minimum of yi, respectively. 

The first step of SOBI begins with decomposition of correlative data windows 

(with windows greater than 0.25xm2, as per [43], where m is the number of electrodes). 

This separation allows the analysis to tolerate the non-stationary nature of the signal. 
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Afterwards, components are identified using fractal dimension (FD) (to measures 

complexity). FD is calculated as [73]:  

 FD =1+
ln(l)

ln(2(n-1))
                      (40) 

where l is the total length of the waveform and n is the number of sample points of the 

signal. EEG waveforms are flatter and have a wide spectrum, and thus have a higher FD, 

whereas, EOGs have lower FD, and thus discrepancies may be discerned and artifacts 

may be removed.  

The electromyography (EMG) artifacts can be eliminated through means of a 

second AAR algorithm designated the Canonical Correlation Analysis (CCA) which 

attempts to recover the original signal sources in S(t) by setting a time lag to ensure that 

each electrodes time source signals are related to each other [74]. With each successive 

new pair of variables, the pair is maximally correlated with each other and uncorrelated 

with the first pair. Each consecutive variate yields time courses that have autocorrelation 

among all possible linear combinations of time courses and are uncorrelated with the 

previously obtained time course. Because muscle artifacts yield more properties having 

less autocorrelation, EMG and EOG are expected to be present in the lowest auto 

correlated CCA sources, setting these sources to zero removes the noise. 

For CCA, first it is assumed is that the sources are mutually uncorrelated and 

maximally auto correlated and that the mixing matrix is square. Therefore, Y is selected 

to be a temporarily delayed version of the original data matrix X, Y(t) = X(t-1). Next, the 

average of each row is subtracted; producing two vectors whose projection correlation 

onto the basis vectors are mutually maximized according to [44]: 
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u =wx1x1 +...+wxkxk =wTxX                                             (41) 

v =wy1y1 +...+wykyk =wTyY                                   (42) 

The weight vectors wx = [wx1….,wxK]T and wy = [wy1….,wyK]T maximize the correlation 𝜌 

between the variables u and v: 

maxr(u,v) 

wxwy =
E[uv]

E[u2 ]E[v2 ]
w  

=
E[(wTxX)(wTyY)]

E[(wTxX)(wTxX)]E[(wTyY)(wTyY)]
 

  =
wTxCxywy

(wTxCxxwx )(w
T

yCyywy )
                         (43) 

where Cxx and Cyy are the auto covariance matrices and Cxy is the cross covariance 

matrix, of X and Y. By setting the derivatives of (43) to with respect to wx and wy equal 

to zero, after some algebraic manipulation, the following equation is presented: 

C-1

xxCxyC
-1

yyCyxŵx = rŵx
 

C-1

yyCyxC
-1

xxCxyŵy = rŵy
                 (44) 

which is used to find the maximum correlation. 

Lastly, Independent Component Analysis (ICA) and is one of the more successful 

contemporary BCI signal processing [75]. ICA also applies BSS to remove artifact and 

improve SNR (neuronal vs. non-neuronal) of tasks related EEG signals, and it may even 

be used to aid in electrode selection. ICA works to remove the correlation of the data 

using a mixing matrix, just like the Principle Component Analysis (PCA) and the AAR 
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methods previously described, however a key difference is that SOS methods use second 

order statistical methods whereas ICA uses all order statistics and ICA makes no 

assumptions about the mixing matrix. 

ICA seeks projections (utilizing the same unmixing matrix from the BSS 

problem), 𝐖−1 , of the data that maximizes their statistical independence. Every 

Independent Component (IC) is a weighted sum of the signals recorded at all scalp 

channels and every channel signal is a weighted sum of the projected activities of the ICs: 

X=W-1AEEG
                         (45) 

As with AAR, ICA attempts to reconstruct a multi channel source using a mixture of 

those sources to allow for the separation of muscle artifacts, such as ocular. This method, 

however, uses unsupervised learning to solve the BSS mixing matrix problem (therefore, 

it is important to note that depending on learning rate, error stopping criteria, and various 

other factors, ICA performance may change).  

There are many ICA methods available, with different measurements statistical 

independence, including the following: INFOMAX, JADER, and FASTICA. In this 

report, 23 channels are kept for spatial filtration, and due to INFOMAX’s stability and 

JADER and FASTICA’s limitations, INFOMAX is the superior choice. FASTICA 

computes individual components 1-by-1 and is therefore slower than INFOMAX. In 

addition, JADER can only handle roughly 50 channels for storage reasons [76], putting it 

at a disadvantage for high density.  
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3.3.3: Neural Oscillations Analysis 

Event-Related Potentials (ERP) is a term often used in literature to describe the 

measured brain responses to sensory, cognitive, and motor events and covers the 

subsequent analyses which includes the following: Event-related synchronization and 

desynchronization (ERS/ERD) and Movement Related Cortical Potentials (MRCP). The 

first (ERS/ERD) analyzes neuronal activity correlated to locations C3, CZ, and C4 of the 

scalp (near the somatosensory cortex [65]), whereas the latter (MRCP) often contains 

activity from these three electrode placements as well as C1, C2, FC3, FCZ, and FC4 

[77], above the motor cortex as well. 

ERD/ERS quantifies motor events through changes in rhythms of the mu (8-

13Hz) and beta (13-30 Hz) frequency bands when motor activity is preformed or 

imagined. Frequency locked EEGs decrease amplitude prior to and during execution of 

movement in a process referred to as desynchronization, see Fig. 8. After the movement 

is concluded, the beta region cortical potentials increase in a process recognized as 

synchronization [78]. Left hand movement corresponds to alpha and beta ERS/ERD 

activity in the right hemisphere of the brain, whereas right hand movement corresponds 

to the left hemisphere. This poses a starting point for feature extraction. Tracking changes 

in the rhythm fluctuation, for example, through energy percent calculation at each of the 

frequency bandwidths, generated from different sources is hypothesized to aid in the 

differentiation of the left and right hand motor movement.  
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Fig. 8. Changes in time frequency power distribution calculated for ERD activity 

[80] 

 

Movement Related Cortical Potentials (MRCP) refers low frequency (0 – 5 Hz) 

negative shifts that occur 1.5-2 seconds before the onset of voluntary movement [80]. In 

order to extract more features for the neural network, the same electrodes may be used as 

to capture the cortical activity corresponding to motor movement imagery, which happen 

to be located above the primary motor cortex, near the somatosensory cortex. Using 

ERD/ERS analysis in addition to MRCP electrode placements with energy percentage 

calculated from wavelet coefficients through the DWT (for mu and beta waves), it is 

assumed that the features produced from the characteristics can be implemented to 

successfully classify the motor events using the TSKFNN.  
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3.4: Feature Translation 

Neuro-fuzzy systems have been emerging amidst the development of soft 

computing methods [81]. Methods such as fuzzy logic, genetic algorithms (or other 

constituents of soft computing) are able exploit the tolerance for imprecision to achieve a 

low cost, tractable solution, making these systems extremely robust [82]. The use of 

fuzzy logics uncertainty principles allows for tolerance to imprecision, based on the 

formulation of uncertainty into rules of calculus. This can be of special use in non-linear, 

multivariate systems when exact output can be generated for linguistic like expressions 

[83]. This allows fuzzy logic and neural networks to synergize and machine to be taught 

classification expertise, thus making it a superior tool for feature translation.  

3.4.1: Takagi-Sugeno-Kang Fuzzy-Inference 

Fuzzy inference systems are governed by a set of linguistic rules. Statements such 

as IF A THEN B in conjunction with mathematical principles assist in the formulation of 

decisions that would be otherwise difficult to quantify. Based on fuzzy principles, or 

uncertainty in decisions, networks can produce output to respond to a situation such as: 

If color is blue and object is round, then object is blueberry 

where blue and round are not indefinite descriptions. Based on an experienced set of 

rules, precise output is calculated [83]. Thus, this linguistic method is thus applicable to 

the treatment of amputation. 

The Takagi-Sugeno-Kang fuzzy inference model emerged to fulfill the need for a 

simple linguistic model for multivariable control in which the dimensionality is large 

(accurate or ‘defuzzified’ output). First a membership function is defined to represent the 
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accuracy of description of a particular subject, or feature. Degree of membership of a 

particular instance to another is defined, such as degree of an object to the color blue. 

Combining a set of instances of an object belonging to different categories of data, a 

general classification statement can be made. The Sugeno style model is defined such that 

fuzzy implication R is of the format: 

R: If f(x1 is A1, … , xk is Ak) then y = g(x1, … , xk)                          (46) 

The Takagi-Sugeno method defuzzifies the output so that the consequence part of the 

equation is quantifiable, and from this organization algorithms such as TSKFNN have 

emerged for machine learning application in output devices, each with their own set of 

advantages. 

The TSKFNN consists of two stages: feed forward and weight update. In the feed 

forward period, the inputs undergo fuzzification as degrees of membership to multiple 

mathematical functions are calculated as follows. Assuming that the membership can be 

modeled as a normal distribution:  

M i

j (×) = exp -
(xi -m j )

2

s 2

ì
í
ï

îï

ü
ý
ï

þï
                               (47) 

For the case of an asymmetric membership function, the equation becomes piecewise. 

Using the AND logic represented by element-by-element multiplication, the rule layer is 

developed to compare different conditions. The Takagi-Sugeno style inference 

mechanism performs a linear combination of the consequent parameters {c0,c1,…,cn}: 

f1 =Tk = c0y0 +c1y1 +...+cnyn                        (48) 
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(where the bias is in the first term and n is the number of inputs), performs product AND 

in the consequent layer so that the input is a linear sum with scalars representing the 

consequent parameters. The output layer defuzzifies the input, where the connective 

resistance going into the node constitutes firing strength [16], and generates a crisp output 

or exact solution. 
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3.4.2: TSK Fuzzy Neural Network 

The Takagi-Sugeno-Kang Fuzzy Neural Network updates the network to produce 

the desired output based on error feedback to classify the segments from the features 

extracted in the previous stage [16]. Adaptive Neural Fuzzy Inference System (ANFIS), 

Fig. 9, is another name for the type of TSKFNN that is implemented in the Fuzzy Logic 

application package of MATLAB that is employed for this study. In the ANFIS model, 

the input features arrays feed through the network changing their strengths based on 

membership to the membership functions, and then the value is compared to the target 

output and error feeds back through the network and the weights are modified 

accordingly.  

 

Fig. 9. ANFIS Takagi-Sugeno-Kang Style Inference Neural Network [18] 

 

A. Back Propagation, Feed Forward  [16], [17]. 

In the forward feed process, the output is computed from the Takagi-Sugeno-

Kang Fuzzy Reasoning. The premise layer uses product AND to combine the terms and 

the consequence layers uses product IMPLICATION. The consequence parameters are 

updated through the LSE algorithm. 
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1) Layer 1 (Input Layer): The node input and output for the i’th node are represented as 

the following, in the input layer,  

yi
1(n) = xi(n), i =1,...,q               (49) 

where 𝑥𝑖(𝑛) the input at the n’th iteration, and q represents the number of inputs. 

 

2) Layer 2 (Membership Layer): In the membership layer, the degree of membership to 

each function is calculated using the Gaussian distribution. 

y j
2 (n) =M i (yi

1(n)) =
1

1+
yi

1(n)-m j

s ij

2

é

ë
ê
ê

ù

û
ú
ú

2

bi

 

= exp -
yi

1(n)-m j

s ij

2

æ

è
çç

ö

ø
÷÷

2ì

í
ï

îï

ü

ý
ï

þï
, j =1,2,..., s                                   (50) 

where 𝑚𝑗 is the membership function center, s is the number of membership functions 

multiplied by q (inputs), and 𝜎𝑖𝑗
2  is the variance of the Gaussian membership curve. 

 

3) Layer 3 (Rule Layer and Consequent Parameter Formulation): Every node in the rule 

layer multiplies the incoming signals and sends the product out. The k’th node formula is 

as follows, 

 yk
3(n) = w jk

3 y j
2

j=1

l

Õ                                    (51) 

where 𝑤𝑗𝑘
3  is the weight of the membership layer to the rule layer, and is equal to 1. Each 

node is indicative of firing strength, normalized as, 
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 yk
3(n) =

yk
3(n)

yk
3(n)

i=1
å

                                           (52) 

The TSK type fuzzy inference layer is designed by linearly transforming the input signals 

with the consequent parameters, denoted 𝑐𝑖𝑘 as described below. 

Tk (n) = cik (n)yi(n)
i=0

å
æ

è
ç

ö

ø
÷                              (53) 

The variable 𝑐0𝑘  is the bias, which can be set to 0. 𝑇𝑘  is the output of the linear 

combination. 

 

4) Layer 4 (Consequence Layer): The consequence layer is formulated as the product of 

the output of the normalized rule layer with the linearized input signal.  

yk
4(n) = yk

3(n) Tk (n)( ) =
yk

3

yk
3

i

å
cik (n)yi

1(n)
i

å
æ

è
ç

ö

ø
÷                            (54) 

5) Layer 5 (Output Layer): This single node acts as the defuzzifier and is mathematically 

represented in the following equation:  

Oi
5 = wk

5yk
4

k=1

å                                (55) 

Least Squares Estimate (Consequent Layer Update): As part of the hybrid learning 

routine, the consequent layers update according to the LSE method described in equation 

(72) and (73). 

 

B. Back Propagation Using Delta Learning [16], [17] 

        Premise parameters update via propagation of the error term, where the error 

function 𝐸 is defined below. The output of the neural network is a value that is compared 
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to a binary value (+1 or -1) that would be used upon learning to determine whether the 

movement corresponds to left hand or right hand. The error is calculated using least 

square error. 

E =
1

2
w -Oi

5( )
2

=
1

2
e2                  (56) 

The value 𝜔 is the desired output and target forward propagation, respectively. The 

update is given as follows. 

 

1) Layer 5: The local gradient is the only term calculated:           

d0

5 = -
¶E

¶y0

5(n)
= -

¶E

¶e

¶e

¶y0

5(n)
                                     (57) 

2) Layer 4: The error propagation can be written in the following way, in the 

consequence layer, 

dk
4 = -

¶E

¶yk
4(n)

= -
¶E

¶y0

5

¶e

¶yk
4(n)

= d0

5wk
5                      (58) 

wherein the weights are fixed. 

 

3) Layer 3: The consequence parameters do not update in this layer. However, the local 

gradient is derived as: 

dk
3 = -

¶E

¶yk
3(n)

= -
¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

=dk
4Tk (n)                           (59) 

4) Layer 2: In this layer, the error term is calculated with the following equation: 

d j
2 = -

¶E

¶y j
2(n)

= -
¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

¶yk
3(n)

¶y j
2(n)

=dk
4 dk

3

k

å yk
3                   (60) 
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The premise parameters {𝜎𝑗 , 𝑚𝑗} are updated using the chain rule, with learning rates 𝜂𝑚 

and 𝜂𝜎𝑗 for membership function average and deviation. The learning rate, 𝜂, is updated 

according to the generic parameter, α, and can be derived as follows, 

Da = -h
¶E

¶a
                       (61) 

Therefore the membership center and standard deviation update respectively, according 

to the following formulas: 

Dm j = -hm
¶E

¶m j

                   (62) 

  = -hm
¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

¶yk
3(n)

¶y j
2(n)

¶y j
2(n)

¶m j (n)
                                   (63) 

where ∆𝑚𝑗 represents the change that the membership function center undergoes upon 

error feedback each iteration and, 

Ds j = -hs j

¶E

¶s j

                 (64) 

= -hs

¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

¶yk
3(n)

¶y j
2(n)

¶y j
2(n)

¶s j (n)
                     (65) 

∆𝜎𝑗  is the change of the standard deviation of the membership function curve. The 

equation for update for each is given in the following computation: 

mj (n+1) =mj (n)+Dmj
                                     (66) 

s j (n+1) =s j (n)+Ds j
                           (67) 

The learning rate can be written in terms of the step size, k, also known as is the length of 

each gradient transition.  
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 h =
k

Sa

¶E

¶a

æ

è
ç

ö

ø
÷

2
                        (68) 

The learning rate of the membership function centers is derived below. 

 h =
k

Sa

¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

¶yk
3(n)

¶y j
2(n)

¶y j
2 (n)

¶m j (n)
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                        (69) 

h =
k

Sa

¶E

¶y0

5(n)

¶y0

5(n)

¶yk
4(n)

¶yk
4(n)

¶yk
3(n)

¶yk
3(n)

¶y j
2(n)

¶y j
2 (n)
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                        (70) 

The weights parameters are updated according the hybrid LSE-BP method described in 

3.4.3. Thus concludes the derivation of the Takagi-Sugeno-Kang Fuzzy Neural Network 

(TSKFNN).  
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3.4.3: Hybrid Learning Algorithm 

A key distinction between the various frameworks of fuzzy neural networks is the 

premise and consequent layer parameter. There are several different procedures for 

updating these parameters including Back Propagation (BP), Least Square Estimate 

(LSE), or a combination of these and various others. Between the BP and LSE, there are 

multiple ways of updating the parameters including (descending in complexity):  

1. Updating all parameters via gradient descent;  

2. Applying LSE once at the very beginning to get the initial values of the 

consequent parameters, then applying gradient descent to update all of the 

parameters;  

3. Applying LSE to update the consequent parameters and gradient to update the 

premise parameters; and  

4. Applying the Kalman filter algorithm to update all parameters using approximate 

LSE only.  

The gradient descent method is slow and frequently gets trapped in local 

minimums. However, the LSE method can be computational inefficient. Furthermore, the 

hybrid LSE-gradient descent method permits quick convergence, but other methods may 

be used to hasten convergence. In [16], the authors use a convergence analysis with the 

delta rule based on the discrete type Lyapunov function to counter poor convergence. BP 

has very low complexity in contrast to the other methods and is, therefore, the most 

efficacious. It recursively updates the weights according to the delta rule allowing 
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convergence to a local minimum, assured by steepest descent, to achieve the highest 

classification performance at the lowest extrema.  

One deficiency of this method, however, in addition to getting caught at the 

wrong local minima, is that instability results from improper learning rate 

parameterization [32]. With small learning rates, the online-learning system can 

approximate gradient descent and remain stable. However, if the learning rate parameter 

is too small, the system will not learn quickly and will perform poorly for small training 

sets. If it is too big, the system will vacillate unstably. These issues will cause the system 

to perform poorly on the test data points. As a result, a correct learning rate needs to be 

selected for optimal results. 

Let the consequence parameters {c1,c2,….} be XT and A be the output of the 

previous layer feeding into the consequence layer. Let y be the output, then, AX = B. So 

X = A-1B. However this is an over determined solution because the data is usually much 

larger than the number of features. So instead we use a least squares estimator X* and the 

equation become AX* = `B.  This formulation of the solution is often recognized as the 

pseudo-inverse. It often appears in textbooks and is written as [84]: 

X* = (ATA)-1ATB                                                  (71) 

where A contains a row for every pattern of training data, X has consequence parameters, 

in the hybrid case and B is target output from the training data. These matrices are of 

sizes  (PxM),  (Mx1),  (Px1), respectively, where P and M are the number of training sets 

and the number of consequence parameters. Sequentially, the formula can be represented 

online as [82]: 

  Xi+1 = Xi +Si+1ai+1(bi+1

T -ai+1

T Xi )                                        (72) 



   

 

 

 

53 

Si+1 =
1

l
Si -

si+1ai+1ai+1

Tsi

l + ai+1

Tsiai+1

é

ë
ê

ù

û
ú                                               (73) 

where 𝜆 is the forgetting factor placing less emphasis on older values, S is the covariance 

matrix, and ai and bi correspond to the i'th row of A and B respectively. The forgetting 

factor increases adaptability, allowing online learning approximation. This allows for 

samples misrepresenting the data lose strength as the new test data becomes available 

[24]. The initial conditions are of the form X0 = 0 and S0 = kI, where k is a large positive 

constant and I is the identity matrix with rows and columns of size M. It is important to 

note that too little decay causes instability. 

Hybrid LSE-gradient decent uses back propagation to tune the hidden layers 

parameters (consequent parameter) and LSE to identify the output layer parameters 

(premise parameters), demonstrated in Table II. 

 

Table 5. Summary of the hybrid algorithm [17] 

 LSE BP 

Premise Parameters Fixed Gradient  

Descent 

Consequent Parameters Least  

Squares  

Estimate 

Fixed 

Signals Node Outputs Error Rates 
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Fine-tuning the membership functions is another option to consider. Linguistically 

speaking, fine-tuning allows for the adaption of subjective description for ill-defined 

concepts, as is done with the asymmetric membership functions in the convergence 

analysis [80]. In most applications, the use of fuzzy logics linguistic structure necessitates 

only subtle knowledge of the background of the presented situation and therefore 

enhanced representation may not be reflective of the data set, in which case the 

membership functions should be fixed constant. However, fine-tuning the membership 

functions can make the model more adaptive and perform better on new data and give 

more precise feedback. 
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3.4.4: Subtractive Clustering Algorithm 

One of the problems with the TSKFNN is what is often denoted the curse of 

dimensionality. This is a term often used to describe the condition wherein a small 

increase in the number of input in the input layer leads to an exponential increase in the 

number of nodes in the neural network and therefore computational complexity [85]. 

Each new input must be compared with a variety of other. The addition of a few more 

nodes increases the number of possible connections quite drastically. In order to reduce 

the number of calculations, a few methods have been proposed including subtractive 

clustering and fuzzy c-means clustering. These methods all cluster the data to find a 

pattern between groups of data. 

Membership a function are constructed with a degree of probability of all of the 

input features (essentially a point) being part of one cluster (another point) as opposed to 

one input (a feature) being a degree of probability of being of the type of one class 

(feature of class). This significantly decreases the number of nodes in the premise layer 

and, therefore, the total number of calculations. The main difference between these 

methods is the method of determining the clusters. Wherein subtractive clustering 

requires that cluster centers be a minimum distance [86], fuzzy c-means clustering lets 

the user select a number of clusters and the centers and distance does not matter [87]. 

Subtractive clustering is used in this study because it has been demonstrated to have 

higher performance on most data types [86][88]. 

Subtractive clustering finds the highest density of points and creates one cluster 

center. First, the points are scaled to [0,1] in each dimension. Next, each point zj=(xj,yj) is 

assigned a potential Pj that is determined based on its distance from all of the other points 
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[90]: 

     

Pi
* = e-a||xi-x j ||2

j=1

n

å
                                                    (74)

 

where a =g / rabetween the i’th and the j’th data point, x is the data point, g is a variable 

commonly set to 4, and ra is the positive cluster radius. When points are close together, 

the potential is high and the probability of being a cluster center increases. The highest 

potential point becomes the cluster center c1 = (d1,e1) .  Subsequently, the potential is 

recalculated for all of the other points excluding the first cluster center, in  [89],  

Pi
* = Pi

* -Pk
* e-b||xi-ck ||2

j=1

n

å
                                              (75)

 

where b = 4 / rb
2
 and rb = ra *h . 

The next cluster center has to be a minimum distance from the last (defined by 

user chosen radii), and is selected based on probability highest probability (density). The 

cluster becomes a cluster center if it has the highest potential and fulfills the given 

limitation [90]: 

dmin

ra
+
Pk

*

P1

*
³1

                                                       (76)

 

The variable dmin
 is the minimum distance between c1

 and the preceding cluster centers. 

If the following criterion is met, the clustering ends [91]: 

Pk
* <ePi

*

                                                          (77)
 

where e  is the rejection ratio. Finally, the membership function is described as [91]: 

m j

ik = e
-a||x j

i -c j
k ||2

                                                     (78)
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An illustration of the concept is given in Fig. 10.  

 

 

 

Fig. 10. Subtractive clustering schematic [90] 

 

It is demonstrated that the subtractive clustering method decreases dimensionality of the 

feature space because a multidimensional space is calculated from one feature as opposed 

to many. This allows for an analysis of a multidimensional feature space that would 

otherwise be too complex to calculate. 
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CHAPTER 4: APPROACH & RESULTS 

The focus of Chapter 4 is the methods, Fig. 11, used and the results that are 

achieved. First the Finite Impulse Response (FIR) with Hamming windowing is used to 

eliminate noise with a band pass filter. Next, the Automated Artifact Rejection (AAR) 

and Independent Component Analysis (ICA) algorithms isolate signal components of 

interest. The signals are then decomposed using the DWT. Finally, the energy percentage 

of each band is calculated to produce features used in the Takagi-Sugeno-Kang Fuzzy 

Neural Network (TSKFNN). This network translates the input into to a crisp value that is 

processed using a threshold function to classify hand contraction. 

 

Graphical Abstract: 

 

Fig. 11. This figure illustrates the process through which the noise is reduced and 

the signal is recognized. 
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First, Chapter 4 begins with a brief introduction of EEGLAB and the various functions 

that will be used. Each function will include the inputs and outputs. Consult Appendix B 

for demonstrations on how to implement the code. 
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4.1: EEGLAB Introduction 

The EEGLAB software is an interactive MATLAB toolbox for processing 

electrophysiological data. This data may be either continuous or event-related time course 

and has tools for Independent Component Analysis (ICA), time-frequency analysis, and 

other methods of signal processing such as Automated Artifact Rejection (AAR) [90]. 

EEGLAB contains an interactive graphical user interface (GUI) for users to process their 

data as well as command line scripting functions for advanced programmers. Because 

electroencephalographs (EEGs) are notoriously noisy, this study makes extensive use of 

EEGLAB for signal processing. 

A few plugins were installed to take advantage of the various computational 

capabilities of user developed software. The plugins that were downloaded for this study 

include the following: aar_master, and Biosig3.0.5, described below.  

BIOSIG3.0.5 – import/export a wide variety of formatted data including 

European data format (EDF). 

AAR – implement state-of-the-art methods for automatic removal of ocular and 

muscular artifacts. 

To obtain functionality, the folders were downloaded into the plugins folder of EEGLAB. 

After the plugins have been loaded, the following functions were used with the input 

indicated in parentheses: 

pop_importdata() 

Description: file imports data from the specified format and creates a structure for 

storing information about the signal. 
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Inputs  – ‘data format’: format of data (i.e. ‘matlab,’ string) 

– ‘nbchan’:  number of channels’ (i.e. [‘nchan’,0] for all)  

– ‘data’: file location ([‘data’,‘file_path’], string) 

– ‘srate’: sampling rate (i.e. [‘srate’,160] for this data, units Hz) 

– ‘pnts’: how many time points to include (i.e. [‘pnts’,0] for all) 

– ‘xmin’: first time point ([‘xmin’,0] for initial) 

Outputs  – EEG: structure containing the previously specified information; rows 

are channels whereas columns are time points.  

eeg_checkset()  

Description: check the data to verify that all data in file has been updated 

 Inputs  – EEG: structure containing EEG.data time course data 

 Outputs  – EEG: structure containing EEG.data time course data 

 ** Note – best to use after every function to make sure that the set updates 

pop_chanevent(): 

Description: add event channel from one of the channels in EEG.data (i.e. 

channel 65 is annotated channel that has been replaced with values corresponding 

to the current event at each point in time) 

Inputs  – EEG: structure containing annotated EEG.data channel 

–    channel: the annotated channel number 

– ‘edge’: edge corresponding to event region (i.e. [‘edge’,‘leading’])  

– ‘edgelen’: length of the event region (i.e. [‘edgelen’,0] to include all 

event related time course for an epoch) 

– ‘duration’: include duration (i.e. [‘duration’,‘on’], string) 
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Outputs  – EEG: structure containing the old EEG information with newly 

specified information 

pop_chanedit(): 

Description: edit channel information such as locations file; used for 2D or 3D 

viewing; 

Inputs  – EEG: structure containing the EEG.data time course data and channel 

information 

– ‘lookup’: find the file containing the files to read channels (i.e. 

[‘lookup’,‘path’], string)  

– ‘load’: load previous manually entered channel locations (for 

automation) 

– ‘plotrad’: specify how much of channels to be observed from 

topographical map (i.e. [‘plotrad’,0.5] for purely topographical view)  

Outputs  – EEG: structure containing the old EEG information with newly 

specified information 

pop_spectopo() 

Description: Create log power spectrum chart 

Inputs  – EEG: structure containing the EEG.data time course data and channel 

information 

– dataflag: process component channels/activations, 1/0 (i.e. 1) 

– time range: epoch time range, in ms (i.e. [0 4093.75] because 4.1 

seconds)  
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– process: work on either the mean single-trial 'EEG' spectra, the 

spectrum of the trial-average 'ERP', or plot 'BOTH'  the EEG and ERP 

spectra (i.e. ‘EEG’) 

– ‘percent’: data to be included in the computation of the spectra (i.e. 

[‘percent’,15], saves computation time) 

– ‘freqrange’: x-axis, frequency range (i.e. [‘freqrange’,[0 50]], units Hz) 

Outputs  – spectopo_output: graphical information 

pop_eegfiltnew() 

Description: automatically filter the single epoched time course data 

Inputs  – EEG: structure containing the EEG.data time course data and channel 

information 

– ‘nbchan’:  number of channels’ (i.e. [‘nbchan’,0], for all)  

– lower: high frequency cutoff (i.e. [2.5], units Hz)  

– upper: low frequency cutoff (i.e. [20], units Hz)  

Outputs  – EEG: structure containing the old EEG information with filtered 

EEG.data time course 

pop_reref() 

Description: re-reference the window to a new mean 

Inputs  – EEG: structure containing the EEG.data time course data and channel 

– ref: vector of new reference number (i.e. [] for average reference) 

Outputs  – EEG: structure containing the old EEG information with newly 

specified information 
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** Note: A 2.5 to 20 Hz band pass filter is utilized because it captures the Movement 

Relate Cortical Potentials (MRCP) and Event Related Desynchronization while 

diminishing the effect of the noise on Independent Component Analysis (ICA). 

 

pop_autobsseog() 

Description: Automated Electrooculargraphic (EOG) artifact correction method 

employing Blind Source Separation (BSS). 

Inputs  – EEG: input EEG data structure 

– ‘nbchan’:  number of channels’ (i.e. [‘nbchan’,0], for all)  

– win_length: analysis window length, ms (i.e. [EEG.xmax]) 

– win_size: shift analysis windows, ms (i.e. [EEG.xmax]) 

– bss_alg: name of the BSS algorithm being used (i.e. ‘sobi’) 

– bss_opt: option to pass the BSS algorithm (i.e. {'eigratio', [1000000]} 

– crit_alg: criterion name for rejecting components (i.e. ‘eog_fd’) 

– crit_opt: criterion special options (i.e. 'eog_fd', {'range',[2  21]} 

Outputs  – EEG: structure containing the old EEG information with EOG artifact 

correct EEG signal. 

**Note: Too large of an eigenvalue ratio will result in low removal rate of principle 

components, whereas too low will result in the contrary [43]. An eigenvalue ratio of 

1.0E6 is arbitrarily chosen in this study because the developers of EEGLAB have 

selected it as an appropriate tradeoff default balance. A range of 2 to 21 Hz is selected 

because it contains the desired 2.5 to 20 Hz region. 
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pop_autobssemg() 

Description: Automated Electromyographic (EMG) artifact correction method 

employing BSS. 

Inputs  – EEG: input EEG data structure 

– ‘nbchan’:  number of channels’ (i.e. [‘nbchan’,0], for all)  

– win_length: analysis window length, ms (i.e. [81.9188]) 

– win_size: shift analysis windows, ms (i.e. [81.9188]) 

– bss_alg: name of the BSS algorithm being used (i.e. ‘bsscca’) 

– bss_opt: option to pass the BSS algorithm (i.e. {'eigratio', [1000000]} 

– crit_alg: criterion name for rejecting components (i.e. ‘emg_psd’) 

– crit_opt: criterion option (i.e. {'ratio', [10],'fs', [160],'femg', [15], 

'estimator',spectrum.welch({'Hamming'}, 80),'range', [0  32]}, for a 

power ratio of 10, sampling frequency of 160 Hz, boundary for EEG 

and EMG of 15 Hz, Hamming window for power spectral estimation 

and 0 to 32 Hz correction of EMG artifaction) 

Outputs  – EEG: structure containing the old EEG information with EOG artifact 

correct EEG signal. 

**Note: Again, An eigenvalue ratio of 1M is arbitrarily chosen in this study because the 

developers of EEGLAB have selected it as an appropriate tradeoff default balance. Too 

large of an eigenvalue ratio will result in low removal rate of principle components, 

whereas too low will result in the contrary. The emg_psd selects components for rejection 

based on average power in EEG and EMG bands. It is chosen because it is the only 
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currently available option [43]. Hamming window is used because it has the sharpest 

cutoff of the various filter options. 

pop_epoch() 

Description: this data epochs the data with stored even information 

Inputs  – EEG: input EEG data structure 

– event: selected event for epoching (i.e. 1 or 2 for this study)  

– ‘newname’: give the dataset a new name (i.e. [‘newname’,’S1T1.set’]) 

– ‘epochinfo’: save epoch information (i.e. [‘epochinfo’,’yes’]) 

Outputs  – EEG: structure containing newly epoched data 

pop_rmbase() 

Description: this file removes the baseline from the epoched data 

Inputs  – EEG: input EEG data structure 

– timerange: epoch time range to remove baseline mean from (i.e. [0 

4093.75], units ms) 

Outputs  – EEG: baseline removed EEG structure  

pop_runica() 

Description: runs ICA decomposition of the data 

Inputs  – EEG: input EEG data structure 

– ‘ extended’ : run ICA on all data 

Outputs  – EEG: EEG structure with stored ICA weights. 
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4.2: 2D Plotting ERP and Channel Activity 

 Electroencephalography (EEG) channels were added to the EEG data structure 

using the pop_chanedit() function in MATLAB. The EEG data files were imported as 

European Data Format (EDF) .edf files from the PhysioNet Motor Movement Imagery 

data (eegmmidb) using the BIOSIG plugin, aforementioned in subsection 4.1. The 

channel locations were read using the chanedit() with spherical location Standard-10-5-

Cap385_witheog.elp. The files were saved to a .ced format to be referenced for all for 

automation. Fig. 12 demonstrates illustrates the 2 dimensional plot of the channel 

locations file. 

 

Fig. 12. 2D illustration of the channel locations file 

The electrodes are not all located on the scalp, as some of the electrodes wrap around the 

scalp to the side of the head. For example, electrodes T9 and T10 are both located 

underneath the ears (acting as reference channels). The ‘plotrad’ value, set to 0.5, 
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provided a purely topographical view. Thus, only 41 of the 64 channels are shown in 

figure 12. 

Transient channel data scrolls are illustrated in Fig. 13 with the addition of the 

.ced channel locations file. The electrodes are labeled on the y-axis. The time (seconds) is 

labeled on the x-axis. Although Fig. 13 is relatively free of Electromyographic (EMG) 

and Electrooculargraphic (EOG) interference, this is – more often than not – not the case. 

The signals often contain noise that can increase the magnitude of the EEG tenfold. 

 

Fig. 13. Labeled 64 channel data scroll
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4.3: Feature Extraction Approach 

4.3.1: FIR with Hamming Window as Band-pass Filter 

Noise exists in the signal that is outside of the range typically used for the 

analysis of ERD (as well as inside of this region). Furthermore, power-line corruption is 

present in the activation spectrum of electrode Cz – refer to Fig. 12 – at 60 Hz, Fig. 14. 

Additionally, electromyographic (EMG) and Electrooculargraphic (EOG) information 

exists outside of the bandwidth of interest and need to be removed from the signal for 

discrimination. The Finite Impulse Response (FIR) filter was utilized to remove noise 

below 2.5 and above 20 Hz. The band-pass filter decentered the signal and reduced the 

probability of recognition of components in Independent Component Analysis (ICA) 

outside of the bandwidth of interest.  

 

Fig. 14. Activity spectrum demonstrating power-line corruption visible at 60 Hz 

on electrode Cz removed with other artifact above the 60 Hz.   

As a result of filtration, the EMG and EOG artifacts within the spectral range of interest 

are more easily identified and removed. Fig 15 demonstrates characteristic trends of 

every signal processed in this study. 
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(a)                  (b) 

 

(c)                  (d) 

 

Fig. 15. Activity spectrum demonstrating Hamming windowed FIR filtered data   

 

There is visible reduction in artifact above the 20 Hz range and minimization of the 

artifact below 2.5 Hz. There is a sharp cutoff in the power spectrum above 20 Hz, which 

decreases the influence of these regions. 
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4.3.2: AAR Using the SOBI and CCA Algorithms 

After the prospective neural oscillations are isolated, the Blind Source Separation 

(BSS) algorithms, which include Second Order Blind Identification (SOBI) and 

Canonical Correlation Analysis (CCA), remove electromyographic (EMG) and 

electrooculargraphic (EOG) artifact with the EEGLAB software. First the signals were 

referenced in order to remove excessive noise. An average reference was arbitrarily 

selected because there is a lack of research to substantiate that one method is statistically 

better than another. 

Automated Artifact Rejection (AAR) through the use of SOBI and CCA reduce 

extent of EOG and EMG artifact by flattening disturbances along their ranges of their 

principal direction. As a result, the event related time course become more deterministic. 

EOG and EMG artifact have higher amplitude peak. EOG artifact is located more closely 

to the frontal lobe, whereas EMG can be more scattered throughout. EMG interference 

demonstrates similar characteristics as the EOG artifact, but is located at various 

locations along the scalp. First, SOBI automatically removes the EOG artifact via 

pop_autobsseog() function. The inputs used include, 

• Eigenvalue ratio of 1.0xE6,  

• Bandwidth for fractal dimension of 2 to 21 Hz.  

The eigenvalue ratio was set to 1.0E6 by default. This ratio is a good balance for 

rejection; too high of a ratio results in low rejection ratio whereas too low results in too 

high of a rejection ratio, refer to subsection 4.1.  

 Next, automated CCA was used to address EMG corruption via the 

pop_autobssemg() function. The inputs used include,  



   

 

 

 

72 

• Eigenvalue ratio of 1.0xE6  

• Welch estimator with a ratio set to 10 

• Range is set to 0 to 32 Hz.  

Once again the Eigenvalue ratio was set to 1.0E6 by default. The power ratio was set to 

10 demonstrated to have good results, refer to subsection 4.1 for more information. Upon 

completion of these two processes, the EEG signals demonstrate reduced EMG and EOG 

infiltration.  

 Disturbances in the waveforms are present, in Fig. 16, in channels FP1 through 

AF8 (essentially the front of the scalp, above the eyes) between 10 and 11 sec. This is 

reduced in severity by the AAR processing. The flattening of the peaks demonstrates 

reduced EOG influence. 

(a)    (b) 

 .                       

Fig. 16. Demonstration of (a) before and (b) after SOBI and CCA noise reduction 

of EOG and EMG artifact. 

It is necessary to eliminate the noise from all of the channels before removing the 

principle components because otherwise additional artifact is identified in the principle 

components that are otherwise naturally removed. Thus, less of the already significant 
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amount of noise remains in the signal after decomposition with Independent Component 

Analysis (ICA). 

 Fig. 17 and 18 illustrate stacked signals before and after Automated Artifact 

Rejection (AAR). They demonstrate magnitude reduction cause by noise suppression. 

They depict 4.1s x 15 epochs x 2 (rest for every epoch) x 3 sessions or 369 seconds of 

right hand imagined motor contraction. 

(a)                     (b) 

 

Fig. 17. Demonstration of imagined right hand clenching for 4.1 seconds (a) 

before and (b) after SOBI and CCA noise reduction of EOG and EMG artifact. 

(a)                      (b) 

 

Fig. 18. Demonstration of imagined right hand clenching for 4.1 seconds (a) 

before and (b) after SOBI and CCA noise reduction of EOG and EMG artifact. 

Every signal demonstrates suppression in signal magnitude because the EMG and EOG 

artifacts perturbations have been reduced. In Fig. 17 the signal was reduced from 



   

 

 

 

74 

approximately 500 µV to 100 µV, which is near the 100’s of µV maximum typically 

demonstrated by neuronal signals [58].  

 EEG signal amplitudes have an average of 50μV magnitude with a maximum of 

100μV. On-the-other-hand, the amplitude of an EOG signal is generally in the range [50, 

200] μV and for an EMG signal, it is usually in the range [20, 200] μV, but can reaches 

as high as 1.5 mV [63]. Fig. 18 demonstrates similar results with reduction from 200 µV 

to 50 µV. This was consistent with the rest of the data. Fig. 19 demonstrates reduction of 

4.1 seconds of right hand clenching for the specific electrodes of interest. 

(a)                     (b) 

 

Fig. 19. Demonstration of imagined right hand clenching for 4.1 seconds  (a) 

before and (b) after SOBI and CCA noise reduction of EOG and EMG artifact for 

the electrodes of interest. 

In general there is less noise infiltration of noise into the electrodes of interest. But 

disturbances are still prominent a visible to the naked eye. For example, the subject 
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engages in an ocular contraction at approximately 2 seconds and 3.5 seconds of the 

transient signal. This blink is no longer visible after AAR. 
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4.3.3: Independent Component Analysis 

Independent Component Analysis (ICA) further reduces the pervasiveness of non-

neuronal components of the signal. The Infomax version of the ICA algorithm, 

implemented in MATLAB using EEGLAB’s runica() function, helps identification of 

spectral activity using BSS in a similar fashion to Automated Artifact Rejection (AAR) 

(refer to subsection 4.1 for more details on the function and information on the 

parameters that are used in this study). Artifacts may be rejected in an automated or semi-

automated fashion.  

First, the data was first separated, or epoched, into short segments. The relatively 

short elapsed continuous data and was separated into its 4.1 sec. event time intervals (the 

same size segments as the original data trials, or event related time course). The data was 

then concatenated so that all of the event trials (T1 or T2, for left versus right fist) for an 

individual were merged to form one dataset. Thus, one concatenated segment of data 

included 45 epochs for left and right hand data.   

ICA was used to determine the new components of the data for all of the data for 

single subject at a time, Fig. 20, using the runica() function in EEGLAB. The process was 

repeated for all 40 subjects, producing a total of 40 datasets of left and right hand data.  

 

 

 

Fig. 20. Schematic of trial epochs extracted from the concatenated data 

 

Rest (T0) 

4.1 seconds of 
sustained fist 
clenching  (T1/T2) 

 

Rest (T0) Start End 
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 Decomposition of the data using ICA requires approximately k x n2 time points in 

order for the neural network to learn the (n x n) weights. Furthermore, there were 45 trials 

per person of 4.1-second intervals that were sampled at 160 Hz. Therefore, 29,520 

(45x4.1sx160Hz) time points were used. For high-density electrode placement systems, k 

is set to 25 [70]. The maximum number of channels nmax
 is calculated by (79), 

 nmax =
t

25
                                                         (79) 

Therefore, 24 channels or 3 more electrodes than the 10-20 international system were 

available for ICA. Thus, the 10-20 system was utilized in the addition of the PC3 and 

PC4 localizations (above the motor cortex), Fig 21, were used for the identification of 

independent components.  

 

 

 

Fig. 21. This illustration depicts the electrodes that were used for (a) ICA as 

indicated by the dark circles versus (b) DWT-Energy analysis. Adapted from [8] 
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EEGLAB’s runica() function, described in subsection 4.1., decomposed the 24 channels 

of the merged (T1 and T2) datasets. The training error stopping parameter was selected to 

be 1.0E-6. This value was selected arbitrarily because the author could not find a 

significant difference between this value and others.  

  Each simulation capturing two sets of values, ICA weights and spheres (these 

values calculate the weight matrix and the inverse weight matrix – the pseudo-inverse of 

the product of the ICA weight matrices and the ICA sphere matrices). The weight matrix 

is simply the product of these same two matrices and is can be used stored for future use 

on new time course. The weights and spheres values range from -1 to +1 and are of the 

size (n x n), where n = 24 is the total number of components.  

W = EEG.icaweights´EEG.icaspheres              (80) 

W -1 = pinv(EEG.icaweights´EEG.icaspheres)                        (81) 

 The topographical maps are arranged in MATLAB by decreasing order of the 

variance. There are high levels of EMG and EOG infiltration in the first independent 

components, which is identified as red along the edge of the scalp map. The component 

maps and component spectra plotting features of EEGLAB are produced via EEGLABs 

pop_specto() function in Fig. 21. The input is the AAR reduced waveform with all 

electrodes; a full epoch was used. The three electrodes (C3, Cz, and C4) are marked from 

left to right in the illustration. 10 Hz (mu/alpha region) was selected as the frequency to 

be used for analysis. 

 The red regions in Fig. 22 indicate areas of high power, whereas, the blue regions 

represent areas of low power. Yellow represents the middle value between these two. 

Anything else represents a scale of between these three values. Power, in a sense, is 
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related to energy wherein the signals are continuous over time. Thus, a region of red is 

indicative of high energy over the entire EEG time course. 

 

Fig. 22. Topographical mapping of the components for imagination of fist 

clenching for one of the test subjects.  

 

EOG and EMG artifacts demonstrate a smooth gradual decrease in power with 

respect to frequency in the activity power spectrum. In map #9, EOG activity is 

identifiable because the power is being generated from the front of the scalp, whereas in 
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map #2, EMG activity is observed. Power is entering from the back of the scalp. Fig. 23 

illustrates EOG artifact captured from map #9. There is a red region indicating high 

spectral energy towards the front of the scalp.  

 

Fig. 23. Demonstration of EOG artifact in the activity spectrum, seen decreasing 

smoothly in the bottom panel.  

 

There is also a gradual decrease in the energy with respect to frequency with a sharp 

decrease at approximately 20 Hz. The power is lowest at 22.5 Hz. Anywhere beyond 25 

Hz the power remains constantly at -40 (10*log(µV2/Hz)). 

 In Fig. 24 EMG activity is demonstrated in map 2. It is visible through in the 

spectrogram where there is a notable red region toward the back of the scalp. Again, this 

indicates high-energy throughout the time course. There is also a gradual decrease power 

as the frequency decreases. The EMG components were removed. 
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Fig. 24. ICA component for clenching of the right fist for one of the test subjects. 

This figure depicts the power spectrum typical of EEG contaminated with EMG 

components. 

 

Fig. 25 demonstrates activity that is characteristic of mu/alpha brain activity. There is a 

notable increase in power at in approximately 12 Hz. This indicates that Event Related 

Desynchronization or Synchronization (ERD/ERS) are taking place and is confirmed by 

looking at the spectrogram in Fig. 26. 
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Fig. 25. Individual component activity spectrum for clenching of the left fist for 

one of the test subjects.  

 

Fig. 26. Spectrogram of the mu/beta activity observed using the Fast Fourier 

Transform (FFT) with MATLAB’s spectrogram()  

 

The removal of artifactual components in a semi-automated fashion is illustrated 

in Fig. 27. Components not demonstrating characteristic activity of the motor cortex were 

rejected. This includes the aforementioned EMG and EOG artifacts, which are indicated 

with red highlight above the maps. The components that are retained are indicated with 
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green highlight above the map. Again, the red in the map indicates high energy over the 

full time course, whereas blue indicates low energy emission. Data epochs are normally 

rejected subsequently using windows and spectrum threshold values; however, this step 

was omitted for the integrity of the study.  

 

Fig. 27. Topographical map of transient time-course for high-density international 

10-10 system. Demonstration of the second pass of ICA using the runica in 

EEGLAB 

 

ICA was then run on the cleaner epochs to better identify the neural components. 

Component map #5 in Fig. 27 represents activity from the right hand. Map 18 of Fig. 27 

portrays activity of the somatosensory cortex. This activity is verified by looking at the 

component spectra map, Fig. 28, where there is a noticeable spike in the power spectrum 
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at approximately 12 Hz and again at 27 Hz. This activity is characteristic of Motor 

Movement Imagery (MMI) synchronization and desynchronization activity. 

(a)            (b) 

 

Fig. 28. (a) Before and (b) after iterative ICA decomposition. This figure 

demonstrates alpha and beta in the activity spectrum seen as rounded peaks in the 

curve. 

The signals should now demonstrate a higher signal to noise ratio as is apparent 

from the component maps and activity spectrum. Energy spectrum analysis was then 

performed at the designated bands. Energy was used to analyze the desynchronization 

activity of the neural oscillations. Desynchronization results in decreased amplitudes in 

the transient signals as the transient signals becomes out of phase and the signals 

transition from positive to negative values rapidly. Desynchronization can be observed as 

an percent energy change. 
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4.4: Spectral Analysis 

Next, spectral analysis was performed on the data using energy percentage of 

each frequency band. The Discrete Wavelet Transform (DWT), via MATLAB’s 

wavedec() function, decomposed the signals into 6 level. A debauchees mother wavelet 

with 2 vanishing moments was selected (subsection 3.3.1). See below for information 

about the discrete wavelets transform's wavedec function. This produced 6 vectors of 

detail coefficients and 1 vector of approximation coefficients, Table 6. The 

approximation was not used. Details 1 through 3 are omitted as well because they were 

outside the range of interest in this study. 

[C,L] = wavedec(EEG,level,m_wave) 

Description: function for decomposing data with DWT 

Inputs  – EEG: input EEG data, with electrodes in rows and time points in 

columns 

–  ‘level’: number of leves for decomposition (6) 

– ‘m_wave’: mother wavelet used (‘db2’) 

Outputs  – C: decomposition vector 

– L: bookkeeping vector 

Table 6. Wavelet decomposition for 160 Hz EEG signal 

Level/Approx. Frequency (Hz) Level 

D6 2.5-5 6 (delta, theta) 

D5 5-10  5 (theta, alpha) 

D4 10-20 4 (alpha, beta) 



   

 

 

 

86 

 
Fig. 29. The illustration depicts levels D4 through D6 of the 6 level 

decomposition (subject 9) with the DWT function. 

The energy percentage at each of the perspective levels was calculated from the 

detail coefficients via formula (83), which was adapted from Parseval’s theorem (82). 

EDi = Dij
2

j=1

N

å                                                     (82) 

In this equation, the variable i corresponds to the i'th level l, as j to the value of the j’th 

index of the level, Ni and O to the number of detail and approximation coefficient indices 

(4.1 seconds x 160 Hz = 656 time points for the reconstructed waveform), and Dij to the 

detail. 

EPi =
EDi

Etotal
´100, i =1,..., l                                           (83) 
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The energy percentage of one frequency band is the proportion of its energy to the total 

energy of all of the bands. Energy was calculated from the square of the coefficients 

which are obtained via the detcoef() function in MATLAB; with the decomposition 

vectors, bookkeeping vectors, and decomposition levels in the input. 

To capture the grasping motion of the hand, Event Related Potentials (ERPs) 

recorded from electrodes C3, Cz, and C4 above the motor cortex. These electrodes were 

required for Event Related (De) synchronization (ERD/ERS) and Movement Related 

Cortical Potentials (MRCP) analyses, subsection 3.3.3. Correspondingly, activity in the 

theta and beta rhythmic spectra indicated as D4, D5, and D6 were all extracted features. 

These features become the input to the Takagi-Sugeno-Kang Style fuzzy inference neural 

network (TSKFNN), Table 7. 

Table 7. TSKFNN inputs with 3 electrode locations, 3 energy percentage bandwidths  

for 4.1 second event-related time course 

Property Feature Frequency Bandwidth 

Energy Percentage 

(Electrodes C3, C4, Cz) 

1 

2 

3 

                       … 

                       9 

2.5-5 Hz  (C3) 

5-10 Hz   (C3) 

10-20 Hz (C3) 

 

10-20 Hz  (Cz) 

 

The proposed model has 3 electrodes with 3 energy percentages corresponding to a total 

of (3x3) or nine input features. These are calculated using the coefficients in the 2.5-20 

Hz frequency range (2.5 – 5 Hz, 5 – 10 Hz, and 10 – 20 Hz), calculated from electrodes 
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C3, Cz, and C4, using the DWT. Thus, the input to the neural network is a (9 x 1) vector 

of the input features above. 
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4.5: Takagi-Sugeno-Kang Fuzzy Neural Network 

MATLAB’s Adaptive Neuro-Fuzzy Inference System (ANFIS) was used as he 

Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) in this study. This neural 

network translates features into classification decisions for peripheral systems control. 

The extracted features are inputs to the neural network. A classification decision is made 

based on weighted firing strengths of neurons in the network. Then performance is 

increased using supervised learning. The learning algorithm used is illustrated in Fig. 30. 

 

Fig. 30. ANFIS learning method flowchart 

To train the network, first 70% (1260) of the total input data was arbitrarily selected 

using the divide rand function in MATLAB. This consisted of 9 by 1800 feature vectors 

extracted from the 4.1 s. time segments (40 subjects x 45 movements) for training with 

all of the subjects at once. For the training sessions of the individual subjects, this 

corresponded to 70 % of 45, or 31. Targets -1, for the left, and +1, for the right hands, 

were specified as the output goals. 
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 Next, the Fuzzy Inference System (FIS) was generated via the genfis() function. 

This function generates a system given the clustering method to provide the initial 

conditions for ANFIS training. The ‘SubtractiveClustering’ was the input method 

selected; refer to subsection 3.4.4 for information on subtractive clustering. Additionally, 

training and target data was entered as input.  

opt = genfisOptions('SubtractiveClustering'); 

 

tks_fis  = genfis(p(1:size(p,1),trainInd)',t(trainInd)',opt); 

 

The symmetric Gaussian function was selected due to its normal shape, or nice transition 

between certainty and uncertainty. Thus, the FIS network system was generated as output 

for use in the ANFIS. 

The output FIS was then trained using the anfis() function in MATLAB. The 

ANFIS also required the same input training data. However, checking data is also 

required to prevent over training.  

TRNOPT= [10,NaN,0.0009,0.999,1.001] 

[anfis_fis,error,~,~,chkerror] = 

anfis(trnData,tks_fis,TRNOPT,DISPOPT,chkData,hybrid); 

An initial step size of 0.001 was specified in the input and the step sizes increased and 

decreased by 10% of the previous value each step, or 0.9 and 1.1 respectively. Lastly, 

The network was trained using the hybrid LSE-BP learning algorithm, specifying with a 

Boolean +1 for true and -1 for false, indicating right and left hand, respectively. 

The consequent parameters were optimized in the feed forward stage using Least 

Squares Error (LSE), with fixed premise parameters. Next the output was compared to 

±
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the target value and the error signal propagated backwards, updating the premise 

parameters along the way, with fixed consequent parameters. While the checking data 

performance decreased and the Root Mean Square Error (RMSE) decreased, then the 

learning algorithm continued. Otherwise, the training was terminated and the best 

performing network parameters were retained. 

After training the neural network for the single subject event related time course 

(4.1 seconds of fist 1 or fist 2), generally the network was 10 to 35 fuzzy rules in size. 

Because the subtractive clustering algorithm groups the data, the quantity of membership 

functions and parameters was is determined by the data; thus the quantities vary each 

training session. Example of a single subject training versus all of the subjects trained 

together, are given Table 8. 

Table 8. Demonstration of a Training Session for ANFIS 

 Single Subject Trained All Subjects Trained 

Number of Fuzzy Rules 29 11 

Number of Linear 

Parameters 

290 110 

Number of Non-linear 

Parameters 

522 198 

Total Number of 

Parameters 

812 308 

Number of Neurons 592 232 

Number of Training Data 

Pairs 

31 1259 

Number of Checking Data 

Pairs 

7 270 
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Optimal performance on the testing data is achieved when the 2-norm, or Root Mean 

Square Error (RMSE), and the validation performance is at its optimal value. This is 

obtained at approximately 300 training epochs for the single subject trials and 100 for all 

of the subject trials combined. 

 The number of fuzzy rules in Table 8 is the number of logical rules developed 

from the FIS network. Each cluster that has influence has a rule that defines a criterion 

for selection of the final classification state. An example of the fuzzy rules generated 

from an ANFIS training session is given Rule (1-N). 

Rule 1) IF (in1 is in1cluster1) and (in2 is in2cluster1) and (in3 is in3cluster 1) and … 

Rule 2) IF (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster 2) and … 

Rule 3) IF (in1 is in1cluster3) and (in2 is in2cluster3) and (in3 is in3cluster 3) and … 

… 

Rule N) IF (in1 is in1clusterN) and (in2 is in2clusterN) and (in3 is in3cluster N)  … 

THEN (out1 is cluster [1,2,3,…,N]) 

In this example, if all of the input has eigenvalues that place the point in cluster 1, then 

the output is cluster 1. If all of the input has eigenvalues that place the point in cluster 2, 

then the output is cluster 2, and so on. The signal is then defuzzified into a crisp output 

value that is used to make the classification decision. 

As for the other parameters, the number of linear parameters is equivalent to the 

number of input (9) plus a bias (+1) times the number of fuzzy rules. These are the 

consequent parameters that are updated without performing a non-linear transformation, 

see Fig. 9; they are depicted as square nodes. Next, the non-linear terms are those of the 
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activation functions that are updated in the premise layer. The membership function is 

near-symmetric Gaussian (slight rounding error due to float); therefore, they include the 

membership centers and the variance. There are 2 membership variables multiplied by 

the number of features and the number of fuzzy rules.  

The number of neurons in the network was computed as follows. There was one 

node for each input feature in the input vector (m = 9). Also, there was one bias node, 

one output computation node, and one output node (+1 +1 +1 = 3). There was one node 

for each cluster or fuzzy rule and a node for weighting the firing strengths; thus there 

were 2 nodes for each respective fuzzy rule (+2 x the number of F.R.). Lastly, the inputs 

multiplied by the fuzzy rules gave the number of nodes in the premise layer and the 

consequent layer (+ 2 x the number of F.R. x the number of inputs). Thus for the example 

in Table 8, there 9 + 3 + (2 x 11) + (2 x 11 x 9) total nodes. 

The output of the TSKFNN is classified using a forcing function (binary) to 

distinguish left from right hand data. The target value for the data is set to +0.9 and -0.9, 

to ensure that the network remains stable in the case of rounding floating digit error. 

Output values of less than 0 and a value greater than or equal 0 to +1 correspond to left 

and right hand classification correspondingly. Zero was selected arbitrarily to represent a 

value of +1. 

f (x) =
1,

-1,

ì
í
ï

îï

x ³ 0

x < 0
                   (84)
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4.6: Performance Results 

The Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) and variations such 

as Adaptive Neuro-Fuzzy Inference system (ANFIS) have been used on other databases 

[31][92]. On-the-other hand, the results have not been compared and have also not been 

compared to the  (naturally noisy) PhysioNet Data. Contemporary methods more often 

utilize the Fast Fourier Transform (FFT) and power for feature extraction along with feed 

forward neural networks (NN) updated via back propagation (BP) or Support Vector 

Machine (SVM) for feature translation. Unfortunately, there were not any references that 

could be found by the author that grouped the data together so that the data results could 

all be compared. The performance of this algorithm on large datasets cannot be directly 

compared to other methods at this time for this objective. 

However, two cases were used to test the performance of the Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) on the PhysioNet data [8]. In the first case, the 

networks were trained for a single test subject each time comparing their performances. 

The ANFIS was trained 20 times for each subject and the performance was averaged. In 

the second case, the networks were trained with data from all of the subjects randomly 

permutated. This networks was trained 5 times starting with arbitrary weights and the 

performance was averaged. In both cases, the data was randomly divided into three 

groups, including training (70 %), checking (15%), and testing (15%). The neural 

network was never trained with a test data or checking data. 

 Specificity, sensitivity, selectivity, and accuracy were all calculated to test the 

performance in the ANFIS, in (84)-(87). In these formulas, true positive (TP) represents 

class +1 (right hand) data being accurately classified as class +1, whereas true negative 
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(TN) represents class -1 (left hand) being accurately classified as class -1. On-the-other-

hand, false negative (FN) and false positive (FP) correspond to inaccurate classifications 

of the classes, respectively.  

Specificity = TN/(TN + FP)                                              (85) 

Sensitivity = TP/(TP + FN)                                              (86) 

Selectivity = TP/(TP + FP)                                              (87) 

Accuracy = (TN + TP)/(TN+TP+FN+FP)                        (88) 

The best indicator of overall performance is the accuracy of the system. Higher accuracy 

means high classification performance on both categories of data, left and right hand. 

Thus high accuracy means that the medical device will be better able to obtain the proper 

output control.  
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4.6.1: Case One (Individual Simulations) 

In case one, a single Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) was 

trained with arbitrary starting weights 20 times. The performances were averaged across 

these simulations. This was repeated iteratively for each of the first 40 subjects in the 

naturally noisy PhysioNet Motor Movement Imagery Data [8]. There were 20 x 40 = 800 

simulations. The data was divided into 3 sets for each TSKFNN, which included training, 

checking and testing data. Training sets correspond 70 % (31) of the original 45 datum, 

whereas checking and testing corresponded to 15 % (7 respectively). Classification was 

performed on the 9 by 1 vector of features extracted the 4.1-second segments of Event 

Related Potentials (ERPs), on each of the 3 electrodes (C3, Cz, and C4), refer to 

subsection 4.4. The training results are given in Table 9.  

Table 9. Mean training classification performance by subject for 20 sessions on the 

naturally noisy 4.1-second EEG left hand and right hand fist contraction data from the 

PhysioNet MMI database 

Subject Specificity (%) Sensitivity (%) Selectivity (%) Accuracy (%) 

1 100 100 100 100 

… … … … … 

40 100 100 100 100 

Ave 100 100 100 100 

 

The average training performance is very high for all of the subjects. The RMSE 

approaches 0 for almost all of the subjects as the training performance is 100 %. Higher 
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performance is expected on the training data; however, this high of a performance is 

likely due poor performance on the checking data with low number of subjects on high 

variability of the data. The highest performance was achieved with an initial learning rate 

of 0.05.  

 The best performance achieved is at approximately 100 epochs for (a-d) in Fig. 

30. It usually occurs at the global maximum of the RMSE curve for the checking error. 

This is the point at which the network starts overtraining. Table 10 demonstrates the 

results of using these weights on the testing data. 

Table 10. Mean testing classification performance by subject for 20 sessions on the 

naturally noisy 4.1-second EEG left hand and right hand fist contraction data from the 

PhysioNet MMI database 

Subject Specificity (%) Sensitivity (%) Selectivity (%) Accuracy (%) 

1 52.17 59.83 48.83 53.57 

2 52.08 75.50 65.75 64.29 

3 73.75 48.42 61.57 66.43 

4 80.00 91.25 89.83 87.50 

5 91.33 85.67 84.58 88.57 

6 89.25 93.50 92.08 91.43 

7 78.58 79.58 83.58 79.29 

8 92.75 88.25 93.25 90.71 

9 63.25 91.67 74.92 78.57 

10 76.67 87.50 85.79 85.00 
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11 87.54 82.11 83.80 85.83 

12 69.58 74.33 78.17 71.43 

13 58.33 74.92 64.45 65.00 

14 68.67 50.33 56.58 58.57 

15 90.83 96.67 94.17 94.29 

16 84.38 77.08 86.46 83.33 

17 71.33 72.00 64.17 70.71 

18 85.42 98.17 95.32 95.00 

19 95.25 88.58 92.92 90.71 

20 84.75 73.42 80.83 80.71 

21 84.50 75.50 77.50 77.14 

22 74.17 75.33 73.00 73.57 

23 79.56 84.08 80.67 79.17 

24 94.17 62.17 92.50 77.14 

25 67.92 90.25 78.92 82.50 

26 77.00 78.16 75.35 77.86 

27 71.25 82.67 80.20 77.86 

28 87.75 80.25 89.00 84.29 

29 84.75 74.33 82.25 77.86 

30 72.08 47.33 60.83 55.00 

31 84.44 91.37 86.31 87.78 

32 82.11 89.47 81.36 85.00 

33 89.25 93.42 88.17 90.00 



   

 

 

 

99 

34 76.17 79.58 74.33 79.29 

35 70.25 56.25 59.50 64.29 

36 80.56 88.89 82.22 85.71 

37 86.67 72.69 88.83 79.29 

38 70.58 88.25 76.50 79.29 

39 95.42 91.42 95.00 91.67 

40 86.37 97.89 86.90 92.14 

Ave 79.02 79.70 79.66 79.44 

 

Subject 18 achieves the highest performance with 95.0 % accuracy. However, the 

average accuracy was 79.44 %. These results were consistent with the results in literature 

recorded in Table 11.  

Table 11. Comparison of the DWT-Energy-TSKFNN to Various Other Methods in 

Literature on the PhysioNet Data 

Author Method Mean Accuracy (%) Max. Accuracy (%) 

Cheolsoo et al [19] MEMD & SVM 77.7 97.4 

Mohamad et al [31] DWT & ANN I 77.6 89.1 

Ayman et al [32] DWT & ANN II 64.2 71.6 

Mahdiyeh et al [40] DWT & SVM 75.0 NA 

Donovan, et al. DWT & TSKFNN 79.4 95.0 
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There the authors report accuracies averaging in the high 70’s and maximum accuracies 

in the 70’s to high 90’s. The mean individual accuracy for the proposed method, 

Donovan, et al, was slightly higher on average than the best reported findings [18].
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4.6.2: Case Two (40 Subject Simulations) 

In case two, all 40 subjects data trials are merged grouped together. A single 

Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) was trained with arbitrary 

starting weights 5 times. The data, again, was divided into three sets of data (70 % 

training and 15 % checking and testing each).  Results were compared testing the training 

sessions with and without preprocessing with the Finite Impulse Response Filter (FIR), 

Artifact Rejection (AAR), and Independent Component Analysis (ICA). There was a 

total of 1799 datum. Consequentially, each network had 1,349 input and output pairs (45 

vectors per person extracted from 4.1 second Event Related Potentials (ERPs) of 3 

Electrode Channels as 3 bands of energy – thus, 3 x 3 = 9 input). The test performances 

were averaged for all 5 simulations.  

The Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) produces one of 

two outputs (+ or – 1) indicating hand (right or left, respectively) clenching. Each training 

session produces one value.  A true positive (top left) corresponds to correct prediction of 

right hand contraction. A true negative (bottom right) corresponds to correct prediction of 

left hand contraction. False positive (bottom left) and false negative (bottom right) apply 

to falsely predicting right hand as left hand contraction and vice versa. The maximum 

accuracy was the highest accuracy that was achieved for a single neural network out of 

the 10 that are averaged. 

First all 40 of the subjects’ data were grouped together for training without Finite 

Impulse Response (FIR) filtration, AAR, and ICA, Table 12. All of the subject trials 

grouped together produce n=270 (15 % of 1799) for testing and checking each. Checking 

validates whether the TSKFNN is overtraining. Checking performance usually decreases 
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to a maximum neural network performance. After the minimum checking data 

performance has achieved the network tends to begin learning the data too well and 

performance decreases. Table 12 demonstrates the performance of the TSKFNN on the 

testing data. The data is convened using a truth table for the first example with 

calculations below. 
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Table 12. Confusion matrix of average for 10 training sessions on the naturally noisy 

PhysioNet MMI right and left hand clenching data for all test subjects, all forty-five 4.1-

second time courses 

Trial 1 

Testing (n=270) 

TSKFNN: 

Yes (+1) 

TSKFNN: 

No (-1) 

Actual: Yes (+1) 70 44 

Actual: No (-1) 58 98 

 

The specificity is calculated as: 

Specificity =
TN

TN +TP
=

98

98+ 70
= 58.3%                            (89)                                          

The sensitivity is calculated as: 

Sensitivity =
TP

TP+FN
=

70

70+ 44
= 61.4%                      (90) 

The selectivity is calculated as: 

Selectivity =
TP

TP+FP
=

70

70+ 58
= 54.7                  (91) 

The accuracy is calculated as: 

Accuracy =
TP+TN

TP+TN +FP+FN
=

70+ 98

70+98+ 44+58
= 62.2%                       (92) 

 

Thus, the accuracy of the first TKSFNN is 62.2 %. The data for the other 4 trials are 

given in Table 13. 
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Table 13. Modified truth table of average for 5 training sessions on the naturally noisy 

PhysioNet MMI right and left hand clenching data for all test subjects, all forty-five 4.1-

second time courses 

Subject Specificity (%) Sensitivity (%) Selectivity (%) Accuracy (%) 

1 58.1 61.4 54.7 62.2 

2 71.9 68.1 62.9 65.5 

3 72.8 69.2 66.4 60.4 

4 74.8 60.6 61.2 62.2 

5 60.3 66.1 62.6 63.3 

Ave 67.6 65.1 61.6 62.7 

 

The resulting neural network produces approximately 62.7 % average classification 

accuracy; however, the maximum classification accuracy, or maximum performance of 

any single training session of a new TSKFNN, of all of the subjects is 65.5 %.  

 Next, all 40 of the subjects’ data was grouped together for training with filtration 

and AAR, but no ICA, Table 12. Again, all of the subject trials are grouped together. This 

similarly produces 1,349 input for training and 270 for testing and checking each. The 

training is repeated 5 times using random permutations of the training, checking, and 

testing data each time. First the all of the data is randomly grouped into training (70%), 

checking (15%), and testing (15%) by subject. Next the TSKFNN is trained and the 

performance is recorded. This process is iteratively repeated 5 times. Performance is 

recorded for all 5 simulation and the results are all averaged, in Table 14.  
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 Table 14. Confusion matrix of average for 10 training sessions on the naturally noisy 

PhysioNet MMI right and left hand data for all test subjects, all forty-five 4.1-second 

time courses, with FIR filtration and AAR 

 

Testing (n=270) 

TSKFNN: 

Yes (+1) 

TSKFNN: 

No (-1) 

Actual: Yes (+1) 72 41 

Actual: No (-1) 47 110 

 

Thus, the first accuracy in Table 15 is 67.4 % per equation (92). The process was 

repeated iteratively. 

Table 15. Modified truth table of average for 5 training sessions on the naturally noisy 

PhysioNet MMI right and left hand clenching data for all test subjects, all forty-five 4.1-

second time courses 

Subject Specificity (%) Sensitivity (%) Selectivity (%) Accuracy (%) 

1 60.4 60.5 70.1 67.4 

2 74.0 63.07 63.2 69.5 

3 65.7 65.4 66.2 65.6 

4 64.0 69.7 64.5 67.0 

5 65.3 70.3 64.5 68.0 

Ave 65.9 65.79 65.7 67.5 
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The resulting neural network with the additional subject identification feature produces 

approximately 67.5 % classification accuracy with a maximum of 69.5 %. 

 Lastly, all 40 of the subjects’ data were grouped together for training with 

filtration, AAR, and ICA. A neural network was trained 10 times using random 

permutations of the data each time and the performance was averaged, Table 16. 

 Table 16. Confusion matrix of average for 10 training sessions on the naturally noisy 

PhysioNet MMI right and left hand clenching data for all test subjects, all forty-five 4.1-

second time courses, with advanced signal processing method 

 

Testing (n=270) 

TSKFNN: 

Yes (+1) 

TSKFNN: 

No (-1) 

Actual: Yes (+1) 98 37 

Actual: No (-1) 42 93 

 

Thus, the first accuracy in Table 15 is 70.4 % per equation (92). The process was 

repeated iteratively. 
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Table 17. Modified truth table of average for 5 training sessions on the naturally noisy 

PhysioNet MMI right and left hand clenching data for all test subjects, all forty-five 4.1-

second time courses, with advanced signal processing method 

TSKFNN Specificity (%) Sensitivity (%) Selectivity (%) Accuracy (%) 

1 48.6 72.6 70.0 70.4 

2 74.0 73.0 71.1 73.0 

3 76.5 65.0 75.0 71.5 

4 71.8 72.9 72.9 71.8 

5 62.8 69.2 66.4 71.4 

Ave 66.7 70.5 71.0 71.6 

 

The resulting neural network produces approximately 71.6% classification accuracy. 

However, the maximum classification accuracy, or maximum performance of any single 

training session of a new TSKFNN, of all of the subjects is 73.0 %. 

 Overall, the classification accuracy was only slightly higher than the highest 

performing algorithm found in literature, Noise Assisted Multivariate Empirical Mode 

Decomposition (NA-MEMD) with Support Vector Machine (SVM). The number of 

electrodes used in this method, however, was much less. This model had 3 electrodes 

whereas the other methods used up to 11 electrodes. Thus this method is more 

computationally efficient because it requires fewer computations to learn the weights 

than the former methods. 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 

More recently, the DWT is making its way into the biological research 

community because of its superior basis functions. Its basis functions are better able to 

handle non-symmetric sharp EEG signals. Furthermore, it retains the ability to perform to 

be used in the analysis of band specific information such as energy spectrum. Fuzzy 

Logic has also been making its way into the world of research. Synergizing with machine 

learning, the Takagi-Sugeno-Kang Fuzzy Neural Network, or ANFIS, is capable of 

learning precise outputs functions despite uncertainty in the formulation of the input 

variable. Together, these tools provide classification performance that is higher than the 

current methods proposed in the literature. 

The proposed algorithm achieves higher classification accuracy for the single 

subject simulations, relative to the standard reported literature value. However, the 

average for all of the test subjects remains less than ideal. An average accuracy of 79.4% 

detection is less then formidable, but still high for this data. Therefore, although this 

method poses as superior, there remains a need to rectify this model for this type of data 

before it can be used as an output medical device. Improvements that need to be made 

include increased accuracy of detection on the single subject trials as well as adaptability 

for the multiple subject trials. 

It is recommended that future classification schemes build on the feature 

extraction scheme. Although the DWT is a superior decomposition method, the proposed 

employment of this method negates itself a high-resolution time-frequency analysis for 

determining ERD. The frequency bands are too broad, and consequently contain 

excessive noise that is not related to slow moving cortical potentials. Furthermore, the 
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energy percentage is captured for different frequency bands. However, with great amount 

of noise and perturbations, the influence of these signals becomes occluded. Therefore, in 

order to capture the ERD, the source needs to be better isolated, which is not possible 

with wide bands and high levels of noise. 

In addition, further research into noise reduction should be conducted. Until noise 

can be severely reduced, results will continue to fall short of expectations for an effective 

medical device. The data set that is used in this study is polluted with noise to the extent 

that processing with AAR and ICA still did not reduce the noise to an extent that it was 

easy to observe the activity in the desired region. Use of intracranial electrodes would 

drastically increase the SNR value; however pose as biocompatibility concerns with its 

high incidence of infections. 
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APPENDICES 

APPENDIX A – List of Acronyms 

 AAR – Automated Artifact Rejection 

 ANFIS – Adaptive Neuro-Fuzzy Inference System 

 BCI – Brain Computer Interface 

BP – Back Propagation 

BSS – Blind Source Separation 

DFT – Discrete Fourier Transform 

DWT – Discrete Wavelet Transform 

EDF – European Data Format 

EEG – Electroencephalography 

EMD – Empirical Mode Decomposition 

EMG – Electromyograms 

EOG – Electrooculargrams 

ERD – Event Related Desynchronization 

ERS – Event Related Synchronization 

ERP – Event Related Perturbation 

FIS – Fuzzy Inference System 

FFT – Fast Fourier Transform  

GUI – Graphical User Interface 

HHT – Hilbert-Huang Transform 

ICA – Independent Component Analysis 

SCP – Slow Cortical Potentials 

SMR – Sensorimotor Rhythms 

SVM – Support Vector Machine 

 LSE – Least Squares Error 

 MEMD – Multivariate Empirical Mode Decomposition 

 MMI – Motor Movement Imagery 

TSKFNN – Takagi-Sugeno-Kang Fuzzy Neural Network 
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APPENDIX B – MATLAB Code 

 

annot_auto.m 
 

[ complete ] = annot_automate1( 'HandImagery9',[2.5,20] );clc 

  

function [ complete ] = annot_automate1( data_type,bw ) 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % %  

  

% annot_automate This file is the file where annotations are added to be 

% so that the new annotation reconstructions of (2.5-25 Hz) can be saved 

% for processing through EEGLAB 

% eeglab: cd '/Users/rory_donovan/Google 

Drive/MATLAB/Thesis/databases/eeglab13_6_5b' 

  

% to be used with {'eeglab_auto.m' 'create_event.m'} 

  

% input 

% data_type = file name for the data 

% bw = band width of the FIR filter 

  

% data_type = type of data being used (example 'HandImagery' or 'MotorImagery') 

FILT = 0; % this set needs to go through filt because it is the continuous data 

AAR = 0;  % this set needs to go through AAR because it is the continuous data 

ICA = 0;  % this set needs to go through ICA because it is the continuous data 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % %  

% Make Directories 

  

% new EEG data path 

data_type_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type];  

mkdir(data_type_path) % makes new director with the name data_type 

  

% new filtered data path 

fir_filt_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[1]fir_filt/']; 

mkdir(fir_filt_path) % makes new director with the name 'fir_filt' 

  

% new AAR processed signals path 

aar_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[2]aar/']; 

mkdir(aar_path) % makes new director with the name 'aar_filt' 
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% new indiv. left/right hand data path 

conc1_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[3]conc1/'];  

mkdir(conc1_path) % makes new director with the name conc1 

  

% new indiv. left/right ica hand data path 

ica_all_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[4]ica_all/'];  

mkdir(ica_all_path) % makes new director with the name ica_all 

  

% new fir pic path 

pic_fir_path = ['/Users/rory_donovan/Google Drive/Thesis/'... 

    'My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[1]fir_filt/']; 

mkdir(pic_fir_path) % makes new director with the name 'fir_filt' 

  

% new aar pic path 

pic_aar_path = ['/Users/rory_donovan/Google Drive/Thesis/'... 

    'My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[2]aar/']; 

mkdir(pic_aar_path) % makes new director with the name 'aar' 

  

% new spectrogram pic path 

pic_spectro_path = ['/Users/rory_donovan/Google Drive/Thesis/'... 

    'My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[3]spectrogram/']; 

mkdir(pic_spectro_path) % makes new director with the name 'spectro' 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % %  

% Start Automation                                

  

% new path 

cd(fir_filt_path) % open so it saves locally 

  

% open path to read raw EEG files 

% reconstruct raw signal into specified bandwidth, add events 

sample = 'S001R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S001R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S001R12'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 
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    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S002R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S002R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S002R12' 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S003R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S003R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S003R12'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S004R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S004R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S004R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 
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eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S005R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S005R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S005R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S006R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S006R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S006R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S007R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S007R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S007R12'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S008R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S008R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S008R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S009R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S009R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S009R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S010R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S010R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S010R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S011R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S011R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S011R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S012R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S012R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S012R12' 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S013R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S013R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S013R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S014R04'; 
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val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S014R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S014R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S015R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S015R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S015R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S016R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S016R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S016R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S017R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 
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    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S017R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S017R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S018R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S018R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S018R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S019R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S019R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S019R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S020R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 
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eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S020R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S020R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S021R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S021R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S021R12'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S022R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S022R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S022R12' 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S023R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S023R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S023R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S024R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S024R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S024R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S025R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S025R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S025R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S026R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S026R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S026R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S027R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S027R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S027R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S028R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

  

sample = 'S028R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

  

sample = 'S028R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S029R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S029R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S029R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S030R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S030R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S030R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S031R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S031R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S031R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S032R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 
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sample = 'S032R08'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S032R12' 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S033R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S033R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S033R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S034R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S034R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S034R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S035R04'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path) 

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S035R08'; 
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val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S035R12'; 

val = create_event(data_type,FILT,sample,4.2,4.1,bw,... 

    [0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S036R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S036R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S036R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S037R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S037R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S037R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S038R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S038R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 
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    [0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S038R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S039R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,2,0,1,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S039R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,1]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S039R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S040R04'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,1,0,2,0,1,0,2,0,2,0,1,0,1,0,2,0,1,0,2,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S040R08'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,1,0,2,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

sample = 'S040R12'; 

val = create_event(data_type,FILT,sample,4.1,4.1,bw,... 

    [0,2,0,1,0,1,0,2,0,2,0,1,0,2,0,1,0,2,0,1,0,1,0,2,0,2,0,1,0,2]);cd(fir_filt_path)  

eeglab_auto( sample,data_type,AAR ) 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % %  

% Notes - this part of file concatenates the dataset of the the trials of a single 

% person into 1 long l/r hand data set for each person. 

  

eeglab     % clear EEGLAB workspace 

close(gcf) % close EEGLAB figure 
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% load eeg sets 

ALLEEG = pop_loadset('filename',{'S001R04_T1.set' 'S001R04_T2.set' 

'S001R08_T1.set' 'S001R08_T2.set' 'S001R12_T1.set' 'S001R12_T2.set'... 

                              'S002R04_T1.set' 'S002R04_T2.set' 'S002R08_T1.set' 

'S002R08_T2.set' 'S002R12_T1.set' 'S002R12_T2.set'... 

                              'S003R04_T1.set' 'S003R04_T2.set' 'S003R08_T1.set' 

'S003R08_T2.set' 'S003R12_T1.set' 'S003R12_T2.set'... 

                              'S004R04_T1.set' 'S004R04_T2.set' 'S004R08_T1.set' 

'S004R08_T2.set' 'S004R12_T1.set' 'S004R12_T2.set'... 

                              'S005R04_T1.set' 'S005R04_T2.set' 'S005R08_T1.set' 

'S005R08_T2.set' 'S005R12_T1.set' 'S005R12_T2.set'... 

                              'S006R04_T1.set' 'S006R04_T2.set' 'S006R08_T1.set' 

'S006R08_T2.set' 'S006R12_T1.set' 'S006R12_T2.set'... 

                              'S007R04_T1.set' 'S007R04_T2.set' 'S007R08_T1.set' 

'S007R08_T2.set' 'S007R12_T1.set' 'S007R12_T2.set'... 

                              'S008R04_T1.set' 'S008R04_T2.set' 'S008R08_T1.set' 

'S008R08_T2.set' 'S008R12_T1.set' 'S008R12_T2.set'... 

                              'S009R04_T1.set' 'S009R04_T2.set' 'S009R08_T1.set' 

'S009R08_T2.set' 'S009R12_T1.set' 'S009R12_T2.set'... 

                              'S010R04_T1.set' 'S010R04_T2.set' 'S010R08_T1.set' 

'S010R08_T2.set' 'S010R12_T1.set' 'S010R12_T2.set'... 

                              'S011R04_T1.set' 'S011R04_T2.set' 'S011R08_T1.set' 

'S011R08_T2.set' 'S011R12_T1.set' 'S011R12_T2.set'... 

                              'S012R04_T1.set' 'S012R04_T2.set' 'S012R08_T1.set' 

'S012R08_T2.set' 'S012R12_T1.set' 'S012R12_T2.set'... 

                              'S013R04_T1.set' 'S013R04_T2.set' 'S013R08_T1.set' 

'S013R08_T2.set' 'S013R12_T1.set' 'S013R12_T2.set'... 

                              'S014R04_T1.set' 'S014R04_T2.set' 'S014R08_T1.set' 

'S014R08_T2.set' 'S014R12_T1.set' 'S014R12_T2.set'... 

                              'S015R04_T1.set' 'S015R04_T2.set' 'S015R08_T1.set' 

'S015R08_T2.set' 'S015R12_T1.set' 'S015R12_T2.set'... 

                              'S016R04_T1.set' 'S016R04_T2.set' 'S016R08_T1.set' 

'S016R08_T2.set' 'S016R12_T1.set' 'S016R12_T2.set'... 

                              'S017R04_T1.set' 'S017R04_T2.set' 'S017R08_T1.set' 

'S017R08_T2.set' 'S017R12_T1.set' 'S017R12_T2.set'... 

                              'S018R04_T1.set' 'S018R04_T2.set' 'S018R08_T1.set' 

'S018R08_T2.set' 'S018R12_T1.set' 'S018R12_T2.set'... 

                              'S019R04_T1.set' 'S019R04_T2.set' 'S019R08_T1.set' 

'S019R08_T2.set' 'S019R12_T1.set' 'S019R12_T2.set'... 

                              'S020R04_T1.set' 'S020R04_T2.set' 'S020R08_T1.set' 

'S020R08_T2.set' 'S020R12_T1.set' 'S020R12_T2.set'... 

                              'S021R04_T1.set' 'S021R04_T2.set' 'S021R08_T1.set' 

'S021R08_T2.set' 'S021R12_T1.set' 'S021R12_T2.set'... 

                              'S022R04_T1.set' 'S022R04_T2.set' 'S022R08_T1.set' 

'S022R08_T2.set' 'S022R12_T1.set' 'S022R12_T2.set'... 

                              'S023R04_T1.set' 'S023R04_T2.set' 'S023R08_T1.set' 
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'S023R08_T2.set' 'S023R12_T1.set' 'S023R12_T2.set'... 

                              'S024R04_T1.set' 'S024R04_T2.set' 'S024R08_T1.set' 

'S024R08_T2.set' 'S024R12_T1.set' 'S024R12_T2.set'... 

                              'S025R04_T1.set' 'S025R04_T2.set' 'S025R08_T1.set' 

'S025R08_T2.set' 'S025R12_T1.set' 'S025R12_T2.set'... 

                              'S026R04_T1.set' 'S026R04_T2.set' 'S026R08_T1.set' 

'S026R08_T2.set' 'S026R12_T1.set' 'S026R12_T2.set'... 

                              'S027R04_T1.set' 'S027R04_T2.set' 'S027R08_T1.set' 

'S027R08_T2.set' 'S027R12_T1.set' 'S027R12_T2.set'... 

                              'S028R04_T1.set' 'S028R04_T2.set' 'S028R08_T1.set' 

'S028R08_T2.set' 'S028R12_T1.set' 'S028R12_T2.set'... 

                              'S029R04_T1.set' 'S029R04_T2.set' 'S029R08_T1.set' 

'S029R08_T2.set' 'S029R12_T1.set' 'S029R12_T2.set'... 

                              'S030R04_T1.set' 'S030R04_T2.set' 'S030R08_T1.set' 

'S030R08_T2.set' 'S030R12_T1.set' 'S030R12_T2.set'... 

                              'S031R04_T1.set' 'S031R04_T2.set' 'S031R08_T1.set' 

'S031R08_T2.set' 'S031R12_T1.set' 'S031R12_T2.set'... 

                              'S032R04_T1.set' 'S032R04_T2.set' 'S032R08_T1.set' 

'S032R08_T2.set' 'S032R12_T1.set' 'S032R12_T2.set'... 

                              'S033R04_T1.set' 'S033R04_T2.set' 'S033R08_T1.set' 

'S033R08_T2.set' 'S033R12_T1.set' 'S033R12_T2.set'... 

                              'S034R04_T1.set' 'S034R04_T2.set' 'S034R08_T1.set' 

'S034R08_T2.set' 'S034R12_T1.set' 'S034R12_T2.set'... 

                              'S035R04_T1.set' 'S035R04_T2.set' 'S035R08_T1.set' 

'S035R08_T2.set' 'S035R12_T1.set' 'S035R12_T2.set'... 

                              'S036R04_T1.set' 'S036R04_T2.set' 'S036R08_T1.set' 

'S036R08_T2.set' 'S036R12_T1.set' 'S036R12_T2.set'... 

                              'S037R04_T1.set' 'S037R04_T2.set' 'S037R08_T1.set' 

'S037R08_T2.set' 'S037R12_T1.set' 'S037R12_T2.set'... 

                              'S038R04_T1.set' 'S038R04_T2.set' 'S038R08_T1.set' 

'S038R08_T2.set' 'S038R12_T1.set' 'S038R12_T2.set'... 

                              'S039R04_T1.set' 'S039R04_T2.set' 'S039R08_T1.set' 

'S039R08_T2.set' 'S039R12_T1.set' 'S039R12_T2.set'... 

                              'S040R04_T1.set' 'S040R04_T2.set' 'S040R08_T1.set' 

'S040R08_T2.set' 'S040R12_T1.set' 'S040R12_T2.set'... 

                              },'filepath',aar_path); 

  

ALLEEG = eeg_checkset( ALLEEG ); % verify 

  

% concatenate sets 

  

% T1 = left hand 

task = '1';  

for idx1 = 1:40 % each subject 

    fn = ['S',num2str(idx1),'T']; 

    EEG = pop_mergeset( ALLEEG, (idx1-1)*3+(1:2:5), 0); 
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    EEG = eeg_checkset( EEG ); 

    EEG = pop_saveset( EEG, 'filename',[fn,task,'.set'],'filepath',conc1_path); 

end 

  

% T2 = right hand 

task = '2';  

for idx2 = 1:40 

    fn = ['S',num2str(idx2),'T']; 

    EEG = pop_mergeset( ALLEEG, (idx2-1)*3+(2:2:6), 0); 

    EEG = eeg_checkset( EEG ); 

    EEG = pop_saveset( EEG, 'filename',[fn,task,'.set'],'filepath',conc1_path); 

end 

  

% Notes - this part of the file concatenates the dataset of the the trials of all of 

% the people into 1 long l/r hand data set for each person. 

if ICA == 1 

  

eeglab     % clear EEGLAB workspace 

close(gcf) % close figure 

  

% load EEG sets 

ALLEEG = pop_loadset('filename',{'S1T1.set' 'S1T2.set'... 

                              'S2T1.set' 'S2T2.set'... 

                              'S3T1.set' 'S3T2.set'... 

                              'S4T1.set' 'S4T2.set'... 

                              'S5T1.set' 'S5T2.set'... 

                              'S6T1.set' 'S6T2.set'... 

                              'S7T1.set' 'S7T2.set'... 

                              'S8T1.set' 'S8T2.set'... 

                              'S9T1.set' 'S9T2.set'... 

                              'S10T1.set' 'S10T2.set'... 

                              'S11T1.set' 'S11T2.set'... 

                              'S12T1.set' 'S12T2.set'... 

                              'S13T1.set' 'S13T2.set'... 

                              'S14T1.set' 'S14T2.set'... 

                              'S15T1.set' 'S15T2.set'... 

                              'S16T1.set' 'S16T2.set'... 

                              'S17T1.set' 'S17T2.set'... 

                              'S18T1.set' 'S18T2.set'... 

                              'S19T1.set' 'S19T2.set'... 

                              'S20T1.set' 'S20T2.set'... 

                              'S21T1.set' 'S21T2.set'... 

                              'S22T1.set' 'S22T2.set'... 

                              'S23T1.set' 'S23T2.set'... 

                              'S24T1.set' 'S24T2.set'... 

                              'S25T1.set' 'S25T2.set'... 
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                              'S26T1.set' 'S26T2.set'... 

                              'S27T1.set' 'S27T2.set'... 

                              'S28T1.set' 'S28T2.set'... 

                              'S29T1.set' 'S29T2.set'... 

                              'S30T1.set' 'S30T2.set'... 

                              'S31T1.set' 'S31T2.set'... 

                              'S32T1.set' 'S32T2.set'... 

                              'S33T1.set' 'S33T2.set'... 

                              'S34T1.set' 'S34T2.set'... 

                              'S35T1.set' 'S35T2.set'... 

                              'S36T1.set' 'S36T2.set'... 

                              'S37T1.set' 'S37T2.set'... 

                              'S38T1.set' 'S38T2.set'... 

                              'S39T1.set' 'S39T2.set'... 

                              'S40T1.set' 'S40T2.set'... 

                              },'filepath',conc1_path); 

  

ALLEEG = eeg_checkset( ALLEEG ); % verify 

                           

% concatenate & save 

EEG = pop_mergeset( ALLEEG, 1:size(ALLEEG,2), 0); 

EEG = eeg_checkset( EEG ); % verify 

EEG = pop_saveset( EEG, 'filename','conc_eeg.set','filepath',ica_all_path); 

EEG = eeg_checkset( EEG ); 

  

eeglab 

close(gcf) 

  

EEG = pop_loadset('filename','conc_eeg.set','filepath',['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[4]ica_all/']); 

EEG = eeg_checkset( EEG ); 

EEG = pop_runica(EEG, 'extended',1,'interupt','off'); 

EEG = eeg_checkset( EEG ); 

EEG = pop_saveset( EEG, 'filename','ica.set','filepath',ica_all_path); 

EEG = eeg_checkset( EEG ); 

end 

complete = 'complete' 

  

end 

  

%-------------------------------------------------------------------------- 

function [ val ] = create_event( data_type,filt,sample,n1,n2,bw,annotations ) 

%create_event This function decomposes and recomposes the raw 160 Hz EEG 

%   signal using the DWT and adds an annotation file. The output signals 

%   are of the specified bandwidth range 
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%   {Function used with the file 'save_annot_imagery.m'} 

  

%   Parameters - 

%   sample = sample name (e.g 'S001R12') 

%   n1 = # of seconds of first occuring event (e.g 4.1 or 4.2) 

%   n2 = # of seconds of second occuring event (e.g 4.1 or 4.2) 

%   bw = FIR filter bandwidtch, [lower,higher] 

%   annotations = annotated event channel - e.g [1,1,1,1...,2,2,...] 

  

%   Example of use - 

%   [ val ] = create_event( file,4.1,4.2,'db2',6,[0,1,0,2,...]) 

%   This decomposes the signals into  6 levels using debauchees with 2 

%   vanishing moments. 

  

% extract bandwidth values, note upper>lower 

upper = bw(2); % low pass frequency  

lower = bw(1);  % high pass frequency 

  

% import data 

EEG = 

pop_importdata('dataformat','matlab','nbchan',0,'data',['/Users/rory_donovan/Google 

Drive/MATLAB/Thesis/databases/eeglab13_6_5b/eegmmidb/Raw/',sample,'_edfm.mat'],'

srate',160,'pnts',0,'xmin',0); 

EEG.setname=sample;         % give set a name 

EEG = eeg_checkset( EEG );  % verify set 

  

% add events to recomposed wave 

if n1 == 4.2 && n2 == 4.1 

    for i = 1:15 

        annot_channel((i-1)*(4.1+4.2)*(160)+1:(i-1)*(4.1+4.2)*(160)+(4.2*160)) =  

annotations(i*2-1); 

        annot_channel((i-1)*(4.1+4.2)*(160)+(4.2*160)+1:(i-

1)*(4.1+4.2)*(160)+(4.2*160)+(4.1*160)) =  annotations(i*2); 

    end 

elseif n1 == 4.1 && n2 == 4.1 

    for i = 1:30 

        annot_channel((i-1)*4.1*160+1:i*4.1*160) = repmat(annotations(i),1,4.1*160); 

    end 

end 

  

EEG.data=EEG.data(:,1:size(annot_channel,2)); 

EEG.data(65,:)=annot_channel; 

  

% following needed to graph 

EEG = 

pop_importdata('dataformat','matlab','nbchan',0,'data',EEG.data,'srate',160,'pnts',0,'xmin',
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0); 

EEG.setname=sample; 

EEG = eeg_checkset( EEG ); 

  

% event channel - leading, including duration 

EEG = pop_chanevent(EEG, 65,'edge','leading','edgelen',0,'duration','on'); 

EEG = eeg_checkset( EEG ); 

  

% add channel locations for 2D viewing 

EEG=pop_chanedit(EEG, 'lookup','/Users/rory_donovan/Google 

Drive/MATLAB/Thesis/databases/eeglab13_6_5b/plugins/dipfit2.3/standard_BESA/stan

dard-10-5-cap385.elp','load',{'/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/chan_locs.ced' 'filetype' 

'autodetect'}); 

EEG = eeg_checkset( EEG ); 

EEG=pop_chanedit(EEG, 'plotrad',0.5); % change radius to that of head 

EEG = eeg_checkset( EEG );            % verify set 

  

if filt == 1 

% check it out 

% create log power spectrum 

figure;fig1 = pop_spectopo(EEG, 1, [0        4093.75], 'EEG' , 'percent', 15, 'freq', [10 25], 

'freqrange',[2 50],'electrodes','off'); 

close(gcf)                           % close current figure 

  

% Hamming Windowed Sinc FIR filter 

EEG = pop_eegfiltnew(EEG, lower, upper, 264, 0, [], 1); 

val = [EEG.data;annot_channel];      % store filtered data, w/ event channel  

save([sample,'.mat'],'val'); 

close(gcf)                           % close figure 

EEG = eeg_checkset( EEG );           % verify set 

  

% create log power spectrum 

figure;fig2 = pop_spectopo(EEG, 1, [0        4093.75], 'EEG' , 'percent', 15, 'freq', [], 

'freqrange',[0 50],'electrodes','off'); 

close(gcf)                          % close figure 

freq = linspace(0,50,(30));       % scale to proper size  

  

% plot log-power spectral density 

fig = figure(1); 

fig.PaperUnits = 'inches'; 

fig.PaperPosition = [0 0 10 2]; 

title('Hamming Windowed Sinc Filter') 

hold on 

subplot(1,2,1) 

plot(freq,fig1(:,1:30)') 
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title('Before FIR Filtration') 

ylabel('Log Power Specral Density 10*log(µV^2/Hz)','FontSize',6) 

xlabel('frequency (Hz)') 

subplot(1,2,2) 

plot(freq,fig2(:,1:30)') 

title('After FIR Filtration') 

ylabel('Log Power Specral Density 10*log(µV^2/Hz)','FontSize',6) 

xlabel('frequency (Hz)') 

hold off 

  

cd(['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[1]fir_filt/']); 

saveas(gcf,[sample,'_fir.jpg']) 

close(gcf) 

end 

end 

  

%-------------------------------------------------------------------------- 

function [ complete ] = eeglab_auto( sample,data_type,AAR ) 

%eeglab_auto EEG automation function 

%   This file imports the data, creates events from the event channel, adds 

%   channel labels for 2S viewing, AARs the EOG and EMG & removes baseline  

  

%   {to be used with 'annot_auto.m'} 

  

%   sample = subject (example 'S001R04') 

%   data_type = type of data being used (example 'HandImagery') 

%   AAR = (BOOLEAN) whether to run AAR or not 

  

% parameters 

freq = 160;  % sampling frequency Hz 

n_chan = 64; % number of channels (annotation file is channel 65) 

  

fir_filt_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[1]fir_filt/',samp

le,'.mat']; 

aar_path = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[2]aar/']; 

  

% import Hamming Windowed Sinc FIR filtered data 

EEG = 

pop_importdata('dataformat','matlab','nbchan',0,'data',fir_filt_path,'srate',freq,'pnts',0,'xmi

n',0); 

EEG.setname=sample;    

EEG = eeg_checkset( EEG ); % verify 
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% event channel - from leading edge, include duration 

EEG = pop_chanevent(EEG, n_chan+1,'edge','leading','edgelen',0,'duration','on'); 

EEG = eeg_checkset( EEG ); 

  

% add channel locations for 2D viewing 

EEG=pop_chanedit(EEG, 'lookup','/Users/rory_donovan/Google 

Drive/MATLAB/Thesis/databases/eeglab13_6_5b/plugins/dipfit2.3/standard_BESA/stan

dard-10-5-cap385.elp','load',{'/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/chan_locs.ced' 'filetype' 

'autodetect'}); 

EEG = eeg_checkset( EEG ); 

EEG=pop_chanedit(EEG, 'plotrad',0.5); % change radius to that of head 

EEG = eeg_checkset( EEG ); 

  

% re-reference the data (remove 40dB of noise) 

EEG = pop_reref( EEG, []);   % re-reference large window to zero mean 

EEG = eeg_checkset( EEG );   % verify 

fig1 = EEG.data(:,:,1);      % plot 1 epoch to check before AAR 

  

if AAR == 1 % only run if  user specifies 

     

    % EOG artifact removal using bss (sobi) algorith 

    EEG = pop_autobsseog( EEG, [EEG.xmax], [EEG.xmax], 'sobi', {'eigratio', 

[1000000]},... 

        'eog_fd', {'range',[2  21]}); 

    EEG = eeg_checkset( EEG ); 

     

    % EMG artifact removal using bss (bsscca) algorithm 

    EEG = pop_autobssemg( EEG, [81.9188], [81.9188], 'bsscca', ... 

        {'eigratio', [1000000]}, 'emg_psd', {'ratio', [10],'fs', [160],'femg', [15],... 

        'estimator',spectrum.welch({'Hamming'}, 80),'range', [0  32]}); 

     

    % save data for figure 

    EEG = eeg_checkset( EEG );                   % verify 

    fig2=EEG.data(:,:,1);                        % plot 1 epoch to check after AAR 

    x = linspace(0,45*2*4.1,size(EEG.data(:,:,1),2)); % scale plot to EEGLAB true value 

  

end 

  

% plot 

fig = figure(1);                       % setup figure 

fig.PaperUnits = 'inches';           

fig.PaperPosition = [0 0 10 2]; 

title('Automated Artifact Rejection') 

hold on 

subplot(1,2,1)                         % plot before AAR 
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plot(x,fig1') 

title('Before AAR') 

xlabel('time(s)') 

ylabel('Potential (µV)') 

subplot(1,2,2)                         % plot after AAR 

plot(x,fig2') 

title('After AAR') 

xlabel('time(s)') 

ylabel('Potential (µV)') 

hold off 

  

% save to desired location 

cd(['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[2]aar/']); 

saveas(gcf,[sample,'_aar.jpg'])        % save AAR before/after  

close(gcf)                             % close current figure 

  

cd(['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Pictures/',data_type,'/[3]spectrogram/'

]); 

EEG_temp = EEG; % store for use by both epoching 

epoch_range = [0,4.1]; 

for idx1 = 1:2 % each event 

    % 4.1 sec epoch the data for each event, remove baseline, save 

    hand = num2str(idx1); 

    EEG = pop_epoch( EEG_temp, { idx1 }, epoch_range, 'newname', [sample,'_T',hand], 

'epochinfo', 'yes'); 

    EEG = eeg_checkset( EEG ); 

    EEG = pop_rmbase( EEG, epoch_range*1000); % remove baseline 

    EEG = eeg_checkset( EEG ); 

    EEG = pop_saveset( EEG, 'filename',[sample,'_T',hand,'.set'],'filepath',aar_path); 

    EEG = eeg_checkset( EEG ); 

     

    SNR = 20; %db 

    for idx2 = 1:size(EEG.data,3) 

        elect = [9,11,13]; 

        for idx3 = 1:3 

            sfig = 

[sample,'_M',num2str(idx2),'_H',num2str(idx1),'_E',num2str(elect(idx3)),'.jpg']; 

            fig = figure(1); 

            title(sfig) 

            

spectrogram(EEG.data(elect(idx3),:,idx2),100*hamming(64),60,[1:.2:20],freq,'MinThres

hold',-SNR,'yaxis') 

            myscale = [linspace(1,0,24)',ones(24,2)                          ;... 

                       linspace(0,1,12)',ones(12,1)       , linspace(1,0,12)';... 
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                       ones(12,1)       ,linspace(1,0,12)', zeros(12,1)     ]; 

            colormap(myscale) 

            fig.PaperPosition = [0 0 6 2]; 

            saveas(gcf,sfig) 

            close(gcf) 

        end 

    end 

         

end 

  

cd(['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',data_type,'/[1]fir_filt/']) 

clc 

complete = sample; 

  

end 
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APPENDIX B – MATLAB Code 

 

tskfnn.m 

 

 

clc 

[ av_perf,tmp,mode,conf_mat,perf,n_test,tp2tn ] = 

tskfnn1([2],'db2',10,[2,0.1,0.9,1.1],'HandImagery1','/[3]conc1/' ); 

performance = [tmp;100*ones(50,4)]; 

  

function [ av_perf,performance,mode,conf_mat,perf,n_test,tp2tn ] = tskfnn1( 

S,w,n_sym,trn_opt,data_type,path ) 

%tskfnn Function for l/r hand (motor) classification of EEG data 

%   This function takes user information and neural network options to 

%   train a takagi-sugeno-kang n`eural network to classify l/r hand data 

%   from EEG data sets that have undergone AAR and ICA decomposition and 

%   are concatenated into segments of 1 user. 

%   Example - [ av_perf,performance,mode,conf_mat,perf,n_test,tp2tn ]  

%               = tskfnn([1:40],'db2',[10,NaN,0.009,0.9975,1.0025],1,'HandImagery' ); 

%   electrodes used in ICA 

2,4,6,9,11,13,22,24,30,32,34,36,38,41,42,43,44,47,49,51,53,55,61,63 

  

% open EEGLAB session 

cd '/Users/rory_donovan/Google Drive/MATLAB/Thesis/databases/eeglab13_6_5b' 

eeglab 

close(gcf) 

  

%   S = # subjects being used (example: [1:10]) 

%   n_sym = # of simulations run (to test accuracy) 

%   w = wavelet mother function (example: 'db4', etc...) 

%   trn_opt = training options (example: [epoch#,error,eta,]) 

%   data_type = type of data (example: HandImagery) 

%   conf_mat = array with columns representing tp and tn by subject 

%   perf = average percent tp and tn 

%   n_test = array where columns are # of subjects tested 

%   tp2tn = array where columns are [TP,FP,FN,TN] 

%   performance = [spec,sen,sel,acc] 

%   add_id = (bool) whether or not to add identifier on all subjects 

%   ann = (bool) indicate whether the training is bp (0) or anfis (1) 

  

% init 

ann = 1; 

add_id = 0; 

acc(1:n_sym) = 0; spec(1:n_sym) = 0; sen(1:n_sym) = 0; sel(1:n_sym) = 0; % init 

  

% calc. perf 
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for idx1 = 1:n_sym 

    [ performance(idx1,:),id_inc,conf_mat(idx1,:),n_test(idx1,:),tp2tn(idx1,:) ]... 

        = eeg_class_dwt2anf( S, w, trn_opt, data_type,add_id,ann,path ); 

     

    % give feedback each simulation 

    fprintf('performance %.0f = %.2f %.2f %.2f %.2f \n',idx1, performance(idx1,:)); 

    inc_matr(idx1,1:size(id_inc,2)) = id_inc; % saver erroneous trials 

end 

  

% find mode (to determine if the is any problems with the part. trial) 

occ(1:56) = 0; % init 

for idx2 = 1:56 

    occ(idx2) = sum(inc_matr(:)==idx2); % occurence of each # 

end 

[~,mode] = sort(occ(:),'descend'); % sort by worst performing trials in desc. order 

  

% display results 

perf = mean(conf_mat,1); 

av_perf = mean(performance,1,'omitnan'); 

fprintf('[spec,sen,sel,acc] = [%.2f,%.2f,%.2f,%.2f] \n', av_perf); 

end 

%-------------------------------------------------------------------------- 

function [ performance,id_inc,conf_mat,n_test,tp2tn ] = ... 

    eeg_class_dwt2anf( S, w, trn_opt, data_type, add_id,ann,path ) 

%dwt2anf Feature extract using dwt and run through anfis 

%   This file takes the concatenated data file and extracts energy levels 

%   (5-10, 10-20, and 20-40 Hz), power (), and enters it into a 

%   Takaki-Sugeno style fuzzy inference network. 

  

%   { precursor file: 'tskfnn.m'} 

%   { subsequent file: 'eeg_data_extr.m' and 'eeg_anfis' or 'bpnn.m'} 

  

%   S = subject number 

%   omit = trial numbers to omit 

%   w = wavelet type (example, 'db4', etc...) 

%   trn_opt = training options (example: [epoch#,error,eta,]) 

%   fp = file path 

  

fp = ['/Users/rory_donovan/Google 

Drive/Thesis/My_Algorithm/eeglab13_6_5b/EEG_Datasets/',... 

    data_type,path]; % location 

p = []; t = []; % init 

for idx1 = 1:40 % for each subject 

    for idx2 = 1:2 % for each task (T1 & T2) 

        if ismember(idx1,S) % if the subject has been entered       

            % load data 
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            fn = ['S',num2str(idx1),'T',num2str(idx2),'.set']; 

            EEG = pop_loadset('filename',fn,'filepath',fp); 

            EEG = eeg_checkset( EEG ); 

             

            % add identifier to the data 

            id(1:size(EEG.data,3)) = idx1; 

            p(:,end+(1:size(EEG.data,3))) = [eeg_data_extr( EEG.data,[2,4,6],w);id]; 

            t(end+(1:size(EEG.data,3))) = idx2; % add matrix sub partition 

            clear EEG id fn %  

        end 

    end 

end 

if ann == 1 % anfis 

    [ performance,id_inc,conf_mat,n_test,tp2tn ] = eeg_anfis( p, t, trn_opt, add_id ); 

elseif ann == 0 % nn w/ bp 

    [ performance,id_inc,conf_mat,n_test,tp2tn ] = eeg_bpnn( p, t, add_id ); 

end; end 

%-------------------------------------------------------------------------- 

function [ p ] = eeg_data_extr( data,e,w ) 

%dwt_ext DWT decomposition into 5-10,10-20,and 20-40 Hz energy levels 

%   This file extracts features corresponding to 5-10,10-20,and 20-40 Hz  

%   energy levels. The are to be used as the input to the neural network. 

%   The inputs go in ascending order as far as electrodes and are generated 

%   1 electrode at a time 

%   Example: [feat1,feat2,etc...,feat6] = [e1 5-10 Hz, e1 10-20 Hz, ... , 

%   e2 20-40 Hz] 

  

%   { previous file = 'eeg_class_dwt.m'} 

%   { no subsequent file } 

  

%   data = EEG data file size ()x()x(). 

%   l = levels 

%   e = electrodes being used 

%   w = wavelet type 

  

% Parameters 

l = 6; % levels used 

j = 0; % variable for coutning 

d = 4; % detail to start with 

perc_en = []; % init 

  

% DWT 

for idx1 = 1:size(data,3) % for each epoch 

    for idx2 = 1:64 % for each electrode 

        if ismember(idx2,e) 

            j=j+1;   
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        % Decomposition 

        [C1,L1] = wavedec(data(idx2,:,idx1),l,w); % (l) level decomp of wt (db2 or 4 etc...) 

  

        % coefficients & energy of details 

        for idx3 = 1:l 

            coeff{idx3} = wrcoef('d',C1,L1,w,idx3); % extract detail 

            energy(idx3) = sum(coeff{idx3}.^2); % energy for detail 

            if idx3 == l 

                coeff{idx3+1} = wrcoef('a',C1,L1,w,idx3); % extract approx 

                energy(idx3+1) = sum(coeff{idx3+1}.^2); % energy for approx 

            end 

        end 

        % percent energy ( energy of level / total) 

        perc_en((l-d+1)*(j-1)+(1:(l-d+1)),1) = energy(d:l)/sum(energy,2); 

        end 

        clear coeff energy C1 L1; 

    end 

    p(:,idx1) = perc_en;  

    j=0; 

    perc_en = []; 

end 

end 

%-------------------------------------------------------------------------- 

function [ performance,id_inc, conf_mat,n_test,tp2tn ] = eeg_anfis( p, t, TRNOPT, 

add_id ) 

%eeg_anfis Takagi-Sugeno fuzzy inference neural network with Gaussian mf 

%   This function classifies movement based input features using symmetric  

%   Gaussian membership functions. The learning is a LSE-BP hybrid 

  

%   { precursor file = 'eeg_class_dwt.m'} 

%   { last file in the sequence } 

  

%   p = input 

%   t = target 

%   perf = performance 

%   id_inc = identifier for the incorrectly classified data point. Used to 

%            check where the error comes from. 

  

if add_id == 0 || size(p,2)<=50 

    p_temp = p(end,:); % store id 

    p(end,:) = []; % delete identifiers 

end 

     

t(find(t == 1))=-.9; 

t(find(t == 2))=.9; 
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% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% Neural Network                        

  

% randomely divide the test data 

[trainInd,checkInd,testInd] = dividerand(size(p,2),0.7,0.15,0.15); 

  

% create takagi-sugeno type inference neural network 

trnData = [p(1:size(p,1),trainInd);t(trainInd)]'; 

chkData = [p(1:size(p,1),checkInd);t(checkInd)]'; 

testData = [p(1:size(p,1),testInd);t(testInd)]'; 

%testInd = [(ind-1)*45+(1:45)]; 

  

genOpt = genfisOptions('SubtractiveClustering','ClusterInfluenceRange',[0.5]); 

tks_fis  = genfis(p(1:size(p,1),trainInd)',t(trainInd)',genOpt); 

  

opt = anfisOptions('InitialFIS',tks_fis,'EpochNumber',TRNOPT(1)); 

opt.ValidationData = chkData; 

opt.DisplayANFISInformation = 0; 

opt.DisplayFinalResults = 0; 

opt.DisplayErrorValues = 0; 

opt.DisplayStepSize = 0; 

opt.InitialStepSize = TRNOPT(2); 

opt.StepSizeDecreaseRate = TRNOPT(3); 

opt.StepSizeIncreaseRate = TRNOPT(4); 

  

[~,error,~,chk_fis,chkerror] = anfis(trnData,opt); 

Y = evalfis(p(1:size(p,1),testInd)',chk_fis);  

  

figure() 

hold on 

plot(chkerror,'k') 

plot(error,'r') 

hold off 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% performance individual trials  

  

% thresholding 

Y(Y(:,1)>=0,1)=.9; 

Y(Y(:,1)<0,1)=-.9; 

target(:,1) = t(testInd); 

output = [Y,target]; % compare what you got to the actual 

err = Y-target; % output - target 

err(find(abs(err(:,1))>0),1)=1; % find where the target isn't the output 

  

% True/false positive/negative (TP, FP, TN, FN) 
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TP = 0;FP = 0;TN = 0;FN = 0; % init 

for idx = 1:size(target,1) 

    if target(idx,1) == .9 && Y(idx,1) == .9 % True positive 

        TP = TP + 1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == .9 % False positive 

        FP = FP + 1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == -.9 % True negative 

        TN = TN + 1; 

    elseif target(idx,1) == .9 && Y(idx,1) == -.9 % False negative 

        FN = FN + 1; 

    end 

end 

tp2tn = [TP,FP,FN,TN]; 

  

% specificity, sensitivity, selectivity, accuracy 

performance(1) = 100*(TN/(TN+FP)); % specifity 

performance(2) = 100*(TP/(TP+FN)); % sensitivity 

performance(3) = 100*(TP/(TP+FP)); % selectivity 

performance(4) = 100*((TN+TP)/(TN+TP+FP+FN)); % accuracy 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

%  performance group trials                   

  

% confusion matrix for running all of the subjects together. 

  

% init. 

conf_mat1(1:40) = 0; % correct 

conf_mat2(1:40) = 0; % incorrect 

  

% add id back. 

if add_id == 0 || size(p,2)<= 50 

    p(end+1,:) = p_temp;  

end 

  

% create a confusion matrix for output. 

for idx = 1:size(target,1) 

    if target(idx,1) == .9 && Y(idx,1) == .9 % True positive 

            conf_mat1(p(end,testInd(idx))) = conf_mat1(p(end,testInd(idx)))+1;  

    elseif target(idx,1) == -.9 && Y(idx,1) == .9 % False positive 

            conf_mat2(p(end,testInd(idx))) = conf_mat2(p(end,testInd(idx)))+1;    

    elseif target(idx,1) == -.9 && Y(idx,1) == -.9 % True negative 

            conf_mat1(p(end,testInd(idx))) = conf_mat1(p(end,testInd(idx)))+1;  

    elseif target(idx,1) == .9 && Y(idx,1) == -.9 % False negative 

            conf_mat2(p(end,testInd(idx))) = conf_mat2(p(end,testInd(idx)))+1; 

    end 

end 
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% calculate correct versus incorrect 

conf_mat(1:40) = 0; 

for idx = 1:40 

    n_test(idx) = (conf_mat1(idx)+conf_mat2(idx)); 

    conf_mat(idx) = conf_mat1(idx)/n_test(idx)*100; 

end 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% mode error individual trials                

  

% incorrectly identified 

temp = find(err==1); 

for idx = 1:size(testInd) 

    id_inc = testInd(temp); 

end 

close(gcf) 

end 

%-------------------------------------------------------------------------- 

function [ performance,id_inc, conf_mat,n_test,tp2tn ] = eeg_bpnn( p, t, add_id ) 

%bp_nn Supplemental training method for tskfnn to test performance 

%   This file calcs perf=[specificity, sensitivity, selectivity, accuracy] 

%   and the mode of error of the subject trials 

  

%   { precursor file = 'eeg_class_dwt2anf.m' } 

%   { no subsequent file } 

  

%   p = input 

%   t = target 

%   perf = performance 

%   id_inc = identifier for the incorrectly classified data point. Used to 

%            check where the error comes from. 

  

if add_id == 0 || size(p,2)<=50 

    p_temp = p(end,:); % store id 

    p(end,:) = []; % delete identifiers 

end 

  

t(find(t == 1))=-.9; 

t(find(t == 2))=.9; 

  

% neural network 

net = feedforwardnet(100,'traingd'); % 100 hidden neurons 

[trainInd,chkInd,testInd] = dividerand(size(p,2),0.85,0,0.15); % divide data 

net.trainParam.showCommandLine = false;  

net.trainParam.showWindow = false; 
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net.trainParam.show = NaN; 

[net,tr] = train(net,p(:,trainInd),t(trainInd)); % train 

Y = net(p(:,testInd)); % test 

net 

  

figure(1) 

plotperform(tr) 

  

  

% thresholding 

Y(find(Y>=0))=.9; 

Y(find(Y<0))=-.9; 

Y = Y'; 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% performance individual trials               

target(:,1) = t(testInd); 

err = Y-target; % output - target 

err(find(abs(err(:,1))>0),1)=1; % find where the target isn't the output 

  

% True/false positive/negative (TP, FP, TN, FN) 

TP = 0;FP = 0;TN = 0;FN = 0; % init 

for idx = 1:size(target,1) 

    if target(idx,1) == .9 && Y(idx,1) == .9 % True positive 

        TP = TP + 1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == .9 % False positive 

        FP = FP + 1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == -.9 % True negative 

        TN = TN + 1; 

    elseif target(idx,1) == .9 && Y(idx,1) == -.9 % False negative 

        FN = FN + 1; 

    end 

end 

tp2tn = [TP,FP,FN,TN]; 

  

% specificity, sensitivity, selectivity, accuracy 

performance(1) = 100*(TN/(TN+FP)); % specicity 

performance(2) = 100*(TP/(TP+FN)); % sensitivity 

performance(3) = 100*(TP/(TP+FP)); % selectivity 

performance(4) = 100*(1-mean(err)); % accuracy 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% performance group trials    

  

% confusion matrix for running all of the subjects together. 
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% init 

conf_mat1(1:40) = 0; % correct 

conf_mat2(1:40) = 0; % incorrect 

  

% add id back. 

if add_id == 0 || size(p,2)<= 50 

    p(end+1,:) = p_temp;  

end 

  

for idx = 1:size(target,1) 

    if target(idx,1) == .9 && Y(idx,1) == .9 % True positive 

            conf_mat1(p(end,testInd(idx))) = conf_mat1(p(end,testInd(idx)))+1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == .9 % False positive 

            conf_mat2(p(end,testInd(idx))) = conf_mat2(p(end,testInd(idx)))+1; 

    elseif target(idx,1) == -.9 && Y(idx,1) == -.9 % True negative 

            conf_mat1(p(end,testInd(idx))) = conf_mat1(p(end,testInd(idx)))+1; 

    elseif target(idx,1) == .9 && Y(idx,1) == -.9 % False negative 

            conf_mat2(p(end,testInd(idx))) = conf_mat2(p(end,testInd(idx)))+1; 

    end 

end 

  

conf_mat(1:40) = 0; 

for idx = 1:40 

    n_test(idx) = (conf_mat1(idx)+conf_mat2(idx)); 

    conf_mat(idx) = conf_mat1(idx)/n_test(idx)*100; 

end 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% mode error individual trials                

  

% incorrectly identified 

temp = find(err==1); 

for idx = 1:size(testInd) 

    id_inc = testInd(temp); 

end 

end 

 


