505,919 research outputs found

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    Adaptive Flight Control Research at NASA

    Get PDF
    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing

    The application of controlled structures technology to adaptive optics

    Get PDF
    Viewgraphs on the application of controlled structures technology (CST) to adaptive optics are presented. Topics covered include: a typical large optical system (LDR); overview of current optical programs; typical adaptive optics system; actuation approaches for deforming a mirror; control approach comparison; control structure interaction (CSI) control bandwidth limitations; applications of CST concepts to optics; distributed control approaches; quasistatic error correction; low authority control (LAC); and high authority control (HAC) design methodology

    Change Mining in Adaptive Process Management Systems

    Get PDF
    The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Breakthroughs in Photonics 2013: Toward Feedback-Controlled Integrated Photonics

    Get PDF
    We present an overview of the main achievements obtained in 2013 on the monitoring, stabilization, and feedback loop control of passive and active photonic integrated circuits. Key advances contributed to the evolution of photonic technologies from the current device level toward complex, adaptive, and reconfigurable integrated circuits

    Autonomous Guidance Algorithms for NASA Learn-to-Fly Technology Development

    Get PDF
    Learn-to-Fly (L2F) is an advanced technology development effort under the NASA Transformative Aeronautics Concepts Program (TACP) that is aimed at assessing the feasibility of self-learning flight vehicles. Specifically, research has been conducted to demonstrate the potential to merge two enabling technologies; real-time aerodynamic modeling and adaptive controls, to substantially reduce the typical ground and flight testing requirements for air vehicle design. The approach to this effort involved development of unique airframes and on-board algorithms to demonstrate key L2F technologies on a fully autonomous flight test vehicle. This research, that included an aggressive flight test program, was intended to rapidly advance these technologies and demonstrate capabilities of the L2F approach. Key components of the L2F architecture include real-time aerodynamic modeling, adaptive controls and control allocation, and guidance. This paper provides an overview of the guidance algorithm which primarily served as an executive function to coordinate control commands for range navigation and the desired test conditions, provide autonomous envelope limiting/expansion and enable automatic landing to touchdown with no intervention from a human operator. A discussion of the L2F concept-of-operations and unique flight testing considerations, which influenced the guidance functional requirements, is included and results of recent flight testing are presented

    Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    Get PDF
    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed

    High-gain adaptive control: an overview

    Get PDF
    corecore