2,174 research outputs found

    Feasibility Study of Enabling V2X Communications by LTE-Uu Radio Interface

    Full text link
    Compared with the legacy wireless networks, the next generation of wireless network targets at different services with divergent QoS requirements, ranging from bandwidth consuming video service to moderate and low date rate machine type services, and supporting as well as strict latency requirements. One emerging new service is to exploit wireless network to improve the efficiency of vehicular traffic and public safety. However, the stringent packet end-to-end (E2E) latency and ultra-low transmission failure rates pose challenging requirements on the legacy networks. In other words, the next generation wireless network needs to support ultra-reliable low latency communications (URLLC) involving new key performance indicators (KPIs) rather than the conventional metric, such as cell throughput in the legacy systems. In this paper, a feasibility study on applying today's LTE network infrastructure and LTE-Uu air interface to provide the URLLC type of services is performed, where the communication takes place between two traffic participants (e.g., vehicle-to-vehicle and vehicle-to-pedestrian). To carry out this study, an evaluation methodology of the cellular vehicle-to-anything (V2X) communication is proposed, where packet E2E latency and successful transmission rate are considered as the key performance indicators (KPIs). Then, we describe the simulation assumptions for the evaluation. Based on them, simulation results are depicted that demonstrate the performance of the LTE network in fulfilling new URLLC requirements. Moreover, sensitivity analysis is also conducted regarding how to further improve system performance, in order to enable new emerging URLLC services.Comment: Accepted by IEEE/CIC ICCC 201

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Efficient Multicast in Next Generation Mobile Networks

    Get PDF

    Network Coding Channel Virtualization Schemes for Satellite Multicast Communications

    Full text link
    In this paper, we propose two novel schemes to solve the problem of finding a quasi-optimal number of coded packets to multicast to a set of independent wireless receivers suffering different channel conditions. In particular, we propose two network channel virtualization schemes that allow for representing the set of intended receivers in a multicast group to be virtualized as one receiver. Such approach allows for a transmission scheme not only adapted to per-receiver channel variation over time, but to the network-virtualized channel representing all receivers in the multicast group. The first scheme capitalizes on a maximum erasure criterion introduced via the creation of a virtual worst per receiver per slot reference channel of the network. The second scheme capitalizes on a maximum completion time criterion by the use of the worst performing receiver channel as a virtual reference to the network. We apply such schemes to a GEO satellite scenario. We demonstrate the benefits of the proposed schemes comparing them to a per-receiver point-to-point adaptive strategy

    Adaptive Transmission Protocols for Wireless Communication Systems with Fountain Coding

    Get PDF
    We present low-complexity adaptive protocols for both unicast and multicast transmission in wireless communication systems that employ higher layer fountain codes. Our adaptive protocols respond to variations in channel conditions by adapting the modulation and channel coding of transmitted packets, and they provide efficient communication over wireless channels that experience fading, shadowing, and other time-varying propagation losses. The operation of our protocols is governed by simple receiver statistics that can be obtained during the demodulation of received packets. We present three adaptive protocols for fountain-coded unicast transmission, and compare the throughput performance of our protocols with that of fixed-rate systems, as well as hypothetical ideal protocols that are given perfect channel state information and use ideal fountain codes. We also present two adaptive protocols for fountain-coded multicast transmission. Our adaptive multicast transmission protocols operate with limited feedback from the destinations and provide scheduling to avoid collisions among the feedback messages. We compare the performance of our multicast protocols to systems with fixed modulation and coding, as well as hypothetical protocols that are given perfect channel state information. We demonstrate that our practical adaptive protocols for fountain-coded unicast and multicast transmission outperform fixed-rate coding schemes and provide throughput that is nearly as high as that achieved by hypothetical protocols that are given perfect channel state information
    • …
    corecore