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Abstract

The next generation mobile cellular networks are expected to transmit rich multi-

media services, which often require large transmission bandwidth, low delay and

the same content to be delivered to several users. Due to the broadcast nature of

radio transmission, the most efficient way to provide such services is to employ

wireless multicast. By sending one copy of the service content to several multi-

cast group members with a shared downlink channel, the bandwidth consumption

can be significantly reduced and the efficiency of using scarce radio resource can

be improved. On the other hand, the diversity of the channel conditions among

multiple receivers raise challenges to the radio resource management (RRM) al-

gorithm design for such a multicast channel. In this PhD project, a comprehensive

RRM study with both analytical and simulative approaches is fulfilled to explore

the tradeoff between spectral efficiency and reliability in this wireless multicast

channel.

First, a performance metric has been built to balance the multicast system

spectral efficiency and the user perceived Quality of Service (QoS). A simple

modulation rate adaptation scheme is proposed to maximize such metric in an

OFDMA-based multicast channel. Then the metric is simplified to reduce its sen-
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sitivity to its weight factors, and a more sophisticated modulation rate adaptation

algorithm is proposed to optimistically relax the instantaneous Bit Error Ratio

(BER) constraints based on the BER history of each multicast user. The proposed

algorithm has been evaluated in connection to other link adaptation schemes by

simulations, which shows significant spectral efficiency advantage under the given

QoS constraint.

To reveal the performance upper-boundary of multicast link adaptations in

general, an analytical model is built. The optimization problem is reformulated to

a constraint optimization problem with joint power and modulation rate adapta-

tion under flat- and block-fading Rayleigh channels. The optimal and suboptimal

adaptation approaches along different dimensions (power and modulation rate)

are derived from this analytical model, as well as the corresponding achievable

spectral efficiency values. The criteria of switching from uncash channel mode to

multicast channel mode is also revealed from the analytical results.

All these studies reveals that the worst channel state degrades the overall

multicast system performance, and this penalty increases as the multicast group

size grows. Automatic Repeat request (ARQ) can help to improve the overall

spectral efficiency under poor channel conditions, but facing scalability problems

in multicast. This dissertation proposes a cross-layer framework to jointly op-

timize Adaptive Modulation and Coding (AMC) and ARQ scheme, and adopts

packet-combining to solve the scalability problem under practical group size as-

sumptions.

In summary, this dissertation presents how RRM approaches can be em-

ployed to improve multicast spectral efficiency with reliability constraints. It re-
Haibo Wang
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veals that violating the reliability constraint temporarily for the worst link can

improve the average spectral efficiency per user significantly, without sacrificing

the average reliability in long term. It is also proved that even though rate adapta-

tion alone can achieve similar performance as joint power and rate adaptation can

do if the data rate can be changed continuously, the latter still outperforms in more

realistic cases where only discrete data rates are available. Last but not the least,

cross-layer design with innovative multicast ARQ scheme can further exploit the

spectral efficiency and reliability trade-off if a certain delay is tolerable.

Aalborg Universitet



Dansk Resumé

Næste generations mobile netværk giver mulighed for transmission af avancerede

multimedie-services. Disse services kræver ofte en høj transmissions-båndbredde,

lav forsinkelse af trafik samt at de transmitterede data skal nå frem til flere mod-

tagere. Eftersom radiotransmissioner kan høres af flere modtagere samtidigt er

den mest effektive metode for udbydelse af sådanne services at benytte trådløs

multicast. En enkelt strøm af data kan sendes samtidigt til adskillige medlem-

mer af en multicast-gruppe gennem en delt downlink kanal. På denne måde kan

brugen af båndbredde reduceres betydeligt samtidig med at de begrænsede ra-

dioressourcer kan udnyttes mere effektivt. På den anden side oplever de enkelte

modtagere forskellige kanalforhold hvilket stiller udfordringer til designet af radio

resource management (RRM) algoritmer for multicast-kanaler. I dette PhD projekt

er gennemført et omfattende RRM studie hvor analytiske og simuleringsbaserede

fremgangsmåder danner grundlag for a studere afvejningen mellem spektral effek-

tivitet og pålidelighed i trådløse multicast-kanaler.

Initierende er en ydelsesparameter blevet defineret til at beskrive forholdet

mellem spektral effektivitet og Quality of Service (QoS) som brugeren oplever

den. For at maksimere denne parameter i en OFDM-baseret multicast kanal intro-
ix
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duceres en simpel modulationsrate adapteringsteknik. En simplificering af ydelses-

parameteren er blevet indført for at mindske dens følsomhed overfor egne in-

terne parametre. Efterfølgende er en mere sofistikeret modulationsrate adapter-

ingsteknik blevet introduceret der lemper kravene til den øjeblikkelige Bit Error

Ratio (BER) givet at den gennemsnitlige BER er inden for kravene. Ved brug af

simulering er den foreslåede algoritme blevet evalueret i forhold til andre link-

adapteringsteknikker. Målt på spektral effektivitet viser den foreslåede algoritme

en signifikant fordel under de benyttede QoS krav.

En analytisk model er blevet opstillet for at fastlægge en øvre grænse for den

mulige ydelse af multicast link-adaptering. Optimeringsproblemet er blevet om-

formuleret som et afgrænset optimeringsproblem der håndterer kombineret adapter-

ing af sendestyrke og modulationsrate under antagelse af en flat- og block-fading

Rayleigh kanal i et single-carriersystem. Baseret på den analytiske model er udledt

optimale og suboptimale adapteringsmetoder i forskellige dimensioner (sendestyrke

og moduleringsrate) samt tilhørende værdier for den opnåelige spektrale effek-

tivitet. Fra de analytiske resultater er også blevet udledt kriterier for at foretage et

skifte fra en unicast kanal til en multicast kanal.

De udførte studier viser at den, af en modtager, værst oplevede kanaltilstand

forringer den overordnede ydelse af multicast systemet. Denne forringelse forøges

når størrelsen af multicast-gruppen stiger. Automatisk Repeat reQuest (ARQ) kan

benyttes til a forbedre den overordnede spektrale effektivitet under dårlige kanal-

forhold, men med multicast kan dette give anledning til skaleringsproblemer. I

denne afhandling introduceres en cross-layer metode der muliggør kombineret op-

timering af Adaptive Modulation og Coding (AMC) og ARQ hvor Coding-teknik
Aalborg Universitet
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benyttes på pakkeniveau for a løse skaleringsproblemerne under realistiske an-

tagelser om gruppestørrelser.

Denne afhandling præsenterer hvordan RRM-teknikker kan anvendes til a

forbedre den spektrale effektivitet under multicast med pålidelighedskrav/QoS

krav. Det er vist hvordan en signifikant forbedring i spektral effektivitet kan opnås

ved at tillade midlertidige brud på pålidelighedkravene uden at det har betydning

for den gennemsnitlige pålidelighed på lang sigt. Under antagelse af en trinløs

indstilling af transmissionsraten kan rateadaptering alene, opnå lignende ydelse

som under kombineret transmissionsstyrke- og rateadaptering. Det er dog be-

vist hvordan sidstnævnte fremgangsmåde er bedre i realistiske tilfælde hvor kun

diskrete data rater er tilgængelige. Slutteligt skal fremhæves hvordan cross-layer

designet med den innovative multicast ARQ-teknik giver mulighed for at udnytte

afvejninger af spektral effektivitet og pålidelighed hvis en givet forsinkelse kan

tolereres.

Haibo Wang
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Chapter 1

Introduction

1.1 Motivation

At present, wireless multimedia applications like multi-party video conferences,

Video on Demand, or on-line mobile gaming are demanding high bandwidth while

at the same time posing real-time requirements on the communication infrastruc-

ture. On the other hand, a large part of the content in these applications are com-

mon information required by a group of users. Hence to allow multiple users to

share the same network resource (wired network resource or radio resource) via

Multicast/Broadcast is highly attractive in providing current and future wireless

multimedia services.

Broadcast and multicast are the two modes of point-to-multipoint (PTM)

communications. In Broadcast, the same content is delivered to all receivers within

the transmission range from the sender. Known examples are radio and TV ser-

vices, which are broadcasted over the air (either terrestrial or via satellite) and over

cable networks. In Multicast, on the other hand, each content are solely delivered

to users who have joined a particular multicast group. Normally, a multicast group

is a group of users interested in a certain kind of content, for example, sports,
1



2 Chapter 1. Introduction

news, cartoons. A multicast- enabled network ensures that the content is solely

distributed over those links that are serving receivers which belong to the corre-

sponding multicast group. In large scale networks like the Internet, the available

content to be delivered are so diversified and the content senders and intended

receivers are distributed so far apart that broadcast is nearly impossible. Hence

multicast is the main concern of this dissertation.

Basically, wireless multicast can be done in either infrastructure-based mo-

bile networks or Ad-Hoc mobile networks. In infrastructure-based networks like

Global System for Mobile Communications (GSM) and Universal Mobile Telecom-

munications Systems (UMTS), Mobile Terminals (MTs) communicate with a base

station (BS) connecting to a backbone networks, which can help one MT to com-

municate with any other MT, fixed phone or Internet server anywhere. An ad-hoc

network is a self-organized network made up of a group of wireless mobile hosts

[1], where each host has to forward data for others due to the limited transmission

range of each mobile host. Such type of networks are usually designed for spe-

cific purpose, e.g, the battlefield networks, sensor networks. Whereas the wireless

multimedia content requiring multicast are usually provided by servers located in

infrastructure-based networks. That is, this dissertation only covers wireless mul-

ticast in infrastructure-based networks.

Wireless multicast has been drawing a lot of attention from both industry and

academia, i.e, UMTS Multimedia Broadcast and Multicast Service (MBMS) is a

framework designed by the Third Generation Partnership Project (3GPP) to extend

IP multicast to current 3G mobile networks [2, 3]. However, there are still many

open issues to solve in both the fixed backbone part and the radio cell part in order
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to fully adopt multicast in mobile networks. In the backbone side, the problems

posed by mobility include: (a) the movement of the multicast source, if the content

sender is also a MT; (b) the movement of the multicast group members, thus the

multicast routing topology (namely the multicast tree) needs to be reconfigured

quickly; (c) data transmission reliability during hand-over, to avoid packet drop

or enable lost data recovery; (d) signalling overhead due to frequently changed

multicast tree topology and membership. In the radio cell side, challenges are

mainly upon the radio resource management.

Radio Resource Management (RRM) is the system level control of radio

transmission characteristics in wireless communication systems [4]. RRM in-

cludes strategies and algorithms controlling transmit power, channel allocation,

handover criteria, modulation schemes, error-control-coding schemes [7]. The

objective is to utilize the limited radio spectrum resources and radio network in-

frastructure as efficiently as possible. RRM considers multi-user system capacity

issues, rather than just point-to-point link capacity.

Though the problems of multicast on the wired network part have been in-

vestigated extensively [7, 8, 9, 10, 11, 12, 13], the challenges on the air interface

part have not been discussed thoroughly. Multicast problems on the air interface

are as interesting as those in the wired network part, and the reason is two-fold:

• Multicasting in air interface is very challenging since the wireless transmis-

sion is highly error-prone due to different fading phenomena and user mobil-

ity. The radio resources from a transmitter serving its receivers have to be

limited to control the interferences to receivers served by other transmitters.

Even though the radio resource management approaches have been fully de-
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veloped for Unicast mobile receivers, they may not be the right solutions for

multicast mobile users.

• The wireless transmission is broadcasting in its nature, therefore the mul-

ticasting on the air interface can utilize such nature to save the scarce ra-

dio resource. In the infrastructure-based networks today such as UMTS, the

downlink radio resource (from base station to mobile terminals) is “scarce”

due to the limitation enforced by the interference problem. By multicasting

the same content in a common channel to multiple receivers rather than uni-

casting via multiple channels, not only radio resources are saved but also the

interferences among multiple channels are reduced.

Therefore, this dissertation focus on the wireless multicast performance optimiza-

tion on the air interface with RRM approaches.

1.2 Problem Delimitation

1.2.1 Optimization Scenario

This dissertation assumes a single cell mobile system as depicted in Fig. 1.1, where

a BS located in the center and N users randomly distributed in this hexagonal cell.

The N users are all members of a multicast group, and there is a common downlink

channel dedicated to the multicast service demand by these users. The multicast

signal is sent to different User Equipments (UEs) within the same transmission

burst but experiencing different channel conditions due to, e.g., their different dis-

tance to the BS and different surroundings. The users are moving only within the

cell hence no handover is considered. The channel conditions of every users are
Aalborg Universitet
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assumed as block-fading channels, which will not change during a transmission

burst.

Figure 1.1: General Scenario

The assumed multicast transmitter and receivers are illustrated in Fig. 1.2.

The transmitter at the BS is equipped with AMC, power control and ARQ func-

tionalities. The instantaneous channel state of each UE can be reported to the

BS with delay-free and error-free feedback channels, such report is usually called

Channel State Information (CSI) in wireless systems. This ideal assumption about

CSI is made to exclude the possible impacts of CSI error or delay in order to sim-

plify the performance analysis for downlink RRM algorithms. Besides, the ARQ

feedback from the receivers are also assumed error-free but with delay, as shown

in Fig. 1.2.

We investigate a single cell to exclude the handover problem, as well as the

impact of inter-cell interferences from neighbor cells to multicast receivers. How-

ever, to control the inter-cell interferences from the investigated multicast channel

to neighbor cells, the BS transmission power has to be limited. This limitation
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will be reflected in either average power constraint or the resulted average Signal-

to-Noise-Ratio (SNR) or Signal-to-Interference-and-Noise-Ratio (SINR) settings,

depending on the investigation methods applied in each chapter of optimization

proposals. The common scenario and system assumptions in Fig. 1.1 and Fig. 1.2
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& buffer
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Channel
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Channel
estimator 
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…

Output
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Figure 1.2: Multicast Transmitter and Receivers

will be narrowed down to address more specific issues in the following chapters.

Resource resource management (RRM) includes a wide range of radio re-

source allocation and adaptation approaches, namely access control, bandwidth

allocation and scheduling, link adaptation (LA) (including rate and power adap-

tation), ARQ, hand-over, etc. In the general scenario and assumptions of this

dissertation, the single cell and single group assumption means that access control

and handover are out of our scope. The rest RRM approaches will be reviewed in

the context of OFDM based next generation mobile systems in Chapter 2.

The ultimate target of network performance optimization is to achieve user

satisfaction by conveying applications successfully. QoS is a collective of service
Aalborg Universitet
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performances reflecting the degree of satisfaction of a user on a service [6], which

can be quantitatively evaluated with parameters like transmission data rate, delay,

jitter, error ratio (in bit error ratio or packet error ratio). Contemporary research

in multicast link adaptations mainly focuses on maximizing the system spectral

efficiency alone, but often neglect discussing the impact of their approaches upon

the user perceived QoS in different service categories. Our work, on the other

hand, optimizes the system performance from QoS perspective, specifically for

realtime multimedia services.

Considering the most-used QoS metrics for a multicast video-streaming ser-

vice in a mobile network, data rate and error ratio are largely effected by the air

interface, while the delay and jitter are impacted by many factors from physical

layer, network layer up to application layer. For data rate and error ratio, com-

paring to the scarce of radio resource and error-prone feature of radio network,

the wired backbone networks, often based on optical transmission facilities, are

bandwidth-sufficient and can provide nearly errorless transmission. Delay and jit-

ter, however, could happen anywhere in the wired networks due to the bursty na-

ture of data traffics, and need to be controlled with end-to-end approaches. There-

fore, our optimization mainly concerns average data rate and error ratio per user

in the radio cell. One may argue that link level ARQ on the air interface also intro-

duces delay for retransmissions, but if the error ratio in the wireless transmission

is effectively controlled, the probability that retransmission is required will be too

small to be the main cause of user perceived delay and jitter.
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1.2.2 Problem Statement

The problems of multicast optimization in a single cell system are mainly caused

by two factors, the diversity of channel conditions among all group members, and

the time-varying nature of the worst link.

1.2.2.1 Channel Diversity of Users

In a cell, different MTs experience different channel conditions. When each of

them can be assigned a dedicated channel as in uncash case, the BS can allo-

cate/schedule radio resources like time-slots, carrier frequencies or antennas for

the user who has the best channel condition at the moment, and the radio resource

can be adapted to be optimal for this user’s channel condition. This is called

multi-user diversity. Whereas in multicast, the same content to different users with

different channel conditions has to be transmitted in the common channel simulta-

neously, hence such benefit of diversity-based scheduling is lost. In this situation,

it is impossible to achieve the optimal radio resource allocation or adaptation for

each group member at the same time, thus the optimization effort has to be com-

promised for the benefit of the whole group. Without scheduling and handover

options, multicast RRM reduces to mainly Link Adaptation (LA) approaches, e.g.

Adaptive Modulation and Coding (AMC), power control, Automatic Repeat re-

quest (ARQ), etc.

In a system with AMC, the modulation and coding formats are changed to

match the current received signal quality, i.e, the users with high SNR or SINR

are typically assigned higher-order modulations and high coding rates (e.g., 64-

Quadrature Amplitude Modulation (64-QAM) with rate-3/4 convolutional cod-
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ing), whereas the users with low SNR or SINR are assigned low modulation-order

and/or low code rate (e.g., Quadrature Phase-Shift Keying (QPSK) and 1/2 con-

volutional coding). With power control, the power of the transmitted signal is

adjusted to meet a target signal quality at the receiver [14]. ARQ is an error

control method for data transmission, where the transmitter will know whether

a packet has been received correctly by getting acknowledgment messages from

the receiver, or timeouts. If a packet or frame is known to be lost, the transmitter

with ARQ function usually re-transmits the frame/packet. More details about link

adaptation methods will be described in chapter 2.

1.2.2.2 Time-varying of the Worst Link

If the same QoS standard (i.e, BER or PER) had to be achieved for all group

members, the worst link condition among users will limit the spectral efficiency

of the whole group. Intuitively multicast LA can be adapted to the worst link in

the group during a transmission burst. However, the wireless link conditions are

highly time-varying due to user mobility and channel fading phenomena, and each

receiver could be in poor channel conditions at some time. The larger the group,

the higher will be the probability that one or several users are in very bad link

conditions. Hence the LA strategy for the worst link may keep the data rate low

for large multicast group size [9].

1.2.3 Objectives and Scope of the Work

To this end, the focus of this PhD project is to optimize radio resources manage-

ment approaches in providing B3G/4G multicast services on the air interface. The
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challenges within this optimization work include

• Efficient use of radio resources for multi-cast traffic:

New power and AMC schemes need to be proposed as existing Uncash-

oriented link adaptation schemes cannot be suitable for multicast services. As

analyzed in the problem statement, existing uncash power control and AMC

schemes cannot match the different channel conditions of group members si-

multaneously. Hence multicast group-based performance metric need to be

defined and power and AMC need to be designed to optimize such metric.

• QoS Provisioning/Reliable multi-cast schemes

It is a challenge how to provide QoS for multiple users in the same group

under different channel conditions. For the concerned QoS metric, to im-

prove average data rate per user matches the RRM goal to maximize the sys-

tem performance in terms of average spectral efficiency, bits/s/Hz; while the

BER/PER are posing reliability requirements to the wireless system. In wire-

less systems there exists a tradeoff between spectral efficiency and reliability.

I.e., under a given signal quality, transmission with higher modulation-order

and coding rate will result in higher data rate but with more errors than the

transmission with low modulation-order and coding rate. Hence the former

achieves better spectral efficiency but less reliability, while the latter achieves

better reliability with less spectral efficiency, roughly speaking. In multicast,

since the reliability will be limited by the worst channel condition, the trade-

off between reliability and spectral efficiency will be even more significant.

• Switch between Point-to-Point (PTP) and Point-to-Multipoint (PTM)

The switch between PTP and PTM communication modes in order to opti-
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mize spectral efficiency may depend on the number of multicast group mem-

bers and their distance to BS. I.e, when the group size is small and the channel

conditions of the users are highly diversified, it is arguable whether to adopt

multicast with a common channel or uncash with multiple dedicated chan-

nels.

• Diversity approaches to enhance Multicast efficiency or reliability

Transmit or receive diversity techniques can enhance the spectral efficiency

and/or the reliability in wireless fading channels, such as time domain diver-

sity like Automatic Retransmission request (ARQ), spatial domain diversity

like Multiple Input Multiple Output (MIMO). It is an open issue how to uti-

lize these diversities for multicast. E.g, ARQ schemes is usually considered

non-scalable if the number of receivers is large [2]. If ARQ is going to be

employed in multicast, the scalability problem has to be solved in the first

place.

As the scenario description and problem formulation have stated, scheduling and

handover are out of the scope of this dissertation. New optimization schemes are

proposed and evaluated with both simulation and analytical approaches.

1.3 Summary of the Contributions

The contributions in multicast RRM in mobile cellular systems are:

Utility-based adaptive modulation strategies A utility metric named Reward-

ing function is build to balance the system multicast performance and the

user perceived Quality of Service (QoS). A simple multicast modulation rate
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adaptation scheme is proposed to maximize such metric in an OFDMA sin-

gle cell setting. Then the metric is simplified to reduce its sensitivity to the

metric parameters, and a more sophisticated modulation rate adaptation algo-

rithm with history-based adaptive BER threshold is proposed and evaluated.

By using this algorithm the multicast performance of the user group is signif-

icantly improved compared to other link adaptation strategies.

Optimal and sub-optimal joint power and rate adaptation solutions To reveal

the performance upper-boundary of link adaptation approaches in general, an

analytical model is built. The focus of this analytical model is the joint power

and rate adaptations, hence the optimization problem was simplified to a con-

straint optimization problem. The advantages and disadvantages of adapta-

tion approaches along different dimensions (power and modulation rate) are

discussed based on this analytical model. The criteria of switching from un-

cash channel mode to multicast channel mode is also discussed according to

the analytical results.

Cross-layer design model An innovative solution where AMC and ARQ schemes

are jointly designed within a cross-layer framework. Packet-combining schemes

are proposed using packet level ’XOR’ operations to reduce the retransmis-

sion times, so that the scalability problem of multicast ARQs can be solved.

An average-PER-based (average over instantaneous group PERs) rate adap-

tation algorithm is developed to exploit more spectral efficiency gain given

ARQ exists. The numerical results shows that the joint design of the average-

PER-based rate adaptation and the optimal packet-combining ARQ achieve

the best spectral efficiency in the selected evaluation scenario, and success-
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fully keep the residual PER constraint at the same time. The results also

reveal that the gain of cross-layer design over non-cross-layer design with the

same rate adaptation strategy is stable under different ARQ schemes.

These contributions have been presented in the following publications.

• H. Wang, D. Prasad, X. Zhou, J. M. Llorente, F. Delawarde, G. Coget, P.

Eggers and H. P. Schwefel, “Improved Channel Allocation and RLC block

scheduling for Downlink traffic in GPRS,” in Proc. IEEE 61st Semiannual Ve-

hicular Technology Conference (VTC’05 Spring), Stockholm, Sweden, May

2005.

• H. Wang, D. Prasad, O. Teyeb and H. P. Schwefel, “Performance Enhance-

ments of UMTS networks using end-to-end QoS provisioning,” in Proc. In-

ternational Wireless Summit(IWS’05), Aalborg, Denmark, Sept. 2005.

• H. Wang, H. P. Schwefel and T. T. Nielsen, “Adaptive Modulation for a

Downlink Multicast Channel in OFDMA systems,” in Proc. IEEE Wireless

and Networking Conference (WCNC’07), HongKong, China, Mar. 2007.

• H. Wang, H. P. Schwefel and T. S. Toftegaard, “History-based Adaptive Mod-

ulation for a Downlink Multicast Channel in OFDMA systems,” in Proc.

IEEE Wireless and Networking Conference (WCNC’08), Las Vegas, USA,

Mar. 2008.

• H. Wang, H. P. Schwefel and T. S. Toftegaard, “The Optimal Joint Power and

Rate Adaptation for Mobile Multicast: A Theoretical Approach,” in Proc.

IEEE Sarnoff Symposium, Princeton, USA, Mar. 2008.
Haibo Wang



14 Chapter 1. Introduction

• H. Wang, H. P. Schwefel and T. S. Toftegaard, “Mobile Multicast: the Opti-

mal Power and Rate Adaptations in a Unified View,” in preparation.

• H. Wang, H. P. Schwefel and T. S. Toftegaard, “A Cross-layer Design for

Mobile Multicast with Packet-Combining ARQ,” in preparation.

1.4 Organization of Thesis

The thesis is organized as follows:

Chapter 2 introduces the background knowledge related to our multicast RRM

problems, from wireless channel features to available RRM options in the

chosen multicast scenario.

Chapter 3 investigates the data rate adaptation problem in an OFDMA system.

The studied OFDMA system model and simulator are first described, and

then the proposed optimization metric as well as rate adaptation strategies are

explained, finally the simulation results are presented and discussed.

Chapter 4 analyzes the theoretical optimal performance and corresponding power

and rate adaptation solutions. It starts with formulating the problem into a

constrained optimization problem to maximize the per user spectral efficiency

under average power and instantaneous BER constraints. Then the problem

is solved with Lagrange methods and the results are analyzed with differ-

ent parameter settings. It is revealed that the constant power and continuous

rate adaptation can perform nearly as good as the optimal joint power and

rate adaptation scheme, but much more simple than the latter; whereas when

the available data rates are discrete, the performance of the optimal power
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scheme outperforms the constant power scheme significantly. Another result

in this chapter is that it is always more efficient to switch to multicast mode

whenever there are more than one user requiring the same service, under in-

dependent and identical-distributed (i.i.d) channels.

Chapter 5 presents a framework to apply cross-layer design method in multicast

RRM. Both the AMC scheme and ARQ are optimized to maximize the overall

spectral efficiency. The performance is derived with an analytical model in

combination with Monte-Carlo method. The scalability problem of multicast

ARQ is solved with packet combining for different group sizes.

Chapter 6 concludes the dissertation and proposes guidelines for future work.

Haibo Wang



Bibliography

[1] T. Imielinski and H. F. Korth, Mobile Computing, Kluwer Academic Publish-

ers, 1996.

[2] 3GPP TS 23.246, “Multimedia Broadcast/Multicast Service; Architecture and

Functional Description Networks (PDN)”.

[3] 3GPP TR 23.846 6.1.0, “Multimedia Broadcast/Multicast Service (MBMS);

Architecture and functional description”, release 6, Dec. 2002.

[4] J. Zander, S-L Kim, M. Almgren and O. Queseth, Radio Resource Manage-

ment for Wireless Networks, Artech House Publishers, 2001.

[5] G. L. Stüber, Principles of Mobile Communication, 2nd ed., Kluwer Academic

Publishers, 2001.

[6] ITU-D SG 2 and ITC, Teletraffic Engineering Handbook,

http://www.tele.dtu.dk/teletraffic/handbook/telehook.pdf

[7] T. G. Harrison, C. L. Williamson, W. L. Mackrell and R. B. Bunt, “Mo-

bile multicast(MoM) protocol: multicast support for mobile hosts,” in Proc.

16



BIBLIOGRAPHY 17

ACM/IEEE International Conference on Mobile Computing and Networking,

pp. 151-160, Budapest, Hungary, Sept. 1997.

[8] C. R. Lin and C. J. Chung, “Mobile reliable multicast support in IP networks,”

in Proc. IEEE ICC 2000, vol. 3, pp. 1421-1425, New Orleans, USA, Jun. 2000.

[9] W. Jia, W. Zhou and J. Kaiser, “Efficient algorithm for mobile multicast using

anycast group,” in IEE Proc. Commum., vol. 148, no. 1, pp. 14-18, Feb. 2001.

[10] M. Hauge and Ø. Kure, “Multicast in 3G Networks: Employment of Existing

IP Multicast Protocols in UMTS,” IEEE WoWMoM’02, Atlanta, USA, Sept.

2002.

[11] G. Leoleis, L. Dimopoulou, V. Nikas and I. S. Venieris, “Mobility Manage-

ment for Multicast Sessions in a UMTS-IP Converged Environment,” IEEE

ISCC’04, Alexandria, Egypt, Jun. 2004.

[12] R. Rümmler, Y. W. Chung and A. H. Aghvami, “Modeling and Analysis of

an Efficient Multicast Mechanism for UMTS,” IEEE Trans. Vehicular Tech.,

vol. 54, no. 1, pp. 350-365, Jan. 2005.

[13] A. Garyfalos, K. C. Almeroth and K. Sanzgiri, “Deployment Complexity

Versus Performance Efficiency in Mobile Multicast,” International Workshop

on Broadband Wireless Multimedia (BroadWiM), San Jose, USA, Oct. 2004.

[14] K. L. Baum, T. A. Kostas, P. J. Sartori and B. K. Classon, “Performance

Characteristics of Cellular Systems With Different Link Adaptation Strate-

gies,” IEEE Trans. Vehicular Tech., vol. 52, no. 6, pp. 1497-1507, Nov. 2003.
Haibo Wang



18 BIBLIOGRAPHY

[15] N, Jindal, Z.Q.Luo, “Capacity Limits of Multiple Antenna Multicast,” Inter-

national Symposium on Information Theory (ISIT), Seattle, USA, July 2006.

[16] S. Sesia, G. Caire, and G. Vivier, “On the Scalability of H-ARQ Systems in

Wireless Multicast,” in Proc. IEEE ISIT’04, pp. 321-321, 2004.

Aalborg Universitet



Chapter 2

Background

In this section we will briefly introduce the features of wireless channels and Or-

thogonal Frequency Division Multiplexing (OFDM) techniques, and then analyze

their impacts to wireless multicast transmission scenarios. Afterward, the avail-

able RRM approaches in such scenarios will be discussed. All the optimizations

in the following chapters will be developed based on these scenario assumptions

and RRM approaches.

2.1 Wireless Channel Features

While the radio signal propagates from the transmitter antenna to the receiver

antenna, it will experience energy loss, delay, phase and frequency shift due to

many effects, e.g., free-space loss, absorption, obstruction, diffraction, reflection,

etc. In general, all these wireless channel propagation effects can be categorized

as path-loss, shadowing and multi-path fading [7], as depicted in Fig. 2.1.
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20 Chapter 2. Background

Figure 2.1: Wireless Channel Propagation Phenomena

2.1.1 Path-loss and Shadowing

Path-loss is the direct energy loss while the radio signal propagates from the trans-

mitter to the receiver. It is mainly caused by: free-space loss, as the radio wave

front expands in the shape of an ever-increasing sphere; absorption, since the sig-

nal usually propagates through non-transparent media rather than free space; and

diffraction, since part of the radiowave front may be obstructed by opaque obsta-

cles. Path-loss is usually expressed in the following form,

L = 10 · n · log10(d) + C (2.1)

where L is the path-loss in decibels (dB), n is the path-loss exponent, normally in

the range of 2 to 4 (2 is for free space propagation, 4 is for relatively serious loss

environments), d is the distance between the transmitter and the receiver, and C is

a constant which depends on the carrier frequency, environment type (e.g., rural,

urban, suburban, indoor), and other system loss factors. In wireless channel mod-

elling, this path-loss expression is in a deterministic form once the environment

type is specified.

Shadowing is a large scale fading phenomenon caused by obstacles like hills,
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buildings, trees, in the main signal path which results in attenuation of the signal.

The signal attenuation level of shadowing is decided by the carrier frequency, the

size and shape of obstacles. Unlike path-loss, shadowing is usually modelled with

a random variable following Log-normal distribution (in linear unit, or a Normal

distribution in log scale) [7].

2.1.2 Multipath Fading

Multipath fading is introduced by the signal reflection by the objects between the

transmitter and the receiver, which can be anything on the signal propagation path,

from buildings, trees, vehicles, hills to human beings. Thus, multiple reflections

from the same transmission source will arrive at the receiver with different sig-

nal strength and phases. The received signal is the constructive or destructive

combination of these random reflected signals. If a direct transmission path ex-

ists between the transmitter and the receiver, called Line-Of-Sight (LOS) path, the

channel can be modelled with a Rice distribution; if there is no LOS path, the

channel can be modelled with a Rayleigh distribution [7], [3].

Delay spread is an important effect of multipath. If we use impulse response

to represent the multipath channel model, delay spread is defined as the time dif-

ference between the first and the last received impulses. Thus,

Td := max
i,j

|τi(t) − τj(t)| (2.2)

The delay spread together with the transmitted signal bandwidth, Bs, decide whether

the channel is a frequency flat fading channel or a frequency-selective fading chan-

nel.
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The channel transfer function is the Fourier transform of the impulse re-

sponse, in which the amplitude or power spectrum changes as frequency varies

[3], as depicted in Fig. 2.2(b) and 2.2(a). How quickly the channel changes in

frequency can be measured with frequency coherence, namely coherence band-

width, Bc. This parameter is defined as the smallest value of frequency difference

∆f for which the frequency correlation function equals some suitable correlation

coefficient, e.g. 0.5 or 0.9.

Bc ∝
1

Td
(2.3)

Coherence bandwidth is inversely proportional to delay spread, and the exact map-

ping between them depends on the correlation coefficient. Therefore, if Bs � Bc

as illustrated in Fig. 2.2(a), this channel is a frequency selective channel, whereas

if Bs � Bc as illustrated in Fig. 2.2(b), this channel is a frequency flat fading

channel.

2.1.3 Channel Fading versus Modulation

Pathloss and shadowing are semi-static phenomena, and the signal attenuation due

to them can be compensated with careful cellular network planning and power

control. But the effect of Multipath fading is much more difficult to cope with.

For wide-band wireless communication systems, multipath fading causes

frequency-selective fading, because the coherence bandwidth of the channel is

always smaller than the whole transmission bandwidth. For Single Carrier Mod-

ulation (SCM) transmission, each baseband data symbol is modulated over the

whole transmission bandwidth, and the symbol duration is very short since the

data rate is high. Complex Equalizers at the receiver are needed to compensate the
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(a) Spectral Density of A Frequency-Selective Fading Channel

(b) Spectral Density of A Flat-Fading Channel

frequency-selective channel transfer function in wide-band SCM systems. If the

frequency-selective fading cannot be compensated, this effect results in the time

domain distortion of each symbol on baseband, and leads to Inter-Symbol inter-

ference (ISI). Symbol errors caused by ISI are also hard to be corrected by error

control coding, since these errors are correlated. It is difficult to combat frequency-

selective fading with Equalizers because the multipath fading characteristics are

random, varying fast and unpredictable.

In Multiple Carrier Modulation (MCM) transmission, the whole bandwidth

is divided into multiple sub-carriers and multiple baseband symbols are modulated

on these sub-carriers on parallel. If the spacing between neighbor sub-carriers is

larger than the coherence bandwidth, the fading level on each subcarrier is usually
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flat and the ISI is eliminated. However, the fading level difference still exists

among different sub-carriers, but it can be exploited by link adaptation schemes,

namely, frequency diversity. If the signal quality on one subcarrier is too poor and

the symbol on this subcarrier cannot be correctly received, it will not effect other

symbols. Besides, such symbol errors are independent and are relatively easy to

be corrected by error control coding schemes such as convolutional codes.

In summary, to combat multipath fading in wide-band wireless communica-

tions, this is one important reason to introduce MCM transmission technique such

as OFDM.

2.2 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a multi-carrier modulation (MCM) technique as well as a multiplex-

ing technique, in which a data stream is split into several lower data-rate sub-

streams and they are used to modulate several sub-carriers in parallel. OFDM

was created in theory back in 1960s, though only did it become commercially

practical when the semi-conductor industry made Fast Fourier Transform (FFT)

chips cheap enough. Before OFDM became the main-stream technique for the

next generation wireless communications (e.g., in 3GPP Long Term Evolution

(LTE) and IEEE 802.16 standards group), it has already been used in Asymmet-

ric Digital Subscriber Line (ADSL), Digital Audio Broadcasting (DAB), Digital

Video Broadcasting - Terrestrial (DVB-T) and the 5 GHz-Band Wireless Local

Area Networks (WLAN) standard, namely IEEE 802.11a.

One of the main advantage of OFDM is its robustness to frequency selective

fading and narrow-band interference. Such kind of fading or interference may
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Frequency

8 Sub-carriers

Figure 2.2: OFDM with 8 Sub-Carriers

corrupt an entire SCM link, but it can only affect a small portion of sub-carriers of

a MCM link [1]. Due to this reason, a complex and expensive equalizer is needed

in SCM receivers to compensate the channel transfer function, while in a MCM

system like OFDM, no or only a very simple equalizer is needed.

OFDM is different comparing to FDM in its frequency sub-bands are over-

lapping to achieve the maximum spectrum efficiency, as shown in Fig. 2.2. By

carefully selecting symbol rate and via DFT/IDFT implementation, the inter-subcarrier

interference can be perfectly removed though the sub-carriers are actually over-

lapping, which is the so-called orthogonality. The main features of OFDM can be

concluded as follow:

• Robustness again frequency selective fading and narrow-band interference.

• Maximum spectral efficiency due to no guard bands and the sub-carrier over-

lapping.

• Orthogonality among sub-carriers.

• Eliminate the inter-symbol interference by inserting a cyclic prefix into each

symbol period.
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• Easy and cheap implementation with FFT/IFFT and no or only simple chan-

nel equalizer needed.

• Sensitive to time-frequency synchronization to keep the orthogonality, such

as sub-carrier synchronization.

• Sensitive to non-linear amplification.

The strict mathematical deduction and more detailed explanation of these listed

OFDM features can be found in [1], [7] and [3].
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Figure 2.3: An OFDM Transceiver Diagram

A complete OFDM transceiver system diagram is depicted in Fig. 2.3. On
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the transmitter side, binary data is input and Forward Error Correction (FEC) cod-

ing and interleaving are added to protect the data. Interleaving can re-distribute

burst errors introduced by wireless transmission as random errors among original

data, which are easier for FEC decoder to correct than burst errors. Afterwards, a

block of coded bits are assigned to different OFDM sub-carriers (1 bit maps to 1

symbol for Binary Phase Shift Keying (BPSK), 2 bits per symbol for QPSK, 4 for

16 16QAM, etc.) and modulated to different constellation points respectively. At

this stage, the data is mapped into a serial stream of complex numbers. Then pilot

symbols are inserted. The serial symbols are converted to parallel form and the

Inverse Fast Fourier Transform (IFFT) operation is applied. A Cyclic prefix [1] is

inserted in every data symbol according to the system specification, and the data

is now in serial form (time domain) again . So far the baseband OFDM modula-

tion has been completed, and a Digital to Analogue Converter (DAC) is applied

to transform the digital symbols to analog signal. Finally Radio Frequency (RF)

modulation is performed to up-convert the signals onto the carrier frequency.

After the transmitted OFDM signal has gone through the wireless channel,

the signal is captured by the receiver antenna and downconverted to baseband,

and further converted to digital domain with Analog-to-Digital Converter (ADC).

FFT is then performed to demodulate the OFDM signal, and the parallel symbols

are mapped back to serial. At this point, channel estimation can be fulfilled with

the demodulated pilots. The estimations helps detecting the data from the signal

constellation points. At the end, FEC decoding and de-interleaving are performed

to recover the originally bit stream.
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2.2.1 OFDMA

A fraction of OFDM sub-carriers can be grouped to make up a sub-channel, and

different sub-channels can be allocated to different users to construct the multiple

access technique, namely OFDMA. At the beginning it was proposed for Cable

Television (CATV) systems [5], and later for wireless communications [6].

The simplest OFDMA channel resource allocation scheme is to assign sub-

channels to users in a static way as depicted in Fig. 2.4. In this scheme, the sub-

channel assignment stays the same for the user during a whole connection, or

at least for a considerable time period, i.e., during a service session. However,
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Figure 2.4: OFDMA with Static FDMA Scheme

such a static Frequency Division Multiple Access (FDMA) scheme is not efficient

when a specific user is in deep fading channel. Actually sub-channels and Time-

Slots (TS) can both be dynamically allocated to users according to their channel

conditions and data rate requirements as shown in Fig. 2.5. Theoretically it has

been proved that if the instantaneous channel condition on each subcarrier of each

user is available, optimal allocation for subcarrier, time-slot and power in each
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subcarrier will be possible to fully utilize user-diversity and to achieve the best

system performance (i.e., maximum cell throughput, low BER) [8].
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Figure 2.5: OFDMA with Fully Dynamic Frequency-Time Block Allocation

There are also two methods to construct sub-channels, the adjacent mode

and the distributed mode [7], depending on whether the sub-carriers in a sub-

channel are adjacent to each other or distributed among the whole transmission

bandwidth with a certain frequency interval [9]. As illustrated in Fig. 2.6, the

sub-carriers of a sub-channel in adjacent mode are contiguous, and the channel

conditions of them may be similar. In this case one pilot sub-carrier can be used

to detect the channel condition of the whole sub-channel, which may reduce the

channel information feedback needed by AMC in the transmitter side. Also one

modulation and coding combination can be applied to one sub-channel. Both of

these advantages reduce the implementation complexity of sub-channel allocation

and AMC. However, channel fading will also degrade the throughput of an adja-

cent sub-channel seriously, since one fading ditch in the channel transfer function

curve (see Fig. 2.2(a)) can effect on several sub-carriers. In the distributed mode,
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Figure 2.6: OFDMA Sub-Channel Modes

the sub-carriers are much further apart to each other, so they are more independent

and more robust against frequency-selective fading, especially under harsh chan-

nel environment (i.e., when users are with high mobility). This is called channel

diversity gain. On the other hand, it would be complex to make channel allocation

and hard to implement AMC in distributed mode.

2.2.2 OFDMA-Based Standards Groups

There are two main next generation mobile OFDMA standards groups, the IEEE

802.16e (or the so-called WiMAX) and the 3GPP UMTS-LTE. They basically

selected very similar specifications on the physical (PHY) layer, e.g., both of them

support scalable channel bandwidth, AMC, MIMO techniques. Their difference
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is that WiMAX is a group trying to include different stands covering from fixed

wireless Internet access network to cellular-like mobile networks, while 3GPP

LTE is a evolution from the pure mobile cellular system, UMTS.

2.2.2.1 IEEE 802.16 Standards Group

The IEEE 802.16 standards group is also called Worldwide Inter-operability for

Microwave Access (WiMAX). This standardization group is proposed to provide

wireless data in a variety of ways, from fixed point-to-point links to full mobile

cellular type access. In this group, the amendment 802.16e-2005 (often referred to

in shortened form as 802.16e) is called Mobile WiMAX since it covers full mobility

support and promises to provide high data rate service anytime, anywhere [10].

Mobile WiMAX allows for scalable channel bandwidth from 1.25 MHz

to 20 MHz in both licensed and unlicensed frequency bands, namely scalable

OFDMA [11]. The scalable channel bandwidth is implemented through variable

sub-channelization structure and FFT size to enables optimum performance in dif-

ferent scenarios limited by radio band allocation policy, available bandwidth, tar-

get user mobility, etc. Scalable OFDMA supports FFT size varying from 128 to

2048 points, and operates on 2 ∼ 6GHz with fixed sub-carrier spacing around

11kHz. The main OFDM parameters in 802.16 standards group are listed in table

2.1.
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Parameter Mobile WiMAX Scalable
OFDMA-PHY

FFT size 128 512 1024 2048
Number of used data subcarriers 72 360 720 1440
Number of pilot subcarriers 12 60 120 240
Number of null subcarriers 44 92 184 368
Cyclic prefix (Tg/Tb) 1/32, 1/16, 1/8, 1/4
Channel bandwidth (MHz) 1.25 5 10 20
Subcarrier frequency spacing (kHz) 10.94
Useful symbol time (µs) 91.4
Guard time assuming 12.5 % (µs) 11.4
OFDM symbol duration (µs) 102.9
Number of OFDM symbol in 20ms frame (µs) 198.0

Table 2.1: OFDM Parameters in Mobile WiMAX [11]

2.2.2.2 UMTS-LTE

The 3GPP working groups have developed their radio access network standards

in Universal Terrestrial Radio Access Network (UTRAN) from Wideband Code

Division Multiple Access (WCDMA) to High-Speed Downlink Packet Access

(HSDPA) and High-Speed Uplink Packet Access (HSUPA), all based on single

carrier CDMA technique. OFDMA has been proposed for the long term evolution

of UTRAN (called Evolved UTRAN (EUTRAN)) as downlink multiple access

technique, while Single-Carrier FDMA (SC-FDMA) will be adopted for uplink

[12, 13]. LTE feasibility study has been finalized on September 2006 , after which

actual specification development would be fulfilled.

The DL OFDMA in LTE also supports scalable bandwidth from 1.25 to

20MHz, with fixed sub-carrier spacing 15kHz. LTE fully exploits advanced tech-

niques like Layer 1 Hybrid Automatic Repeat request (L1 HARQ), frequency do-

main scheduling, MIMO antenna technologies and AMC [12, 13]. Comparing to
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UTRAN, EUTRAN has more functionalities on Node B and shortens the Trans-

mission Time Interval (TTI) even to 0.5 ms (TTI is 2 ms in HSDPA). With the

help of such short TTI and fast L1 ARQ, the round-trip delay can be reduced to 5

ms. More detailed LTE specifications can be found in the 3GPP website.

2.3 Radio Resource Management (RRM)

As introduced in the first chapter, RRM approaches are investigated for wireless

multicast in this PhD project. This section discusses the available degrees of free-

dom in multicast scenarios as well as some OFDM specific issues.

The dominant cost for deploying a wireless network is normally the base sta-

tions (real estate costs, planning, maintenance, distribution network, energy, etc),

and sometimes frequency license fees is also highly expensive. Therefor the typi-

cal objective of RRM is to maximize the system spectral efficiency in bit/s/Hz (or

Erlang/MHz) per base station, with a certain level of QoS constraints. The con-

straints involve BER, packet loss rate or outage rate (as well as other metrics like

delay, jitter, etc) due to noise, attenuation caused by long distances, fading caused

by shadowing and multipath fading, co-channel interference and other forms of

distortion. The QoS is also affected by blocking due to admission control, schedul-

ing starvation or unable to the guarantee quality of service class that is requested

by the users.

In general, RRM optimization problem can be formulated as either min-

imizing a cost metric (e.g. transmit power) or maximizing a reward metric (e.g.

throughput) under system hardware constraints, service specific QoS requirements

and the overall system state (e.g, the channel fading states of all the receivers
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within a cell). In this thesis, our target is to maximize performance metric under

QoS constraints.

Though RRM covers a wide range of approaches, in the scenario delimited

in chapter 1 we are mainly interested in the link adaptation methods, namely AMC,

power control and ARQ for our multicast problems. Admission control, handover

and scheduling among different users/services are out of the scope of our work.

2.3.1 AMC and Power Adaptation

The term power control was frequently used to refer to the process of varying

transmitting power level in order to keep a stable SINR target for voice service

(with fixed transmission data rates) like in GSM and WCDMA, or in order to

suppress interferences. However in the context of performance optimization for

multimedia services, power is adjusted according to the channel condition rather to

provide high data rate. Hence the term ’power adaptation’ is employed instead of

’power control’ from now on. Varying modulation rate and coding rate, no matter

separately or jointly, change the transmitted data rate. So AMC (or just Adaptive

Modulation or Adaptive Coding alone) can also be called data rate adaptation.

AMC and power adaptation pro-actively adjusts the transmitting data rate

and power to adapt to the estimated channel conditions. If the estimated channel

conditions are accurate, theoretically they can exploit the channel capacity in every

transmission burst. The price is that the overhead in feedback channels to report

channel conditions could be large. It has been proved in [15] that the Shannon ca-

pacity of a flat-fading channel can either be achieved by varying both transmission

rate and power, or be achieved by varying the transmit power alone [16]. More-
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over, it has also been revealed in [15] that varying both power and rate leads to

a negligible capacity gain over varying the rate alone. Similar conclusions were

drawn for achievable data rates in [17, 18].

2.3.2 Water-Filling Principle

In this subsection we discuss the possible dynamic schemes specific in OFDM

for multicast radio channel. The available radio resources that can be manipu-

lated include transmit power, modulation and coding allocation schemes, subcar-

rier or subchannel allocation. The dynamic utilizing of resources can exploit the

frequency-selective nature of wireless channels due to Multipath fading. Usually

the sub-carrier spacing of OFDM systems is larger than the channel coherence

bandwidth, hence the attenuation within each sub-carrier is flat and the fading

level of different sub-carrier is independent to each other.

For a time interval smaller than the channel coherence time of a wide-band

wireless channel, the fading level on each sub-carrier stay constant, while the level

among different sub-carriers are identical independent distributed (i.i.d) due to the

frequency-selective nature of the channel. The optimal power allocation scheme

on OFDM sub-carriers to maximize the channel capacity is given by the "water-

filling" theorem [19] based on information theory, as illustrated in Fig. 2.7. This

theorem states, when the total transmit power is fixed, more power should be as-

signed to the frequency areas with less attenuation (better channel condition), until

the sum of assigned power and the reciprocal of channel gain per frequency is a
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Figure 2.7: Illustration of "Water-Filling" Solution

constant over the whole bandwidth. Such as:

S(f) +
1

G(f)
= constant (2.4)

where S(f) is the power function along frequency, G(f) is the channel gain func-

tion along frequency.

The water-filling solution is not directly implementable for two reasons.

First the OFDM sub-carriers are discrete rather than continuous as in the water-

filling solution; secondly, there is not a directly continuous mapping between

power and bits per second in practice. The feasible data rate are a discrete set

of numbers achieved by different combinations of modulation and error control

coding schemes. Besides, any practical modulation has a certain “gap” between

its achievable bits per second and the Shannon capacity. These issues will be dis-

cussed further in the following chapters.

The water-filling principle can be implemented in some discrete version of

it, in terms of bit- or power-loading algorithms. In the optimal form the number of
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bits transmitted per sub-carrier and the power assigned on each sub-carrier should

be jointly allocated. But either bit- or power-loading can be implemented alone to

achieve a certain sub-optimal performance for simplicity. Therefor, all these bit-

and/or power-loading algorithms are referred to as adaptive loading algorithms in

further discussion.

The joint power and rate allocation in water-filling form may apply not only

along frequency dimension, but also along the channel gain distribution and more

dimensions. How this form could be adopted in multicast channel is to be studied

in the rest of this thesis.

2.3.3 ARQ

ARQ schemes can be divided into the following categories :

• Plain ARQ

Well-know plain ARQ schemes include Stop-And-Wait (SAW), Go-Back-N

(GBN), and Selective Retransmission (SR), and more details can be found in

International Engineering Task Force (IETF) Request for Comments (RFC)

3366 and [23].

– SAW ARQ

In SAW ARQ, a sender sends one data packet, and then waits. The re-

ceiver sends an Acknowledgement (ACK) once receiving a correct packet.

The sender will only send the next packet once it receives the ACK for

the first packet within a certain time. If the ACK has not come in time,

known as a timeout, the sender sends the first packet again. In SAW, the

fact that the sender needs to wait for every ACK wastes its transmission
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capacity during the waiting time.

– GBN ARQ

GBN is more efficient than SAW in that it allows the sender continue

sending a number of packets limited by a sliding window without receiv-

ing an ACK. The GBN ARQ receiver keeps tracking the received packet

sequence numbers, and if one packet is incorrect, it will reject the follow-

ing packets even if they are correct. The sender, after sending all packets

in its window, will have to go back to the last ACK and restart send-

ing from the first lost packet. In this protocol, some packets could have

been correctly accepted by the receiver but may be rejected only because

they follow an incorrect packet, and are to be resend, which also wastes

transmission capacity.

– SR ARQ

Unlike GBN, SR ARQ allows the receiver to accept packets until the

sender has emptied its window, and the sender needs only to resend the

lost packets identified by ACKs/NACKs. Hence SR ARQ is more effi-

cient than GBN.

• Hybrid-ARQ (HARQ)

Hybrid-ARQ combines ARQ and Forward-Error-Correction coding (FEC).

There exist three types of HARQ: Type I, Type II and Type III, where Type

III HARQ can be seen as a variation of Type II HARQ.

– Type I HARQ

In Type I HARQ, the original information and Error Detection (ED) par-

ity bits are further encoded by a FEC encoder (such as a Turbo coder)
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[35, 45] and sent to the receiver; if the receiver fails to decode this data

block correctly, the same data block will be send again as in a pure ARQ.

The receiver can either discard the first block or store it to combine with

the retransmitted block, which is called Chase Combining (CC) in UMTS

HSDPA [45]. Here FEC and ARQ are operated separately, or so-called

Layered FEC-ARQ [26].

– Type II HARQ and Type III HARQ

In Type II HARQ, multiple parity code blocks are created for the original

information, with Incremental Redundancy (IR)/reliability as the num-

ber of parity blocks increase. Only the original information and the least

parity blocks are sent in the first transmission, and more parity blocks

will only be sent as the receivers request [35, 45]. If each retransmis-

sion packet can be decoded independently, such HARQ is called Type III

HARQ.

The performance of each of these ARQ protocols in uncash channels has been

studied systematically. Plain ARQ (SAW and SR), Type I and Type II HARQ in

uncash mobile link was analyzed in [35]. It revealed that pure ARQ achieves the

best throughput efficiency under good channel condition, but degrades the most

as channel condition get worse; Type I HARQ performs better in poor channel

condition while lost efficiency in good channel; Type II HARQ with SR performs

the best in both cases. It is proved in [45] that IR (Type II HARQ) is slightly

more efficient in throughput than CC (Type I HARQ) in a very detailed HSDPA

simulation environment, but the difference is very small or even diminishes as the

link adaptation error decreases.
Haibo Wang



40 Chapter 2. Background

Also there are many existing works on the ARQ performance study for

multicast links. The performance of plain ARQ schemes have been investigated

in [31, 32, 33, 34], which confirmed that SAW is the most inefficient in terms of

throughput [33], and SR is more efficient than GBN [33, 34]. Multicast HARQ

schemes based on Reed-Solomon codes (namely Maximum Distance Separable

(MDS) code) are analyzed for satellite links in [36]. The authors of [37] fur-

ther utilized Generalized Minimum Distance (GMD) decoding for MDS, which

improved the throughput a bit but increased the decoding complexity and delay.

Three HARQ schemes based on packet level Reed-Solomon codes were designed

in [5] for UMTS downlink multicast channel, and the authors pointed out which

design is better would rather depend on the multicast channel error process in real-

ity (e.g, independent error model or burst error model). The authors of [6] further

proposed two more HARQ schemes as the extensions of scheme A2 and A3 in [5]

and achieved a certain improvement in throughput and mean Service Data Unit

delay, especially when the Multicast group size is large. However, the scalability

of multicast ARQ protocols remains a problem [2].

2.4 State-of-the-art

In this section we discuss how the link adaptation approaches introduced in Sec. 2.3

can be adopted in multi-user systems, as well as the related works.

2.4.1 OFDM link adaptation and multi-user diversity

LA assigns modulation, coding, transmit power, and/or other signal transmission

parameters according to the instantaneous channel condition, in order to increase
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the spectrum efficiency and reliability of wireless systems. The water-filling prin-

ciple introduced in Sec. 2.3.2 reveals, for an OFDM system with power con-

straint, the system spectral efficiency is maximized by transmitting with higher

data rate (higher modulation constellation and less coding protection) and more

power when the channel condition is good, while transmitting with lower date rate

and less power when the channel condition is bad.

Different users in a wireless system experience different and independent

channel attenuations and noise/intereferences, which can be exploited as multi-

user diversity. It is quite unlikely that a user is in deep fading on all the subcarriers,

or all users are in deep fading on the same subcarrier. Hence the time-subcarrier

can be dynamically assigned to different users according to their instantaneous

channel conditions on different subcarriers to improve the spectral efficiency, as

illustrated in Fig. 2.5, such dynamic approach is also called scheduling.

2.4.2 Related work with multiple unicast users

Based on water-filling principle and multi-user diversity, joint allocate/adapt sub-

carrier and data rate to multiple users was first proposed by Wong [8], target at

minimizing total transmitting power with data rate and BER constraints. Similar

dynamic allocation and adaptation work was done in [47], but the optimization

target is to maximize data rate with power and BER constraints. However, the

computational complexity of Wong’s algorithm [8] is very high, and several more

practical algorithms are proposed in [48].

Scheduling can maximize the system spectral efficiency, but it may also have

the users in bad channel conditions experiencing high delay and low data rate.
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Proportional Fair Scheduling (PFS) is designed to allowing all users a minimal

level of QoS by assigning each data flow a scheduling priority which is inversely

proportional to its anticipated resource consumption [50]. PFS can be tailored to

integrate different QoS classes and achieve a high average user satisfaction [50].

On the other hand, joint time-subcarrier scheduling with PFS in OFDM system is a

prohibitively complex problem. The authors of [51] derived the upper bounds for

optimal PFS with convex optimization, and proposed sub-optimal solutions with

much lower complexity comparing to the optimal one.

2.4.3 Related work with one multicast group

With one group of multicast users sharing a common downlink channel, schedul-

ing is not an option any longer and link adaptation and ARQ remains the main

dynamic adaptation approaches. An iterative optimization algorithm using link

adaptation was proposed to minimize the total error ratio of all users under power

and data constraints in OFDM [52]. In [53], based on a dominant SNR-based LA

scheme, the authors appropriately discarded some inefficient transmission modes

to convert the goodput-maximization problem to a concave optimization prob-

lem, and derive the optimal adaptation power and AMC modes correspondingly.

However, in this approach, only the goodput is considered but there is no error

constraints included.

2.5 Summary

This chapter presents the channel features and OFDM transmission technique re-

lated to our wireless cellular scenario, as well as available link adaptation tech-
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niques for the multicast channel. For the concerned wide-band wireless system,

multipath fading is the most difficult fading issue to cope with, and OFDM can

help to split the whole frequency-selective fading channel into a set of frequency-

flat fading channels over each subcarrier, where different LA (e.g., AMC, power

adaptation, ARQ) can be adopted to improve wireless multicast performance.
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Chapter 3

Rate Adaptation for Mobile Multicast

In this chapter we investigate the Adaptive Modulation (AM) strategies for Multi-

cast service in OFDMA systems. To maximize the average throughput for a group

of Multicast users, and keep as many as possible group members having accept-

able QoS during a service session, a Reward function is firstly defined to evaluate

this two-tuple optimization problem. Then a Local Reward strategy is designed

and evaluated together with other AM schemes with a self-developed simulation

tool. Based on the evaluation results, the evaluation metric is improved, and a

history-based BER threshold adaptation is proposed to exploit the throughput-

BER tradeoff further.

The chapter is organized as follows. Sec.3.1 explains the motivation. Sec. 3.2

presents the system model and assumptions. Sec. 3.3 describes our simulation

tool. Sec. 3.4 proposes the first Reward function, corresponding AM schemes and

numerical results, and Sec. 3.5 presents the second Reward function, correspond-

ing AM algorithms and results. Sec. 3.6 summarizes the whole chapter.
51
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3.1 Motivation

OFDM-based link adaptation techniques (e.g., power allocation, subcarrier alloca-

tion, adaptive modulation and coding) for uncash scenarios have been extensively

studied in [6], [7], [8]. AM has been proved as an effective approach to improve

the system performance if CSIs are provided. For uncash services, OFDM sub-

carriers can be allocated adaptively to different mobile users in downlink based on

their channel quality. This diversity option helps the subchannel of each user avoid

deep fading caused by multipath frequency-selective fading. By using Adaptive

Modulation, high spectral efficiency can be achieved by selecting the highest mod-

ulation rate with a given acceptable BER constraint [8]. However, in the multicast

case if all group members have to share the same downlink subchannel, deep fad-

ing subcarriers cannot be skipped by frequency scheduling. In this case whether

and how the per subcarrier AM can improve efficiency (such as throughput) while

keeping the BER acceptable is a problem.

A straight-forward strategy is to adapt modulation schemes always to the

worst instantaneous channel among receivers, which can guarantee the multicast

transmission reliability. However, due to the highly space-time varying nature of

mobile receivers, each receiver could be in poor channel conditions at some time.

Hence the adaptation strategy for worst case may keep the data rate low especially

when the multicast group size is large [9].
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3.2 System Model and Assumptions

In this section we describe our OFDMA system scenario, channel model and BER

approximation approach. Based on the general system model presented in chapter

1, the common downlink multicast channel is assumed as a OFDMA subchannel

occupying a portion of all the OFDM subcarriers, as shown in Fig. 3.1. The BS has

perfect knowledge of the instantaneous channel quality in terms of SNRs of each

subcarrier for each multicast group member within this multicast sub-channel,

noted as SNR(i, j), where i = 1...N is the index of multicast receivers, and j is

OFDMA Subcarriers

Multicast

Subchannel

Figure 3.1: An OFDMA Adjacent Sub-Channel for Multicast

the index of OFDM subcarriers within a multicast subchannel. The base station

has to allocate the appropriate modulation scheme to each OFDM subcarrier in

the multicast subchannel for each transmission burst. The modulation scheme can

be selected among BPSK, 4QAM, 16QAM, 64QAM, 256QAM, and "turn off",

meaning no bit will be loaded to this subcarrier. We denote these options with

KM , where M is the modulation mode, and KM ∈ (0, 1, 2, 4, 6, 8) represents the

number of bits per symbol on a subcarrier corresponding to this modulation mode.
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3.2.1 OFDMA

The investigated system refers to the 802.16e scalable OFDMA PHY layer but

not limited to it. The selected parameters for the OFDMA system in this work

are listed in Tab. 3.1. Adjacent channel mode is selected here (also as illustrated

in Fig. 3.1), because AMC is usually implemented in this mode as explained in

chapter 2. The chosen frame size and duration is the largest in scalable OFDMA

standard since we assume the uses are pedestrians, where the channel coherence

time is greater than 20ms.

Parameters Values
Carrier Frequency 2GHz
Subcarrier spacing 11 kHz
FFT size (N-FFT) 128
Subcarrier Number in
multicast subchannel

32

Subchannel mode Adjacent mode
OFDMA Frame Size 198 symbols
OFDMA Frame duration 20ms

Table 3.1: Selected OFDMA Parameters

3.2.2 Channel Model

In this single cell scenario, inter-cell interference is not considered, and the Cyclic

Prefix is assumed big enough to delimitate Inter Carrier Interference and Inter

Symbol Interference. Hence the frequency selective fading presents the main ef-

fect of multipath distortion. The model from [12] is implemented to create one

multipath fading level for each OFDM subcarrier during the channel coherence

time. This model is chosen because it can easily scale to different OFDM system
Aalborg Universitet



3.2 System Model and Assumptions 55

settings. The normalized exponential delay profile is presented as

vd =
1

V
e−

d

2Drms · wd, for d = 0, 1, ..., Dmax (3.1)

where

vd: the sampled complex delay profile;

Drms: the rms delay in sample unit;

Dmax: the maximum delay spread;

wd: a complex Gaussian process with mean = 0 and var = 1;

V : the normalization factor.

Therefore the N-point complex channel gain is the N-FFT of vd.

3.2.3 BER Approximations

To select the optimal modulation corresponding to received SNR level during

each transmission, we need the close-form BER expression for each modulation

scheme. For BPSK, it is

BERBPSK(SNR) =
1

2
erfc

(√
SNR

)

(3.2)

However, it is hard to find such close-form expression for non-binary modulation

such as MQAM (M = 4, 16, 64, 256, ...). Hence some BER approximation of

MQAM has been proposed as [11]

BERMQAM(M, SNR) ≈ 0.2 exp(
−1.6 · SNR

2KM − 1
) (3.3)
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With the help of expression (3.2) and (4.12), the implemented adaptive strategies

can choose modulation schemes based on continuous SNR-BER mapping. The

complete BER approximation curves are depicted in Fig. 3.2, in which BER ≤
10−3 is the target of all AM strategies.
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Figure 3.2: BER Approximations for BPSK and MQAM

3.3 Simulator Description

3.3.1 Simulation Scenario

The simulated scenario is a hexagon cell with three 120 degree antennas in the

center. The mobile users are moving randomly within the cell. Hand-over is not

considered so that the user who is going to cross the cell boundary will be bounced

back. The important assumptions and parameter settings are described in Tab. 3.2.
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Parameters Values
Mobility model TU3
Cell radius 1000m
User distance to BS 10 ∼ 1000m

Antenna type 3 × 120 degree antennas
Antenna Gain 9dB
Distance attenuation coefficient 3.76
Lognormal STD 8dB
Correlation distance of slow fading 50m
UE noise figure 9dB
thermal noise density -174dBm
Channel CSI report Ideal
Modulation update interval Every 4 Frames

Table 3.2: Important System Assumptions

3.3.2 System Level Simulator

The simulations were fulfilled in a self-designed system level simulator, as de-

picted in Fig. 3.3. The Geometry trace files are generated separately using some

functions enhanced from Rudimentary Network Emulator (RUNE) [13], which in-

clude the changing positions of all the mobiles during one simulation run and the

pathloss and the shadowing effects at each position. The mobile multicast users

have uniformly distributed initial positions inside the cell and move randomly dur-

ing the whole simulation. To explore all the possible geometry distribution of a

multicast group, 20 different trace files have been generated and taken as input to

test each modulation strategy. Among the system elements in Fig. 3.3, transmis-

sion power and noise are fixed during the whole simulation; Geometry is updated

according to the user mobility speed on second level. Instantaneous channel gain

is updated every transmission burst, which is 80ms long and equal to 4 OFDMA

frames. Once the SNRs for all subcarriers in one transmission burst is generated, it

is reported to the AM function. Finally the chosen modulation schemes and SNRs

are put into the mapping functions to calculate the throughput and error bits of this
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transmission (the error bits number is assumed to equal to its expectation, which

is the expected BER times frame size).

Transmitter Power
Allocation

Averaged
Geometry

Geometry
Trace file

Instantaneous
Channel gain over 

each subcarrier

Constant Noise

Instantaneous SNR 
per subcarrier per UE

Adaptive Modulation 
Scheme Allocation

SNR->BER
mapping functions

Throughput, BER

Perfect SNR

knowledge

Figure 3.3: Simulator Diagram

3.4 Reward Function-Based Adaptation

3.4.1 Performance Evaluation Approach

The basic problem of adaptive modulation in OFDMA is to allocate modulation

schemes, coding schemes, power among all the subcarrier/subchannels or any

combination of these parameters. Assume the SNR reports from the UEs to the BS

are perfect, we focus on the optimal modulation schemes assignment for a dedi-

cated multicast subchannel. The power level of the subchannel is constant and

evenly allocated among all subcarriers. Here the optimization target at not only

the maximum throughput per user but also the user perceived QoS such as average
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BER. The argument is that if the user perceived QoS is not at an acceptable level,

high data rate alone will not make the user satisfied. Hence we defined the Reward

function to include both:

R(T, S) = W1 × T + W2 × S (3.4)

where

S represents the user satisfaction rate defined as

S =

∑N
i=1 J(BERi ≤ θ)

N
(3.5)

where J is defined as

J =







1, if condition satisfied

0, otherwise
(3.6)

N is the number of mobiles in the investigated multicast group.

T represents the Normalized Average user Goodput per session, defined as:

T = (
1

N

N
∑

i=1

Goodputi)/Throughput256QAM

Goodputi counts only the correctly received bits by receiver i during one service

session, while

Throughput256QAM is the maximum possible throughput (always with the highest

modulation rate and error-free) for the same duration. Hence T is normalized to

be between [0, 1].

BERi refers to the average BER of receiver i during the whole multicast service

session.

θ is the average BER constraint, θ = 10−3 .
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W1, W2 are the relative weights of T and S in Reward function, W1 = W2 = 1,

because we consider efficiency (throughput) and QoS (BER) equally important.

Although R can reflect the joint performance of throughput and BER, it

cannot help to exclude the case that one strategy can result in a high Reward by

using extremely high modulation rate such as 256QAM and a very low satisfaction

rate where only a small portion of mobiles with high channel quality might be

satisfied, which is not the purpose of a multicast service. So we add an additional

evaluation constraint that only the strategy with S >= 50% would be considered

as a proper candidate for further performance analysis. This constraint can be

easily included in Equation. 3.4, but to better reflect the behavior of all possible

strategies we keep it separately.

3.4.2 Different Adaption Strategies

The main dilemma for a shared multicast channel is that different mobiles are ex-

periencing different SNRs but they have to listen to the same signal, which makes

it impossible to make the modulation optimal to each single mobile. The sub-

optimal modulation scheme will be to provide the highest throughput within the

BER boundary for most of the mobiles. Intuitively either the minimum, mean

or the maximum SNRs of all mobiles on each subcarrier can be chosen as the

Channel Quality Indicator to make the modulation rate selection. The drawback

is that a single SNR value cannot reflect the instantaneous SNRs distribution of

all the mobiles, hence the modulation scheme based on these strategies might not

achieve the optimal Reward. To achieve the maximal Reward value for a mul-

ticast session, we defined a Best Local Reward strategy for adaptive modulation
Aalborg Universitet



3.4 Reward Function-Based Adaptation 61

and compared the performance among Mean SNR based AM strategy, Best Local

Reward strategy and fixed modulation (BPSK/4QAM) strategy.

3.4.2.1 Best Local Reward Strategy

This strategy interpret the performance metric (3.4) into a Reward during each

transmission burst, and chooses the modulation mode which can maximize this

’local’ Reward, denoted as R′. To distinguish this R′ (counted per transmission)

from the performance metric, we call it Local Reward, and this AM strategy is

named Best Local Reward strategy. That is, this strategy will use instantaneous

SNR per UE per subcarrier to estimate the possible Local Reward of each mod-

ulation mode (BPSK,4/16/64/256QAM), and select the mode which maximizes

Local R′ for the current transmission burst, as illustrated in Tab.3.3:
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Input: SNR(i, j), i ∈ (1, ..., N).
For subcarrier j = 1:32

For modulation mode M = BPSK, 4/16/64/256QAM,

S′(M, j) =
1

N

N
∑

i=1

J(BER(M,SNRi,j) ≤ θ);

T ′(M, j) =
1

N

N
∑

i=1

Kj(M)(1 − BER(M,SNRi,j))/K256QAM ;

R′(M, j) = W1 × T ′ + W2 × S′;

End;

Mopt(j) = arg maxR′(M, j);

Assign Mopt to subcarrier j;

End.
BER(M,SNRi,j) : the BER of receiver i on subcarrier j, estimated from the
modulation mode and SNR value.
K : the number of bits per symbol of each modulation mode.
S′(M, j): the local satisfaction rate of mode M on subcarrier j
T ′(M, j): the local goodput of mode M on subcarrier j
R′(M, j): the local Reward of mode M on subcarrier j
Mopt(j): the optimal modulation mode on subcarrier j

Table 3.3: The Best Local Reward Algorithm

3.4.2.2 Mean SNR Strategy

This strategy takes the average SNR among all the multicast group members over

each subcarrier, and then choose the highest modulation rate which allow the

BER(M, SNR) < θ for this subcarrier. This algorithm can be simplified as

Mode M is chosen for subcarrier j if
1

N

N
∑

i=1

SNRi,j ∈ [Γm, Γm+1)

where the SNR thresholds of each modulation mode, ΓM , can be derived from

Eq.3.2 and 4.12 as:
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ΓM =







(

erfc−1(2θ)
)2

, K = 1 (BPSK)

− ln 5θ
1.6

(

2K − 1
)

, K = 2, 4, 6, 8 (4,...,256QAM)
(3.7)

and the resulted SNR boundaries of each mode for θ = 10−3 are listed in Tab.

3.4.
Modulation Scheme SNR Thresholds (ΓM , ΓM+1] (dB)

BPSK (−∞, 10]

4QAM (10, 17]

16QAM (17, 23]

64QAM (23, 29]

256QAM (29, + ∞)

Table 3.4: SNR Thresholds for BER < 10−3

3.4.2.3 Fixed BPSK/MQAM Strategy

As the simplest case, to always use one modulation scheme on all the subcarriers

during the whole simulation.

3.4.3 Numerical Result and Analysis

In this section we first compare the performance of different AM strategies in the

case mean(SNR) = 28dB. Then the impact of the SNR distribution on BER is

analyzed. After that, the performance from the scenario mean(SNR) = 35dB is

presented.

3.4.3.1 Performance Comparison

The following figures are the final Reward curves from different AM strategies.

While the global R in the evaluation metric keeps the same weights W1 = W2 = 1,
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different weights combinations have been tried in R′ to reveal best weights setting

to maximize the Reward.
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Figure 3.4: Reward under E(SNR) = 28dB

Surprisingly, in Fig. 3.4 it is not the R′(w′
1 = w′

2 = 1) but the R′(w′
1 =

1, w′
2 = 0) shows the best Reward performance. The former one which keeps the

same weight setting shows a performance even worse than Mean SNR and BPSK

strategy.

To reveal the reason, the normalized throughput and satisfaction rate are also

plotted separately as in Fig. 3.5(a) and Fig. 3.5(b).

The throughput curves are as we expected: the R′(w′
1 = 1, w′

2 = 0) which

only takes throughput into account achieved the highest output; the R′(w′
1 = w′

2 =

1) and Mean SNR make the median ones; and the BPSK only gives the lowest out-

put. On the other hand, in Fig. 3.5(b) only the BPSK can achieve an average BER

satisfying more than half of the mobiles, according to the second requirement of

performance comparison. Other strategies all lead to the selection of a higher mod-
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ulation rate and sacrifice the BER. In this scenario (Mean(SNR)=28dB), adaptive

strategies such as Mean-SNR based AM can achieve at most similar Reward as

BPSK. Considering the extra computational complexity and CSI feedback load

introduced by adaptive algorithms in the BS, adaptive strategies did not supply

any gain in this case.

3.4.3.2 Impact of SNR on Average BER

An average SNR of 28dB is already a very high value in the real cellular system.

To reveal why most of the strategies implemented failed to stay inside the BER

requirement under such a high mean SNR, the impact of SNR on average BER in

multicast scenario need to be analyzed. The SNR distribution of all subcarriers

from all mobiles at each transmission is depicted in Fig. 3.6. If fixed modulation
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Figure 3.6: Cumulative Distribution Function (CDF) of SNR, Mean=28dB,STD=11dB

schemes are used for the simulation, the average BER for each modulation from

instantaneous BERs of all SNR samples will be as shown in Tab. 3.5. This esti-

mation implies that if most of the group members are expected to have an average
Aalborg Universitet



3.4 Reward Function-Based Adaptation 67

Modulation E(BER)
BPSK 6.0 × 10−4

4QAM 1.0 × 10−3

16QAM 4.7 × 10−3

64QAM 1.6 × 10−2

256QAM 4.0 × 10−2

Table 3.5: BER Estimations

BER within 10−3, the modulation rate should not be higher than 4QAM. However,

the normalized throughput in Fig. 3.5(a) shows on average the R′(w′
1 = w′

2 = 1)

led to 16QAM, whose data-rate is 75% of 256QAM, which results in a satisfaction

rate lower than 20%.

This effect shows that even under an average SNR as high as 28dB, the

average BER will be seriously downgraded due to those instantaneous deep fading,

though they only occupy a very small portion in all the SNR samples. I.e, the SNR

boundary for BPSK to achieve a BER< 10−3 is about 7dB. There are 1.33% of all

the SNR samples that fall into the region lower than this boundary.

3.4.3.3 Performance with a Higher SNR

To further investigate the performance of different modulation strategies, the trans-

mitter power was increased until the average SNR reaches 35dB, as shown in

Fig. 3.7. The Reward depicted in Fig. 3.8 shows that Mean SNR and R′(w′
1 =

w′
2 = 1) still resulted in poor performances. Rewards of BPSK and 4QAM keep

stable as expected. R′(w′
1 = 0.05, w′

2 = 1) achieved the highest Reward, which

is 44% to 20% better than the second highest curve(4QAM) on average, as the

group size increase. The vertical bars over R′(w′
1 = 0.05, w′

2 = 1) and 4QAM

curves show the 95% confidence intervals of them. The confidence intervals show

that even when considering the fluctuation of simulation result, the advantage of
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R′(w′
1 = 0.05, w′

2 = 1) is still perceivable. Besides Reward, its satisfaction rate
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Figure 3.8: Reward under E(SNR)=35dB

also achieved over 90% as in Fig. 3.9.
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3.4.4 Sub-Conclusion

In conclusion, whether adaptive modulation strategies can provide Reward gain

depends on the SNR distribution scenario. When the average SNR is relatively

low (28dB), using Fixed BPSK is the best strategy. When the average SNR is

relatively high (35dB), the Local Best Reward strategy with higher weight on Sat-

isfaction rate than on throughput (w′
1 = 0.05, w′

2 = 1) can achieve a significant

gain comparing to all the other strategies.

Therefore optimizations efforts could be on how to supply the higher average

SNR or to reduce the negative effect on BER from the deep fading subcarriers.

One possible solution is to turn off some deep fading subcarriers. Another one is to

allocate more power to the multicast subchannel or use adaptive power allocation

over each subcarrier. If the multicast subchannel is allocated a much higher power

than a normal uncash subchannel, the side effect such as interference to neighbor

cells need to be considered.
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3.5 History-Based BER Threshold Adaptation

The previous section reveals that the system performance is limited by the worst

SNRs. If the adaptation strategy allows some instantaneous errors for the mul-

ticast receivers in a temporary deep fading, higher data rate can be allocated to

the group and higher goodput may be achieved eventually. Since the deep fading

stage of a receiver is only temporary, the average BER can still be controlled at

an acceptable level in long term. That is, we propose an approach to keep track

of cumulative errors of each receiver and optimistically adapt modulation for the

multicast transmission, which we called a history-based adaptive modulation.

3.5.1 Performance Evaluation Metric

In the previous section, a Reward function is defined to include both throughput

and BER, and the simulation results reflect the tradeoff between them. That is,

throughput and BER cannot be maximized together, and the improvement of one

always compromise the other. Hence we redefine the optimization target to maxi-

mizing the throughput while keeping the average BER constraint for the multicast

group, and adopt a modified Reward function (R) as:

For a multicast service session,

R = T · S (3.8)

and

S = J

(

∑N

i=1
J(BERi ≤ θ)

N
≥ µ

)

(3.9)
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where J has been defined in Eq. 3.6, T has been defined in Eq. 3.4.1.

µ stands for the required percentage of multicast group members within BER con-

straint. In this section, the target percentage is µ = 1, then

R =







T, if, for all i, BERi ≤ θ

0, otherwise
(3.10)

3.5.2 Different Adaptation Strategies

Three AM strategies are compared in this section. Based on the sub-conclusion of

Sec. 3.5, sub-carrier turnoff is adopted in each strategy.

(1) Best Local Reward Strategy with Fixed BER Threshold

Similar to the Local Reward strategy in the previous section, this strategy select

the modulation mode which maximize the Local Reward R′.

This Best Reward function simply uses a fixed instantaneous BER constraint,

θ. Assume receiver i had the lowest SNR on subcarrier j, and M is the highest

modulation mode satisfying BER(M, SNRi,j) ≤ θ (which means BER(M +

1, SNRi,j) > θ). Then according to the definition of R’, R′(M) > 0 and R′(M +

1) = 0, the Best Reward algorithm will choose M. Therefore, on each subcarrier

the lowest SNR among all receivers will limit the choice of modulation mode,

which is a kind of adapt-to-worst strategy.

Comparing to the definition of R in the previous section, S has much stronger

influence in the current R function. In the previous R, lower S may be compen-

sated by higher T ; whereas the current R will switch between T and 0 depending

on S. Therefore the new Best Local Reward strategy is even more conservative
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Input: SNR(i, j), i ∈ (1, ..., N).
For subcarrier j = 1:32

If ∃ SNRi,j < ΓBPSK(θ)

Turn off subcarrier j,
Else

For modulation mode M = BPSK, 4/16/64/256QAM,

T ′(M, j) =
Kj(M)

K256QAM
× 1

N

∑

i

[1 − BER(M,SNRi,j)]

R′(M, j) =

{

T ′(M, j), if, for all i, BERi,j ≤ θ
0, otherwise

End;

Mopt(j) = arg max R′(M, j);

Assign Mopt to subcarrier j;

End;
End.

Table 3.6: The Best Local Reward Algorithm with Fixed BER Threshold

than the one in previous section, and more optimistic adaptation strategy should

be proposed.

(2) Reward strategy with Adaptive BER Threshold

The further proposal is to allow the instantaneous BER boundary to be varied to

achieve higher throughput, and still keep the average BER within θ. Therefore,

it is necessary to keep track of the cumulated BER, BERc(i), for each mobile

individually, and adapt the θt(i) (instantaneous BER constraint for mobile i at

transmission t) according to BERc. That is, the calculation of the local Reward

of each possible modulation becomes

R′(M) =







T, if, for all i, BERi ≤ θt(i)

0, otherwise
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This idea is implemented in an Adaptive BER Threshold Algorithm, inspired by

[14].1 The coordination procedure between the Best Reward algorithm and the

Adaptive BER Threshold Algorithm is illustrated in Fig. 3.10. The Best Local

Reward function is mostly the same as in Tab.3.6, except each θ in the former is

replaced by θt(i). The Best Reward function will start with the same θt(i) = θ, and

the transmission result will be reported to the Adaptive BER Threshold Algorithm

to decide θt+1(i) to be used by the Best Reward for the next transmission. In this

way the BER history knowledge of each user is utilized: when a receiver has the

worst SNR on subcarrier j at transmission time t, but it has a good average BER

so far, it can have a higher BER limit than θ and the modulation mode allocated

for the whole group can be higher.

Instantaneous SNR 

information

Best Reward

Modulation Allocation

Transmission

Throughput, BER

Heuristic t(i)Adaption :

Update BERc,

Modify t(i) accordingly  

t(i)

Figure 3.10: Best Reward AM with Heuristic BER Constraint

1The work in Chapter 3 was inspired by the work in [14] in terms of varying a certain criteria in time domain. But the work
in [14] is about access control according to the instantaneous cell load (session arrival, leaving, handover), with Markov chain
analysis. The optimization scenario (session level V.S. transmission burst level), target metric, RRM approach (access control V.S.
link adaptation) and corresponding parameters are totally different. This history-based BER threshold scheme is novel in the field
of link adaptation.
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Adaptive BER Threshold Algorithm

The important variables and parameters in this algorithm are:

BERc(i) :
Number of error bits received

Number of bits received
by UEi from the transmission starts to current time;

θ1: The arbitrary lower boundary of the optimal BER interval;

θt(i): Instantaneous BER Threshold for the next transmission for UEi, initially

θt(i) = θ;

θmax: Maximum allowed value of θt(i);

δ: The multiplicative factor to increase θt(i).

For i = 1 : N % for each multicast group member
update BERc(i) based on the previous transmission output;
IF 0 < BERc(i) < θ1 THEN

% BER too good, loose threshold
θt(i) = min(θt(i) × δ, θmax)

ELSE IF BERc(i) > θ THEN
% BER break boundary, tight threshold
IF θt(i) > θ , THEN

θt(i) = θ;
End

ELSE IF θ1 ≤ BERc(i) ≤ θ,
This is the optimum case, keep θt(i) unchanged.

End
End.

Table 3.7: Adaptive BER Threshold Algorithm

There are two states in this instantaneous BER threshold varying process:

the maximizing utilization state and the compensation state. In the maximizing

utilization state, θt(i) will be temporarily increased to gain higher data rate. If

BERc(i) becomes greater than θ afterward, the algorithm will switch to compen-

sation state. In the compensation state the where θt(i) will be decreased, which

should result in less instantaneous errors in subsequent bursts until the BERc fall
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back.

There are many ways to increase and decrease θt(i). In the initially design,

θt(i) is increased by multiplying with a factor δ, and reduced by setting back to θ.

(3) BPSK with Turn-off Strategy

This strategy is simulated solely for comparison. It either select BPSK, or turn off

the subcarrier j when the minSNRi,j cannot satisfy BER(BPSK, SNR) ≤ θ.

3.5.3 Simulation Results and Analysis

The simulation results in terms of Reward are depicted in Fig. 3.11. It shows the

Best Reward strategy with adaptive BER threshold achieved the highest Reward.

The curve of the Best Reward strategy with fixed instantaneous BER constraints

is the second highest and much higher than the fixed BPSK modulation. Fig. 3.12
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Figure 3.11: Reward Comparison, E(SNR)=20dB

depicts the average BER of these strategies. Fig. 3.11 and Fig. 3.12 together
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reflect the trade-off between average BER and Reward. Best Reward with adap-

tive BER strategy achieved the highest Reward by pushing the average BER level

closer to 10−3, while Best Reward with fixed instantaneous BER result in the BER

level nearly 10−4 and lower Reward. The BPSK scheme, provided the best reli-

ability and the worst Reward as expected. Theoretically it should be possible to

push this BER curve even closer to 10−3 by algorithm optimization or parameter

optimization, to achieve the highest Reward.
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Figure 3.12: Average BER Comparison, E(SNR)=20dB

3.5.3.1 Impact of Group Size

In Fig. 3.11 all the Reward curves go down as the group size increase. Because the

more users in a group, the higher probability that one of them subjects to deep fad-

ing which results in SNRs even lower than the threshold of BPSK. Though there

is also higher probability that some members get higher SNR at the same time,

they cannot impact on the modulation selection as the lowest SNR can do. The
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Figure 3.13: Impacts of δ Settings on Adaptive BER Algorithm, E(SNR)=20dB

proposed Best Reward with BER adaption algorithm achieved higher gain as the

group size increases, i.e, its Reward values are 13.5%, 25.6%, 30.3%, 32.5%, 34.4%

higher than those of Best Reward with Fixed BER Threshold strategy at the group

sizes (2, 4, 6, 8, 10), respectively.

3.5.3.2 Impact of Parameters Setting

The parameter δ decides the speed to loosen θt(i). We start with the simplest

case that δ = 10, which means θt(i) only needs to switch between θ and θmax.

Other initial settings of this algorithm are: θ1 = 0.99 × 10−3 and θmax = 10−2.

The results in Fig. 3.11 and Fig. 3.12 came from these initial settings. Later

some selective input parameter sets are also tested to reveal their impact on the

performance of Best Reward with Adaptive BER algorithm, as shown in Fig. 3.13

and 3.14. Fig. 3.13 shows that stepwise adaptation of θt(i) (e.g.,δ = 2, 4) did not

further improve Reward gain comparing to the simplest case δ = 10. On the other
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Figure 3.14: Impacts of θ1 Settings on Adaptive BER Algorithm, E(SNR)=20dB

hand, different θ1 settings only have minor impact on R as presented in Fig. 3.14,

mainly on the small group size case (2 users only). Therefore it is better to simply

switch θt(i) between θ and θmax.

3.5.3.3 Spectrum Efficiency Gain

When we interpret the result back to spectral efficiency, it is counted from a cell

perspective how much information has been effectively served to multicast users

per unit bandwidth, calculated as

∑N
i=1 Successfully received bits/sec of UEi

Bandwidth of the multicast channel

The result in Fig. 3.15 verified that the spectral efficiency of the proposed AM

algorithm outperforms the others, and it can gain as high as 6.58 bps/Hz compar-

ing to the Best Reward with Fixed Threshold algorithm at large group size. In

this figure the curve of the Best Reward with Fixed Threshold strategy is not in-
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Figure 3.15: Spectrum Efficiency of AM Strategies, E(SNR)=20dB

creasing monotonically, meaning the loss in average throughput may not always

be compensated by the increment of group members.

3.5.4 Sub-Conclusion

In this section, the Best Reward with Adaptive BER threshold algorithm opti-

mistically relaxes the instantaneous BER constraints based on the BER history of

each multicast user, and achieves large performance gain. The proposed algorithm

shows even bigger advantage comparing to other strategies when the group size is

large.

3.6 Conclusion

In this chapter the OFDM-based AM approaches are studied with Reward func-

tions as performance metrics. The Reward functions are designed in order to in-

clude both the throughput and the average BER per multicast receiver (in terms
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of satisfaction rate S). It is more convenient to include BER in the Reward func-

tion of Sec. 3.5 than in the Reward of Sec. 3.4, since it is not easy to decide what

weight settings for throughput and satisfaction rate would be the best.

A few AM schemes are proposed and their performances are compared via

simulations. For the first Reward function, the simulation results show that it is

necessary to turn off the subcarriers where some receivers are in deep fading, since

these cases degrade the satisfaction rate seriously. Without subcarrier turnoff, the

Best Local Reward strategy only outperform other AM schemes when the average

SNR is very high. For the second Reward function, all the AM schemes adopt sub-

carrier turnoff option, and a history-based BER threshold adaptation is proposed

to cooperate with the Best Local Reward strategy. Simulation results prove that

this new proposal gain extra performance in both Reward and spectral efficiency

by comprising the average BER, but still keep the BER constraint inviolated.

Based on the work of this chapter, further optimization efforts can be made

in the following directions:

Defining more objective performance metric The design of a precise Reward

function for mobile multicast services should better be supported the data

from mobile network operators or service providers. As it is difficult to get

such data, researchers often propose different Reward functions for the same

problem and the outputs are difficult to compare. So it is better to use more

objective performance metrics, which also reflect both throughput and BER,

for further optimization.

Investigation method The investigation in this chapter is based on simulations,

which include many detailed parameter settings, and the results and conclu-
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sions are rather specific to such a simulation scenario. Even though the sim-

ulation can be repeated for different parameters settings, when the number of

parameters is large or when the simulation is time-consuming , it is impossi-

ble to tryout many different parameters combinations. In this case, it is hard

to predict the possible behaviors of the investigated algorithms in different

scenarios, or to explain why some behaviors happen. Hence further work can

be done to build analytical models.

More degrees of freedom Beside rate adaptation, power adaptation should also

be investigated together for multicast link adaptations.

Note: The works presented in this chapter have been published in [15] and [16].
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Chapter 4

Multi-Dimensional Optimization with

Analytical Model

The optimization approaches in the previous chapter are analyzed with simula-

tions tools. When comparing different multicast link adaptation schemes, it is

interesting to know the optimum performance limits of them, and to analytically

reveal why some adaptation approaches are better than others. In this chapter,

we assume a single carrier system and build an analytical framework to find out

the achievable spectrum efficiency upper boundary of such a scenario. The op-

timal and sub-optimal adaptation schemes are derived under this framework and

detailed parameter analysis are fulfilled. The problem of switching-threshold be-

tween unicast and multicast is also investigated in this chapter.

4.1 Motivation

The basic constraint in physical layer multicast adaptation is that, given a cer-

tain Bit-Error-Ratio (BER) constraint, the instantaneous transmission mode has

to adapt to the worst instantaneous channel state among all the receivers, namely
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worst-channel-limit. The investigations in [2], [4] and [3] propose approaches with

MIMO and Beam-forming techniques to improve the worst channel condition of

a multicast group, whereas the work in [3] develops rate adaptation schemes for

multicast in OFDM systems. These approaches can certainly improve the multi-

cast performance, but do not reveal what is the best possible adaptation scheme in

their scenarios. Some other works propose theoretical approaches for optimal rate

and/or power adaptation based on the Shannon capacity ([9], [1], [2]). However,

the Shannon capacity requires some ideal assumptions which could be far from

the constraints in reality[4]. For example, according to Shannon capacity

C
B = log2(1 + SNR) (4.1)

where C is the ideal channel capacity in bit/s and B is the transmission bandwidth

in Hz, and C/B is the ideal spectral efficiency in bit/s/Hz. The achievable spectral

efficiency of practical modulation schemes can be estimated as

R
B = log2(1 +

SNR

Υ
). (4.2)

where R is the data rate of practical modulations (e.g., QAM), Υ represent a ’gap’

between Shannon capacity and the achievable capacity of real modulations and it

is not constant. Hence the optimal multicast performance and the corresponding

adaptation strategy from information theory perspective may not be achievable.

Another issue related to the worst-channel-limit is, since multicast adapta-

tion cannot be as efficient as unicast adaptation for each receiver itself, whether it

is always worth switching from multiple unicast to multicast mode even when the

group size is small (e.g., only two-receivers-group).
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To address these efficient multicast issues, we investigate the average mul-

ticast spectral efficiency per receiver with different combinations of the transmit

power and rate adaptations. We assumed the investigated adaptation strategies are

subject to an average power and instantaneous BER constraints. The data rate is

adaptable due to varied modulation constellations, but the effect of adaptive chan-

nel coding is not considered. We first investigate the power and rate adaptation

given the modulation constellations can be varied continuously, and then analyze

the more realistic scenario where only a discrete set of constellations as well as

data rate are available.

4.2 Single-Carrier System Model

Based on the general assumptions described in Chapter 1, the transceiver system

is now assumed as a single carrier system. The channel models of N multicast

receivers are assumed as discrete-time flat-fading channels, with stationary and

ergodic time-varying gain and Additive White Gaussian Noise (AWGN). Since

the channel gains are stationary, the distributions of them are independent of time

and the time reference is omitted in our expressions. The received symbols at the

i-th multicast receiver, denoted as yi, can be characterized as

yi = gix + ni, i = 1, ..., N (4.3)

where x is the transmitted Multicast symbols, gi is the channel gain of receiver i

and ni is the additive white Gaussian noise with variance σi
2. Hence the SNR of

each receiver at each time-slot can be written as
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SNRi =
S|gi|2
σi

2
(4.4)

in which S is the transmission power. Assume the average transmission power is

S, and the received instantaneous SNRs under this power level are

γi =
S · |gi|2

σi
2

, (4.5)

which can be measured by the receivers (i.e, with the help of the pilot channel).

In this work, γi is called Normalized SNR and taken as the main channel quality

indicator. We further assume that the receivers can detect their γi under this con-

stant power level, i.e, by measuring the signal in the downlink pilot signal, and

report them in a non-delay and error-free feedback channel. The base station ful-

fills downlink power control according to γi(i = 1..N) and transmits the Multicast

content with instantaneous power S. Therefore the actually received SNRs of each

time-slot can be rewritten as

SNRi =
S

S
· S · |gi|2

σi
2

=
S

S
· γi (4.6)

The Probability Density Functions (PDFs) of γi follow Independent Identical Dis-

tributions (i.i.d), noted as p(γi). The random vector ~γ := (γ1, γ2, ..., γN) rep-

resents a fading state of the Multicast group, with probability density function

p∗(~γ) =
∏N

i=1 p(γi).

As introduced in the first section, we are looking for the optimal power S

(watt) and rate k (bits/ symbol) adaptation schemes to maximize the spectral effi-

ciency. S is assumed to be continuous non-negative function of the instantaneous
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channel fading state ~γ, noted as S(~γ). The average level of S is limited to be no

more than S to control the interference of the multicast channel toward other cells.

k is a non-negative function of ~γ, noted as k(~γ), which can be either continuous or

discrete. Besides, the multicast channel can also be turn-off in some fading states,

where S = 0 and k = 0.

The BER constraint could be either average or instantaneous, depend on

the characters of the service investigated. Given the instantaneous BER limit,

the transceiver system has to guarantee that the probability of bit error in each

channel state is no more than a constant value; whereas under the average BER

constraint, only the BER level averaged along time or channel fading states need

to be maintained, and the BER limit for different channel states could be differ-

ent. In providing real-time multimedia services via multicast, it is crucial to keep

a low instantaneous frame error ratio (FER) for good user-perceived quality of

services. Instantaneous FER can be derived from instantaneous BER, therefore a

instantaneous BER constraint is chosen in our investigation.

4.3 Problem Formulation

The optimization target is the average spectral efficiency per multicast receiver,

which equals the average data rate per unit bandwidth. When the signal is sent at

modulation mode M with k bits/symbol, the instantaneous data rate R = k/Ts

bps, where Ts is the symbol time. Under Nyquist sample rate B = 1/Ts , hence

R = k · B, and the instantaneous spectral efficiency becomes

R
B = k.
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The mathematical expectation of the spectral efficiency on the transmitter side is

the instantaneous spectral efficiency averaged over all possible fading states, noted

as (R/B)T ,

(
R
B )T =

∫

(R+

0 )N

k(~γ)p∗(~γ)d~γ (4.7)

(~γ) in Eq.4.7 and all the following integrations is in linear unit, hence it is always

integrated in (R+
0 )N , a N-dimensional space of positive real numbers. Considering

the errors introduced by the wireless channel, the spectrum efficiency at receiver i

is

(
R
B )i =

∫

(R+

0 )N

k(~γ)p∗(~γ) [1 − BERi(k(~γ), S(~γ), ~γ)]d~γ (4.8)

and the average spectral efficiency of the multicast receivers should be

(
R
B ) =

1

N

N
∑

i=1

∫

(R+
0 )N

k(~γ)p∗(~γ) [1 − BERi(k(~γ), S(~γ), ~γ)] d~γ (4.9)

Likewise the average power constraint over all fading states is

E{S(~γ)} :=

∫

(R+
0 )N

S(~γ)p∗(~γ)d~γ ≤ S. (4.10)

For a multicast group, there exist N instantaneous BER constraints:

BERi(k(~γ), S(~γ), ~γ) ≤ θ, (4.11)

where θ represent the required BER constraint value (e.g., 10−3 or 10−6).
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An instantaneous BER estimation for un-coded MQAM [4] is employed for

the continuous k:

BERi ≈ 0.2 exp(
−1.6γi

S(~γ)

S

2k(~γ) − 1
) (4.12)

It needs to be mentioned that this estimation is tight only when γi · S(~γ)

S
≥ 1.

The instantaneous BER constraint is a rather strong limitation, since the er-

ror probability scale exponentially to S
S
γi as shown in Eq. (4.12). It would be wise

to turn off the transmission rather than assign huge power and very low rate to meet

θ when the fading state is too bad. That is, we can assume a region Ω ⊂ (R+
0 )N

such that k and S are positive functions if and only if ~γ ∈ Ω, and zero otherwise.

More detailed discussion on this region will be presented in the following sections.

Problem Simplification

To reduce the complexity of maximizing Eq.(4.9), some simplifications are made.

Typically θ is a very small value, and if this constraint holds during the transmis-

sion, the difference between the spectrum efficiency at transmitter side and re-

ceiver side is negligible. Therefore, the maximization target can be approximated

as

(
R
B ) ≈

∫

(R+
0 )N

k(~γ)p∗(~γ)d~γ. (4.13)

We take Eq.4.13 as the estimation of the average spectrum efficiency of the multi-

cast group to be maximized, for simplicity (RB ) is just written as R
B in the following

sections.

To ensure instantaneous BERi ≤ θ, it must be guaranteed that

max{BERi(k(~γ), S(~γ), ~γ)} = θ,
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which equals to BER(min{~γ}) = θ. This is exactly the adapt-to-worst case. With

this simplification we can derive from Eq.(4.12):

k(~γ) = log2

[

1 −
1.6 min{~γ} S(~γ)

S

ln(5θ)

]

, S > 0. (4.14)

4.4 Solutions with Continuous Rate Adaptation

In this section we apply Lagrange method to derive the optimal spectral efficiency

and corresponding rate and power solutions, given the transmission data rate k can

be continuously adapted to the channel conditions. A sub-optimal solution with

constant power and other alternative solution are also developed and analyzed for

comparison.

4.4.1 Adaptation Schemes

4.4.1.1 Optimal Power and Continuous Rate Adaptation (CRSopt)

Using the expansion of k(~γ) in Eq.(4.14), the N instantaneous BER constraints

can be dropped and it remains to look for S such that the integral in Eq.(4.7) is

maximized under the power constraint Eq.(4.10). Eq.(4.7) can be re-written in the

form

∫

(R+

0 )N

k(~γ)p∗(~γ)d~γ

=

∫

(R+

0 )N

log2

[

1 −
1.6 min{~γ} S(~γ)

S

ln(5θ)

]

p∗(~γ)d~γ

=:

∫

(R+

0 )N

g(S(~γ), ~γ)d~γ (4.15)
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We construct the Lagrange function of this problem as

J (S(~γ), ~γ) :=

∫

(R+

0 )N

g(S(~γ), ~γ)d~γ

+ λ0

[
∫

(R+

0 )N

S(~γ)p∗(~γ)d~γ − S

]

(4.16)

The problem reduces to find the optimal function S(~γ) with the average power S

limit.

Define

I(ε) := J (S + εσ)

where σ is an arbitrary function and ε is a small enough number. Given the optimal

S(~γ) exists, there should be

∀ ε, I(ε) ≤ I(0) =⇒ dI
dε

(0) = 0.

Eq.(4.15),(4.16),(4.4.1.1) and condition dI
dε (0) = 0 lead to

1.6

ln 2
· min{~γ}
1.6 · min{~γ}S − S ln(5θ)

+ λ0 = 0,

∀ σ, and for all ~γ such that p∗(~γ) 6= 0.

Hence the theoretical optimal power scheme, noted as Sopt(~γ), is

Sopt(~γ) =
c S

min{~γ} − 1

λ0 ln 2
(4.17)

where c = ln 5θ/1.6.

For an practical instantaneous BER limit (usually 10−3 ∼ 10−6), there must

be θ < 0.2 → c < 0, hence Sopt is a monotonically increasing function of
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{min{~γ}, ~γ}. Since γi are i.i.d. we can assume Ω has the form [γ0, +∞)N , where

γ0 is the threshold for transmission turn-on/turn-off.

Then it should be possible to find the region Ω in (R+
0 )

N , in which min{~γ} ≥
γ0, and substitute S(~γ) in Eq.(4.10) with Eq.(4.17) and take the upper-limit of the

power, we get
∫

Ω

[
c S

min{~γ} − 1

λ0 ln 2
]p∗(~γ)d~γ = S (4.18)

Let

∆ :=

∫

Ω

p∗(~γ)

min{~γ}d~γ (4.19)

α :=

∫

Ω

p∗(~γ)d~γ (4.20)

→ λ0 =
α

S ln 2 · [c∆ − 1]

which leads to

S

S
=







c
min{~γ} + 1−c∆

α
, min{~γ} ≥ γ0

0, otherwise.
(4.21)

And use (4.21) in (4.14)

k =







log2

(

c∆−1
αc min{~γ}

)

, min{~γ} ≥ γ0

0, otherwise.
(4.22)

The optimal spectrum efficiency can be computed by

R

B
=

∫

Ω

log2

(

c∆ − 1

αc
min{~γ}

)

p∗(~γ)d~γ (4.23)

So far we derived the general form of the optimal S and k allocation schemes, and

the problem remains how to find the value of α and ∆, which depend on the region

Ω. As we have assumed Ω has the form [γ0, +∞)N , searching for the proper Ω
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reduce to searching for a single threshold γ0 (we name it as Cut-Off SNR). The

detailed searching criteria for γ0 is described in Sec.4.4.2.2.

4.4.1.2 Constant Power and Optimal Rate (CRSc)

The previous optimal solution exploits the degrees of freedom in both power and

rate dimensions. In practise, sub-optimal solutions with implementation simplicity

may be preferred. In this section we develop the suboptimal solution with only

optimal rate adaptation and constant power. Consider power is assigned in region

Ω and zero elsewhere, Eq.(4.10) with constant power Sc becomes

∫

Ω

Sc · p∗(~γ)d~γ = S,

⇒ Sc

S
=

1

α
(4.24)

The corresponding k from (4.22) is

k =







log2

(

1 − min{~γ}
αc

)

, min{~γ} ≥ γ0

0, otherwise.
(4.25)

The sub-optimal spectrum efficiency is

R

B
=

∫

Ω

log2

(

1 − min{~γ}
αc

)

p∗(~γ)d~γ (4.26)

4.4.1.3 Linear Power and Optimal Rate

To reveal whether other power algorithms can achieve comparable performance

as the derived optimal solution, the third scheme is developed. Intuitively, the

power and rate should increase as the normalized SNR increases to exploit more
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spectrum efficiency. Hence we assume power scheme SL:

SL

S
= β min{~γ} + ϕ (4.27)

where β and ϕ are parameters to be found to maximize spectrum efficiency.

This function subject to average power constraint

∫

Ω

SL

S
· p∗(~γ)d~γ = 1

→ β

∫

Ω

min{~γ}p∗(~γ)d~γ + ϕα = 1 (4.28)

This power scheme was investigated together with rate scheme E.q (4.14) as the

third adaptation scheme in this work.

4.4.2 Numerical Result of Case Studies

We computed the numerical results for the optimal and sub-optimal forms of S, k

and R/B with N = 2 , and the Normalized SNRs following Rayleigh distribution,

such as

p(γi) =
γi exp

(

− γi
2

2σ2

)

σ2
. (4.29)

where θ = 10−3. So far there is not a single distribution model that can describe

the overall SNR results caused by pathloss, shadowing and multi-path. Rayleigh

distribution is frequently used in link adaptation study ([1],[4]), because multipath

is the most challenging part to be coped with link adaptations.

Use Eq.4.29 in Eq.4.20 and Eq.4.19, then

α =

[

exp

(

− γ0
2

2σ2

)]2
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∆ =

∫ ∞

γ0

∫ ∞

γ0

γ1γ2 exp
(

−γ2
1+γ2

2

2σ2

)

σ4 · min(γ1, γ2)
dγ1dγ2

Here, ∆ can only be computed with numerical methods. Then we numerically

search for γ0 which maximizes

R

B
=

∫ ∞

γ0

∫ ∞

γ0

log2

(

c∆ − 1

αc
min(γ1, γ2)

)

·
γ1γ2 exp

(

−γ2
1+γ2

2

2σ2

)

σ4
dγ1dγ2

The resulted Sopt versus min(γ1, γ2)(dB) is plotted in Fig. 4.1, where σ = 10 cor-

responds to the average Normalized SNR γ ≈ 11dB. The optimal rate adaptation
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Figure 4.1: S/S versus min{~γ}

scheme k versus min(γ1, γ2) under the same γ is depicted in Fig. 4.2, and the

optimal rate scheme with constant power (γ0 = 0dB) is plotted as well.
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Figure 4.2: k versus min{~γ}

4.4.2.1 Spectrum Efficiency

Numerical searching has been done to derive the optimal γ0 which maximizes

spectrum efficiencies under different γ values, since γ0 cannot be solved with

close-from expression. The derived maximum spectral efficiency are illustrated

in Fig. 4.3 for k with optimal S (the red curve) and k with constant S (the blue

dotted curve) under Rayleigh channel with N = 2. Interestingly, the spectrum

efficiency loss due to fixed power is less than 3% compared to the one with joint k

and S adaptation in the numerical results.

If we rewrite Eq.4.14 for a single user case with the SNR expression in

Eq.4.6,

k = log2

(

1 +
SNR

− ln(5θ)
1.6

)

.
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Figure 4.3: Spectrum Efficiency per User in Rayleigh Channel

Comparing with Eq.4.2, it is obvious that we can assume

Υ =
− ln(5θ)

1.6
(4.30)

Hence the capacity gap Υ depends on the modulation scheme and the target BER,

i.e, Υ = 3.314 at θ = 10−3 for MQAM.

To compare the performance upper bound that can be derived from Shannon

capacity and the one from our approach, we rewrite Eq.4.15 as

(

R

B

)

Shannon

=

∫

(R+

0 )N

k(~γ)p∗(~γ)d~γ

=

∫

(R+

0 )N

log2

[

1 − min{~γ} S(~γ)

S

]

p∗(~γ),

and apply the same Lagrange method as in the CRSopt schcme. The results are

depicted as the black curve in Fig. 4.3, which reveals that the spectral efficiency
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upper bound derived from Shannon capacity is much higher than the upper bound

MQAM signal can achieve. For example, the Shannon upper bound is higher

than our upper bound (both with CRSopt scheme) by 1.23bit/s/Hz at 10dB, and

1.72bit/s/Hz at 20dB (43.4% and 18.6% more than CRSopt). This means, the

optimal spectral efficiency analysis with our method is much more accurate than

that based on Shannon capacity.

4.4.2.2 Selection of Cut-Off SNR Value

In this subsection we describe how to select the optimal Cut-Off SNR value. The

Cut-Off SNR should both maximize the spectrum efficiency for the given adap-

tation scheme and be physically meaningful, such that S(γ0) ≥ 0, and S(γ0) ≥
0 ⇒ k(γ0) ≥ 0. The relation between spectrum efficiency and the Cut-Off SNR

values in CR − Sopt solution is illustrated by the blue curve in Fig. 4.4(a), and

the maximum and minimum values of power in CRSopt scheme derived from

different Cut-Off SNRs are plotted in Fig. 4.4(b). In Fig. 4.4(a), the spectrum ef-

ficiency (SE) keeps decreasing as Cut-Off SNR increases (as in 4.4(a)), but the

loss of efficiency is negligible when γ0 ≤ 6dB. On the other hand, the minimum

power values in Fig. 4.4(b) are negative when γ0 < 3dB. Therefore the optimal

valid Cut-Off SNR should be about 3dB. Such study has been done for SNRmean

between 10dB and 25dB, and the results suggest the optimal valid Cut-Off SNR

should be between 3dB and 6dB for this SNRmean range.

For CRSc solution (the green curve in Fig. 4.4(a)), the allocated power value

is positive and constant, and the Cut-Off SNRs which leads to the maximum spec-

tral efficiency is between 4 and 6dB.
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4.4.2.3 Linear Power and Optimal Rate

Different β and ϕ were tested to maximize the spectrum efficiency of the {kopt, SL}.

Due to the constraint (4.28), once β, Mean SNR and Cut-Off SNR are selected,

ϕ is decided. The value of β is also limited by S(γ0) ≥ 0. In Fig. 4.5, differ-
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Figure 4.5: Linear Power Adaptation, Impact of Slope β on Spectrum Efficiency

ent Cut-Off values did not make much difference since the curve with Cut-Off at

0dB and 4dB are overlapping with each other. The maximum spectrum efficiency

in Fig. 4.5 are only 1% less than that of {kopt, Sopt} while β ≤ 0.05. This re-

sult shows that other options of power schemes can also achieve nearly optimal

performance, if applied together with Eq.4.14 and carefully designed parameters.

Actually in such optimum scenario of β the curve of 4.27 would be very

close to the curve of Eq.(4.24). For simplicity reason, the constant power and

optimal rate adaptation scheme would still be the best adaptation scheme.
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4.5 Solutions with Discrete Rate Adaptation

In this section, Lagrange method is applied with discrete transmission data rate,

where k can only be chosen from a set of integer numbers {km}M−1
m=0 . A sub-

optimal solution with constant power is also derived.

4.5.1 Discrete Rate and Optimal Power (DRSopt)

4.5.1.1 Unicast Case

For a point-to-point channel, the rate km can be assigned when the γ falls into

a region [Γm, Γm+1) (m = 0..M − 1 and ΓM = ∞). No data is transmitted if

γ < Γ0. For such a fixed set of rate values, the optimal rate adaptation becomes to

find the optimal rate region boundaries Γm. The Lagrangian for this problem can

be set as:

J (S(γ), Γ0, Γ1, ..., ΓM)

:=
M−1
∑

m=0

km

∫ Γm+1

Γm

p(γ)dγ + λ

[
∫

Ω

S(γ)p(γ)dγ − S

]

(4.31)

From Eq.4.12 we can derive

S(γ)

S
=

F (km)

γ
(4.32)

where

F (km) = c1 · (2km − 1)

and c1 = ln(5θ)
−1.6 .
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Hence the Lagrange function can be rewritten as:

J (Γ0, Γ1, ..., ΓM) :=

M−1
∑

m=0

km

∫ Γm+1

Γm

p(γ)dγ

+λ

[

M−1
∑

m=0

∫ Γm+1

Γm

F (km)

γ
p(γ)dγ − 1

]

(4.33)

By solving the following equations for Γm

∂J
∂Γm

= 0, 0 ≤ m ≤ M − 1 (4.34)

we can obtain the optimal boundaries with the forms:

Γ0 = −λ · F (k0)

k0
(4.35)

Γm = −λ · F (km) − F (km−1)

km − km−1
1 ≤ m ≤ M − 1, (4.36)

and the value of λ can be derived from the power constraint:

M−1
∑

m=0

∫ Γm+1

Γm

F (km)

γ
p(γ)dγ − 1 = 0 (4.37)

For a Rayleigh fading channel, Eq.4.37 can be calculated as

M−1
∑

m=0

F (km)

∫ Γm+1

Γm

1

γ
· γ

σ2
exp(− γ2

2σ2
)dγ = 1 (4.38)

⇒ 1

σ

√

π

2
·

M−1
∑

m=0

F (km)

[

erf(
Γm+1

σ
√

2
) − erf(

Γm

σ
√

2
)

]

= 1 (4.39)

Assume km = 2, 4, 6, 8 (m = 0, 1, 2, 3) for 4QAM, 16QAM,64QAM and 256QAM

under Rayleigh fading channel, and let Γ4 = inf. We can solve Eq. 4.39 to get
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λ, Γm and calculate corresponding spectral efficiency, as plotted in Fig. 4.8. The

curves shows for unicast case the DRSopt only causes a negligible spectral effi-

ciency loss comparing to CRSopt.

4.5.1.2 Multicast Case (N = 2)

When we try to apply the same approach for N = 2, we adopt a similar form of

the Lagrangian function:

J (S(γ), Γ0, Γ1, ..., ΓM)

:=

M−1
∑

m=0

km

∫

ΩΓm

p(~γ)d~γ + λ

[
∫

Ω

S(γ)p(~γ)d~γ − S

]

(4.40)

where ΩΓm
is the two dimensional rate region of modulation mode m (as depicted

in Fig. 4.6), where min{~γ} ∈ [Γm, Γm+1), and

S(γ)

S
=

F (km)

min{~γ} . (4.41)

Hence

J (S(γ), Γ0, Γ1, ..., ΓM)

:=

M−1
∑

m=0

km

∫

ΩΓm

p(~γ)d~γ + λ

[

M−1
∑

m=0

∫

ΩΓm

F (km)

min{~γ}p(~γ)d~γ − 1

]

(4.42)

In similar way we can get Eq.4.35 and 4.36 from Eq.4.34 for the two user case.

The value of Γm depends on km and λ. When km is fixed, λ can be derived from

the average power constraint:
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Figure 4.6: Integration Region of 2 UE, D-Rate

M−1
∑

m=0

∫

ΩΓm

F (km)

min{~γ}p(γ)dγ − 1 = 0, (4.43)

which is solved by numerical search since there is no close-form for the integral in

this equation. The derived optimal spectral efficiency is also depicted in Fig. 4.8,

and the power schemes of DRSopt corresponding to average SNR at 10dB and

30dB are depicted in Fig. 4.7(a) and Fig. 4.7(b).
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Figure 4.7: Optimal Power Schemes with Discrete Modulation Rate

4.5.2 Discrete Rate and Constant Power (DRSc)

In this case the allocated power level also follows 4.4.1.2 and the spectral effi-

ciency follows
R

B
:=

M−1
∑

m=0

km

∫

ΩΓm

p(~γ)d~γ (4.44)

with the constraints on the threshold of each modulation scheme

BERm = 0.2 exp

(

−1.6Γm
Sc

S

2km − 1

)

= 0.2 exp

(

−1.6Γm

α

2km − 1

)

≤ θ (4.45)

and

Γm = c1α
(

2km − 1
)

(4.46)

For a known SNR PDF, α can be derived by jointly solve

Γ0 = c1α
(

2k0 − 1
)

(4.47)

α =

∫ ∞

Γ0

p∗(~γ)d~γ (4.48)
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The spectral efficiency results for Rayleigh PDF, D-Rate and Constant power

scheme in unicast and multicast (N = 2) cases are illustrated in Fig. 4.8.

4.5.3 Numerical Results of Case Studies

The spectral efficiency curves of all Lagrange-based solutions are presented in

Fig. 4.8 for comparison and analysis.
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Figure 4.8: Per User Spectral Efficiency of All Adaptation Schemes

4.5.3.1 Spectral Efficiency Loss due to Discrete Rate Adaptation

In Fig. 4.8, the performance of DRSopt is only slightly lower than that of CRSopt.

This means the optimal solution with discrete data rate and continuous power can

achieve the spectral efficiency which is very close to the upper bound provided by

the optimal one with continuous rate and power. Because continuous rate adap-

tation cannot really be implemented with practical modulation constellations, but
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the exact spectral efficiency of discrete rate adaptations may change according to

the available modulation modes, the optimal spectral efficiency of CRSopt can be

considered as a general upper bound, and a very accurate estimation (comparing to

Shannon-capacity-based upper bound) for the optimal rate and power adaptation

schemes in practice.

4.5.3.2 Spectral Efficiency Loss due to Fixed Power

Unlike the continuous rate scenario, significant performance losses can be ob-

served for the DRSc scheme comparing to the DRSopt scheme in both unicast

and multicast (2 UEs). E.g, the per user spectral efficiency loss increases from

about 0.33 bps/Hz up to about 0.89 bps/Hz for the multicast group of 2 UEs as the

average SNR increases from 10dB to 30dB. This fact suggests that discrete rate

adaptation should always be applied jointly with power adaptation to maximize

the spectral efficiency.

4.5.3.3 Spectral Efficiency Loss and Gain due to Multicasting

If we compare the per user performance of the same adaptation schemes (CRSopt,

DRSopt, DRSc) under unicast and multicast as depicted in Fig. 4.8, a gap can

be observed between each pair of them . The multicast spectral efficiencies are

around 0.32 to 0.50bps/Hz less than the unicast values for the same adaptation

scheme. This performance loss is due to the fact that the instantaneous rate as-

signed to the channel is limited by the worst fading state among users in a multicast

group. And such loss is expected to increase as group size increases. However,

such spectrum efficiency has been achieved by two receivers each in multicast,
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so the total spectrum efficiency of the multicast channel has been nearly doubled

comparing to the unicast channel. This fact implies that even though the multicast

adaptation is limited by the instantaneous worst channel during each transmission

burst, it is still much more efficient to serve two users with a multicast channel

than with two unicast channels.

4.6 Conclusion and Future Work

In this work we analytically derived the spectral efficiency upper-bound of a mul-

ticast channel and the optimal joint power and rate adaptation scheme. With an

ideal assumption that the data rate can be allocated continuously, nearly optimal

spectrum efficiency can also be achieved with constant power and optimal rate

allocation. However, under a more practical setting with discrete data rate and

limited modulation modes options, joint power and rate adaptation significantly

outperforms constant power scheme. Last but not the least, the maximum average

spectrum efficiency per user of a multicast group is close enough to the unicast

case, such that the system spectrum efficiency gain can be improved dramatically.

Therefore it is always more efficient to switch to multicast mode from unicast

mode.

So far all the studies in this thesis only optimize link adaptation schemes on

bit level. However, in practice bit streams are transmitted in packets/frames, and

the performance on packet level may influence on the user perceived QoS more

significantly. That is, we extend our study to packet level adaptations, i.e., on the

data link layer, in the next chapter.
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Note: The works presented in this chapter have been published in [5], and will

also appear in [6].
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Chapter 5

Cross Layer Design for Multicast

In this chapter, the reliability constraint is re-considered to include the influence

of multiple layers. We extend the cross-layer model proposed in [3] from unicast

to multicast scenario, and develop packet-combine-based multicast ARQ schemes

and related AMC schemes within this cross-layer context. The performances of

several multicast ARQ and AMC combinations, with or without cross-layer de-

sign, are analyzed with numerical results.

5.1 Motivation

In the previous chapters we have only included the reliability constraint in error

probability (i.e., BER) for wireless video applications, but have not considered the

impact of error patterns toward the quality of video transmissions. Such impact

involves both the error pattern due to wireless channel, and the process in which

the video stream is encoded on the application layer, and encapsulated into the

transmission data units on the network layer, the link layer and the physical layer.

Let us first briefly review a video-streaming transmission process.

In a video streaming transmission over wireless networks, application level
114



5.1 Motivation 115

video frames (a video frame in this chapter refers to a coded single still image)

are generated from the original video streams by a video encoder, with contempo-

rary video compression and transmission standards (e.g., Moving Picture Experts

Group (MPEG) -2, MPEG-4 and H.264). In these standards, some frames are

reused for motion-compensated prediction [1] so that many repeated parts among

consecutive images need not to be transmitted in each coded frame, which effi-

ciently compress the data volume of the generated frames. As a consequence, the

coded video contents are correlated on frame level. Then the coded video frames

are passed through the network layer, i.e, encapsulated in IP packets. On the link

layer, the video in IP packets need to be segmented into Packet Data Unit (PDU)

to be delivered to the physical layer,. The segmentation is necessary since Layer

2 (L2) PDU is usually smaller than the IP packets, for the ease of correct transmis-

sion in wireless mobile channels (In the rest of this chapter, the term packet will

refer to a L2 PDU only, since the network layer study is out of our scope.). In the

physical layer transmissions, the wireless channels may introduce burst of errors

so that a whole L2 packet is dropped. Unlike distributed bit errors, such burst

errors are hard to be recovered by error correction codes no matter with physical

layer FEC or with application layer FEC. On the application layer, these errors

will propagate to following video frames and seriously degrade the video quality.

Hence we consider that the instantaneous L2 Packet Error Ratio (PER) is crucial

for the user perceived QoS, and start improving spectral efficiency on the data link

layer with this PER constraint.

As the previous chapters revealed, when the error constraint (i.e, BER) is

instantaneous, the transmitter has to adapt to the worst link receiver in the group.
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If this instantaneous constraint can be relaxed, more spectral efficiency may be

exploited in the efficiency-reliability tradeoff. From a cross-layer perspective, in a

system with L2 ARQ, the instantaneous PER constraint can be seen as the residual

PER after retransmission, and the PER limit for the first transmission may be

relaxed if the physical layer and data link layer can be jointly designed.

The main problem when applying ARQ to Multicast is scalability [2]. As-

sume the channel fading of all users are i.i.d, and the average packet loss ratio is P .

If in a unicast link the probability that a packet is lost and requires retransmissions

is P , in a multicast link with N users, the probability to request retransmission

for a multicast packet is 1 − (1 − P )N , since any of N users lost this packet

would trigger a retransmission. When N is large, retransmission will be requested

frequently, which will cost lots of transmission capacity and reduce the overall

spectral efficiency. However, if several retransmission packets can be combined,

such scalability problem may be solved.

Motivated by these considerations, we adopt the cross-layer design frame-

work from [3], and jointly optimize the AMC schemes and ARQ scheme for wire-

less multicast. Multiple cross-layer designed AMC-ARQ strategies are proposed

and compared with other strategies, e.g., AMC without ARQ strategies and AMC-

ARQ strategies without cross-layer design. We also develop a packet-combine-

based ARQ to solve the scalability problem.

5.2 Related Work

ARQ with packet combining has been proposed by some researchers. The au-

thors of [4] had proposed to use XOR operation among retransmitted packets for
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multiple unicast links. In their solution, each receiver has to overhear the packets

transmitted to other users and store them. The transmitter will put multiple lost

packets of different receivers into one Combined Packet (CP) with ’XOR’ oper-

ation, and resend such a CP. Then each receiver expecting its retransmission can

extract its own retransmitted packet utilizing its stored correct packets of other re-

ceivers. However, the price of this scheme in multi-user unicast case is that each

receiver consumes N times the power as if it had only received its own packet.

When there are N unicast receivers in a cell, the power consumption of each one

will be N times larger than without this packet XOR.

This drawback does not exist in multicast case. E.g, if there is a 1/N outage

ratio within N receivers for a given transmission rate according to their mean SNR,

and let D(k) represent the kth multicast data packet. During N transmission bursts

each receiver got N − 1 packets correctly, and failed to receive one out of N

packets. They send their requests via an error-free feedback channel, and the

transmitter resends the D(N+1) = D(1)
⊕

D(2)
⊕

...
⊕

D(N) afterward. Each

receiver will be able to extract its intended packet from D(N + 1) and all its

previously received and stored N − 1 packets.

More systematical packet combining methods are the packet level Reed-

Solomon coding. A group of K consecutive packets are feed into a packet-based

encoder to generate L − K parity packets, and the L output packets, including

K original packets and L − K redundant packets, are sent along on the chan-

nel as a Transmission Group (TG). Three HARQ schemes based on packet level

Reed-Solomon codes were designed in [5] for UMTS downlink multicast chan-

nel, and the authors conclude that which design is better rather depends on the
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multicast channel error process in reality (e.g, independent error model or burst

error model). The authors of [6] further proposed two more HARQ schemes as

the extensions of scheme A2 and A3 in [5] and achieve a certain improvement

in throughput and mean Service Data Unit delay, especially when the multicast

group size is large.

A cross-layer design was proposed in [3] for unicast links, which combined

AMC and HARQ. In the spectral efficiency results of this work, the cross-layer

scheme with one retransmission outperforms AMC without ARQ scheme by about

0.25 bits/symbol. However, further increase of maximum allowed retransmissions

only results in diminishing gain. This work implies that one retransmission should

be sufficient in joint AMC and ARQ design if the optimization target is to improve

spectral efficiency while a residual packet loss ratio is allowed. This work inspired

our proposals in its cross-layer framework.
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5.3 Cross-Layer System Model

A wireless transmitter in contemporary systems (e.g, UMTS HSDPA, IEEE 802.11

a, b and g ) usually has both Adaptive Modulation and Coding (AMC) and ARQ

functionalities. Hence we assume the transmitter includes both functions, which

are aware of each other. We also assume constant power transmission to reduce the

design complexity in the cross-layer framework. Assume a base station multicas-

ting to a group of N mobile receivers, where the Layer-1 (L1) feedback channels

can provide instantaneous and perfect CSIs from the receivers to the BS transmit-

ter, and the packet level, Layer-2 (L2) feedbacks will be also errorfree. The cross-

layer system model between the transmitter and one of the receiver is illustrated

in Fig. 5.1. The channels are assumed as frequency-flat block fading channels,

hence the SINR, noted as γi(i = 1..N), will not change during the transmission

time of a PDU. The PDFs of γi follow Independent Identical Distributions (i.i.d),

noted as p(γi). The random vector ~γ := (γ1, γ2, ..., γN) represents a fading state

of the Multicast group, with probability density function p∗(~γ) =
∏N

i=1 p(γi). The

transmitted data block includes both error detection (ED) coding CRC and forward

error correction (FEC) coding.

At the physical layer, we assume the available modulation and FEC code

combinations (referred as AMC modes) are as in HIPERLAN/2. Based on the

CSI reported from all multicast receivers and the link adaptation strategy, the AMC

selector at the transmitter determines the AMC mode. At the data link layer, dif-

ferent ARQ protocols are implemented. A packet from the input buffer is sent

to the physical layer and a copy of it is also stored in the ARQ buffer as shown

in Fig. 5.1. If an error is detected in a packet, a retransmission request is sent
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Figure 5.1: Multicast System Model with Cross-Layer Design

to the ARQ controller at the transmitter via a feedback channel; otherwise, no

retransmission request is sent. The ARQ controller at the transmitter arranges re-

transmission of the requested packet that is stored in the buffer. If a certain packet

is not requested to be resent for any of the receivers, it will be removed from the

retransmission buffer; if it is requested by all the receivers, it will be pushed down

from the ARQ buffer to the physical layer for retransmission immediately; if it is

requested by some of the receivers, the operation will depend on the investigated

ARQ schemes.

The optimization target is to maximize packet level spectral efficiency given

the following constraints:

1. Constraint 1: Maximum allowed number of retransmissions T max
r . Tmax

r is

set to 1, since the results in [3] shows that the spectral efficiency gain from

cross-layer designed ARQ diminishes as retransmission time increases.
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2. Constraint 2: The residual packet loss ratio bound after T max
r retransmissions,

Ploss = 10−2.

On packet level, exact close-form PERs of coded modulation versus γ are not

available, but an approximation is provided in [3] as

PERm(γ) ≈







am exp(−gmγ), if γ ≥ Γm

1, if 0 ≤ γ < Γm

(5.1)

where m refer to AMC mode index, γ is the SINR of a receiver, am, gm are pa-

rameters depend on AMC mode, which are presented in Table. 5.1. Γm is the

threshold of AMC mode m. I.e., in a point-to-point link, mode m is chosen when

γ ∈ [Γm, Γm+1). The value of Γm can be varied according to the target packet

loss ratio, and the channel SINR distributions. If we only consider point-to-point

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Modulation BPSK QPSK QPSK 16-QAM 16-QAM 64-QAM
Coding Rate 1/2 1/2 3/4 9/16 3/4 3/4
Rate
(bits/symbol)

0.5 1.0 1.5 2.25 3.0 4.5

am 274.7229 90.2514 67.6181 50.1222 53.3987 35.3508
gm 7.9932 3.4998 1.6883 0.6644 0.3756 0.0900

Table 5.1: Transmission AMC Modes with Convolutional-Coded Modulation

transmission without ARQ, the AMC threshold can be derived from 5.1 as

Γm =
1

gm
ln

(

am

Ploss

)

(5.2)

where Ploss is the PER constraint. Given ARQ exist, if the expected average packet

loss ratio per transmission is P0, and let PERT max
r +1 represent the residual PER

after Tmax
r + 1 transmissions for a specific packet (one orginal transmission and
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Tmax
r retransmissions), there must be

PERT max
r

+1 = P
T max

r +1
0 ≤ Ploss. (5.3)

In this case the thresholds can be rewritten as

Γ′
m =

1

gm
ln

(

am

P0

)

(5.4)

Since 0 < P0 < 1, 0 < Ploss < 1 and P0 > Ploss ⇒ Γ′
m < Γm, higher data rates

can be allocated under thresholds Γ′
m than under Γm. However, the retransmis-

sion will also reduce the spectral efficiency due to the parity packet transmission.

Whether such SINR threshold relaxation leads to higher spectral efficiency in total

will depend on the comparison of

Se(1) =

M
∑

m=1

RmPr(m) (5.5)

and

Se(Tmax
r + 1) =

1

T

M
∑

m=1

RmP ′
r(m). (5.6)

where Se(1) is the spectral efficiency without retransmission, Se(T max
r +1) is the

one with at most Tmax
r retransmission. Rm is the bit per symbol in each AMC

mode, Pr(m) and P ′
r(m) are the cumulated probability of SINR staying in rate

region m, and they are different due to the different rate region thresholds as in 5.2

and 5.4. T is the expected transmissions per packet,

T = 1 + P0 + P 2
0 + ... + P

T max
r

0 =
1 − P

T max
r

+1
0

1 − P0
(5.7)

If, for a given SINR distribution, Se(T max
r + 1) > Se(1), then we gain spectral
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efficiency with cross layer AMC at the price of packet delay.

5.4 Multicast ARQ with Packet-Combining

We analyze our multicast ARQ design in a two phase setting, the original data

transmission phase and the retransmission phase, namely the first phase and the

second phase. These two phases are considered separately for the ease of analysis,

even though they will be fulfilled alternatively and partially overlap each other in

practice. In the first phase, a large number of data packets are transmitted, such

that the packets number is enough for probabilistic analysis. The packet loss of

each user in the first phase will be reported to the transmitter. In the second phase,

the transmitter will select the most efficient way to combine the lost packets wit

XOR operation in the ARQ buffer and resend them. Under design constraint 1,

each data packet lost in the first phase will only be retransmitted once in the second

phase, thus constraint 2 and Eq.5.3 lead to

P0 =
√

Ploss = 0.1 (5.8)

in which Ploss is the target residual PER and P0 is the instantaneous PER con-

straint.

In the rest of this section two cases of packet combining are discussed, a

simple case with only two users in a group, and the general case for a group with

N users (N ≥ 2).
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5.4.1 Two Users Group

In a group with only two receivers, a packet loss pattern in the first phase is illus-

trated in Fig. 5.2. For data packets D2, D4, D5, D10 which are only lost by one

user each, the BS can combine the retransmission, e.g. CP1 = D2

⊕

D4 (CP

stands for Combined Packet), CP2 = D5

⊕

D10, and both users can decode them

using its previously correctly received packet (e.g, UE1 use D2

⊕

CP1 = D4 and

UE2 use D4

⊕

CP1 = D2). In this case, we call the packets which can be com-

bined into one CP as match packet to each other, e.g, D2 and D4, D5 and D10. For

1 112 3 4 5 6 7 8 9 10… …

Packet stream

UE1

1 112 3 4 5 6 7 8 9 10… …UE2

Figure 5.2: Multicast Packet Loss Pattern for 2 UEs

D7, both users lost it and it cannot be combined with other lost data packets in the

retransmission, otherwise there will be at least one user who cannot decode it.

For any arbitrary packet , define L as the number of users who lost it. To

calculate the transmission per packet T when packet combination is adopted, de-

fine

η = 1/(Number of data packets included in 1 CP)

and T = 1 + η. E.g. η(D2) = η(D4) = η(D5) = η(D10) = 1/2 for packets

D2, D4, D5, D10 and T = 1 + 1
2

for each of them. Hence it has to be retransmitted

by itself and η(D7) = 1.

From the example in Fig. 5.2, we can derive the expected number of retrans-

missions and probabilities. That is, three are three cases for a multicast group with

N = 2:
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• If no user lost this packet, no retransmission is necessary:

Pr(L = 0) = (1 − P )2,

η(L = 0) = 0;

• If one user lost this packet, packet combination with a pacet lost by the other

user can be performed:

Pr(L = 1) =

(

2

1

)

P (1 − P ),

η(L = 1) = 1
2 ;

• If both users lost this packet, no packet combination is possible:

Pr(L = 2) = P 2,

η(L = 2) = 1.

And the expectation of the effective transmission time for any arbitrary packet is

E[T ] = 1 +
2
∑

i=0

η(L = i)Pr(L = i)

= 1 + P (5.9)

5.4.2 N Users Group

Now we generalize such analysis to the N user case (N ≥ 2). There are two

lemmas for the general case:

• Lemma 1: For any arbitrary packet Dj (j is the packet index), its match

packet(s) exist iff 1 ≤ L(Dj) ≤ N − 1, and its match packet(s) are not

unique.

• Lemma 2: A CP can be made up of a subset of lost packets Dj1, ..., Djk
, ...,,

(1 ≤ L(Djk
) ≤ N − 1)
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iff L(Dj1) + .. + L(Djk
) + ... ≤ N and there are no overlapping users among

the loss patterns of each lost packet in this subset. (Put it another way, each

user can have at most one lost packet in the subset of packets retransmitted in

one CP.)

Refer to the system model in Fig. 5.1, our proposed ARQ function can work

in this way: the transmitter sends data packets from its input buffer to the physical

layer, and keep copies of these packets in the ARQ buffer; if one packet is reported

as correct by all users (L = 0), it is removed from the ARQ buffer; if one packet is

lost by all users (L = N ), it will be retransmitted immediately and removed from

the ARQ buffer; otherwise one packet is lost by i users (L = i, 1 ≤ i ≤ N − 1),

it will be kept in the ARQ buffer and wait to be combined with other loss packets.

As the number of packets in the ARQ buffer increases, the ARQ function will first

find the match packets for the first packet in the queue, and combine them and

send the CP, then remove these sent packets. According to the three packet lost

cases described above, the corresponding probabilities and the expected number

of retransmissions of any arbitrary packet are:

• Pr(L = 0) = (1 − P )N , η(L = 0) = 0;

• Pr(L = N) = PN , η(L = N) = 1,

• If L = i, 1 ≤ i ≤ N , Pr(L = i) =

(

N

i

)

P i(1 − P )N−i.

There are many ways to find match packets for this packet as indicated in

Lemma 1, but the most efficient one is to find N − i loss packets in the

rest of the queue, and each of them is lost only by one user and there is no

overlapping of users among them. This is called an optimal combination set
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where η(L = i) = 1
N−i+1, and

E[T ]opt = 1 +
N
∑

i=0

η(L = i)Pr(L = i)

= 1 +

N
∑

i=1

1

N − i + 1

(

N

i

)

P i(1 − P )N−i (5.10)

However, it may take very long time to cumulate all N − i + 1 match packets

for the optimal combination. Hence we also propose a suboptimal combina-

tion scheme, such that the current packet with L = i only need to be combined

with another packet with L = j, i + j ≤ N and there is no overlapping users

between the two packets, and η(L = i) = η(L = j) = 1
2 ,

E[T ]SubOpt = 1 + PN +
1

2

N−1
∑

i=1

(

N

i

)

P i(1 − P )N−i (5.11)

Note: when N = 2, the optimal and sub-optimal combination become the same.

5.5 AMC Strategies

When ARQ is not adopted in the system, the rate adaptation is limited by the

minimum received SINR among all multicast receivers, namely the Minimum-

SINR AMC strategy. With the help of ARQ, the instantaneous PER constraint of

the worst-channel receiver can be temporarily violated such that AMC strategies

other than the Minimum-SINR strategy can also be adopted. And the lost pack-

ets of the worst-channel receiver can be retransmitted such that its residual PER

may still be within Ploss. The AMC strategies we investigate jointly with ARQ are:
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1. Minimum SINR AMC

In this strategy the data rate has to satisfy the instantaneous PER constraint

of the worst SINR receiver, such as

AMC mode m is chosen if min{~γ} ∈ [Γm, Γm+1)

2. Second Minimum SINR AMC

In this strategy the data rate has to satisfy the instantaneous PER constraint

of the second least SINR receiver, noted as γMin2, i.e.,

AMC mode m is chosen if γMin2 ∈ [Γm, Γm+1)

3. Average PER-based AMC

In this strategy the data rate is chosen such that the corresponding average

instantaneous PER among group members is the closest to the PER constraint

of all rate options. Before each transmission burst is sent,
For AMC mode m = 1..M,

PERm =
∑N

i=1 PERm(γi)

mopt = arg min |PERm − P0|

Assign mopt.

Since strategy 2 and 3 do not guarantee the instantaneous PER of each receiver

during the first transmission, the residual PER of a packet has to be guaranteed by

the ARQ schemes.
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5.6 Evaluation Methods

In total, there are three adaptation strategies to be compared in this chapter.

• The proposed cross layer approach, where the instantaneous PER relaxation

due to ARQ is adopted, so

P0 =
√

Ploss = 0.1

• Layered multicast AMC and ARQ. In this case multicast AMC and ARQ

functions both exist in the system, but they are not jointly designed. I.e, the

AMC thresholds are derived from

P0 = Ploss = 0.01;

• AMC alone.

The AMC strategy 1 can be applied with or without ARQ, with or without cross-

layer design, since it uses an absolute instantaneous PER constraint in AMC mode

selection for the first transmission. E.g., the target residual PER is 0.01, hence

the PER constraint without ARQ is 0.01; it is also 0.01 with ARQ but no X-layer

design, since then AMC part is not aware the exist of ARQ; it is relaxed to 0.1

with ARQ and cross-layer awareness. But AMC strategy 2 and 3 must be applied

with ARQ, as explained in Sec. 5.5.

On the other hand, three different ARQ schemes are to be compared:

• Optimal packet combining

• Sub-optimal packet combining
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• Plain ARQ, no packet combining

5.7 Case Study I: N = 2

In this case study, a group of 2 users under i.i.d Rayleigh fading channels is con-

sidered. The attempt is to derive the close-form solution of the spectral efficien-

cies for two AMC strategies, strategy 1 and 2, with or without cross-layer design.

Strategy 3 is not studied since it is difficult to build a close-form model for its

algorithm. So there are four AMC-ARQ strategies to be evaluated:

• Strategy S1: Minimum SINR AMC, with the packet-combining ARQ and

cross-layer design.

• Strategy S2: Maximum SINR AMC, with the packet-combining ARQ and

cross-layer design. In a two users group, the strategy 2 of Sec. 5.5 reduces

to this Maximum SINR AMC. Also, this scheme cannot be adopted without

ARQ.

• Strategy S3: Minimum SINR AMC, without ARQ.

• Strategy S4: Minimum SINR AMC, with ARQ but not cross-layer design.

As explained in Sec. 5.4.2, the optimal and sub-optimal packet-combining ARQ

are the same at N = 2.

5.7.1 Performance Analysis in Close-Form Expression

According to Eq.5.5, the per user spectral efficiency from the first transmission is

Se(1) =

M
∑

m=1

Rm

∫ ∫

Ωm

p(γ1, γ2)dγ1 (5.12)
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where the rate region Ωm corresponding to rate Rm is a two-dimensional area

depending on the rate adaptation strategy, and p is the joint PDF of γ1 and γ2.

Assume only one combined retransmission is allowed for any loss packet,

hence the per user spectral efficiency after the retransmission is

Se(Tmax
r + 1) =

Se(1)

T
. (5.13)

For the ease of presenting different AMC strategies in the integrals, let γd

represent the dominant SINR for rate selection, hence

• Min-SINR AMC, γd = γmin := min{γ1, γ2};

• Max-SINR AMC, γd = γmax := max{γ1, γ2}.

On average, the expected transmission time per packet with loss probability P

among users are T = 1 + P , where

P = PER1 = PER2

=

∑M
m=1 Rm

∫ ∫

Ωm

PERm(γ1)p(γ1, γ2)dγ1dγ2

Se(1)
, (5.14)

in which PERm(γ1) can also be PERm(γ2) given the users’ SINR PDFs are i.i.d.

According to Eq. 5.9, Eq.5.13 and 5.14, the expected per user spectral efficiency

is

Se(Tmax
r + 1) =

Se(1)

1 + 1
Se(1)

∑M
m=1 Rm

∫ ∫

Ωm

PERm(γ1)p(γ1, γ2)dγ1dγ2

(5.15)
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To observe the system performance, it is necessary to derive Se(1), P and

Se(Tmax
r + 1). Hence we have to solve the integral of PERm and the integral of

p(γ1, γ2) in rate region Ωm, and the shape of Ωm depends on the AMC strategy.

5.7.1.1 Close-Form Solution for Min-SINR AMC

Starting with AMC strategy 1, the rate regions will have the shapes as in Fig. 5.3,

and the integration of PERm in such rate regions can be calculated as

SINR_UE1

SINR_UE2

0           Gamma0     Gamma1          Gamma2   Gamma3   …

Gamma3

Gamma2

Gamma1

Gamma0

m = 0

m = 4

m = 1

m = 3

m = 2

Figure 5.3: Integration Region of 2 UEs, D-Rate
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1. m < M ,

∫ ∫

Ωm

PERm(γ1)p(γ1, γ2)dγ1dγ2

=

∫ ∞

Γm+1

∫ Γm+1

Γm

am exp(−gmγ1)p(γ1)p(γ2)dγ1dγ2

+

∫ Γm+1

Γm

∫ ∞

Γm

am exp(−gmγ1)p(γ1)p(γ2)dγ1dγ2

=Q(m + 1)

∫ Γm+1

Γm

amγ1

σ2
exp(−gmγ1 −

γ2
1

2σ2
)dγ1

+ (Q(m) − Q(m + 1))

∫ ∞

Γm

amγ1

σ2
exp(−gmγ1 −

γ2
1

2σ2
)dγ1

(5.16)

where Q(m) = exp
(

−Γ2
m/2σ2

)

.

2. m = M

∫ ∫

ΩM

PERM(γ1)p(γ1, γ2)dγ1dγ2

=

∫ ∞

Γm

∫ ∞

Γm

aM exp(−gMγ1)p(γ1)p(γ2)dγ1dγ2

=Q(M)

∫ ∞

Γm

aMγ1

σ2
exp(−gMγ1 −

γ2
1

2σ2
)dγ1 (5.17)
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5.7.1.2 Close-Form Solution for Max-SINR AMC (Second-Min-SINR AMC @ N=2)

For AMC strategy 2, rate region Ωm is represented in Fig. 5.4. The integration of

SINR_UE1

SINR_UE2

0           Gamma0     Gamma1          Gamma2   Gamma3   …

Gamma3

Gamma2

Gamma1

Gamma0

m = 0

m = 4 …

m = 1

m = 3

m = 2

Figure 5.4: Rate Regions of Max-SINR Strategy

PERm in such rate regions can be calculated as

1. m < M ,

∫ ∫

Ωm

PERm(γ1)p(γ1, γ2)dγ1dγ2

=

∫ Γm+1

0

∫ Γm+1

Γm

am exp(−gmγ1)p(γ1)p(γ2)dγ1dγ2

+

∫ Γm+1

Γm

∫ Γm

0

1 · p(γ1)p(γ2)dγ1dγ2

=(1 − Q(m + 1))

∫ Γm+1

Γm

amγ1

σ2
exp(−gmγ1 −

γ2
1

2σ2
)dγ1

+(Q(m) − Q(m + 1))(1− Q(m)) (5.18)

where Q(m) = exp
(

−Γ2
m/2σ2

)

.
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2. m = M

∫ ∫

ΩM

PERM(γ1)p(γ1, γ2)dγ1dγ2

=

∫ ∞

0

∫ ∞

ΓM

aM exp(−gMγ1)p(γ1)p(γ2)dγ1dγ2

+

∫ ∞

ΓM

∫ ΓM

0

1 · p(γ1)p(γ2)dγ1dγ2

=

∫ ∞

ΓM

aMγ1

σ2
exp(−gMγ1 −

γ2
1

2σ2
)dγ1 + Q(M)(1 − Q(M)) (5.19)

So far, the integrals of PERms can be calculated, and the calculation of
∑M

m=1 Rm

∫ ∫

Ωm

p(γ1, γ2)dγ1dγ2 can be done in the similar way. That is, the val-

ues of P in Eq.5.14 and Se(T max
r + 1) in Eq.5.15 can be derived accordingly.

5.7.2 Numerical Results

The resulted performances and behaviors of all four strategies are plotted in Fig. 5.5.

From Fig. 5.5(a) it can be observed that the Max-SINR strategy(strategy S2) has

the highest spectral efficiency for the first transmission with significant gain over

the other three strategies. Strategy S1 outperforms strategy S3 and S4, and the

curves of S3 and S4 are overlapping with each other. This is because S3 and

S4 follow the most strict instantaneous PER constraints, while S2 allocates data

rate more aggressively than S1. On the other hand, such aggressive adaptation

of Max-SINR resulted in a very high PER even when the average SINR is good,

while the PERs of the other two decreased fast as average SINR increase, as shown

in Fig. 5.5(b). The overall spectral efficiency results in Fig. 5.5(c) are:

when the average SINR is less than 12dB, strategy S2 performs the best,

since the rate allocation gain overcomes the efficiency loss of retransmission. The
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Figure 5.5: Performances of Different Adaptation Strategies, N = 2
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spectral efficiency gain of strategy S2 can achieve at most 0.4bit/s/Hz in this re-

gion. As average SINR gets higher than 12dB, the performance of S1 exceeds S2,

but the difference is quite small. As the average SINR approaches 30dB, the three

curves converge. This is due to the finite modulation and coding schemes avail-

able (i.e, the adopted 6 modulation and coding combinations). When the SINR is

so high, the packet loss is small enough such that the spectral efficiency is only

limited by the highest modulation and coding rate.

However, the residual PER curves in Fig. 5.5(d) shows that strategy S2 fails

to keep the PER constraint (Ploss = 10−2) when the average SINR is less than

23dB. That is, strategy S1 is the best one for the two user group case.

5.8 Case Study II: N ≥ 2

In this section, Monte-Carlo method is adopted in numerical integrations to derive

the performances for different AMC-ARQ strategies when the multicast group

size N ≥ 2. This choice is due to two reasons: first, it is difficult to express more

complex AMC strategies such as the strategy 3 in Sec. 5.5 in close-form; second,

when N > 2, it is difficult to solve the integral along rate region Ωm in close-form,

since the shape of Ωm becomes complex as N is large. When the complexity of

deriving close-form solution is avoid, it is possible to investigate the behavior of

more AMC and ARQ combinations, as the group size increases.

Here we compared the performance of 5 different schemes in total:

• Strategy S1: Average PER AMC as the AMC strategy 3 in Sec. 5.5, with

ARQ and cross-layer design, P0 =
√

Ploss = 0.1.
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• Strategy S2: Minimum SINR AMC as the AMC strategy 1 in Sec. 5.5, with

ARQ and cross-layer design, P0 =
√

Ploss = 0.1.

• Strategy S3: Second minimum SINR AMC as the AMC strategy 2 in Sec. 5.5,

with ARQ and cross-layer design, P0 =
√

Ploss = 0.1.

• Strategy S4: Minimum SINR AMC, without ARQ, P0 = Ploss = 0.01.

• Strategy S5: Minimum SINR AMC, with ARQ but not cross-layer design,

P0 = Ploss = 0.01.

In this section, the performances of strategy S1, S2, S3 and S5 are analyzed with

the optimal packet-combining ARQ, the sub-optimal packet-combining ARQ and

the plain ARQ (no packet-combining).

5.8.1 Numerical Results

The numerical result of all investigated adaptation schemes are presented in Fig. 5.6

for the average SINR at 10dB. In these results, the spectral efficiencies of the first

transmission stage are depicted in Fig. 5.6(a), and the PERs of the first transmis-

sion are presented in Fig. 5.6(b). After the retransmissions, the residual PERs are

shown in Fig. 5.6(c), Fig. 5.6(d), Fig. 5.6(e) and Fig. 5.6(f) illustrate the overall

spectral efficiencies after the retransmissions with the optimal packet-combining

ARQ, the sub-optimal packet-combining ARQ and the plain ARQ, respectively.
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Figure 5.6: Performances of AMC-ARQ Strategies VS Group Size, SINR = 10dB
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Fig. 5.6(a) reflects the performances of all strategies before ARQ, hence the

performance differences are due to different AMC schemes and different P0s. It

can be observed that S1 (the red curve) and S3 (the purple curve) achieved the best

spectral efficiency in the first transmission stage. But S3 fails to keep the residual

PER bound when the group size is less than 10 (Fig. 5.6(b)), hence it should be out

of consideration. The spectral efficiency of S2 is less than S1 and S3, but better

than S4 and S5. S1 outperforms S2 when N > 4 and the performance gain keeps

increasing as the group size is getting larger, from about 0.2bit/s/Hz when N = 6

to 1.4bits/s/Hz when N = 16. This is because S1 exploits the efficiency-reliability

tradeoff more extensively, as shown in Fig. 5.6(b), where the PER of S1 is only

slightly less than 0.1 when N > 4. In S1, there is higher possibility that the worst

PER can be averaged out by the PERs of other group members as the group size

increases, so that the average PER of the group allows higher rate assignment. It

is also clear in Fig. 5.6(b) that such benefit does not exist when N ≤ 4, where

the spectral efficiency of S1 before ARQ is almost the same as S2 (in Fig. 5.6(a)).

That is because the group size is too small and the worst PER due to the least SINR

dominates the rate assignment. Besides, the PER of S1 is still within P0 = 10−1

boundary (as in Fig. 5.6(b)), and the residual PER is within Ploss = 10−2 (as

in Fig. 5.6(c)). Comparing S1 and S2 in Fig. 5.6(a), we can conclude that: S1

exploits the user diversity in their SINRs and corresponding PERs, so its spectral

efficiency is not decreasing monotonically as group size increases; while the rate

assignment of S2 is limited by the worst SINR, and its spectral efficiency keeps

decreasing as the group size/diversity increases. Comparing S2, S4 and S5, it can

be seen that the gain of cross-layer design (relaxing P0 from 0.01 (S4 and S5) to
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0.1 (S2)) is between 0.2 and 0.3 bit/s/Hz. The curves of S4 and S5 are overlapping

each other since they share the same AMC scheme and the same P0, hence they

perform the same during the first transmission stage.

Then let us look at the overall spectral efficiencies after the retransmissions

presented in Fig. 5.6(d), Fig. 5.6(e) and Fig. 5.6(f). If the optimal packet combin-

ing is adopted (Fig. 5.6(d)), S1 is still the best strategy, but its performance gain

over S2 is slightly less than the gain before retransmission, from 0.16 bit/s/Hz

(N = 6) up to about 1.1bit/s/Hz (N = 16). This gain reduction is due to the

more retransmissions required in S1, since its PER is much higher than that of

S2 (shown in Fig. 5.6(b)). If the sub-optimal packet combined ARQ is adopted

2 4 6 8 10 12 14 16
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Group Size

O
ve

ra
ll 

S
pe

ct
ra

l e
ffi

ci
en

cy
 (b

it/
s/

H
z)

Spectral efficiencies with different ARQ schemes

AvgPER + OptARQ
AvgPER + SubOptARQ
AvgPER + Plain ARQ

Figure 5.7: Spectral Efficiencies of S1 with Different ARQs, SINR = 10dB

(Fig. 5.6(e)), S1 still outperforms S2, but the gain of S1 over S2 is not signifi-

cant until N ≥ 12. In the plain ARQ case (Fig. 5.6(f)), the spectral efficiency of

S1 is even less than or equal to that of S2 unless N = 16. That is, without the

packet-combining ARQs, the spectral efficiency gain of S1 over S2 would have
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been cancelled by its frequent retransmissions. The spectral efficiencies of S1

with all three ARQs are also compared in Fig. 5.7, where the gain of the optimal

ARQ over the sub-optimal ARQ can be up to 0.44bit/s/Hz (N = 16), and the gain

of the sub-optimal ARQ over the plain ARQ can be up to 0.32bit/s/Hz (N = 16).

Last but not the least, the gain of cross-layer design itself is stable with all

three ARQ schemes. S2, S4 and S5 adopt the same rate adaptation strategy, and

S2 outperforms the other two strategies by 0.2 to 0.24 bit/s/Hz in its overall spec-

tral efficiencies with any of the three ARQ schemes (Fig. 5.6(d), Fig. 5.6(e) and

Fig. 5.6(f)). The spectral efficiency curves of S4 and S5 after retransmissions are

also overlapping each other, since their performance are the same in Fig. 5.6(a),

and the PERs are so small (less than 10−3) that the spectral efficiency loss intro-

duced by the very few retransmissions in S5 comparing to S4 (no retransmission)

is trivial.

The performance results for the average SINR at 5dB and 15dB have also

been derived, and are presented in the appendix.

5.9 Conclusion and Future Work

In this section we propose a innovative multicast ARQ scheme in its optimal and

suboptimal forms. This scheme utilize the packet level ’XOR’ operation to reduce

the number of retransmissions, in order to solve the scalability problem of multi-

cast ARQs. We adopt this packet-combining ARQ scheme in a cross-layer design

framework, which allows the instantaneous PER constraint to be relaxed and the

data rate to increase. An average-PER-based (average over instantaneous group

PERs) rate adaptation algorithm has also been developed within this cross-layer
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framework.

The performance analysis has been fulfilled in two case studies: the first

analysis is for the group with only two multicast receivers, and the close-form

solutions for both spectral efficiencies and residual PERs are derived; the second

analysis is for the group with N receivers (N ≥ 2) based on the Monte-Carlo

integration method, and in this way more combinations of AMC and ARQ strate-

gies have been studied. Both case studies are based on the assumptions that the

SINRs of the receivers are i.i.d and Rayleigh distributed. Since the second case

study covers more general scenarios and more adaptation strategies than the first

one does, the conclusions of this chapter are mainly drawn from the second case

study.

The numerical results shows that our jointly designed average PER adap-

tation and optimal packet-combining ARQ achieve the best spectral efficiency

among all AMC-ARQ strategies, and successfully keep the residual PER con-

straint at the same time. The second-minimum SINR-based AMC is also efficient

in spectral efficiency, but fail to keep the residual PER constraint even with ARQ.

The results also reveal that the gain of cross-layer design over non-cross-layer de-

sign with the same rate adaptation strategy is stable under different ARQ schemes.

The work in this chapter is based on the following assumptions:

Perfect and instantaneous CSI feedbacks for the AMC function in the BS. In re-

ality the CSI feedbacks must be delayed and may include errors, and there

could also be a scalability problem for the CSI feedbacks while the group

size is large. To include these issues, more detailed analysis and simulations

need to be done in our future work. However, though the spectral efficiencies
Haibo Wang



144 Chapter 5. Cross Layer Design for Multicast

of the evaluated solutions in this chapter are expected to decrease with im-

perfect CSIs comparing to the current results with perfect CSIs, the optimal

solution S1 should still outperform the others.

Correct PDU-level feedbacks for the ARQ function in the BS. Since the feed-

backs for the ARQ function is simply ACK/NACK messages, which requires

rather low data rate and can be transmitted with the most robust AMC mode,

this assumption should hold unless some feedback channels are in deep fad-

ing.

Rayleigh distributions and i.i.d for the SINRs of all receivers. Strictly speaking

the i.i.d Rayleigh assumption can only describe the SINRs of the receivers if

they are at the same distance to the BS and with the same Shadowing level.

This assumption is adopted since multi-path fading is the main challenge for

the link adaptation approaches to cope with in this PhD thesis. The analyt-

ical model based on this assumption in this chapter can be seen as the first

step toward building a more sophisticated cross-layer model for joint AMC-

ARQ optimizations. In our future work, the proposed AMC-ARQ strategies

can be analyzed with the general Nakagami-m model [7], or with detailed

simulations which are able to evaluate these strategies under non-i.i.d SINRs.

Due to the time limitation, the delay caused by the packet-combining ARQ could

not have been discussed quantitatively. In general, the delay introduced by the op-

timal packet-combining scheme might be too long to be implemented in practical

systems, and the sub-optimal packet-combining scheme is more implementable.

The reason has been explained in Sec. 5.4.2. The spectral efficiency advantage

of the sub-optimal packet-combining ARQ over plain ARQ is less than that of the
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optimal packet-combining ARQ, but still significant (Fig. 5.7). In our future work,

a detailed delay analysis for the proposed ARQ schemes should be fulfilled.

Note: The works presented in this chapter will be published in [8].
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Chapter 6

Conclusion

6.1 Summary

This PhD dissertation has focused on the wireless multicast link adaptation prob-

lem, and has explored the spectral efficiency and reliability tradeoff of a wire-

less multicast channel with both simulation-based and analytical-model-based ap-

proaches. In order to optimize the average spectral efficiency per multicast user

with QoS constraints, multicast-specific rate adaptation, power adaptation, joint

power and rate adaptation, cross-layer design combining AMC and ARQ have

been investigated, and new algorithms are proposed and evaluated. Numerical

results also reveals the necessary user number switching from unicast mode to

multicast mode.

Our optimization methods and their corresponding constraints can be sum-

marized as follow:

• Optimization I

– Reliability Constraint: Average BER per multicast receiver.

– Adaptation approaches: discrete rate adaptations.
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– Optimal solution in the evaluated schemes: History-based rate adapta-

tion (Sec. 3.5).

• Optimization II

– Reliability Constraint: Instantaneous BER per multicast receiver.

– Adaptation approaches: continuous or discrete rate adaptations, continu-

ous power adaptations.

– Optimal solution in the evaluated schemes: the optimal joint rate and

power adaptation functions for both continuous and discrete rate cases (Sec. 4.4

and Sec. 4.5).

• Optimization III

– Reliability Constraint: Instantaneous PER per multicast receiver.

– Adaptation approaches: discrete rate adaptations and ARQs within cross-

layer design framework.

– Optimal solution in the evaluated schemes: the average PER-based rate

adaptation and packet-combining ARQ (Sec. 5.8).

The recommendations will depend on the QoS constraints mapping from the ap-

plications to the link layer and the physical layer, which are decided by the media

type, the way in which the media is coded and compressed, its corresponding QoS

requirements on network layer, link layer, and physical layer, and so on. For the

concerned real-time video service to be multi-casted via a shared downlink wire-

less channel,

• if it is sensitive to both the instantaneous BER and the link level delay (such
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that layer 2 ARQ is not allowed), then the average spectral efficiency of re-

ceiver have to be limited by the receiver in the worst channel condition and

the proposed joint power and rate adaptation solution in the optimization II is

recommended.

• if it is not sensitive to the instantaneous BER but sensitive to the link level

delay, then the history-based rate adaptation algorithm in optimization I is

recommended;

• if it is sensitive to the instantaneous BER or PER (due to the correlation

among different video frames on the application layer) but not too sensitive

to the link layer delay (so that the PDUs are allowed to be buffered within a

certain time constraint and ARQ is feasible), the joint design of AMC-ARQ

strategy of optimization III is recommended.

All the optimal solutions and the corresponding performances have been based on

one common assumption that the CSI feedbacks are delay-free and error-free. In

reality these feedbacks are with delays and may include errors, either due to the

error introduced by wireless transmissions, or due to that the channel condition

has varied from the moment those CSIs were created to when they were utilized

at the BS. We expect the spectral efficiencies of the optimal solution in each of the

evaluation scenario in case of imperfect CSIs will be less than the ones derived

with perfect CSIs, but still better than other solutions in each of the evaluation

scenario.
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6.2 Outlook

Based on the analysis and discussions in this dissertation, it is understandable that

the link level adaptations for multicast receivers and for multimedia services are

highly complex. The basic dilemma is that the radio resource is shared among

mobile receivers and the applied QoS constraints are the same, while the received

channel conditions of different users are highly diversified. We have proposed

several solutions to improve the user perceived QoS by maximizing the average

spectral efficiency per user, and keeping the reliability constraints inviolated.

Based on the analysis and discussions in this dissertation, further research

effort can be done in the following directions:

Link adaptation for diversified channel conditions The study scenarios in this

project cover either the heuristic varying of group channel conditions with

homogeneous mobilities (in Chapter 3) or Ergodic i.i.d link conditions (in

Chapter 4 and 5). Future work can evaluate and extend the algorithms in this

thesis in group members with heterogeneous mobilities, or non-i.i.d link con-

ditions, which may be even more precise to the multicast scenario in reality.

Feedback reduction As the multicast group size increase, the quantity of CSI

feedback messages required by link adaptation and the ACK/NAK required

by multicast ARQ functions will grow rapidly. It may cost too much uplink

transmission capacity and take longer for the transmitter to collect and pro-

cess all this feedbacks. Hence it would be preferred if new link adaptation

and ARQ algorithms can be designed to work with reduced feedbacks.

Optimization in multi-cell setting In the multi-cell setting, there are more de-
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grees of freedom to explore for multicast. E.g., if are cluster of cells are

multi-casting the same service on the same multicast channel, the receivers in

bad channel condition can combine the signals received from multiple base

stations to improve their overall signal quality.

In a broader view, the approaches from even more dimensions and layers can be

considered in the future work. E.g., cooperative transmissions/retransmissions can

be performed among different receivers to help to receivers in bad channel con-

ditions. On the other hand, new application level achievements may allow the

instantaneous constraints on link level to be relaxed, which will allow more mul-

ticast adaptation approaches to be adopted or less design complexity with existing

approaches. I.e., new video coding methods may be optimized for the mobile

transmission environment to reduce the sensitivity of video frames to the instanta-

neous BER or PER.
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Appendix A

Additional Results of the Cross-Layer

Strategies

This section presents the additional results from the analysis in Sec.5.8, which are

derived for the scenarios of SINR = 5dB (in Fig. A.1) and SINR = 15dB (in

Fig. A.2), respectively.

In general, similar behaviors of each AMC-ARQ strategies as the ones at

SINR = 10dB can be observed also in these two scenarios. In Fig. A.1(a) and

Fig. A.2(a), the spectral efficiency advantages of S1 over S2 are less than those

at SINR = 10dB. Also the gain due to cross-layer design of S2 over S4 and S5

(0.1 ∼ 0.2 bit/s/Hz) are less than those at SINR = 10dB (0.2 ∼ 0.3 bit/s/Hz).

The PER and residual PER results in Fig. A.1(b) and Fig. A.2(b) looks almost the

same as the counterparts at SINR = 10dB.

Concerning the performances after ARQs at SINR = 5dB, the spectral

efficiency trends of S1 versus S2 are similar to the counterpart at SINR = 10dB

in Fig. A.1(d) and Fig. A.1(e).

For the SINR = 15dB case, the spectral efficiency curves of S1 (in Fig. A.2(a),
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Fig. A.2(d)) is different from its counterparts at 5dB and 10dB cases, because it

does not increase when N increase from 14 to 16. From the existing results we

expect that the spectral curves of S1 (in the first transmission and after the optimal

packet-combining ARQ) in all the SINR scenarios will not keep increasing when

N > 16, but keep fluctuating. This assumption need to be examined with the

results for more group sizes.
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Figure A.1: Performances of AMC-ARQ Strategies VS Group Size, SINR = 5dB

Haibo Wang



156 Chapter A. Additional Results of the Cross-Layer Strategies

2 4 6 8 10 12 14 16
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Group Size

S
pe

ct
ra

l e
ffi

ci
en

cy
 o

f 1
st

 tr
an

sm
is

si
on

 (b
it/

s/
H

z)
Performances with i.i.d Rayleigh SINR, P

Loss
=0.01

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(a) Spectral Efficiency of the First Transmission

2 4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

Group Size

P
E

R
 o

f t
he

 fi
rs

t t
ra

ns
m

is
si

on

Performances with i.i.d Rayleigh SINR, P
Loss

=0.01

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(b) Packet Error Ratio

2 4 6 8 10 12 14 16
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Group Size

R
es

id
ua

l P
E

R

Performances with i.i.d Rayleigh SINR, P
Loss

=0.01

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(c) Residual Packet Error Ratio

2 4 6 8 10 12 14 16
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Group Size

O
ve

ra
ll 

S
pe

ct
ra

l e
ffi

ci
en

cy
 (b

it/
s/

H
z)

Performances with optimal packet combining ARQ

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(d) Spectral Efficiency after Optimal Packet-Combining

2 4 6 8 10 12 14 16
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Group Size

O
ve

ra
ll 

S
pe

ct
ra

l e
ffi

ci
en

cy
 (b

it/
s/

H
z)

Performances with suboptimal packet combining ARQ

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(e) Spectral Efficiency after Sub-Optimal Packet-Combining

2 4 6 8 10 12 14 16
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Group Size

O
ve

ra
ll 

S
pe

ct
ra

l e
ffi

ci
en

cy
 (b

it/
s/

H
z)

Performances with plain ARQ

AvgPER + ARQ
Min−SINR + ARQ
Min2nd−SINR + ARQ
Min−SINR, w/o ARQ
Min−SINR, w/o cross−layer

(f) Spectral Efficiency after Plain ARQ

Figure A.2: Performances of AMC-ARQ Strategies VS Group Size, SINR = 15dB
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Appendix B

List of Abbreviations

3GPP Third Generation Partnership Project

ACK Acknowledgement

ADC Analog-to-Digital Converter

ADSL Asymmetric Digital Subscriber Line

AM Adaptive Modulation

AMC Adaptive Modulation and Coding

ARQ Automatic Repeat reQuest

AWGN Additive White Gaussian Noise (AWGN)

BER Bit Error Ratio

BPSK Binary Phase Shift Keying

BS Base Station

CATV Cable Television

CDF Cumulative Distribution Function
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CDMA Code Division Multiple Access

CP Combined Packet

CSI Channel State Information

DAB Digital Audio Broadcasting

DAC Digital to Analogue Converter

DVB-T Digital Video Broadcasting - Terrestrial

ED Error Detection

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

GBN Go-Back-N

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat reQuest

HSDPA High-Speed Downlink Packet Access

HSUPA High-Speed Uplink Packet Access

IETF International Engineering Task Force

IFFT Inverse Fast Fourier Transform

i.i.d Independent Identical Distributions

ISI Inter-Symbol interference
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LA Link Adaptation

LOS Line-Of-Sight

LTE Long Term Evolution

MBMS Multimedia Broadcast and Multicast Service

MCM Multiple Carrier Modulation

MIMO Multiple Input Multiple Output

MT Mobile Terminal

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PER Packet Error Ratio

PDF Probability Density Function

PDU Packet Data Unit

PTM Point to Multi-point

PTP Point to Point

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase-Shift Keying

RF Radio Frequency

RFC Request for Comments
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RRM Radio Resource Management

RUNE Rudimentary Network Emulator

SAW Stop-And-Wait

SCM Single Carrier Modulation

SINR Signal-to-Interference-and-Noise-Ratio

SNR Signal-to-Noise-Ratio

SR Selective Retransmission

TS Time-Slots

TTI Transmission Time Interval

UE User Equipment

UMTS Universal Mobile Telecommunications Systems

UTRAN Universal Terrestrial Radio Access Network

WCDMA Wide-band Code Division Multiple Access

WiMAX Worldwide Inter-operability for Microwave Access

WLAN Wireless Local Area Networks
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Appendix C

List of Math Notations and Symbols

Chapter 2

L : the path-loss in decibels (dB);

n : the path-loss exponent, no unit;

d : the distance between the transmitter and the receiver in meters;

C : a constant which depends on the carrier frequency, environment type (e.g.,

rural, urban, suburban, indoor), and other system loss factors, in decibels;

Td : delay spread, is defined as the time difference between the first and the last

received impulses, measured in s, ms or ns;

t : time;

τi(t), τj(t) : the arrival time of two impulses from the same transmitted signal

due to multipath;

Bc : coherence bandwidth in Hz;

Bs : bandwidth of a baseband symbol in Hz;
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f : frequency in Hz;

S(f) : power function along frequency domain, usually in watt;

G(f) : channel gain function along frequency domain in linear unit.

Chapter 3

i : the index of multicast receivers;

j : the index of OFDM subcarriers within a multicast subchannel;

SNR(i, j) : signal-to-noise-ratio of multicast receiver i over subcarrier j;

M : the modulation mode, e.g., BPSK, 4QAM, 16QAM, 64QAM, 256QAM, or

turn-off;

KM : the number of bits per symbol on a subcarrier corresponding to a modulation

mode;

vd : the sampled complex delay profile, no unit;

Drms : the rms delay in sample unit;

Dmax : the maximum delay spread in sample unit;

wd : a complex Normal random process;

V : the normalization factor, no unit;

N : the number of mobile receivers in the investigated multicast group;

S : the user satisfaction rate, not unit;

T : the Normalized Average user Goodput per session, no unit;
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Goodputi : the correctly received bits by receiver i during one service session;

R(T, S) : Reward function made up of S and T , no unit;

BERi : the average BER of receiver i during the whole multicast service session;

θ : the average BER constraint, no unit, θ = 10−3;

W1, W2 : the relative weights of T and S used in Reward function definition in

Sec. 3.4;

BER(M, SNRi,j) : the instantaneous BER of receiver i on subcarrier j;

S ′(M, j) : the instantaneous satisfaction rate of mode M on subcarrier j;

T ′(M, j) : the instantaneous goodput of mode M on subcarrier j;

R′(M, j) : the local Reward of mode M on subcarrier j;

w1′, w2′ : the local/instantaneous relative weights of T ′(M, j) and S ′(M, j) used

in the instantaneous Reward function definition in Sec. 3.4;

Mopt(j) : the optimal modulation mode on subcarrier j;

ΓM : the SNR thresholds of each modulation mode;

BERc : the cumulated BER at receiver i since the multicast transmission start

until the current time;

θ1 : the arbitrary low boundary of the optimal BER interval in Sec. 3.5;

θt(i) : the instantaneous BER Threshold for the next transmission for UEi in Sec.

3.5;

θmax : the arbitrary upper boundary of θt(i) in Sec. 3.5;
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δ : the multiplicative factor to increase θt(i) in Sec. 3.5.

Chapter 4

N : the number of receivers in a multicast group;

C : Shannon capacity of a channel, in bit/s;

B : channel bandwidth, in Hz;

R : achievable data rate of practical system, bit/s;

Υ : the gap between Shannon capacity and the achievable capacity/capacity of

real systems, no unit;

x : the transmitted multicast signal amplitude in volt;

gi : the channel gain of receiver i;

σi : the noise amplitude at receiver i in volt;

yi : the received signal amplitude at receiver i, in volt;

γi : the instantaneous Normalized SNR measured under average transmitted power

level, in linear unit in all math expressions, but presented in decibels in all fig-

ures;

SNRi : the received SNR of receiver i after power adaptation, in linear unit in

math expressions, but in decibels in all figures;

~γ : a random fading state vector, made up of all the instantaneous γi of the multi-

cast group receivers;
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p∗(~γ) : the probability density function of ~γ;

k : transmitted data rate as a function of ~γ in this chapter, bits per symbol;

Ts : duration of a baseband symbol;

S : power in watt, a function of ~γ in this chapter;

θ : BER constraint, theta = 10−3 in this chapter;

(R/B)T : transmitted spectral efficiency in bits/s/Hz;

(RB )i : received spectral efficiency by receiver i, in bits/s/Hz;

(RB ) : average spectral efficiency among all multicast receivers;

E{.} : the mathematical expectation of a random variable;

S : the average power constraint, in watt;

Ω : a region of ~γ in the non-negative N-dimensional space;

(R+
0 )N : a space of N-dimensional space with non-negative real values on each

dimension;

J (.) : the Lagrange function;

λ0 : the Lagrange multiplier for the power constraint;

σ : an arbitrary function;

ε : a sufficient small number;

c : a constant, no unit;

Sopt : the optimal power adaptation function;
Haibo Wang



166 Chapter C. List of Math Notations and Symbols

γ0 : a threshold of the normalized SNR to turn-on the transmission on the multi-

cast channel;

∆, α : two arbitrary values derived from the multi-dimensional integrations.

Sc : the constant transmission power level average power constraint, in watt;

SL : a linear power function, in watt;

β, ϕ : parameters of the linear power function, no unit;

(

R

B

)

Shannon
: Shannon capacity of a multicast channel under the worst-link-dominant

limit.

Chapter 5

N : the total number of receivers in a multicast group;

m : index of AMC mode;

P : average packet loss ratio;

K : number of original data packets to be coded;

L : (in page 81) number of output packets after the packet encoder;

Tmax
r : maximum allowed number of retransmissions;

Ploss : residual packet loss/error ratio after retransmissions;

P0 : the expectation of the instantaneous packet error ratio of a transmission;

PERm(.) : packet error ratio estimation function of transmission mode m (a

AMC mode);
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am, gm : parameters depend on AMC mode, no unit;

Γm : AMC threshold of mode m corresponding to Ploss;

Γ′
m : AMC threshold of mode m corresponding to P0;

Se : spectral efficiency in bits/s/Hz;

Rm : bits per symbol of AMC mode m;

T : the overall expected number of transmissions to correctly deliver an original

packet;

η : packet combining efficiency, 1 divided by the number of data packets included

in 1 combined packet;

L : (since page 86) the number of receivers which lost a same packet;

j : packet index;

k : index of receivers;

D. : an original data packet, to be distinguished with the retransmitted combined

packet;

PERm : instantaneous average PER of AMC mode m among the group;

mopt : the optimal instantaneous AMC mode;

i : index of the receiver which lost a packet.
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