8,550 research outputs found

    Predicting future state for adaptive clinical pathway management

    Full text link
    Clinical decision support systems are assisting physicians in providing care to patients. However, in the context of clinical pathway management such systems are rather limited as they only take the current state of the patient into account and ignore the possible evolvement of that state in the future. In the past decade, the availability of big data in the healthcare domain did open a new era for clinical decision support. Machine learning technologies are now widely used in the clinical domain, nevertheless, mostly as a tool for disease prediction. A tool that not only predicts future states, but also enables adaptive clinical pathway management based on these predictions is still in need. This paper introduces weighted state transition logic, a logic to model state changes based on actions planned in clinical pathways. Weighted state transition logic extends linear logic by taking weights -- numerical values indicating the quality of an action or an entire clinical pathway -- into account. It allows us to predict the future states of a patient and it enables adaptive clinical pathway management based on these predictions. We provide an implementation of weighted state transition logic using semantic web technologies, which makes it easy to integrate semantic data and rules as background knowledge. Executed by a semantic reasoner, it is possible to generate a clinical pathway towards a target state, as well as to detect potential conflicts in the future when multiple pathways are coexisting. The transitions from the current state to the predicted future state are traceable, which builds trust from human users on the generated pathway

    Ontology modeling for generation of clinical pathways

    Get PDF
    Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP) as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM) is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM) is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the behavior will occur. To overcome this weakness, a semiotic approach to generation of clinical pathway is introduced. The CP generated from SAM together with norms will enrich the knowledge representation of the domain through ontology modeling, which allows the recognition of human responsibilities and obligations and more importantly, the ultimate power of decision making in exceptional circumstances

    Creating hospital-specific customized clinical pathways by applying semantic reasoning to clinical data

    Get PDF
    AbstractObjectiveClinical pathways (CPs) are widely studied methods to standardize clinical intervention and improve medical quality. However, standard care plans defined in current CPs are too general to execute in a practical healthcare environment. The purpose of this study was to create hospital-specific personalized CPs by explicitly expressing and replenishing the general knowledge of CPs by applying semantic analysis and reasoning to historical clinical data.MethodsA semantic data model was constructed to semantically store clinical data. After querying semantic clinical data, treatment procedures were extracted. Four properties were self-defined for local ontology construction and semantic transformation, and three Jena rules were proposed to achieve error correction and pathway order recognition. Semantic reasoning was utilized to establish the relationship between data orders and pathway orders.ResultsA clinical pathway for deviated nasal septum was used as an example to illustrate how to combine standard care plans and practical treatment procedures. A group of 224 patients with 11,473 orders was transformed to a semantic data model, which was stored in RDF format. Long term order processing and error correction made the treatment procedures more consistent with clinical practice. The percentage of each pathway order with different probabilities was calculated to declare the commonality between the standard care plans and practical treatment procedures. Detailed treatment procedures with pathway orders, deduced pathway orders, and orders with probability greater than 80% were provided to efficiently customize the CPs.ConclusionsThis study contributes to the practical application of pathway specifications recommended by the Ministry of Health of China and provides a generic framework for the hospital-specific customization of standard care plans defined by CPs or clinical guidelines

    Creativity and the Brain

    Get PDF
    Neurocognitive approach to higher cognitive functions that bridges the gap between psychological and neural level of description is introduced. Relevant facts about the brain, working memory and representation of symbols in the brain are summarized. Putative brain processes responsible for problem solving, intuition, skill learning and automatization are described. The role of non-dominant brain hemisphere in solving problems requiring insight is conjectured. Two factors seem to be essential for creativity: imagination constrained by experience, and filtering that selects most interesting solutions. Experiments with paired words association are analyzed in details and evidence for stochastic resonance effects is found. Brain activity in the process of invention of novel words is proposed as the simplest way to understand creativity using experimental and computational means. Perspectives on computational models of creativity are discussed

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication
    • …
    corecore