317 research outputs found

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching

    Get PDF
    A more general class of stochastic nonlinear systems with irreducible homogenous Markovian switching are considered in this paper. As preliminaries, the stability criteria and the existence theorem of strong solutions are first presented by using the inequality of mathematic expectation of a Lyapunov function. The state-feedback controller is designed by regarding Markovian switching as constant such that the closed-loop system has a unique solution, and the equilibrium is asymptotically stable in probability in the large. The output-feedback controller is designed based on a quadratic-plus-quartic-form Lyapunov function such that the closed-loop system has a unique solution with the equilibrium being asymptotically stable in probability in the large in the unbiased case and has a unique bounded-in-probability solution in the biased case

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Switching Controller Design for a Class of Markovian Jump Nonlinear Systems Using Stochastic Small-Gain Theorem

    Get PDF
    Switching controller design for a class of Markovian jump nonlinear systems with unmodeled dynamics is considered in this paper. Based on the differential equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State practical Stability (JISpS) in probability and stochastic Lyapunov stability criterion are put forward. By using backsetpping technology and stochastic small-gain theorem, a switching controller is proposed which ensures JISpS in probability for the jump nonlinear system. A simulation example illustrates the validity of this design

    A Fuzzy Logic-based Cascade Control without Actuator Saturation for the Unmanned Underwater Vehicle Trajectory Tracking

    Full text link
    An intelligent control strategy is proposed to eliminate the actuator saturation problem that exists in the trajectory tracking process of unmanned underwater vehicles (UUV). The control strategy consists of two parts: for the kinematic modeling part, a fuzzy logic-refined backstepping control is developed to achieve control velocities within acceptable ranges and errors of small fluctuations; on the basis of the velocities deducted by the improved kinematic control, the sliding mode control (SMC) is introduced in the dynamic modeling to obtain corresponding torques and forces that should be applied to the vehicle body. With the control velocities computed by the kinematic model and applied forces derived by the dynamic model, the robustness and accuracy of the UUV trajectory without actuator saturation can be achieved

    Mean-square Exponential Stabilization of Mixed-autonomy Traffic PDE System

    Full text link
    Control of mixed-autonomy traffic where Human-driven Vehicles (HVs) and Autonomous Vehicles (AVs) coexist on the road have gained increasing attention over the recent decades. This paper addresses the boundary stabilization problem for mixed traffic on freeways. The traffic dynamics are described by uncertain coupled hyperbolic partial differential equations (PDEs) with Markov jumping parameters, which aim to address the distinctive driving strategies between AVs and HVs. Considering the spacing policies of AVs vary in the mixed traffic, the stochastic impact area of AVs is governed by a continuous Markov chain. The interactions between HVs and AVs such as overtaking or lane changing are mainly induced by the impact areas. Using backstepping design, we develop a full-state feedback boundary control law to stabilize the deterministic system (nominal system). Applying Lyapunov analysis, we demonstrate that the nominal backstepping control law is able to stabilize the traffic system with Markov jumping parameters, provided the nominal parameters are sufficiently close to the stochastic ones on average. The mean-square exponential stability conditions are derived, and the results are validated by numerical simulations

    Barrier Lyapunov function-based adaptive fuzzy attitude tracking control for rigid satellite with input delay and output constraint

    Get PDF
    This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques
    corecore