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Abstract

A more general class of stochastic nonlinear systems with irreducible homogenous Markovian switching are considered in this
paper. As preliminaries, the stability criteria and the existence theorem of strong solution are firstly presented by using the
inequality of mathematic expectation of Lyapunov function. The state-feedback controller is designed by regarding Markovian
switching as constant such that the closed-loop system has a unique solution, and the equilibrium is asymptotically stable in
probability in the large. The output-feedback controller is designed based on a quadratic-plus-quartic-form Lyapunov function
such that the closed-loop system has a unique solution with the equilibrium being asymptotically stable in probability in the
large in unbiased case and has a unique bounded-in-probability solution in biased case.
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1 Introduction

Stability of stochastic differential equations(SDE)
has been one of the most important research topics
not only for pure mathematics but also for other sub-
jects such as cybernetics. For some representative work
on this general topic, to name a few, we refer readers
to (Arnold 1972, Friedman 1976, Khas’minskii 1980,
Skorohod 1989), and the references therein. Recently,
stability of SDE with Markovian switching has received
a lot of attention. Ji & Chizeck (1990) studied the stabil-
ity of a jump linear equation; Basak, Bisi & Ghosh (1996)
discussed the stability of a semi-linear SDE with Marko-
vian switching; Mao (1999) discussed the exponential
stability of general nonlinear differential equations with
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Markovian switching. As a direct application and also an
origination, controller design for this type of hybrid SDE
has been an important issue (Yuan & Mao 2004, Shi,
Xia, Liu & Rees 2006, Shi, Boukas & Agarwal 1999, Shi
& Boukas 1997). It should be noted that these design
methods are in linear case, which means much strict
conditions imposed on the practical controlled system
such as global Lipschitz condition or linear growth
condition. For nonlinear control a breakthrough came
in 1990s: backstepping, a recursive design for systems
with nonlinearities non constrained by linear bound
(Krstić, Kanellakopoulos & Kokotović 1995, Marino &
Tomei 1995, Tong & Li 2007). Backstepping designs
for systems with stochastic disturbance were firstly
proposed by (Krstić & Deng 1998, Pan & Başar 1999)
and were further developed by the recent work of
(Liu & Zhang 2006, Liu, Zhang & Jiang 2007, Tian &
Xie 2006, Xie & Tian 2007, Wu, Xie & Zhang 2007).

The purpose of this paper is to design nonlinear
controllers for stochastic strict-feedback systems with
Markovian switching. The main work consists of the
following aspects:

• By adopting the backstepping control design used in
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(Krstić & Deng 1998, Wu et al. 2007), Wiener pro-
cess can be well dealt with. While in the infinitesimal
generator of Lyapunov function there appear the “in-
terconnected” items caused by Markovian switching
(see (22)). They can not be suppressed by summing
up all the single Lyapunov functions as in (Wu, Xie
& Zhang 2004) because the infinitesimal generator is
not a linear operator about Lyapunov function.

• Under the standard assumption that the finite homo-
geneous Markov process is irreducible, we can sup-
press the “interconnections” in the expectation of the
infinitesimal generator and then obtain the result that
the expectation of Lyapunov function can be bounded
by exponential functions of time (see (25) and (28)).

• This leads to two new problems—how to guarantee the
existence and uniqueness of strong solution to closed-
loop system and how to prove the stochastic stability
of this solution based on these inequalities. As math-
ematic preliminaries, Lemma 1 and Theorems 1,2 are
presented, which are different from the corresponding
results in (Yuan & Mao 2004).

• State-feedback and output-feedback backstepping
controllers are designed for stochastic nonlinear sys-
tems (17) and (30), respectively, which are proved to
be robust against the irreducible homogenous Marko-
vian switchings.

The paper is organized as follows: Section 2 begins
with the mathematical preliminaries. In section 3 and
4 the state-feedback and the output-feedback backstep-
ping controller are designed, respectively. Finally, the
paper is concluded in Section 5.

Notations: The following notations are used
throughout the paper. For a vector x, |x| denotes its
usual Euclidean norm, xT denotes its transpose and
x̄i = (x1, · · · , xi)T . R+ denotes the set of all nonneg-
ative real numbers; Rn denotes the real n-dimensional
space; Rn×r denotes the real n × r matrix space. Ci

denotes the set of all functions with continuous ith
partial derivative; C2,1(Rn × R+ × S;R+) denotes the
family of all nonnegative functions V (x(t), t, r(t))) on
Rn × R+ × S which are C2 in x and C1 in t.

2 Mathematical preliminaries

In this section, we will extend the existence and
uniqueness theorem of strong solution, the criteria on
asymptotic stability in probability and boundedness
in probability to hybrid stochastic nonlinear systems,
which is required for backstepping control design.

Consider the following stochastic nonlinear system
with Markovian switching

dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dW (t), (1)

where x(t) ∈ Rn is the state of system. W (t) is an m-
dimensional independent standard Wiener process (or

Brownian motion). The underlying complete probability
space is taken to be the quartet (Ω,F ,Ft, P ) with a
filtration Ft satisfying the usual conditions (i.e., it is
increasing and right continuous while F0 contains all P -
null sets). Let r(t) be a right-continuous homogeneous
Markov process on the probability space taking values
in a finite state space S = {1, 2, . . . , N} with generator
Γ = (γpq)N×N given by

Ppq(t) = P{r(t + s) = q|r(s) = p}

=
{

γpqt + o(t) if p 6= q

1 + γppt + o(t) if p = q

(2)

for any s, t ≥ 0. Here γpq > 0 is the transition rate from
p to q if p 6= q while

γpp = −
N∑

q=1,q 6=p

γpq.

We assume that the Markov process r(t) is independent
of the Brownian motion W (t). For nonlinear controller
design, other standard assumptions on r(t) will be given
in the end of this section. The following hypothesis is
imposed on the the Borel measurable functions f : Rn×
R+ × S → Rn and g : Rn × R+ × S → Rn×p.

H: Both f and g are locally Lipschitz in x ∈ Rn for
all t ≥ 0, namely, for any R > 0, there exists a constant
CR ≥ 0 such that

|f(x1, t, p)− f(x2, t, p)|
+|g(x1, t, p)− g(x2, t, p)| ≤ CR|x1 − x2|

for any (t, p) ∈ R+ × S and (x1, x2) ∈ UR = {ξ : |ξ| ≤
R}. Moreover, f(0, t, p) = g(0, t, p) = 0.

For V (x, t, r(t)) ∈ C2,1(Rn ×R+ × S;R+), introduce
the infinitesimal generator by

LV (x, t, p) = Vt(x, t, p) + Vx(x, t, p)f(x, t, p)

+ 1
2Tr

[
gT (x, t, p)Vxx(x, t, p)g(x, t, p)

]

+
∑N

q=1 γpqV (x, t, q),

(3)

where Vt(x, t, p) = ∂V (x,t,p)
∂t , Vx(x, t, p) = (∂V (x,t,p)

∂x1
, . . .,

∂V (x,t,p)
∂xn

), Vxx(x, t, p) =
(∂2V (x,t,p)

∂xp∂xq

)
n×n

. Just for the
convenience of the reader we cite the following useful
property proposed by (Mao & Yuan 2006, Lemma 1.9):
Let V (x, t, r(t)) ∈ C2,1(Rn × R+ × S;R+) and τ1, τ2

be bounded stopping times such that 0 ≤ τ1 ≤ τ2 a.s.
If V (x, t, r(t)) and LV (x, t, r(t)) are bounded on

2



t ∈ [τ1, τ2] a.s., then

E[V (x, τ2, r(τ2))− V (x, τ1, r(τ1))]

= E

∫ τ2

τ1

LV (x, t, r(t))dt.
(4)

The following statement about the existence and
uniqueness of strong solution to a jump stochastic dif-
ferential equation and the line of its proof are originated
from (Mao & Yuan 2006, Theorem 3.19).

Lemma 1 Let H holds for system (1). For any l > 0,
define the first exit time ηl as

ηl = inf{t : t ≥ t0, |x(t)| ≥ l}.
Assume that there exist a positive function V (x, t, r(t)) ∈
C2,1(Rn × R+ × S;R+) and parameters d and D ≥ 0
such that

EV (x, ηl ∧ t, r(ηl ∧ t)) ≤ Ded(ηl∧t−t0), (5a)

R →∞ =⇒ VR = inf
t≥t0,|x|>R

V (x, t, r(t)) →∞. (5b)

Then for every x(t0) = x0 ∈ Rn and r(t0) = i0 ∈ S,
there exists a solution x(t) = x(x0, i0; t, r(t)), unique up
to equivalence, of system (1).

Proof. By (Mao & Yuan 2006, Theorem 3.15), the lo-
cally Lipschitz condition guarantees that there exists a
unique maximal solution x(t) on [t0, η∞), where η∞ is
the explosion time. Following the same line as in (Mao
& Yuan 2006, Theorem 3.19), from (5a) and (5b) we can
obtain

η∞ = ∞, a.s., (6)
which implies the result of this theorem. 2

The following definitions about stability that were
proposed by (Khas’minskii 1980), are represented now
for the research on stochastic systems with Markovian
switching.

Definition 1 The equilibrium x(t) = 0 of (1) is said to
be

•(weakly) stable in probability if, for every ε > 0 and
δ > 0, there exists an r such that if t > t0, |x0| < r and
i0 ∈ S, then

P{|x(t)| > ε} < δ. (7)

•asymptotically stable in probability in the large if it
is stable in probability and, for each ε > 0, x0 ∈ Rn and
i0 ∈ S there is

lim
t→∞

P{|x(t)| > ε} = 0. (8)

Definition 2 A stochastic process x(t) is said to be
bounded in probability if the random variables |x(t)| are
bounded in probability uniformly in t, i.e.,

lim
R→∞

sup
t>t0

P{|x(t)| > R} = 0. (9)

The asymptotic stability criterion is given as follows.

Theorem 1 Assume that system (1) has a uniqueness
solution in almost surely sense in t ∈ [t0, ∞) and that
there exist a positive function V ∈ C2,1(Rn×R+×S;R+)
and parameters D > 0 and c > 0 such that

EV (x, t, r(t)) ≤ De−c(t−t0), (10a)

V̄R = sup
t≥t0,|x|<R

V (x, t, r(t)) → 0 ⇐⇒ R → 0. (10b)

Then for any x0 ∈ Rn and i0 ∈ S, the equilibrium x(t) =
0 is asymptotically stable in probability in the large.

Proof. From (10b), it can be inferred that for each
ε > 0 there exists a ε̄ = ε̄(ε) such that |x(t)| ≤ ε when
V (x(t), t, r(t)) ≤ ε̄, while for any ε, δ > 0 there exists an
r = r(ε, δ) such that V (x0, t0, i0) < 1

D εδ when |x0| < r.
Then by Chebyshev’s inequality, from (10a), it follows
that

P{|x(t)| > ε} ≤ P{V (x, t, r(t)) > ε̄}
≤ DEV (x0, t0, i0)e−c(t−t0)

ε̄ < δ,
(11)

which means that x(t) = 0 is stable in probability. By
(11), it is obvious that (8) is valid for each ε > 0, x0 ∈
Rn and i0 ∈ S, which implies that the equilibrium is
asymptotically stable in probability in the large. 2

The criterion for boundedness in probability is given
as follows.

Theorem 2 Assume that system (1) has a uniqueness
solution in almost surely sense in t ∈ [t0, ∞) and that
there exist a positive function V ∈ C2,1(Rn×R+×S;R+)
and parameters dc > 0 such that

EV (x, t, r(t)) ≤ dc (12)

and (5b) hold. Then for any x0 ∈ Rn and i0 ∈ S, the
solution of system (1) is bounded in probability .

Proof. By (Khas’minskii 1980, Lemma 1.4.1), from
(12), it follows that

P{|x(x0, i0; t, r(t))| > R}
≤ EV (x,t,r(t))

inf|x|>R,t≥t0 V (x,t,r(t)) ≤ dc

VR
,

(13)
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which, together with (5b), means that (9) holds. 2

For controller design by using backstepping tech-
niques, we further assume, as a standard hypothesis,
that r(t) is irreducible (Please see (Mao 1999, P.183)).
The algebraic interpretation of irreducibility is rank
(Γ) = N − 1. This means that the Markov process ad-
mits a unique stationary distribution π = (π1, · · · , πN ),
which is also a limit distribution and can be obtained
by solving

πΓ = 0,
N∑

p=1

πp = 1, and πp > 0, ∀p ∈ S. (14)

Consider how to generate a stationary Markov process
based on stationary (limit) distribution π (Ross 1996,
P.259). Since r(t) is a homogenous finite irreducible
Markov process, which means that it is ergodic, then
one can suppose that it started at the moment t = −∞.
Such a process will be stationary, i.e, it satisfies

P (r(t) = p) =
N∑

l=1

πlPlp(t) = πp, ∀t ≥ 0,∀p ∈ S. (15)

Another method is to choose the initial state according
to stationary distribution, that is, if r(0) satisfies π, then
(15) holds, which is exactly what we pursue in this paper.
In fact, these two approaches are consistent with each
other from the viewpoint that the initial state of a new
Markov process is the final state of an old one with the
same distribution. For V (x, t, r(t)) ∈ C2,1(Rn × R+ ×
S;R+), according to (Ross 1996, P.21), we have

EV (x, t, r(t)) =
∑N

p=1 EV (x, t, p)πp,

EL(V (x, t, r(t))) =
∑N

p=1 E(LV (x, t, p))πp,
(16)

as long as the expectations involved exist and are finite.

Remark 1 For the same Markov process, transition
probability (2) and unconditional probability (15) are
introduced. The former is used to define infinitesimal
generator (3), and the latter is used in the calculus of
expatiations such as (16).

3 State-feedback backstepping controller de-
sign

Consider the stochastic nonlinear systems with
Markovian switching as follows

dxi = xi+1dt + ϕi(x̄i, r(t))dW (t),

i = 1, · · · , n− 1,

dxn = udt + ϕn(x̄n, r(t))dW (t).

(17)

where x = x̄n = (x1, · · · , xn)T ∈ Rn, u ∈ R are the
state, the input of system, respectively. The known func-
tion ϕi is smooth and ϕi(0, r(t)) = 0. Let r(t) be a right-
continuous homogeneous irreducible Markov process in
a state space S = {1, 2, . . . , N} with generator Γ =
(γpq)N×N and assume that initial state r(0) = i0 satis-
fying stationary distribution π given by (14). The expla-
nations about Wiener process and probability space are
as same as those for system (1).

The objective of this section is to design a state-
feedback controller such that the equilibrium of the
closed-loop system is asymptotically stable in probabil-
ity in the large.

Remark 2 When r(t) equals to a constant, system
(17) will reduce to system (3.28),(3.29) of (Krstić &
Deng 1998). For a smooth controller u = u(x, r(t)) with
u(0, r(t)) = 0, the right side of system (1) satisfies local
Lipschitz condition H.

3.1 Controller design

Introducing the following transformation

z1 = x1,

zi(x̄i, r(t)) = xi − αi−1(x̄i−1, r(t)), i = 2, . . . , n,
(18)

where smooth function αi−1 will be designed later.

Choose the Lyapunov function candidate

V (x, r(t)) =
n∑

i=1

1
4
z4
i (x̄i, r(t)). (19)

For the simplicity, we introduce the notions

ϕip = ϕi(x̄i, p), zip = zi(x̄i, p),

αip = αi(x̄i, p), up = u(x, p), ∀p ∈ S.

According to (3), we have

LV (x, p) =
∑n−1

i=1 z3
ipzi+1,p

+z3
np(up −

∑n−1
j=1

∂αn−1,p

∂xj
xj+1

− 1
2

∑n−1
j,k=1 ϕT

jp
∂2αn−1,p

∂xj∂xk
ϕkp)

+
∑n−1

i=1 z3
ip(αip −

∑i−1
j=1

∂αi−1,p

∂xj
xj+1

− 1
2

∑i−1
j,k=1 ϕT

jp
∂2αi−1,p

∂xj∂xk
ϕkp)

+ 3
2

∑n
i=1 z2

ip(ϕip −
∑i−1

j=1
∂αi−1,p

∂xj
xj+1)T

×(ϕip −
∑i−1

j=1
∂αi−1,p

∂xj
xj+1) +

∑N
q=1 γpqV (x, q).

(20)

Compared (20) with (3.40) of (Krstić & Deng 1998), the
only difference is

∑N
q=1 γpqV (x, q) caused by Markovian
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switching. By ignoring this “interconnected” item and
following the same line of this work by M. Krstić et al.,
we obtain the controller

α1 = −c1z1 − 3
4d

4
3
1 z1 − 3

2z1β
T
11β11

− 3m
4 z1

∑n
k=2

∑k−1
l=1 dk1l,

αi = −cizi +
∑i−1

l=1
∂αi−1

∂xl
xl+1

+ 1
2

∑i−1
j,k=1

∂2αi−1
∂xj∂xk

ϕT
j ϕk − 3

4d
4
3
i zi

− 1
4d4

i−1
zi − 3

2ziβ
T
iiβii − 3βT

ii

∑i−1
k=1 zkβik

− 3
4zi

∑r
j=1

∑i−1
k=1

∑i−1
l=1

1
d2

ikl

β2
ikjβ

2
ilj

− 3m
4

∑n
k=i+1

∑k−1
l=1 dkil,

u = −cnzn +
∑n−1

l=1
∂αn−1

∂xl
xl+1

+ 1
2

∑n−1
j,k=1

∂2αn−1
∂xj∂xk

ϕT
j ϕk − 1

4d4
n−1

zn

− 3
2znβT

nnβnn − 3βT
nn

∑i−1
k=1 zkβnk

− 3
4zn

∑r
j=1

∑n−1
k=1

∑n−1
l=1

1
d2

nkl

β2
nkjβ

2
nlj ,

(21)

where ci, di, dikj > 0 are design parameters with dikj =
dkij ; smooth function

βik(x̄i, r(t)) = ψik(x̄i, r(t))

−∑i−1
l=k

∂αi−1
∂xj

ψlk(x̄k, r(t)), k = 1, · · · , i,

with ∂αi−1,p

∂xi
= 0 and βikj is the j-th component of the

vector βik; and ψik is smooth function defined by

ϕi(x̄i, r(t)) =
i∑

k=1

zkψik(x̄i, r(t)).

Then the infinitesimal generator of the system satisfies:

LV (x, p) ≤ −∑n
i=1 ciz

4
ip +

∑N
q=1 γpqV (x, q)

≤ −cV (x, p)− c̄
4

∑n
i=2 z4

ip + 1
4

∑N
q=1 γpq

∑n
i=2 z4

iq.

(22)
where c = min{4c1, c2, . . . , cn} and c̄ = 3 minn

i=2{ci}.

3.2 Stability analysis

Theorem 3 By choosing the design parameters c2, · · · , cn

appropriately, the closed-loop system consist of (17) and
(21) has a unique solution, and x(t) = 0 is asymptot-
ically stable in probability in the large for any i0 ∈ S
satisfying distribution π and every x0 ∈ Rn.

Proof. From (18) and (21), step by step, we can con-
clude that bounded zi implies bounded xi, and vice
versa, which results in that

VR = inf
t≥t0,|x|>R

V (x, r(t)) →∞ ⇐⇒ R →∞. (23)

For any l > 0, define the first exit time ηl = inf{t :
t ≥ t0, |x(t)| ≥ l}. Let tl = ηl ∧ t for any t ≥ t0. Since
|x(·)| < l in the interval [t0, tl] a.s., which, together with
(23), implies that V (x, r(·)) is bounded on [t0, tl] a.s.
From (22), it can be obtained that LV (x, r(·)) is also
bounded on [t0, tl] a.s. It comes from (16) and (22) that

EL(V (x, r(tl))) =
∑N

p=1 E(LV (x, p))πp

≤ −c
∑N

p=1 πpEV (x, p)− E(
∑N

p=1
c̄πp

4

∑n
i=2 z4

ip

+
∑N

p=1
1
4πp

∑N
q=1 γpq

∑n
i=2 z4

iq)

≤ −cEV (x, r(tl)),

(24)

where c2, . . . , cn are chosen such that c̄ ≥ ¯̄c =
maxN

p=1{πp}
minN

p=1{πp} maxN
q=1

{ ∑N
p=1 γpq

}
. According to formula

(4), it is followed from (24) that

EV (x, r(tl)) ≤ EV (x0, i0). (25)

By Lemma 1, from (25) and (23), for every x(t0) = x0 ∈
Rn and r(t0) = i0 ∈ S, there exists a solution x(t) =
x(x0, i0; t, r(t)), unique up to equivalence, of the closed-
loop system consist of (17) and (21). The subsequent
part is originated from line of (Mao 1997, Theorem 4.4).
From (6), one has ηl → ∞ (a.s.) when l → ∞. Again
from (24) and (4), we obtain that

E(ectlV (x, r(tl)))

≤ ect0E(V (x0, i0)) + E
∫ tl

t0
ecsL(V (x, r(s)))ds

+cE
∫ tl

t0
ecsV (x, r(s))ds,

(26)

which together with (24) implies that

EV (x, r(tl)) ≤ e−c(tl−t0)EV (x0, i0). (27)

Letting l →∞ gives

EV (x, r(t)) ≤ e−c(t−t0)EV (x0, i0). (28)

From (18) and (21), step by step, we can obtain

R → 0 ⇐⇒ V̄R = sup
t≥t0,|x|<R

V (x, r(t)) → 0. (29)

From (28), (29) and Theorem 1, we can conclude that
x(t) = 0 is asymptotically stable in probability in the
large for any x0 ∈ Rn and i0 ∈ S, which completes the
proof. 2

Remark 3 By comparison, our controller is in the same
form as that in (Krstić & Deng 1998) except for that the
design parameters c2, · · · , cn should be large enough. In
other words, we can design controller for system (17) by
regarding r(t) as constant and tuning our parameter ci

appropriately.
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3.3 A simulation example

Consider system (17) (n = 2) with ϕ1 = x2
1(t) +

x1(t)r(t), ϕ2 = x2
1(t) + x2

2(t) + x2(t)r(t) where W (t) be-
ing a scaler Wiener process. The state-feedback control
law is given by (18) and (21) with β11 = x1 + r(t),
β21 = x1 − ∂α1p

∂x1
and β22 = x2 + r(t). r(t) is a ho-

mogenous irreducible Markov process which belongs to
the space S = {1, 2} with generater Γ = (γpq)2×2 given
by γ11 = −4, γ12 = 4, γ21 = 3 and γ22 = −3, which
means that π1 = 3

7 , π2 = 4
7 . Choose the initial values

x1(0) = −1, x2(0) = 1, r(0) = 1, the design parameters
c1 = 1.1, c2 = 1.1 (satisfying 3.3 = c̄ > ¯̄c = 4

3 ), d1 = 0.4
and d2 = 10. Figure 1 demonstrates that the state of
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Fig.1. The responses of closed-loop system with Markovian
switching.

nonlinear system with Markovian switching can be regu-
lated to the origin asymptotically by the same controller
designed for non switching case.

4 Output feedback backstepping controller de-
sign

Consider the stochastic nonlinear systems with
Markovian switching as follows

dxi = xi+1dt + ∆i(x, r(t))dt + Ωi(x, r(t))dWi(t),

i = 1, · · · , n− 1,

dxn = udt + ∆n(x, r(t))dt + Ωn(x, r(t))dWn(t),

y = x1,

(30)
where y ∈ R is the output; the uncertain functions ∆i

and Ωi are locally Lipschitz; other explications are as
same as that for system (17).

The objective of this section is to design an output-
feedback controller such that the solution of the closed-
loop system is bounded in probability in biased case and
the equilibrium is asymptotically stable in probability
in the large in unbiased case.

The following assumption is made on system (30).

A1: For each 1 ≤ i ≤ n, there exist unknown con-
stants ďi, d̂i ≥ 0 such that

|∆i(x, r(t))| ≤ φi(y, r(t)) + ďi,

|Ωi(x, r(t))| ≤ ϕi(y, r(t)) + d̂i,

where φi, ϕi are known nonnegative smooth functions
with φi(0, r(t)) = ϕi(0, r(t)) = 0, which means that
there exist smooth functions φ̄i, ϕ̄i such that

φi(y, r(t)) = yφ̄i(y, r(t)), ϕi(y, r(t)) = yϕ̄i(y, r(t)).

Remark 4 When ∆i and Ωi are known and all the states
xi are measurable, system (30) is reduced to (17). From
A1 the static uncertainties are nonlinear parameterized,
which is considered by (Jiang & Praly 1998, Jiang 1999)
in the deterministic case and by (Wu et al. 2007) in the
stochastic case without Markovian switching. A detailed
example satisfying A1 can be found in Subsection 4.3.

4.1 Controller design

Since xi(i = 2, · · · , n) is unavailable, as in (Jiang
1999), the following reduced-order observer is introduced

dx̂i = (x̂i+1 + ki+1y − ki(x̂1 + k1y))dt,

1 ≤ i ≤ n− 2,

dx̂n−1 = (u− kn−1(x̂1 + k1y))dt,

(31)

where k = (k1, · · · , kn−1)T is chosen such that A0 =(
−k

In−2

0 · · · 0

)
is asymptotically stable. By (30) and

(31), the observer error ε defined by

ε = (ε1, ε2, · · · , εn−1)T ,

εi = xi+1 − x̂i − kix1,
(32)

satisfies

dε = A0εdt + ∆(x, r(t))dt + Ā0Ω(x, r(t))dW (t), (33)

where ∆ = (∆1, · · · ,∆n−1)T , W (t) = (W1(t), · · · ,Wn(t))T ,
Ā0 = (A0 en−1), en−1 = (0, · · · , 0, 1)T ∈ Rn−1,
∆i = ∆i+1 − ki∆1,Ω = diag(Ω1, · · · ,Ωn). From as-
sumption A1, we have

|∆i(x, r(t))| ≤ ψi(y, r(t)) + d̄i, (34)

where ψi = φi+1 + kiφ1, and d̄i = ďi+1 + kiď1.

From (30) and (32), one gets

dy = (x̂1 + ε1 + k1y)dt + ∆1dt + Ω1dW1(t), (35)
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which together with (30), (33) and (35) consist of the
following interconnected system

dε = A0εdt + ∆dt + Ā0ΩdW (t),

dy = (x̂1 + ε1 + k1y)dt + ∆1dt + Ω1dW1(t),

dx̂i = (x̂i+1 + ki+1y − ki(x̂1 + k1y))dt,

1 ≤ i ≤ n− 2,

dx̂n−1 = (u− kn−1(x̂1 + k1y))dt,

(36)

Next, we will develop an output-feedback controller
along the (y, x̂1, · · · , x̂n−1)-system of (36) step by step
using backstepping techniques.

Let us introduce the following notions for the use of
the recursive design

Ξ1 = (y, ε)T , Ξi = (y, x̂1, . . . , x̂i−1, ε)T ,

X1 = y, Xi = (y, x̂1, . . . , x̂i−1)T , i = 1, · · · , n

(with Ξ = Ξn, X = Xn ). Introducing the following
transformations

z1 = y, zi(Xi, r(t)) = x̂i−1

−αi−1(Xi−1, r(t)), i = 2, . . . , n,
(37)

where the smooth function αi will be designed later. Just
for the simplify, let us further introduce the notions

∆1p = ∆1(x, p), Ω1p = Ω1(x, p),

αip = αi(Xi, p), zip = zi(Xi, p).

Step 1. Let us consider the Lyapunov function can-
didate

V1(Ξ1, r(t)) =
1
2
y2 + r0ε

T Pε, (38)

where P is the solution of PA0 + AT
0 P = −In−1, r0 > 0

is design parameter. In view of (36) and (37), the in-
finitesimal generator of V1 satisfies

LV1(Ξ1, p) = y(z2p + α1p + k1y + ε1 + ∆1p)

+ 1
2Ω2

1p − r0|ε|2 + 2r0ε
T P∆(x, p)

+Tr[(Ā0Ω(x, p))T PĀ0Ω(x, p)].

(39)

From assumption A1, one has

2r0ε
T P∆ + y(ε1 + ∆1)

+ 1
2Ω2

1 + Tr[(Ā0Ω)T PĀ0Ω]

≤ 1
4r0|ε|2 + 8r0|P |2

n−1∑
i=1

ψ̄2
i y2

+8r0|P |2
n−1∑
i=1

d̄2
i + 1

4r0|ε|2 +
(
ψ̄1 + 1

r0

)
y2

+d1y
2 + 1

4d1
ď2
1 + (ϕ̄2

1 + 2|P ||Ā0|2
n∑

i=1

ϕ̄2
i )y

2

+d̂2
1 + 2|P ||Ā0|2

n∑
i=1

d̂2
i

= 1
2r0|ε|2 + z1Ψ1 + d1y

2 + λ1,

(40)

where d1 > 0 is any design parameter, λ1 = d̂2
1+ 1

4d1
ď2
1+

2|P ||Ā0|2
n∑

i=1

d̂2
i + 8r0|P |2

n−1∑
i=1

d̄2
i and Ψ1(y, r(t)) is given

by

Ψ1 = 8r0|P |2
n−1∑
i=1

ψ̄2
i y +

(
ψ̄1 + 1

r0

)
y

+ϕ̄2
1y + 2|P ||Ā0|2

n∑
i=1

ϕ̄2
i y,

where ψ̄i = φ̄i+1+kiφ̄1. Substituting z1z2 ≤ 3
4z1

3
√

z2
1 + 1+

1
4z4

2 and (40) into (39) gives

LV1(Ξ1, p) ≤ 1
4z4

2p + y( 3
4z1

3
√

z2
1 + 1 + α1p

+ k1y + Ψ1p) + d1y
2 − 1

2r0|ε|2 + λ1.
(41)

where Ψ1p = Ψ1(y, p). The stabilizing function
α1(X1, r(t)) is designed as

α1 = − 3
4z1

3
√

z2
1 + 1− k1y − c1y −Ψ1. (42)

From (41) and (42), it follows that

LV1 ≤ −c1z
2
1 + 1

4z4
2 − 1

4r0|ε|2 + d1y
2 + λ1.

Step i = 2, · · · , n. Assume that one has designed
smooth function αj(2 ≤ j ≤ i − 1) such that the in-
finitesimal generator of Vi−1 = Vi−2 + 1

4z4
i−1 satisfies

LVi−1(Ξi−1, p) ≤ −c1z
2
1 −

∑i−1
j=2 cjz

4
jp

− 1
2i−1 r0|ε|2 + 1

4z4
ip +

∑i−1
j=1 djy

2

+
∑i−1

j=1 λj + 1
4

∑N
q=1

∑i−1
j=2 γpqz

4
jq, ∀p ∈ S,

(43)

where di, ci > 0 are design parameters. In the sequel, we
will prove that (43) holds for the i-th Lyapunov function
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candidate Vi = Vi−1 + 1
4z4

i . The infinitesimal generator
of Vi satisfies

LVi(Ξi, p) ≤ LVi−1(Ξi−1, p)

+ 3
2z2

ip(
∂αi−1,p

∂y )2Ω2
1p − 1

2z3
ip

∂2αi−1,p

∂y2 Ω2
1p

+ z3
ip

(
zi+1,p + αip + ηip − ∂αi−1,p

∂y (ε1 + ∆1p)
)

+ 1
4

∑N
q=1 γpqz

4
iq, ∀p ∈ S,

(44)

where ηip = ηi(Xi, p), ηi(Xi, r(t)) = kiy − ki−1(x̂1 +
k1y)− ∂αi−1,p

∂y (x̂1 +k1y)−∑i−2
j=1

∂αi−1,p

∂x̂j
(x̂j+1 +kj+1y−

kj(x̂1 + k1y)). Following the similar procedure as in the
initial step, one has

−z3
i

∂αi

∂y (ε1 + ∆1)

+ 3
2z2

i

(
∂αi−1

∂y

)2

Ω2
1 − 1

2z3
i

∂2αi−1
∂y2 Ω2

1

≤ 1
2i r0|ε|2 + z6

i

(
∂αi−1

∂y

)2 (
ψ̄2

1
2di1

+ 1
di2

+ 2i−2

r0

)

+di1
2 y2 + di2ď

2
1 + di3

2 y2 + 1
di3

(9z4
i (∂αi−1

∂y )4

+z6
i (∂2αi−1

∂y2 )2)(ϕ̄1)4y2 + 1
di4

(9z4
i (∂αi−1

∂y )4

+z6
i (∂2αi−1

∂y2 )2) + 1
2di4d̂

4
1

= 1
2i r0|ε|2 + Ψiz

3
i + diy

2 + λi,

(45)

where di = 1
2 (di1 + di3), λi = 1

2did̂
4
1 + diď

2
1 and

Ψi(Xi, r(t)) is defined as

Ψi = z3
i

(
∂αi−1

∂y

)2 (
ψ̄2

1
2di1

+ 1
di2

+ 2i−2

r0

)

+ 1
di3

(9zi(
∂αi−1

∂y )4 + z3
i (∂2αi−1

∂y2 )2)(ϕ̄1)4y2

+ 1
di4

(9zi(
∂αi−1

∂y )4 + z3
i (∂2αi−1

∂y2 )2).

From (43)-(45) and the fact z3
i zi+1 ≤ 3

4z4
i + 1

4z4
i+1, it is

easy to show that

LVi(Ξi, p) ≤ −c1z
2
1 −

i−1∑
j=2

cjz
4
jp − 1

2i r0|ε|2

+ 1
4z4

i+1,p + z3
ip

(
zip + αip + ηip + Ψip

)

+Σi
j=1djy

2 + Σi
j=1λj + 1

4

∑N
q=1

∑i
j=2 γpqz

4
jq,

(46)

where Ψip = Ψi(Xi, p). By choosing the virtue control
αi(Xi, r(t)) as

αi = −zi − cizi − ηi −Ψi, (47)

it follows from (46) that (43) holds for Vi. At the end of
the recursive procedure, we obtain the control law

u = αn(X, r(t)). (48)

From (43) and (48), by selecting c1 ≥ 2
∑n

j=1 dj , one
gets

LVn(Ξ, p) ≤ −cVn(Ξ, p)− c̄
4

∑n
i=2 z4

ip

+ 1
4

∑N
q=1

∑n
j=2 γpqz

4
jq + da, ∀p ∈ S,

(49)

where da = Σn
i=1diď

2
1+Σn

i=1λi, c = min{c1, c2, . . . , cn, 1
2n }

and c̄ = 3 minn
i=2{ci}.

4.2 Stability analysis

Theorem 4 For any i0 ∈ S satisfying distribution
π and every x0 ∈ Rn, by choosing the design pa-
rameters c1, · · · , cn such that c1 ≥ 2

∑n
j=1 dj and

c̄ ≥ ¯̄c = maxN
p=1{πp}

minN
p=1{πp} maxN

q=1{
∑N

p=1 γpq}, the closed-loop

system consist of (30) and (48) has a unique solu-
tion, which is bounded in probability. Furthermore, if
ďi = d̂i = 0 is given, the zero solution of the closed-loop
system is asymptotically stable in probability in the large.

Proof. From (37) and (48), step by step, we can con-
clude that

R →∞⇐⇒ VR = inf
t≥t0,|Ξ|>R

Vn(Ξ, r(t)) →∞. (50)

As in the proof of Theorem 3, from (16) and (49), one
has

E(L(Vn(Ξ, r(tl))) ≤ −cEVn(Ξ, r(tl)) + Nda, (51)

then the existence and uniqueness of solution to the
closed-loop system consist of (30) and (48) can be ob-
tained. Continuing following the line of Theorem 3, it
comes from (51) that

EVn(Ξ, r(t)) ≤ EVn(Ξ0, i0)e−c(t−t0) + Nda/c, (52)

which implies that

EVn(Ξ, r(t)) ≤ dc (53)

where dc = EVn(Ξ0, i0) + Nda/c. From (53), (50) and
Theorem 2, we can prove that the solution of the closed-
loop system is bounded in probability for any initial con-
ditions, which implies the first result of this theorem.

When ďi = d̂i = 0, (52) reduces to

EVn(Ξ, r(t)) ≤ EVn(Ξ0, i0)e−c(t−t0). (54)

From (37) and (48), step by step, we can obtain (50) and

V̄R = sup
t≥t0,|Ξ|<R

Vn(Ξ, r(t)) → 0 ⇐⇒ R → 0. (55)
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From (54), (55) and Theorem 1, we obtain the second
result of this theorem. 2

Remark 5 To overcome the observation errors and
adaptive errors, the quadratic form Lyapunov functions
are used in the initial step of backstepping design. To deal
with the effect of Hessian items, the quartic Lyapunov
functions are remained in the subsequent steps.

4.3 A simulation example

Let n = 2 in system (30). Chose ∆1 = (1 +
r(t))x2

1 sinx2 + ď1,Ω1 = x2
1 sinx2 + d̂1, ∆2 = x2

1 cos x2 +
ď2,Ω2 = (r(t) − 1)x2

1 cos x2 + d̂2 with ď1, d̂1, ď2 and d̂2

being unknown parameters. The following observer is
needed

˙̂x = u− k(x̂ + ky),
where k > 0. Perform the transformation (37) and out-
put feedback control (48). By verifying assumption A1,
it is easy to obtain that

φ1 = (1 + r(t))x2
1, φ2 = x2

1,

ϕ1 = x2
1, ϕ2 = (r(t)− 1)x2

1.

To check the main results in Theorem 4, the following
two cases are considered. Biased case: ď1 = ď2 = d̂1 =
d̂2 = 1. Unbiased case: ď1 = ď2 = d̂1 = d̂2 = 0. The
homogenous irreducible Markov process r(t) belongs to
the space S = {1, 2} with generater with generater Γ =
(γpq)2×2 given by γ11 = −4, γ12 = 4, γ21 = 3, γ22 =
−3. Choose the initial values x1(0) = 0.5, x2(0) = −4,
r(0) = 1, the design parameters k = 1.6, d1 = 0.1,
d21 = d23 = 1, d22 = d24 = 10, c1 = 2.5, c2 = 2 (sat-
isfying c1 > 2(d1 + d2) and 6 = c̄ > ¯̄c = 4

3 ), r0 = 0.5
and x̂(0) = −3.3. Figures 2 shows the responses of the
closed-loop system in biased cases; Figures 3 shows the
responses of the closed-loop system in unbiased cases.
From Figures 2 we can see that the residual errors re-
main in all the solutions of closed-loop system because
the non-vanishing biased parameters prevent the equi-
librium at zero. Figures 3 demonstrates that the solu-
tions of the closed-loop system can be regulated to the
origin asymptotically in unbiased case.

5 Conclusion

Two important issues: backstepping and hybrid dif-
fusion are well combined so that the stochastic nonlin-
ear control has been improved to a new level, in which
the mode studied has the capability to describe complex
systems not only with exterior random perturbations
but also with inner jumping parameters. Meanwhile, the
novel existence theorem and stability criterion of solu-
tion are proposed to SDE with Markovian switching for
nonlinear controller design without linear growth condi-
tion.
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Fig.2. The responses of closed-loop system in biased case.
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Fig.3. The responses of closed-loop system in unbiased case.
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