4,224 research outputs found

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels

    Full text link
    This paper studies the performance of antenna array processing in distributed multiple access networks without power control. The interference is represented as a Poisson point process. Desired and interfering signals are subject to both path-loss fading (with an exponent greater than 2) and to independent Rayleigh fading. Using these assumptions, we derive the exact closed form expression for the cumulative distribution function of the output signal-to-interference-plus-noise ratio when optimum combining is applied. This results in a pertinent measure of the network performance in terms of the outage probability, which in turn provides insights into the network capacity gain that could be achieved with antenna array processing. We present and discuss examples of applications, as well as some numerical results.Comment: Submitted to IEEE Trans. on Wireless Communication (Jan. 2009

    Multipath and interference errors reduction in gps using antenna arrays

    Get PDF
    The Global Positioning System (GPS) is a worldwide satellite based positioning system that provides any user with tridimensional position, speed and time information. The measured pseudorange is affected by the multipath propagation, which probably is the major source of errors for high precision systems. After a presentation of the GPS and the basic techniques employed to perform pseudorange measurements, the influence of the multipath components on the pseudorange measurement is explained. Like every system the GPS is also exposed to the errors that can be caused by the interferences, and a lot of civil applications need robust receivers to interferences for reasons of safety. In this paper some signal array processing techniques for reducing the code measurement errors due to the multipath propagation and the interferences are presented. Firstly, a non-adaptive beamforming is used. Secondly, a variant of the MUSIC and the maximum likelihood estimator can be used to estimate the DOA of the reflections and the interferences, and then a weight vector that removes these signals is calculated. In the third place, a beamforming with temporal reference is presented; the reference is not the GPS signal itself, but the output of a matched filter to the code. An interesting feature of the proposed techniques is that they can be applied to an array of arbitrary geometry.Peer ReviewedPostprint (published version

    Adaptive space-time processing for digital mobile radio communication systems

    Get PDF
    The performance of digital mobile radio communication systems is primarily limited by cochannel interference and multipath fading. Antenna arrays, with optimum combining (OC), have been shown to combat multipath fading of the desired signal and are capable of reducing the power of interfering signals at the receiver through spatial filtering. With OC, the signals received by several antenna elements are weighted and combined to maximize the output signal-to-interference-plus-noise ratio (SLNR). We derive new closed-form expressions for (1) the probability density function (PDF) of the SINR at the output of the optimum combiner, (2) the average probability of bit error rate (BER) and its upper bound, and (3) the outage probability in a Rayleigh fading environment with multiple cochannel interferers. The study covers both the case when the number of antenna elements exceeds the number of interferers and vice versa. We consider independent fading at each antenna element, as well as the effect of fading correlation. The analysis is also extended to processing using maximal ratio combining (MRC). The performance of the optimum combiner is compared to that of the maximal ratio combiner and results show that OC performs significantly better than MRC. We investigate the performance of OC in a microcellular environment where the desired signal and the cochannel interference can have different statistical characteristics. The desired signal is assumed to have Rician statistics implying that a dominant multipath reflection or a line-of-sight (LOS) propagation exists within-cell transmission. Interfering signals from cochannel cells are assumed to be subject to Rayleigh fading due to the absence of LOS propagation. This is the so called Rician/Rayleigh model. We also study OC for a special case of the Rician/Rayleigh model, the Nonfading/Rayleigh model. We derive expressions for the PDF of the SJNR, the BER and the outage probability for both Rician/Rayleigh and Nonfading/Rayleigh models. Similar expressions are derived with MRC. Another area in which space-time processing may provide significant benefits is when wideband signals (such as code division multiple access (CDMA) signals) are overlaid on existing narrowband user signals. The conventional approach of rejecting narrowband interference in direct-sequence (DS) CDMA systems has been to sample the received signal at the chip interval, and to exploit the high correlation between the interference samples prior to spread spectrum demodulation. A different approach is space-time processing. We study two space-time receiver architectures, referred to as cascade and joint, respectively, and evaluate the performance of a DS-CDMA signal overlaying a narrowband signal for personal communication systems (PCS). We define aild evaluate the asymptotic efficiency of each configuration. We develop new closed-form expressions for the PDF of the SINR at the array output, the BER and its upper bound, for both cascade and joint configurations. We also analyze the performance of this system in the presence of multiple access interference (MAJ)

    A combined channel-modified adaptive array MMSE canceller and viterbi equalizer

    Get PDF
    In this thesis, a very simple scheme is proposed which couples a maximum-likelihood sequence estimator (MLSE) with a X-element canceller. The method makes use of the MLSE\u27s channel estimator to modify the locally generated training sequence used to calculate the antenna array weights. This method will increase the array\u27s degree of freedom for interference cancellation by allowing the dispersive, desired signal to pass through the array undisturbed. Temporal equalization of the desired signal is then accomplished using maximum-likelihood sequence estimation. The T-spaced channel estimator coefficients and the array weights are obtained simultaneously using the minimum mean square error criteria. The result is a X-element receiver structure capable of canceling X- 1 in-band interferences without compromising temporal equalization

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments
    • …
    corecore