618 research outputs found

    Adapted user-dependent multimodal biometric authentication exploiting general information

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 26.16 (2005): 2628 – 2639, DOI: 10.1016/j.patrec.2005.06.008A novel adapted strategy for combining general and user-dependent knowledge at the decision-level in multimodal biometric authentication is presented. User- independent, user-dependent, and adapted fusion and decision schemes are com- pared by using a bimodal system based on ¯ngerprint and written signature. The adapted approach is shown to outperform the other strategies considered in this pa- per. Exploiting available information for training the fusion function is also shown to be better than using existing information for post-fusion trained decisions.This work has been supported by the Spanish Ministry for Science and Tech- nology under projects TIC2003-09068-C02-01 and TIC2003-08382-C05-01

    Multiple classifiers in biometrics. Part 2: Trends and challenges

    Full text link
    The present paper is Part 2 in this series of two papers. In Part 1 we provided an introduction to Multiple Classifier Systems (MCS) with a focus into the fundamentals: basic nomenclature, key elements, architecture, main methods, and prevalent theory and framework. Part 1 then overviewed the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. Here in Part 2 we present in more technical detail recent trends and developments in MCS coming from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in Part 1, methods here are described in a general way so they can be applied to other information fusion problems as well. Finally, we also discuss here open challenges in biometrics in which MCS can play a key roleThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of this work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    Multiple classifiers in biometrics. part 1: Fundamentals and review

    Full text link
    We provide an introduction to Multiple Classifier Systems (MCS) including basic nomenclature and describing key elements: classifier dependencies, type of classifier outputs, aggregation procedures, architecture, and types of methods. This introduction complements other existing overviews of MCS, as here we also review the most prevalent theoretical framework for MCS and discuss theoretical developments related to MCS The introduction to MCS is then followed by a review of the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. This review includes general descriptions of successful MCS methods and architectures in order to facilitate the export of them to other information fusion problems. Based on the theory and framework introduced here, in the companion paper we then develop in more technical detail recent trends and developments in MCS from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in the present paper, methods in the companion paper are introduced in a general way so they can be applied to other information fusion problems as well. Finally, also in the companion paper, we discuss open challenges in biometrics and the role of MCS to advance themThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of thisthis work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    Compensating User-Specific Information with User-Independent Information in Biometric Authentication Tasks

    Get PDF
    Biometric authentication is a process of verifying an identity claim using a person's behavioral and physiological characteristics. This is in general a binary classification task because a system either accepts or rejects an identity claim. However, a biometric authentication system contains many users. By recognizing this fact, better decision can be made if user-specific information can be exploited. In this study, we propose to combine user-specific information with user-independent information such that the performance due to exploiting both information sources does not perform worse than either one and in some situations can improve significantly over either one. We show that this technique, motivated by a standard Bayesian framework, is applicable in two levels, i.e., fusion level where multiple (multimodal or intramodal) systems are involved, or, score normalization level, where only a single system is involved. The second approach can be considered a novel score normalization technique that combines both information sources. The fusion technique was tested on 32 fusion experiments whereas the normalization technique was tested on 13 single-system experiments. Both techniques that are originated from the same principal share a major advantage, i.e., due to prior knowledge as supported by experimental evidences, few or almost no free parameter are actually needed in order to employ the mentioned techniques. Previous works in this direction require at least 6 to 10 user-specific client accesses. However, in this work, as few as two user-specific client accesses are needed, hence overcoming the learning problem with extremely few user-specific client samples. Finally, but not the least, a non-exhaustive survey on the state-of-the-arts of incorporating user-specific information in biometric authentication is also presented

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Multi-system Biometric Authentication: Optimal Fusion and User-Specific Information

    Get PDF
    Verifying a person's identity claim by combining multiple biometric systems (fusion) is a promising solution to identity theft and automatic access control. This thesis contributes to the state-of-the-art of multimodal biometric fusion by improving the understanding of fusion and by enhancing fusion performance using information specific to a user. One problem to deal with at the score level fusion is to combine system outputs of different types. Two statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score statistics (mean and covariance) conditioned on the claimed user identity can be better exploited. Our first contribution is to estimate the fusion performance given the class-conditional score statistics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study the joint phenomenon of combining system outputs with different degrees of strength and correlation and possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets) on fusion. While in practice the class-conditional Gaussian assumption is not always true, the estimated performance is found to be acceptable. Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR scores, which are then weighted to obtain a single output. We show that combining both user-specific and user-independent LLR outputs always results in improved performance than using the better of the two. In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the discriminative power of a given user based on the Gaussian assumption. Although similar class separability measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suitable because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications: a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fusion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches. Even though the applications are different, the proposed methods share the following common advantages. Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information simultaneously
    • …
    corecore