26,450 research outputs found

    Perspectives for Electronic Books in the World Wide Web Age

    Get PDF
    While the World Wide Web (WWW or Web) is steadily expanding, electronic books (e-books) remain a niche market. In this article, it is first postulated that specialized contents and device independence can make Web-based e-books compete with paper prints; and that adaptive features that can be implemented by client-side computing are relevant for e-books, while more complex forms of adaptation requiring server-side computations are not. Then, enhancements of the WWW standards (specifically of XML, XHTML, of the style-sheet languages CSS and XSL, and of the linking language XLink) are proposed for a better support of client-side adaptation and device independent content modeling. Finally, advanced browsing functionalities desirable for e-books as well as their implementation in the WWW context are described

    Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective

    Full text link
    This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.Comment: 6 pages, accepted by IEEE BIBM 2018 as regular pape

    Efficiently Reusing Natural Language Processing Models for Phenotype Identification in Free-text Electronic Medical Records: Methodological Study

    Get PDF
    Background: Many efforts have been put into the use of automated approaches, such as natural language processing (NLP), to mine or extract data from free-text medical records to construct comprehensive patient profiles for delivering better health-care. Reusing NLP models in new settings, however, remains cumbersome - requiring validation and/or retraining on new data iteratively to achieve convergent results. Objective: The aim of this work is to minimise the effort involved in reusing NLP models on free-text medical records. Methods: We formally define and analyse the model adaptation problem in phenotype identification tasks. We identify “duplicate waste” and “imbalance waste”, which collectively impede efficient model reuse. We propose a concept embedding based approach to minimise these sources of waste without the need for labelled data from new settings. Results: We conduct experiments on data from a large mental health registry to reuse NLP models in four phenotype identification tasks. The proposed approach can choose the best model for a new task, identifying up to 76% of phenotype mentions without the need for validation and model retraining, and with very good performance (93-97% accuracy). It can also provide guidance for validating and retraining the selected model for novel language patterns in new tasks, saving around 80% of the effort required in “blind” model-adaptation approaches. Conclusions: Adapting pre-trained NLP models for new tasks can be more efficient and effective if the language pattern landscapes of old settings and new settings can be made explicit and comparable. Our experiments show that the phenotype embedding approach is an effective way to model language patterns for phenotype identification tasks and that its use can guide efficient NLP model reuse

    The Bionic Radiologist: avoiding blurry pictures and providing greater insights

    Get PDF
    Radiology images and reports have long been digitalized. However, the potential of the more than 3.6 billion radiology examinations performed annually worldwide has largely gone unused in the effort to digitally transform health care. The Bionic Radiologist is a concept that combines humanity and digitalization for better health care integration of radiology. At a practical level, this concept will achieve critical goals: (1) testing decisions being made scientifically on the basis of disease probabilities and patient preferences; (2) image analysis done consistently at any time and at any site; and (3) treatment suggestions that are closely linked to imaging results and are seamlessly integrated with other information. The Bionic Radiologist will thus help avoiding missed care opportunities, will provide continuous learning in the work process, and will also allow more time for radiologists’ primary roles: interacting with patients and referring physicians. To achieve that potential, one has to cope with many implementation barriers at both the individual and institutional levels. These include: reluctance to delegate decision making, a possible decrease in image interpretation knowledge and the perception that patient safety and trust are at stake. To facilitate implementation of the Bionic Radiologist the following will be helpful: uncertainty quantifications for suggestions, shared decision making, changes in organizational culture and leadership style, maintained expertise through continuous learning systems for training, and role development of the involved experts. With the support of the Bionic Radiologist, disparities are reduced and the delivery of care is provided in a humane and personalized fashion

    Health Figures: An Open Source JavaScript Library for Health Data Visualization

    Get PDF
    The way we look at data has a great impact on how we can understand it, particularly when the data is related to health and wellness. Due to the increased use of self-tracking devices and the ongoing shift towards preventive medicine, better understanding of our health data is an important part of improving the general welfare of the citizens. Electronic Health Records, self-tracking devices and mobile applications provide a rich variety of data but it often becomes difficult to understand. We implemented the hFigures library inspired on the hGraph visualization with additional improvements. The purpose of the library is to provide a visual representation of the evolution of health measurements in a complete and useful manner. We researched the usefulness and usability of the library by building an application for health data visualization in a health coaching program. We performed a user evaluation with Heuristic Evaluation, Controlled User Testing and Usability Questionnaires. In the Heuristics Evaluation the average response was 6.3 out of 7 points and the Cognitive Walkthrough done by usability experts indicated no design or mismatch errors. In the CSUQ usability test the system obtained an average score of 6.13 out of 7, and in the ASQ usability test the overall satisfaction score was 6.64 out of 7. We developed hFigures, an open source library for visualizing a complete, accurate and normalized graphical representation of health data. The idea is based on the concept of the hGraph but it provides additional key features, including a comparison of multiple health measurements over time. We conducted a usability evaluation of the library as a key component of an application for health and wellness monitoring. The results indicate that the data visualization library was helpful in assisting users in understanding health data and its evolution over time.Comment: BMC Medical Informatics and Decision Making 16.1 (2016
    corecore