1,044 research outputs found

    Profiling and Improving I/O Performance of a Large-Scale Climate Scientific Application

    Get PDF
    Exascale computing systems are soon to emerge, which will pose great challenges on the huge gap between computing and I/O performance. Many large-scale scientific applications play an important role in our daily life. The huge amounts of data generated by such applications require highly parallel and efficient I/O management policies. In this paper, we adopt a mission-critical scientific application, GEOS-5, as a case to profile and analyze the communication and I/O issues that are preventing applications from fully utilizing the underlying parallel storage systems. Through in-detail architectural and experimental characterization, we observe that current legacy I/O schemes incur significant network communication overheads and are unable to fully parallelize the data access, thus degrading applications' I/O performance and scalability. To address these inefficiencies, we redesign its I/O framework along with a set of parallel I/O techniques to achieve high scalability and performance. Evaluation results on the NASA discover cluster show that our optimization of GEOS-5 with ADIOS has led to significant performance improvements compared to the original GEOS-5 implementation

    Improving Parallel I/O Performance Using Interval I/O

    Get PDF
    Today\u27s most advanced scientific applications run on large clusters consisting of hundreds of thousands of processing cores, access state of the art parallel file systems that allow files to be distributed across hundreds of storage targets, and utilize advanced interconnections systems that allow for theoretical I/O bandwidth of hundreds of gigabytes per second. Despite these advanced technologies, these applications often fail to obtain a reasonable proportion of available I/O bandwidth. The reasons for the poor performance of application I/O include the noncontiguous I/O access patterns used for scientific computing, contention due to false sharing, and the somewhat finicky nature of parallel file system performance. We argue that a more fundamental cause of this problem is the legacy view of a file as a linear sequence of bytes. To address these issues, we introduce a novel approach for parallel I/O called Interval I/O. Interval I/O is an innovative approach that uses application access patterns to partition a file into a series of intervals, which are used as the fundamental unit for subsequent I/O operations. Use of this approach provides superior performance for the noncontiguous access patterns which are frequently used by scientific applications. In addition, the approach reduces false contention and the unnecessary serialization it causes. Interval I/O also significantly increases the performance of atomic mode operations. Finally, the Interval I/O approach includes a technique for supporting parallel I/O for cooperating applications. We provide a prototype implementation of our Interval I/O system and use it to demonstrate performance improvements of as much as 1000% compared to ROMIO when using Interval I/O with several common benchmarks

    A fast input/output library for high-resolution climate models

    Get PDF
    We describe the design and implementation of climate fast input/output (CFIO), a fast input/output (I/O) library for high-resolution climate models. CFIO provides a simple method for modelers to overlap the I/O phase with the computing phase automatically, so as to shorten the running time of numerical simulations. To minimize the code modifications required for porting, CFIO provides similar interfaces and features to parallel Network Common Data Form (PnetCDF), which is one of the most widely used I/O libraries in climate models. We deployed CFIO in three high-resolution climate models, including two ocean models (POP and LICOM) and one sea ice model (CICE). The experimental results show that CFIO improves the performance of climate models significantly versus the original serial I/O approach. When running with CFIO at 0.1° resolution with about 1000 CPU cores, we managed to reduce the running time by factors of 7.9, 4.6 and 2.0 for POP, CICE, and LICOM, respectively. We also compared the performance of CFIO against two existing libraries, PnetCDF and parallel I/O (PIO), in different scenarios. For scenarios with both data output and computations, CFIO decreases the I/O overhead compared to PnetCDF and PIO

    A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics

    Get PDF
    In the era of petascale computing, more scientific applications are being deployed on leadership scale computing platforms to enhance the scientific productivity. Many I/O techniques have been designed to address the growing I/O bottleneck on large-scale systems by handling massive scientific data in a holistic manner. While such techniques have been leveraged in a wide range of applications, they have not been shown as adequate for many mission critical applications, particularly in data post-processing stage. One of the examples is that some scientific applications generate datasets composed of a vast amount of small data elements that are organized along many spatial and temporal dimensions but require sophisticated data analytics on one or more dimensions. Including such dimensional knowledge into data organization can be beneficial to the efficiency of data post-processing, which is often missing from exiting I/O techniques. In this study, we propose a novel I/O scheme named STAR (Spatial and Temporal AggRegation) to enable high performance data queries for scientific analytics. STAR is able to dive into the massive data, identify the spatial and temporal relationships among data variables, and accordingly organize them into an optimized multi-dimensional data structure before storing to the storage. This technique not only facilitates the common access patterns of data analytics, but also further reduces the application turnaround time. In particular, STAR is able to enable efficient data queries along the time dimension, a practice common in scientific analytics but not yet supported by existing I/O techniques. In our case study with a critical climate modeling application GEOS-5, the experimental results on Jaguar supercomputer demonstrate an improvement up to 73 times for the read performance compared to the original I/O method

    Advanced I/O for large-scale scientific applications.

    Full text link

    The Next Generation of EMPRESS: A Metadata Management System For Accelerated Scientific Discovery at Exascale

    Get PDF
    Scientific data sets have grown rapidly in recent years, outpacing the growth in memory and network bandwidths. This I/O bottleneck has made it increasingly difficult for scientists to read and search outputted datasets in an attempt to find features of interest. In this paper, we will present the next generation of EMPRESS, a scalable metadata management service that offers the following solution: users can tag features of interest and search these tags without having to read in the associated datasets. EMPRESS provides, in essence, a digital scientific notebook where scientists can write down observations and highlight interesting results, and an efficient way to search these annotations. EMPRESS also provides storage-system independent physical metadata, providing a portable way for users to read both metadata and the associated data. EMPRESS offers scalability through two different deployment modes: local , which runs on the compute nodes and dedicated, which uses a set of dedicated, shared-nothing servers. EMPRESS also provides robust fault tolerance and transaction management, which is crucial to supporting workflows
    corecore