
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2010

Improving Parallel I/O Performance Using Interval
I/O
Jeremy Logan

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer Sciences Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Logan, Jeremy, "Improving Parallel I/O Performance Using Interval I/O" (2010). Electronic Theses and Dissertations. 215.
http://digitalcommons.library.umaine.edu/etd/215

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/215?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPROVING PARALLEL I/O PERFORMANCE

USING INTERVAL I/O

By

Jeremy Logan

B.S. University of Southern Maine, 2001

M.S. University of Maine, 2006

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

(in Computer Science)

The Graduate School

The University of Maine

December, 2010

Advisory Committee:

Phillip Dickens, Associate Professor of Computer Science, Advisor

George Markowsky, Professor of Computer Science

James Fastook, Professor of Computer Science

Roy Turner, Associate Professor of Computer Science

Bruce Segee, Associate Professor of Electrical and Computer Engineering

IMPROVING PARALLEL I/O PERFORMANCE

USING INTERVAL I/O

By Jeremy Logan

Thesis Advisor: Dr. Phillip Dickens

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
(in Computer Science)

December, 2010

Today's most advanced scientific applications run on large clusters consisting of

hundreds of thousands of processing cores, access state of the art parallel file systems that

allow files to be distributed across hundreds of storage targets, and utilize advanced

interconnections systems that allow for theoretical I/O bandwidth of hundreds of

gigabytes per second. Despite these advanced technologies, these applications often fail

to obtain a reasonable proportion of available I/O bandwidth. The reasons for the poor

performance of application I/O include the noncontiguous I/O access patterns used for

scientific computing, contention due to false sharing, and the somewhat finicky nature of

parallel file system performance. We argue that a more fundamental cause of this problem

is the legacy view of a file as a linear sequence of bytes. To address these issues, we

introduce a novel approach for parallel I/O called Interval I/O.

Interval I/O is an innovative approach that uses application access patterns to

partition a file into a series of intervals, which are used as the fundamental unit for

subsequent I/O operations. Use of this approach provides superior performance for the

noncontiguous access patterns which are frequently used by scientific applications. In

addition, the approach reduces false contention and the unnecessary serialization it

causes. Interval I/O also significantly increases the performance of atomic mode

operations. Fianlly, the Interval I/O approach includes a technique for supporting parallel

I/O for cooperating applications. We provide a prototype implementation of our Interval

I/O system and use it to demonstrate performance improvements of as much as 1000%

compared to ROMIO when using Interval I/O with several common benchmarks.

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

Chapter

1 INTRODUCTION 1

1.1 Background 3

1.1.1 POSIX and Sequential I/O 3

1.1.2 Parallel File Systems 4

1.1.3 Parallel I/O 4

1.1.4 MPI 5

1.1.5 MPI-IO 6

1.1.6 MPI File Views 6

1.1.7 ROMIO 8

1.2 The Scalable I/O Problem 9

1.2.1 I/O Access Patterns of Scientific Applications 9

1.2.2 Strict File Consistency Semantics 11

1.2.3 Lack of File System Support for Parallel Optimizations 12

1.2.4 A More Fundamental Problem , 13

1.3 Interval I/O 13

1.4 System Design 14

1.4.1 Interval Integration Interface 15

1.4.2 Interval-Based Cache 16

iv

1.4.3 Distributed Lock Manager 16

1.4.4 Interval-Based File Layer 17

1.4.5 Interval Set Translator 17

1.5 Summary of Research Results 18

1.6 Contributions of this Research 19

1.7 Organization of this Document 19

2 RELATED RESEARCH 20

2.1 MPI-IO 20

2.2ROMIOandADIO 20

2.3 Two-Phase I/O , 21

2.4 Techniques Addressing Noncontiguous I/O 23

2.4.1 Data Sieving 23

2.4.2 View I/O 24

2.4.3 Other Techniques for Addressing Noncontiguous I/O 25

2.5 Collective Caching , , 26

2.6 Active Buffering 27

2.7ADIOS 28

2.8 Efficient Atomic Mode Accesses 29

2.8.1 File Locking 29

2.8.2 Extent Locking 29

2.8.3 List Locking 30

2.8.4 Distributed Locking Approaches 30

2.8.5 Interval Locking 31

v

2.9 Structured Data Formats 32

2.10 Parallel I/O using Lustre 33

3 THE INTERVAL I/O SYSTEM 35

3.1 Interval Integration Interface 35

3.1.1 Interval Set Creation 35

3.1.2 Read and Write Translation ..38

3.2 Interval-Based Cache 38

3.2.1 Cache Architecture , 38

3.3 Distributed Lock Manager 44

3.3.1 Lock Manager Design 44

3.3.2 Correctness of the Locking Protocol 48

3.4 Interval-Based File Layer 49

3.4.1 Interval-Based Files49

3.5 Interval Translation 52

3.5.1 Use of the Translator 53

3.5.2 Translator Design 54

4 ADVANTAGES OF USING INTERVALS 56

4.1 Eliminating False Sharing 56

4.2 Increasing Performance for Noncontiguous Accesses with Interval Files 58

4.3 Supporting I/O Cooperation 60

4.4 Efficient Lock Management 61

4.5 Detection of Private Intervals 62

VI

5 PERFORMANCE STUDIES 63

5.1FLASH-IO 65

5.2 MPI-Tile-IO 69

5.3 2D-Column-IO 72

6 LUSTRE FILE SYSTEM OPTIMIZATION 78

6.1 Lustre Performance Overview 78

6.2 Lustre Architecture 80

6.2.1 Data Aggregation Patterns 82

6.2.2 Aligning Data with the Lustre Object Storage Model 84

6.2.3 Tradeoffs in the Aggregation Patterns 88

6.3 Experimental Design 89

6.3.1 Experimental Study on Ranger 90

6.3.1.1 Data Aggregation Patterns with Redistribution90

6.3.1.2 Data Aggregation Patterns without Redistribution 91

6.3.1.3 ROMIO Write Strategies 91

6.3.1.4 Experimental Results 92

6.3.1.5 Discussion , 94

6.3.2 Experimental Studies on Big Red ...95

6.3.2.1 Data Aggregation Patterns without Redistribution 95

6.3.2.2 Experimental Results 96

6.3.2.3 Discussion 97

6.4 Striped Interval Files 98

vn

7 CONCLUSION AND FUTURE RESEARCH 102

7.1 Conclusion 102

7.2 Future Research 103

REFERENCES 105

BIOGRAPHY OF THE AUTHOR 110

vm

LIST OF TABLES

Table 1. Specification of Interval-Based Files 51

IX

LIST OF FIGURES

Figure 1.1. File Striping on a Parallel File System 5

Figure 1.2. A file view example showing both shared and private regions 7

Figure 1.3. Mapping a noncontiguous access pattern onto the disk 10

Figure 1.4. The consistency semantics of MPI-IO Atomic Mode 12

Figure 1.5. Components of the Interval I/O system 15

Figure 2.1. The ADIO architecture used by ROMIO 21

Figure 3.1. A file view example with shared and private regions 36

Figure 3.2. The interval creation process 37

Figure 3.3. The basic architecture of the cache 39

Figure 3.4. The initial cache layout resulting from the interval set created in Figure 3.2 40

Figure 3.5. Reading and writing shared cache objects 43

Figure 3.6. The ordering used to grant locks 45

Figure 3.7. Fulfilling a request for locks 46

Figure 3.8. Local lock manager architecture.... 47

Figure 3.9. The Translator Architecture 54

Figure 4.1. False sharing resulting from extent locking 57

Figure 4.2. False sharing resulting from block-based caching 58

Figure 4.3. Using an interval file to store a noncontiguous I/O pattern 59

Figure 4.4. I/O cooperation between a data producer and a data consumer 60

Figure 4.5. An access pattern containing only private intervals 62

Figure 5.1. The FLASH-IO data layout 66

Figure 5.2. Initial FLASH-IO benchmark execution times 67

x

Figure 5.3. More recent FLASH-IO checkpointing performance results 68

Figure 5.4. MPI-Tile-IO data layout 70

Figure 5.5. MPI-Tile-IO performance 71

Figure 5.6. The 2D-Column-IO access pattern 72

Figure 5.7. 2D-Column-IO performance, 4 GB total file size 74

Figure 5.8. 2D-Column-IO performance, 256 MB per process.... 75

Figure 5.9. 2D-Column-IO performance with RAS Locking 76

Figure 6.1. Crossing Stripe Boundaries with Lustre 82

Figure 6.2. Communication pattern for two-phase I/O with Lustre 83

Figure 6.3. Lustre file layout 85

Figure 6.4. Each process has its data in the conforming distribution 86

Figure 6.5. The one-to-one OST pattern , 87

Figure 6.6. The conforming distribution 88

Figure 6.7. The one-to-two OST pattern after redistribution 88

Figure 6.8. Mean throughput with data redistribution 92

Figure 6.9. Mean throughput without data redistribution 93

Figure 6.10. A comparison of MPI write strategies 94

Figure 6.11. Impact of data distribution , 97

Figure 6.12. Optimizing the Interval File layout for Lustre 100

XI

1 INTRODUCTION

Large-scale computing clusters, with thousands to tens-of-thousands of

computing cores, are becoming an increasingly important component of the national

computational infrastructure [1]. These large-scale computing clusters are coupled with

state of the art parallel file systems such as Lustre [2], PVFS [3], and Panasas [4], which

offer massive storage capabilities and are designed to provide scalable access to

thousands of clients concurrently. Software systems, such as MPI (Message Passing

Interface) [5], support large-scale applications executing in such extreme environments

by providing sophisticated mechanisms for message passing and process management.

MPI-IO is the I/O component of the MPI standard, which provides to MPI applications a

rich API that can be used to express complex I/O access patterns, and which provides to

the underlying implementation many opportunities for important I/O optimizations.

Taken together, these technologies have enabled an important new class of

scientific applications termed data-intensive applications, which can manipulate data sets

on the order of terabytes to petabytes and beyond. Such applications are capable of

executing very high-resolution scientific models, completing computations that would

once have been deemed intractable. This has significantly deepened our understanding of

previously unexplored scientific phenomena, including, for example, climate modeling

[6], earthquake modeling [7], and genomic pattern matching [8]. It has also made

possible detailed animation and visualization of scientific data [9], further deepening our

understanding of natural phenomena [10].

1

The problem, however, is that despite the impressive computational and data­

storage capabilities of these large clusters, the I/O requirements of data intensive

applications are still straining the I/O capabilities of even the largest, most powerful file

systems in use today. Thus new approaches are needed to support the execution of current

and next-generation data-intensive applications. This problem, known as the scalable I/O

problem [11,12], is of critical importance because continued scientific discovery is in

many cases dependent upon the ability to execute more complex and higher resolution

models.

There are many factors that make the scalable I/O problem so challenging. The

most often cited difficulties include the I/O access patterns exhibited by scientific

applications (e.g., non-contiguous I/O [13-15]), poor file system support for parallel I/O

optimizations [16,17], enforcing strict file consistency semantics [18], and the latency of

accessing I/O devices across a network. However, it is our contention that a more

fundamental problem, whose solution would go a long way toward solving all of these

problems, is the legacy view of a file as a linear sequence of bytes. The problem is that

application processes rarely access their data in a way that matches this file model, and a

significant portion of the scalability problem is the high cost of dynamically translating

between the process data model and the file data model at runtime. In fact, the data model

used by application processes is more accurately described as an object model, where

each process maintains a set of (perhaps) unrelated objects. In this new file model, each

object corresponds to a file region that is itself contiguous in the file, where the set of

objects belonging to a given process are not (necessarily) so.

2

This research is addressing the scalable I/O problem by developing this new file

model and the software infrastructure required for its support. The approach is based on

what we term intervals, which are defined in such a way as to encode critical information

about an application's I/O access patterns. This information is leveraged by the runtime

system to significantly increase the parallelism of file accesses, and to reduce the costs

associated with enforcing strict file system semantics and maintaining global cache

coherence.

This document provides details of the new approach that we term interval I/O,

discusses the infrastructure that supports this new I/O paradigm, and provides a large

collection of experimental results showing that interval-IO can outperform current, state-

of-the-art techniques by over an order of magnitude.

1.1 Background

This section includes related background material that will prepare the reader for

the subsequent discussion of Interval I/O.

1.1.1 POSIX and Sequential I/O

The most commonly used file system interface (API) is POSIX (Portable

Operating System Interface) [19], which was designed for serial file access by a single

process. It provides basic functionality for a single process (e.g., system calls for reading

from and writing to a file, and seeking to a given location), but provides no specific

support for parallel I/O. This makes providing high-performance I/O in a parallel

3

environment quite difficult, and has spawned significant research activity aimed at

overcoming (or providing workarounds for) the limitations of the POSIX API [19].

1.1.2 Parallel File Systems

Parallel file systems are designed to concurrently provide access to massive

quantities of data for thousands to tens-of-thousands of clients. Scalability is achieved by

striping large files across a number of individual disks, each of which may be accessed

separately and in parallel, thus increasing the potential I/O throughput.

Figure 1.1 illustrates file striping in a parallel file system. The long rectangle at

the top represents a large file divided into six equal-sized sections called stripes. The

three cylinders represent storage targets (disks) to which the file stripes are assigned. The

stripes are assigned to the disks in a round-robin manner. In this case, striping data across

three disks provides, in the best case, three times the I/O throughput as compared to a

single disk.

1 1.3 Parallel I/O

To take advantage of the additional bandwidth provided by parallel file systems, a

technique known as parallel I/O has been developed. Parallel I/O involves multiple

application processes collaborating on an I/O operation involving a single shared file.

This collaboration allows the additional I/O capacity provided by a parallel file system to

be used by a parallel application.

4

1.1.4 MPI

The Message Passing Interface (MPI) is a very widely used specification [5] for

supporting the development of parallel applications on high-performance computing

clusters. MPI offers a standard interface that allows portability between systems with

different operating systems, memory models, or interconnection networks. In addition to

providing management of application processes, MPI offers a rich set of communication

primitives that are made available through a standard API. The latest version of the

interface, MPI-2, includes additional features such as dynamic process management and

support for parallel I/O, which is discussed in the next section.

There are a variety of implementations of the MPI specification. One of the more

widely used of these implementations, and the one we have chosen for experimentation,

is MPICH2. MPICH2 was developed at Argonne National Laboratory, and provides a

portable, high performance implementation of the MPI-2 standard.

Figure 1.1. File Striping on a Parallel File System

5

1.1.5 MPI-IO

MPI-IO is the I/O component of the MPI standard that was designed to provide

MPI applications with portable, high performance parallel I/O. It is a rich and flexible

parallel I/O API that allows an application to express complex parallel I/O access patterns

in a single I/O request, and provides to the underlying implementation important

opportunities to optimize accesses to the underlying file system. As with MPI, the details

of an MPI-IO implementation are left to the implementer; any optimizations are

permitted, as long as the implementation provides the functionality described in the

specification.

1.1.6 MPI File Views

An important feature of MPI-IO is the file view, which is set by each of the

processes that open a file. The file view maps the relationship between the regions of a

file that a process will access and the way those regions are laid out on disk. A process

cannot "see" or access any file regions that are not in its file view, and the file view thus

essentially maps a contiguous window onto the (perhaps) non-contiguous file regions in

which the process will operate. If its data is stored on disk as it is defined in the file view,

only a single I/O operation is required to move the data to and from the disk. However, if

the data is stored non-contiguously on disk, multiple I/O operations are required.

A simple example of a file view is shown in Figure 1.2. In this example, there are

three processes sharing a file. For each process, the first rectangle represents the shared

file and illustrates how the processes' data is laid out on the disk. The second rectangle

represents the processes' file view. As can be seen, the file view maps the non-contiguous

6

regions within which the process will operate onto a contiguous view window. Note that

two or more processes access some of the file regions and that some file regions are

accessed by only a single process.

It is important to note that setting a file view is a collective operation, which

means that all processes sharing a given file must participate in the operation. Once the

collective call is completed, the runtime system has information about the file access

patterns of each process. When appropriately aggregated, the collection of file views

shows exactly those regions in which contention is possible, and, by extension, those

regions for which contention is not possible. This is very valuable information that can be

utilized by the runtime system to significantly improve I/O performance. How file views

are aggregated to provide such information, and how the information is utilized by the

runtime system, are discussed in following sections.

Figure 1.2. A file view example showing both
shared and private regions

7

1.1.7 ROMIO

It is generally agreed that the most widely used implementation of MPI-IO is

ROMIO [20-23], which was developed at Argonne National Laboratory and which is

included in the MPICH2 [24] distribution of the MPI standard. ROMIO provides key

optimizations for enhanced performance (e.g., two-phase I/O [22,25,26] and data sieving

[20,22,27]), and is implemented on a wide range of parallel architectures and file

systems.

The portability of ROMIO stems from an internal layer termed ADIO [21]

(Abstract Device Interface for parallel I/O) upon which ROMIO implements the MPI-IO

interface. ADIO implements the file system dependent features, and is thus implemented

separately for each file system.

There are several reasons that we have chosen to utilize ROMIO in this research,

including:

• ROMIO is a high-performance implementation of the MPI-IO standard and

includes several important optimizations for parallel I/O.

• ROMIO consists of freely available code licensed under an open source

license.

• The portability of ROMIO allows flexibility in testing our work on a variety

of file systems with minimal additional effort.

• Leveraging ROMIO's existing high-quality I/O infrastructure, allows us to

focus on specific improvements to the system rather than building a system

from scratch.

8

• Use of the most widely used MPI-IO implementation insures maximum

impact of these results.

1.2 The Scalable I/O Problem

The massive I/O requirements of large-scale data-intensive applications represent

a significant bottleneck in application performance. This is a critical problem for

scientific applications, and solving the problem has been a focus of significant research

activity [12,14,22,25,27-39]. As noted above, the most often cited roadblocks to

achieving high-performance I/O include the I/O access patterns of scientific applications,

poor file system support for parallel I/O optimizations, enforcing strict file consistency

semantics, and the latency of accessing I/O devices across a network. In this section, we

describe these issues, and, in subsequent sections, show how Interval-IO addresses these

challenges.

1.2.1 I/O Access Patterns of Scientific Applications

It is quite common for parallel applications to perform file accesses that address a

large number of noncontiguous file regions [20,13,40]. The problem is that such access

patterns often result in a large number of small I/O requests, incurring the high cost of

I/O on each such request. A simple example of such a noncontiguous access pattern is

shown in Figure 1.3. In this example, a two-dimensional array is read from a shared file

by an application consisting of four processes. As can be seen, the array is partitioned in

two dimensions among all four processes. To read its array data from the file, each

process must make two separate I/O requests. For instance, process 0 must perform one

9

I/O operation to request contiguous blocks (0-1), and a second request to access

contiguous blocks (4-5). This may be a negligible cost when just two accesses are

required, but noncontiguous accesses often consist of large numbers of separate file

regions, with access overhead costs increasing in proportion to the number of such

regions.

Application Access Pattern:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

File arrangement on disk:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1.3. Mapping a noncontiguous access pattern onto the disk

Noncontiguous I/O operations provide one example of the richness and power of

the MPI-IO interface. One advantage of using the parallel I/O API is that it can specify

non-contiguous I/O requests in a single operation (through the file view mechanism).

More importantly, the runtime system can, in many cases, use the information available

10

in the file views to optimize accesses to the parallel file system. In fact, developing

optimizations for non-contiguous I/O operations has been one of the most well-

researched problem areas in parallel I/O.

1.2.2 Strict File Consistency Semantics

The consistency semantics associated with accessing a shared file define the

outcome of multiple concurrent accesses to that file. One of the most significant

challenges in providing high-performance parallel I/O is supporting strict file consistency

semantics in a scalable way. MPI provides what is termed atomic mode, which requires

sequential consistency of file accesses. Sequential consistency requires that the result of a

set of I/O operations be as if they were performed in some serial order consistent with

program order (although the particular ordering is not defined), and that each such access

appears atomic. A simple example may help to clarify this idea.

Figure 1.4 provides an example with four processes, where three of the processes

(P0, Pi, and P2) perform simultaneous writes to a shared file while using atomic mode. P3

then reads all four file blocks. The right-hand column of the figure shows several possible

outcomes of P3's read, including three valid outcomes and three invalid results. In the first

valid case, the outcome is equivalent to the result of one of two different serial orderings

of the write operations, either (P0, Pi, P2), or (Pi, P0, P2). The second valid outcome is

equivalent to the result of the serial ordering (P0, P2, Pi). The third valid outcome is

equivalent to the result of the serial ordering (Pi, P2, P0). None of the invalid results could

have been a result of any sequential ordering of the write operation.

11

File: A B C D

P n : 0 0

P :
i

| 1 1

P : 2 2 2

P :

- \

o ^
O

P,: 2 I 2 2 •> •>

P y 2 1 2 1

y

K»

Pv 0 I 0 2 y

P :
3

0 I 2 2 ~~> ~~>

3
>5

P : 2 I 1 0 2
3

>5
_J

£
P :

3
2 L 0 1 _J

Figure 1.4. The consistency semantics of MPI-IO Atomic Mode

The reason that providing atomic mode accesses in MPI-IO is so costly is that it

(generally) requires file locking for its implementation. The use of file system locks can

lead to any number of bad results, including false contention arising from extent locking,

complete serialization of accesses when only whole file locks are available, to a complete

inability to provide atomic accesses for file systems that do not provide any locking

mechanism at all.

1.2.3 Lack of File System Support for Parallel Optimizations

The most commonly used file system interface is POSIX [19], which provides

access to files through a simple set of commands designed for serial access to a file by a

single process. Unfortunately, the POSIX interface does not provide any specific support

for underlying parallel optimizations, such as, for instance, a mechanism for expressing

general noncontiguous operations.

12

1.2.4 A More Fundamental Problem

All of these issues stem from a more fundamental problem with parallel I/O,

namely that the legacy view of a file as a linear sequence of bytes is poorly suited to file

I/O in a parallel environment. The main problem is that applications don't access data in a

way that matches the standard linear file model. The complex I/O access patterns utilized

by parallel applications demands a more sophisticated approach.

1.3 Interval I/O

Our research directly addresses the scalable I/O problem by developing the

infrastructure to merge the power and flexibility of the MPI-IO parallel I/O interface with

a more powerful interval-based file model. Toward this end, we are developing an

interval-based I/O system that serves as an interface between MPI applications and

interval-based files. The system is guided by MPI-IO file views [41], or, more precisely,

the intersections between such views. These intersections, which we term intervals,

identify all of the file regions within which conflicting accesses are possible and (by

extension) those regions for which there can be no conflicts (termed shared intervals and

private intervals respectively). This information can be used by the runtime system to

significantly increase the parallelism of file accesses and decrease the cost of enforcing

strict file consistency semantics and global cache coherence.

13

Five major advantages are realized from viewing parallel I/O operations from this

perspective:

• Increasing I/O parallelism by eliminating false sharing

• Allowing file system accesses to be performed using an optimal access pattern

regardless of the access pattern used by the application

• Introducing a mechanism to support I/O cooperation between applications

• Introducing an efficient technique for distributed lock management

• Reducing lock overhead by detecting private intervals

1.4 System Design

The interval-based I/O infrastructure consists of five primary components: an

interval integration interface, an interval cache, a distributed lock management system, an

interval-based file layer, and an interval set transformation tool. These components are

shown in Figure 1.5 in the context of the MPI software stack. We discuss each of these

components in turn.

14

Application

ROMIO

Interval Integration Interface

Interval Cache Lock Manager

Interval Translator Interval Translator

Interval-Based File Layer

ADIO

GPFS Lustre PVFS UFS

Figure 1.5. Components of the Interval I/O system

1.4.1 Interval Integration Interface

The function of the Interval Integration Interface (I3) is to perform the translation

of MPI-IO calls into corresponding interval set accesses that are supported by the

underlying interval-based components (cache, lock manager). Specifically, the I3 utilizes

file views set by the application to create interval sets designed to efficiently handle the

application's I/O operations. It also converts file read and write operations into

corresponding interval accesses based on the current interval set.

15

1.4.2 Interval-Based Cache

The interval cache is a collaborative interval-based software cache implemented

as an extension to ROMIO. The cache is designed to manage contents of the file in

memory, distributed across the participating processes. The cache uses collaboration

between application processes to handle MPI-IO file accesses.

Although other research groups have shown the potential effectiveness of a

parallel software cache [28-30], this earlier work has focused on the use of block-based

caches. In contrast, our system abandons the traditional block-based paradigm, a remnant

of physical disk caching, in favor of an interval-based approach. The interval cache not

only provides improved performance by itself, but it also acts as an extremely fast

interface to the more powerful interval-based files described later in this document.

1.4.3 Distributed Lock Manager

We have developed a novel locking system designed to provide sequential

consistency to atomic operations performed by our interval cache. The system is designed

to operate as a distributed system of lock managers, each acting as a central manager for

a specific subset of the available locks. The locks are assigned to the application

processors according to the active file view (and the corresponding interval set) so that

typical access patterns will require each process to interact with a relatively small number

of lock managers. Our flexible design allows the number of lock managers to be

determined dynamically according to the I/O pattern of the application, thus providing a

mechanism to balance speed and scalability.

16

1.4.4 Interval-Based File Layer

A central motivation for this research is the assertion that the traditional flat file'

is not a good match for a parallel I/O environment. Therefore, a major component of this

research is to provide a suitable alternative file model that eliminates the parallel I/O

performance issues inherent in sequential files. Thus we introduce a virtual interval-based

file layer designed to integrate seamlessly with the caching system and to provide more

optimal I/O performance. The key to the design is the use of a structured, interval-based

file format used to represent a given flat file by reorganizing file data to better fit the

actual access pattern used by a parallel application. The organization of the interval files

corresponds directly to the arrangement of cached data, with intervals from each process

stored contiguously on disk. This allows the file accesses to be accomplished via large

contiguous data transfers with no contention. Metadata included in the interval file allows

the original flat file layout to be reconstructed when necessary. The interval files

themselves are stored as flat files in an underlying file system, allowing their use

regardless of the actual file system available on a particular cluster.

1.4.5 Interval Set Translator

Although the interval files provide excellent I/O performance, the files are tuned

specifically to a particular file view of an application running on a particular number of

processors. To achieve more general interoperability of the interval files, the final

component of the Interval I/O system, called the translator, is designed to perform the

1 Flat file refers to a standard file viewed as a linear sequence of bytes and accessed via
linear operations (i.e. read, write, seek).

17

migration of data from one interval layout to another. Efficient translation is

accomplished by the use of an interval tree used to remap the intervals between source

and target layouts. The translator allows a great deal of flexibility in its use; it is designed

to read from or write to files, or stream data to or from an interval cache. In addition, the

translator can be run on a separate set of processors (or cores) from the application

performing I/O, effectively pipelining the I/O and increasing the utilization of the

available hardware.

1.5 Summary of Research Results

Together, the interval cache, distributed lock manager, interval-based file layer,

and the interval set translator provide a platform for researching interval-based parallel

I/O. We have developed a prototype Interval I/O System, which has produced results

indicating the promise of the approach. Discussions of these results have appeared in

several papers, which are briefly summarized here. One study [42] demonstrates the

effectiveness of interval files for performing checkpoint operations in the context of a

large-scale physics simulation. A recent technical report [43] details the I/O performance

improvement possible from using an interval-based approach when using pNetCDF or

Parallel HDF5 in conjunction with MPI-IO. Another paper [44] illustrates the potential

benefits of interval set translation for improving the performance of I/O for parallel data

visualization. Finally, three papers [45,31,46] challenge widely held beliefs regarding

which access patterns provide optimal performance, specifically when performing

parallel I/O using the Lustre file system. Together these results offer substantial evidence

of the promise of Interval I/O.

18

1.6 Contributions of this Research

• Examines a new paradigm for parallel I/O

• Provides a direct performance benefit to existing applications that use MPI-IO

• Allows I/O-bound applications to scale to larger problem sizes and processor

counts

• Benefits the scientific modeling community by allowing models to run more

quickly, or at higher resolution

• Benefits the wider community of MPI-IO users

1.7 Organization of this Document

The remainder of the document is organized as follows. The related research is

discussed in Chapter 2. Chapter 3 contains a description of each of the five major

components of the proposed system. Chapter 4 discusses the various advantages to using

Interval I/O. In Chapter 5, we present the performance testing that has been done using

the system. Chapter 6 examines the performance implications for performing parallel I/O

with an object-based file system, Lustre, and Chapter 7 describes how we extended the

interval file format to take advantage of Lustre's performance characteristics. Finally,

Chapter 8 concludes the document and provides an overview of future directions for

Interval I/O.

19

2 RELATED RESEARCH

A great deal of effort has been directed toward solving the scalable I/O problem.

This section details the research efforts that are most closely related to this research.

2.1 MPI-IO

MPI-IO is the parallel I/O component of the Message Passing Interface 2 (MPI-2)

specification [5]. MPI-IO is designed to support a variety of file access techniques

including independent and collective I/O; contiguous, strided, vector, and structured

accesses; and both synchronous and asynchronous operations. MPI-IO also features

support for file views, which allow an application to declare the portions of a file which

each of the application's processes will access. The ability to leverage the information

contained in file views is a key element of this research.

The MPI-IO file view mechanism allows application processes to declare the file

regions that they will access, and by extension, those that they will not. This is important

since portions of the file that fall outside of a process's current file view cannot be

accessed by that process. It is this information contained in the file views that form the

basis of our approach.

2.2 ROMIO and ADIO

ROMIO is a widely used implementation of MPI-IO introduced by Thakur, et al.

[20], ROMIO provides a flexible, portable interface to a variety of file systems. Its

20

flexibility is due largely to the Abstract Device Interface (ADIO) [21] upon which

ROMIO implements the file-system-dependent functions of MPI-IO. This flexible

architecture is illustrated in Figure 2.1. As can be seen, the application interacts with

ROMIO via the MPI-IO interface. These calls are translated into corresponding ADIO

calls, which in turn use a specific driver designed for the file system upon which the file

is stored. ROMIO contains implementations of important parallel I/O optimizations such

as data sieving and two-phase collective I/O, which are discussed below.

The Interval I/O system has been implemented as an extension to ROMIO. It is

located in the ADIO layer, making it almost completely transparent to applications that

use MPI-IO for parallel I/O.

Application (using MPI-IO)

ROMIO

ADIO

UFS PVFS GPFS Lustre

Figure 2.1. The ADIO architecture used by ROMIO

2.3 Two-Phase I/O

ROMIO implements the collective I/O operations using a technique termed two-

phase I/O [25]. Consider a collective write operation. In the first phase, the processes

21

exchange their Individual I/O requests to determine the global request. The processes then

use inter-process communication to re-distribute the data to a set of aggregator processes.

The data is re-distributed such that each aggregator process has a large, contiguous chunk

of data that can be written to the file system in a single operation. The parallelism comes

from the aggregator processes performing their writes concurrently. This is successful

because it is significantly more expensive to write to the file system than it is to perform

inter-process communication.

A generalized version of the two-phase I/O optimization, termed multiple-phase

collective I/O, was presented by Singh, et al. [47]. The technique also uses a single disk

I/O phase, but allows the number of redistribution phases to van'. The authors note that

the effectiveness of additional shuffling phases depends on the interconnection network

technology of the target platform. Another variation of two-phase I/O known as disk-

directed I/O [32] uses a set of "I/O processors" to coordinate the rearrangement of data

instead of performing aggregation on the application processors.

Two-phase I/O performs well for hundreds of processors, but due to increasing

communication costs, becomes untenable as the number of processors involved scales

toward the thousands. Use of the Interval I/O system eliminates the need for two-phase

I/O. No inter-process communication is needed to rearrange accessed data since data is

not stored in linear order on the underlying file system.

22

2.4 Techniques Addressing Noncontiguous I/O

Much of the research related to parallel I/O aims to address the issue of

noncontiguous I/O performance. In this section we discuss some of these techniques,

including data sieving, view I/O, list I/O, and datatype I/O.

2.4.1 Data Sieving

The data sieving optimization [22] targets non-contiguous access patterns, which

have been shown to be commonly used in scientific applications [20,13,40]. For many

systems, the cost of performing several small accesses is much greater than the cost of

performing a single large file access. Data sieving exploits this property by replacing a

series of small accesses with a single access that spans the full extent of the non­

contiguous regions.

For a data sieving read operation, it is sufficient to perform a single read

encompassing the full extent of the access and then simply disregard the portions of the

read that are not required. This results in a larger number of bytes to be read, but requires

only a single file system access. The performance improvement achieved by data sieving

depends on the number of non-contiguous file blocks being accessed, and the size of the

gaps between required file blocks.

Data sieving for a write operation is similar, except that extra care must be taken

to avoid overwriting portions of the file that are not part of the application's write.

Typically a read-modify-write sequence is performed where (1) the full extent is read into

a local buffer, (2) the data to be written is copied into the same buffer, and (3) the data

23

from the buffer is written to the file from the modified buffer. This process requires that

the gaps in the noncontiguous access pattern being written are not erroneously modified

during the data sieving operation. Since the operation assumes responsibility for these

additional areas of the file, it is also necessary to lock the full extent of the write to ensure

that the MPI-IO consistency semantics are enforced. This additional locking leads to false

contention when the extents of two or more non-conflicting writes overlap.

The Interval I/O technology eliminates the need for data sieving, since all

intervals accessed by a process are stored contiguously on disk. This contrasts with

traditional flat file storage, in which non-contiguous access patterns always require non­

contiguous disk accesses.

2.4.2 View I/O

Isaila and Tichy [33] describe another approach to parallel I/O based on file

views. Their technique, termed View I/O allows the multiple noncontiguous blocks of an

I/O access to be combined into a single file system transfer. View I/O requires support

from the file system, which rearranges the non-contiguous blocks into a linear ordering

before storing them to disk.

Like Interval I/O, View I/O makes use of MPI-IO file views to optimize data

transfers between the application and the file system. Both combine smaller,

noncontiguous accesses into large chunks, and use associated metadata to allow the data

to be later reorganized into linear file order.

24

View I/O, however, relies on support from the underlying file system to

reorganize the file data. In contrast, our approach requires no file system modifications.

Rather than reorganizing data at the disks, we store the data in the same layout as it

appears in the cache, along with additional metadata that allows the data reorganization to

be performed when the file is read. This approach is particularly well suited to application

checkpointing, since checkpoint files only need to be read in the case of an application

restart, which is relatively rare.

2.4.3 Other Techniques for Addressing Noncontiguous I/O

List I/O [20] is an I/O strategy that uses a specialized file system interface for

supporting noncontiguous file system accesses. Like View I/O, List I/O allows

noncontiguous data to be transferred as a single contiguous chunk, along with metadata

describing its contents. A typical access would be specified with a list of (offset, size)

pairs describing a block of the file being accessed. Lmlike View I/O the List I/O metadata

applies only to the current access, so subsequent accesses require resending the relevant

metadata to the file system.

Datatype I/O [34] expands the List I/O interface to allow file patterns to be

expressed more concisely than with a sequence of (offset, size) pairs. The patterns are

instead represented using datatypes to take advantage of regular access patterns. For

instance, the list representation {(0, 2), (4, 2), (8, 2), (12, 2), (16, 2)} could be represented

as a strided type with chunk size = 2, chunk offset = 4, and count = 5. For patterns

25

containing a large number of small chunks, the savings over the list representation of file

data can be quite significant.

These approaches address the issue of reducing the large numbers of individual

file system accesses that result from noncontiguous I/O patterns. Unfortunately, they fail

to address a more fundamental problem, that of the rigid requirement that an application's

file data be stored in linear order. Our work directly addresses the problem by removing

this requirement, thus eliminating the problem that List I/O and Datatype I/O attempt to

solve.

2.5 Collective Caching

There has been some research directed toward using collective caching to

improve parallel I/O performance [28-30]. Collective caching uses memory available on

the application processors to provide an additional layer of caching, leading to increased

I/O performance. Additionally, efficient caching can result in fewer disk accesses, and

consequently, in reduced power consumption [48]. The major challenge with collective

caching is maintaining cache coherence without sacrificing performance.

One example of collective cache research is DAChe [28]. The DAChe system is a

block-based, client-side cache designed to use remote memory access (RMA) to perform

cache management across cluster nodes. To provide cache coherence, DAChe enforces

the constraint that the cache may contain only a single valid copy of any particular file

block. This is accomplished by requiring mutually exclusive access to file metadata,

which is provided by a set of mutex sewers. The mutex servers are drawn from available

26

application processes, and are unable to participate in other computation while providing

mutual exclusion.

The primary difference between DAChe and the system described here is that

DAChe caches fixed size blocks while we cache intervals. DAChe must provide mutual

exclusion for every file block access, while with our approach, we are able to distinguish

between shared and private intervals, thus eliminating the need for much of the locking.

Our approach also reduces false sharing, which is discussed in detail in the next chapter.

2.6 Active Buffering

Active Buffering [49] is another technique for improving parallel I/O

performance. In the Active Buffering approach, data written by a parallel application is

held in memory buffers on the application processors. Additional I/O processors are then

used to pull data from these buffers asynchronously using one-sided communication, and

write the data to disk. A variant of active buffering, described in [35], eliminates the

additional I/O processors, and performs write behind of buffered data using a background

thread on the compute processors.

Like our Interval I/O system, Active Buffering buffers written data in local

memory to reduce the performance impact due to I/O latency. The Active Buffering

approach, however, is designed to optimize the performance of write operations,

however, it cannot be used for read operations.

27

2.7 ADIOS

ADIOS [36,50] is a framework that supports efficient parallel I/O by providing an

additional level of indirection between application I/O calls and the underlying I/O

technique. This allows a user to choose the I/O method that best suits the underlying

hardware and the I/O pattern being used by the application. The framework allows an

application to use different I/O patterns for each "grouping" of data used in a single

application. Supported I/O techniques include MPI-IO (with synchronous and collective

options), POSIX I/O, and DataTap. ADIOS also provides an intermediate file format,

termed BT, that is used to facilitate fast file writes. The BT files are then converted to a

linear file format asynchronously by the framework. To use the ADIOS framework,

applications must be rewritten to use the ADIOS API.

The design of ADIOS is somewhat similar to the Interval-Based I/O stack,

particularly in the use of a custom file format designed to allow the application to

perform fast writes of large contiguous blocks used in conjunction with a helper

application designed to reformat the hastily written data. There are several major

differences between the approaches. First, the interval file format is not designed as an

intermediate file format. In our system, the interval file is the standard storage format.

Creation of a the logical flat file is performed only if necessary. Next, we provide explicit

support for atomic mode accesses, which are not supported by ADIOS. Finally, the

Interval-based I/O system directly supports MPI-IO, allowing existing applications that

use MPI-IO to use the system with no modification to the source code.

28

2.8 Efficient Atomic Mode Accesses

One of the most significant challenges in providing high-performance parallel I/O

is supporting strict file consistency semantics in a scalable way [16]. One of the main

approaches to providing sequential consistency is through file system locking, although

processor handshaking [37] and conflict detection [51] have been been suggested as

alternatives to locking.

There are a number of approaches to locking ranging in complexity from whole-

file locks to the locking provided by parallel file systems such as GPFS or Lustre. We

discuss a relevant selection of locking approaches in the following sections.

2.8.1 File Locking

As the name suggests, this approach uses locks that have whole file granularity.

For parallel writers, this implies that only a single process may have access to a particular

file at one time, regardless of whether the writes are conflicting. Though this is sufficient

to insure MPI consistency semantics, it is an extremely poor choice for parallel I/O since

writes performed by multiple processes using file locking are completely serialized.

2.8.2 Extent Locking

Extent locking extends file locking by considering the full extent of the access

that requires the lock. This information is used to allow locks to be granted

simultaneously to processes whose access extents do not conflict. For contiguous

accesses, byte range locking is sufficient to avoid false sharing. However, for the

29

noncontiguous accesses that are typical for scientific applications, extent locking can lead

to false sharing and unnecessary serialization of accesses, as discussed in Section 4.1.

2.8.3 List Locking

List locking [38] allows a process to lock a noncontiguous file region by

specifying a list of contiguous byte ranges to be locked. Compared to extent locking, list

locking reduces the amount of serialization by eliminating the false sharing that arises

from noncontiguous access patterns.

Datatype locking extends list locking by allowing a lock list consisting of a

regular pattern of byte ranges to be declared using a datatype constructor, rather than an

explicit list of byte ranges. These datatypes are expressed in a manner similar to Datatype

I/O, which is discussed in Section 2.4.3.

2.8.4 Distributed Locking Approaches

Supporting scalable atomic I/O for noncontiguous access patterns is a particularly

challenging problem. The predominant approach is to use a distributed lock management

system, where responsibility for granting locks is distributed across a number of lock

managers. The primary difficulty is to maintain the efficiency of a centralized lock

manager while gaining scalability by distributing the locks. Distributed lock management

is often implemented in the file system. Here we describe the locking approach used by

GPFS, as well as a distributed lock manager that has been built as an extension to PVFS.

30

GPFS [52] is a parallel file system that uses a distributed lock manager to support

POSIX consistency semantics. GPFS uses a distributed locking stategy that requires a

lock manager to first obtain a lock token from a central token server. The first manager to

request a token receives one that covers the entire file. When another lock manager

requests a token, the central token server must compare the regions being accessed. If

there is no overlap, the original token is split, otherwise, the new request is queued until

the first access is completed. This technique does not work particularly well for fine­

grained, noncontiguous accesses, thus GPFS also provides a "data shipping" mode in

which data blocks are assigned to server nodes, and read and write requests are forwarded

directly to the nodes on which the data resides.

Ching, et. al. [53] describe a distributed lock management system that

incorporates List Locking and Datatype locking into PVFS. Their system supports

locking of arbitrary lists of byte regions; comparison of locks is done using interval trees.

This system, like our Interval I/O system, does eliminate false sharing due to locking,

however it does not incorporate conflict detection to reduce locking overhead.

2.8.5 Interval Locking

Our research introduces a novel locking technique termed interval-level locking.

This system implements locking in the application layer, rather than the file system layer,

and thus is portable to different systems regardless of the underlying file system. Our

approach uses intervals as the fundamental unit of locking, which improves I/O

performance by reducing false sharing. Interval-level locking uses a novel distributed

31

lock management system which assigns each interval lock to one of the processes that

accesses the interval. Each lock manager acts as a centralized lock manager for the subset

of locks assigned to it. To reduce locking overhead, Interval-level locking uses the

information in the interval set to determine whether access to a particular interval could

possibly conflict with that of another process, and omit locking in cases where no conflict

is possible.

2.9 Structured Data Formats

Scientific applications quite often make use of libraries that support structured

data file formats. Network Common Data Format (NetCDF) [54] and Hierarchical Data

Format (HDF5) [55] are the two most prevalent file formats, both of which have a long

history of program support and which were originally designed to be accessed serially.

Both formats now have parallel libraries available, called PnetCDF and Parallel HDF5,

respectively. Each of these libraries uses MPI-IO as the underlying library to perform I/O

operations.

The interval-based file format described here is similar to these structured data

formats in that its use imposes additional structure on the data file. This additional

structure is different in two important ways. First, the added structure imposed by

NetCDF and HDF5 is more closely related to the user's concept of the data; the metadata

is defined by calls made by the application to define the data being stored. In contrast, the

metadata added to our interval-based files is related directly to our rearrangement of the

data on the file system. Secondly, the structured data formats are typically known to the

32

user, and explicitly supported in the application. Our interval-based file format, on' the

other hand, is designed to be completely transparent to the application. The use of these

structured data formats is, in principle, compatible with interval I/O, provided that the

data format library makes appropriate use of MPI file views.

2.10 Parallel I/O using Lustre

Lustre is a widely used distributed file system that is commonly available on large

computing clusters. It has been observed that Lustre performs very poorly with MPI-IO.

Thus part of our research has been directed at determining the cause of this poor

performance and discovering solutions. Other researchers have also examined the

particularly poor performance observed when using MPI-IO in a Lustre environment. The

most closely related work is from Yu, et al. [56], who implemented the MPI-IO collective

write operations using the Lustre file-join mechanism. In this approach, the I/O processes

write separate, independent files in parallel, and then merge these files using the Lustre

file-join mechanism. They showed that this approach significantly improved the

performance of the collective write operation, but that the reading of a previously joined

file resulted in low I/O performance. As noted by the authors, correcting this poor

performance will require an optimization of the way a joined file's extent attributes are

managed. The authors also provide an excellent performance study of MPI-IO on Lustre.

The approach we are pursuing does not require multiple independent writes to

separate files, but does limit the number of Object Storage Targets (OST) with which a

given process communicates. This maintains many of the advantages of writing to

multiple independent files separately, but does not require the joining of such files. The

33

performance analysis presented in this dissertation complements and extends the analysis

performed by Yu, et al.

Larkin and Fahey [57] provide an excellent analysis of Lustre's performance on

the Cray XT3/XT4, and, based on such analysis, provide some guidelines to maximize

I/O performance on this platform. They observed, for example, that to achieve peak

performance it is necessary to use large buffer sizes, to have at least as many 10

processes as OSTs, and, that at very large scale (i.e., thousands of clients), only a subset

of the processes should perform I/O. While our research on Lustre performance reaches

some of the same conclusions on different architectural platforms, there are two primary

distinctions. First, our research is focused on understanding of the poor performance of

MPI-IO (or, more particularly, ROMIO) in a Lustre environment, and on implementing a

new ADIO driver for object-based file systems such as Lustre. Second, our research is

investigating both contiguous and non-contiguous access patterns while this related work

focuses on contiguous access patterns only.

In [58], it was shown that aligning the data to be written with the basic striping

pattern improves performance. They also showed that it was important to align on lock

boundaries. This is consistent with our analysis, although we expand the scope of the

analysis significantly to study the algorithms used by MPI-IO (ROMIO) and determine

(at least some of) the reasons for sub-optimal performance.

34

3 THE INTERVAL I/O SYSTEM

In this chapter we discuss the design of our Interval I/O system. The system

consists of five major components, which are the interval integration interface, the

interval cache, the distributed lock manager, the interval-based file layer, and the interval

set translator.

Interval I/O provides a variety of advantages over other approaches. We make

note of specific advantages of this approach throughout the chapter but delay a detailed

discussion of the advantages until the next chapter

3.1 Interval Integration Interface

The function of the Interval Integration Interface (I3) is to perform the translation

of MPI-IO calls into corresponding interval set accesses. Specifically, the I3 utilizes file

views set by the application to create interval sets, and then converts subsequent file read

and write operations into equivalent interval accesses.

3.1.1 Interval Set Creation

Interval set creation takes place once all of the file views have been set, but before

any file access operations have been performed. ROMIO represents a process's file view

as a list of (offset, size) pairs, each of which describes a contiguous file region visible to

that process.

35

The first step in creating intervals is for each process to share its file view with all

other processes. Next, each process independently extracts a list of all boundaries. Next

the boundary list is sorted, and duplicate boundaries are removed, leaving b distinct

boundaries. Each interval inti is defined by the (offset, size) pair (Bi; Bj+i-Bi), where Bi is

the ith boundary in the sorted list. This results in a set containing b - 1 intervals. This

process is shown in Figure 3.2, which shows the creation of intervals from the file view

in Figure 3.1.

Figure 3.1. A file view example with shared
and private regions

36

Figure 3.2. The interval creation process.

File view data from the views shown in Figure 3.1 (a) is shared among all processes
(b). A list of view boundaries is extracted (c), and the boundaries are assembled into
intervals (d). Note that intervals are sized according to the file view, and are not
necessarily all the same size.

Once the intervals have been created, an additional step is taken to calculate the

reverse access set for each interval, which is simply a list of every processor that has

access to the given interval. The reverse access sets have two important uses. First, they

show exactly which intervals are shared between processes and which are private to a

process (known as shared intervals and private intervals respectively). Secondly, they

help guide to which process a particular interval should be assigned. For example, private

intervals are assigned to the one process that accesses it, and shared intervals are placed

on one of the processes that shares the interval. Distinguishing between shared and

private intervals is a significant advantage of the Interval I/O approach, an advantage

which we will discuss in greater detail in Chapter 4.

37

3.1.2 Read and Write Translation

In addition to interval set creation, the Interval Integration Interface is responsible

for converting file access parameters specified as byte ranges into equivalent parameters

specified as a set of intervals. In section 3.2.1 we discuss in detail the handling of these

read and write operations.

3.2 Interval-Based Cache

We have implemented a client side software cache that uses memory from all of

the processes sharing a given file. The unit of caching is the interval. Global cache

coherence is maintained by keeping only a single valid copy of each interval. Our interval

based cache offers many of the benefits of traditional caching, including data prefetching

and write behind, however, it simplifies some of the primary challenges associated with

caching, which include false sharing and distributed locking, both of which are discussed

in more detail in Chapter 4.

3.2.1 Cache Architecture

The cache, shown in Figure 3.3, is based on intervals and interval managers. The

interval managers are required to maintain a buffer that is large enough to accommodate

all of the intervals that the given process can access (we discuss relaxing this requirement

in Chapter 7). Thus there will be a copy of a shared interval in the caches of all processes

that share the interval. However, there is only one valid copy of a shared interval at any

given time.

38

From an interval manager's point of view, it performs three different roles

depending on the type of interval. In the case of a private interval, it simply reads/writes

intervals from/to its local cache buffer, and requires no communication with other

managers. In this case, there is only one copy of the interval in the global cache. In the

case of a shared interval, the manager plays one of two roles. First, it can play the role of

what we term the location manager that tracks the location of the currently valid copy of

the interval. There can be only one location manager for each shared interval. Otherwise,

the manager of a shared interval (that is not the location manager) must contact the

location manager to determine the location of the currently valid copy of that interval.

P Cache p . Cache
o . \

Interval Manager

4 t

Interval Manager

Metadata

4 t

Metadata

4 t

Cache Buffer

4 t

Cache Buffer

4 t Message Manager 4 t Message Manager Message Manager ^ V Message Manager

Figure 3.3. The basic architecture of the cache

Creation of the file cache is performed immediately following the interval set

creation discussed in section 3.1.1. During cache creation, each interval is assigned to one

of the participating I/O processes, which is responsible for managing the location of the

valid copy of that interval. Once the intervals are assigned to processes, memory is

39

allocated to store the cache data. The allocated memory consists of a single buffer on

each process with enough space to store all of the intervals in that process's file view

contiguously.

Interval Manager

I 0 I 1 I 4 |

Interval Manager

0 I 2 | 5 |

Interval Manager

0 I 3 | 6 |

key

1Locally Managed 1 Private Interval Shared - Valid Shared - Invalid

Figure 3.4. The initial cache layout resulting from the interval set created in Figure 3.2.

Figure 3.4 illustrates the interval assignments and the cache buffer layout

resulting from the interval set created in Figure 3.2. In the example, Intervals 1 - 6 are

private, thus each is assigned to the process that accesses it. Interval 0 is shared by all

three processes, so it is assigned to one of the processes that accesses it (in this case,

process 0). Since interval 0 is shared, it appears in the cache buffer of all three processes,

although only one of the buffers will contain the valid copy of the interval at any

particular time. In this example, interval manager 0 is assigned to be the location manager

for interval 0.

40

For a read operation, the first step is to determine the intervals that are part of the

read. Depending upon whether MPI's atomic mode is set, a set of locks must be acquired

corresponding to the set of intervals being read. We discuss the details of lock acquisition

in more detail in section 3.3.1. Next, for each of the intervals, the process that manages

that interval is queried to determine the location of the most current data for that interval.

The location of the valid copy determines how the reads are performed for each interval.

If the current data for an interval is local, its data is copied directly from the local cache

into the specified read buffer. Otherwise, the interval data is read remotely by sending a

request to the appropriate process and blocking until the requested data is received. Once

the data is copied into the read buffer, all locks are released, and control is returned to the

application.

The handling of a write operation is somewhat different from that of a read. We

begin in the same manner, by first determining the set of intervals involved in the write,

and then acquiring a lock for each of the shared intervals. Assuming a write to an interval

involves the entire interval, as will often be the case, the written data for that interval is

copied directly into the local cache buffer and the relevant location manager is updated

with the new location of the valid copy of that interval. If, however, the write involves

only a portion of any particular interval, it is necessary to first insure that the valid data

for that interval is in the local cache before performing the copy and update operations.

Once all of the intervals have been written, the locks are released, and control returns to

the application.

41

It is worth noting that it is necessary to perform the individual accesses to

intervals in the cache atomically. Our distributed lock management system, discussed in

Section 3.3, is used to provide the required atomicity.

To illustrate the process of reading and writing intervals in the cache, we refer the

reader to Figure 3.5, which shows reads and writes involving a file distributed across two

processes. In part a of the example, P0 reads data from interval 5. Since the location

manager for the interval is Pi, a request is sent to Pi for the location of the data. Since PI

currently holds the valid copy of the interval, it sends a response containing the data for

interval 5. Though a copy of the data is sent to P0, the valid copy is not changed in

response to a read operation, thus the valid copy remains on Pi.

Figure 3.5b illustrates a write to interval 1 performed by Pi. The data is simply

copied into the local cache buffer, and a message is sent to the manager for that interval,

Po, indicating the new location of the valid data for interval 1.

When closing or syncing the file, the contents of the cache are written to disk. The

interval file format, discussed in Section 3.4, enables the data to be written contiguously

in the order it is stored in the cache.

42

(a)

Receive interval 5 data

cache
unchanged

(b)

Interval Manager

Write locally, then update manager

interval 1
location
updated

key
Private Interval Shared - Invalid

Figure 3.5. Reading and writing shared cache objects.
(a) Po reads interval 5
(b) Pi writes interval 1

43

3.3 Distributed Lock Manager

A very important part of the Interval I/O System is the distributed lock manager.

In keeping with the interval I/O philosophy, the lock manager uses the interval as the

fundamental unit for locking. The locks are distributed across a collection of lock

managers, with each manager acting as a centralized lock manager for the intervals

assigned to it. This arrangement provides scalability, since global knowledge is not

required for lock managers or lock clients. Furthermore, as discussed in the previous

section, locking is required only for shared intervals, reducing (and in some cases

eliminating) the cost of locking. The efficiency and scalability of this distributed locking

system are major advantages to using an interval-based approach to parallel I/O. We

discuss these advantages in more detail in Chapter 4.

3.3.1 Lock Manager Design

The lock manager works with the cache manager to enforce atomic mode. The

mechanism is transparent to the application. The lock manager is implemented as a

multithreaded library that is instantiated by the cache. TCP sockets are used to provide

reliable communication between distributed lock managers running on application

processes.

Each cache process has direct access to a local lock manager operating on the

same processor. The cache interacts with the lock manager through a local interface that

supports lock creation, lock and unlock requests, and lock destruction. Lock requests are

designed to cause the calling thread to block while the communication required to acquire

44

the requested locks is performed. That communication involves a request that is sent to

each of the lock managers which possess any of the required locks. The request is sent

from lock manager to lock manager in a predetermined order (shown in Figure 3.6) that is

the same for all requests. A consistent order is required to prevent deadlock, which is

discussed in more detail in section 3.3.2. Once all locks are obtained, the request is sent

back to the lock manager on the process that initiated the request, and control is returned

to the application thread.

First, we define P(I) to be the index of the process on which the lock for
interval I resides.

Then, for any two intervals I: and 1 ,̂

1: precedes 1̂ if and only if P(L) < PO^) or

P(Ij) = P(I k)and j<k

Figure 3.6. The ordering used to grant locks

To illustrate the coordination between the distributed lock managers, a simple

example of acquiring locks is shown in Figure 3.7. In the example, process one requires a

set of locks for intervals 2, 3, 4, 5 and 10. The locking process proceeds as follows:

1. The process generates a request, which is sent to the local lock manager,

while the process blocks waiting for a response from the lock manager.

2. The request is forwarded to the first lock manager that holds any requested

lock, in this case, lock manager 0, where locks for intervals 2 and 5 are

acquired in order. Although the lock for interval 3 is located on lock

45

manager 1, it is crucial that it is not acquired before locks 2 and 5, which

preceed lock 3 in the ordering defined above.

3. The request is then forwarded to lock manager 1, where a lock for interval

3 is granted.

4. Next, the request is forwarded to lock manager 2, where the remaining

locks for intervals 4 and 10 are acquired.

5. Once all requested locks are obtained, the request is returned to the lock

manager on which it originated, lock manager 1

6. Lock manager 1 grants the request by responding to the original thread,

allowing I/O to continue.

, ©
0

1

4 0±

. • Lock Manager 0 , © Lock Manager 1 . • Lock Manager 2 Lock Manager 0 ^
Lock Manager 1

^
Lock Manager 2 Lock Manager 0

e '
Lock Manager 1

© '

Lock Manager 2

0 2 5 9 12 e ' 1 3 7 11 13 © ' 4 6 8 10 14

Figure 3.7. Fulfilling a request for locks 2, 3, 4, 5 and 10.

The order used to acquire locks is arbitrary, so we have chosen one that minimizes

the number of network communications required to obtain a set of locks. For instance,

acquiring the locks using the naive ordering imposed by the object ids, the example

shown in Figure 3.7 would require six network communications instead of the four

shown in the example.

46

The lock manager is implemented by four additional threads running in each of

the participating processes. The threads are represented as ovals in Figure 3.8. The Send

thread and the Receive thread exclusively handle the sending and receiving of messages

between the participating processors. The Lock thread is responsible for granting local

locks to lock requests. The Unlock thread frees local locks when unlock messages are

received, and notifies the next waiting lock request when an interval lock becomes

available. These threads are separate from the main application thread that will request

locks.

1 —

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

1 Send
(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

1

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

Lock
(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

T3 VJ Unlock

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

T
hn

Q
ue

l
Response

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J

(Application)

C Send J)

(Receive J

(. Lock J

(Unlock J Interval Queues Interval Queues

Figure 3.8. Local lock manager architecture

The manager also utilizes several queues that facilitate asynchronous

communication between the threads. Each queue is shown as a rectangle in Figure 3.8.

The Send queue holds messages waiting to be sent to one of the other processors. The

47

Lock queue holds incoming lock requests and lock requests restarted as a result of the

release of other locks. Lock requests waiting for a specific lock are held on the Interval

queue corresponding to the lock in question. The Unlock queue holds unlock messages

waiting to be processed by the unlock thread. Completed lock requests are placed on the

Response queue of the requesting process, where the application thread is blocked

waiting for the lock to be granted.

3.3.2 Correctness of the Locking Protocol

The most important property of our distributed lock management system is its

ability to provide atomic file access operations that conform to the consistency semantics

required by MPI-IO. We have selected a variant of two-phase locking [59] that can be

shown to provide the necessary semantics. Two phase locking is a locking protocol that

allows locks to be acquired only during the initial "growing phase" of a transaction. The

first phase is followed by a second "shrinking phase" in which locks are released, but no

further locks can be acquired. In a two phase locking transaction, once a single lock is

released, no further locks can be acquired.

Our locking protocol extends the basic two-phase locking protocol in two ways.

First, we define a partial order on file locks, and require that locks needed to fulfill a

particular lock request be acquired in order. This ensures that the acquisition of locks is

deadlock free. Secondly, we constrain the transaction so that file accesses are performed

only after all locks are acquired, and before any locks are released. This insures that no

partial accesses are performed, and eliminates the need to provide a rollback mechanism

for the handling lock revocation that would otherwise be required.

48

3.4 Interval-Based File Layer

The Interval I/O system includes an interval-based file layer. The key insight

underlying the design of this layer is that a flat file can be represented by a set of intervals

that together comprise the data contained in the flat file. We call this set of intervals,

along with the metadata required to describe the objects, an interval file. By using

interval files to represent the contents of a flat file, we gain a level of flexibility that

provides significant opportunity for I/O optimization.

3.4.1 Interval-Based Files

Our Interval I/O system relies on an interval-based file format that stores file

intervals in a structured manner. The layout of the interval file is chosen to coincide with

the layout of cached data across the processors of a parallel application. This results in

significantly increased performance since it allows each application process to access

contiguous data in the interval-based file regardless of whether the accessed data would

be contiguous in the corresponding flat file.

The current version of this file format is detailed in Table 1. The interval file is

comprised of several sections, which include a global metadata section, one process

metadata section for each participating process, and finally, sections containing the

interval data.

The initial section contains the file metadata, which describes to the reader how

the remainder of the file is arranged. This section is expected to be accessed by each

process in the reading application, thus is kept as short as possible to limit contention.

49

Next, the interval file contains the process metadata sections. Each process

metadata section consists of a count of intervals associated with that process,

immediately followed by the metadata for each of those intervals, stored sequentially.

This arrangement allows each process to access its metadata section as a contiguous

block of data, avoiding any false contention, and allowing accesses to be as efficient as

possible. Each metadata section contains the information required to locate the interval

data in this file, and to describe where the interval is located in the flat file represented by

this interval file, so that the original layout can be reconstructed when needed.

Finally, interval data is stored at the end of the interval file. In the current

implementation, the interval data is stored contiguously, in the same order that the

metadata sections are stored. Future work will include introducing flexibility in the

positioning of interval data to optimize the pattern of underlying writes for a particular

file system (i.e. Lustre).

In our implementation, files are written by a simple interval-file layer that lies

between the interval-based cache and the ADIO layer. The cache layer writes data to the

ADIO driver, which is implemented separately for each file system. Thus the caching

system can be utilized on any file system currently available in ROMIO.

50

File Metadata (One section per file)

Name Size Description

Magic Number 4 bytes 0x0b9ec7ed

Version Number 4 bytes 0x0002 (This is version 2)

Number of Procs 8 bytes Number of Process Metadata sections in the file

Data Offset 8 bytes Offset (in bytes) to the beginning of the data section

Offset (in bytes) to the start of each proc section. There
one 8 byte offset per proc section, stored
sequentially

Meta Offsets num_procs
* s

is

bytes

Process Metadata (One section per process)

Name Size Description

Number of Intervals 8 bytes Number of intervals in this Process Metadata section

Interval Metadata (One section per interval, stored contiguously after the Process
Metadata for each process)

Interval File Offset 8 bytes Location of interval's data relative to the data offset

File Offset 8 bytes Location of the interval in the corresponding flat file

Size 8 bytes Size of the interval in bytes

Data (All data for a process is stored contiguously in this version)

Table 1. Specification of Interval-Based Files

The significant features of the interval-based file layer are listed below.

•Interval Based: By allowing a file to be stored as a collection of intervals, our

system will eliminate much of the reorganization of file data that is used by other

parallel I/O optimization techniques such as two-phase I/O and view I/O.

•Capable of efficient interval set translation: A parallel application accessing a data

file is likely to be using a different view of the file than the application that

51

created the file. It is essential that there is an efficient mechanism for translating

between the stored interval set and an interval set required by an arbitrary access

pattern used by another application. Our translation technique is discussed in more

detail in the next section.

•Compatibile with existing parallel file systems: Our system extends an underlying

file system by adding an additional layer over the file system in use. It should

work seamlessly with the majority of existing file systems in use on clusters on

which parallel applications are executed.

•Decouple application access pattern from file system access pattern: Since the

arrangement of the Interval file is not linked to the layout of the corresponding flat

file, we are free to define a data layout that conforms to the best performance of

the file system in use. In Chapter 6 we discuss how the performance of the Lustre

file system is linked to the access pattern being used, and how our Interval I/O

layer leverages this information to further improve I/O performance.

3.5 Interval Translation

It may be the case that a file is accessed by two or more applications, each of

which may use a different access pattern to read or write the file. To address this issue,

we have developed an interval translation tool capable of efficiently converting file data

from one interval set to another.

52

3.5.1 Use of the Translator

The following examples should give the reader a better idea of how the translator

may be used. One example is a tile reader/writer, in which a pair of cooperating

applications collaborate to produce a data visualization. In this case, there are two

applications, one is a simulation which produces data to be displayed, and another which

consumes the data, producing a visualization on a high-resolution display wall. Often it is

the case that they are comprised of different numbers of processes reading from and

writing to the same file. The applications may use different access patterns. For example,

the reader may require additional "ghost cells" to manage potential overlap between the

adjacent display devices, thus producing an interval file that is not compatible with the

reader. Given a sufficiently fast translator, we can obtain the benefits of interval-based

file accesses while allowing data to be shared between applications that use different

access patterns. The ability to support this sort of inter-application cooperation is a major

advantage of the Interval I/O approach, an advantage which we discuss in more detail in

Chapter 4.

Another use for the translator relates to writing large checkpoint files. Resource

intensive applications are often designed to periodically produce checkpoint files [60],

which allow the applications to be restarted from that point in case of a failure. As

detailed in Section 5.1, our research has shown that we can increase the performance of

writing large checkpoint files by a factor of 14. The problem however, is that the

application may need to read a checkpoint file with a different number of files or a

different file view, or the file may need to be read by an entirely different application. In

53

this case the translator is used to translate the original interval set into the one that is

required.

3.5.2 Translator Design

We have implemented the interval translation tool as a parallel application, with

application processes partitioned into two sets. One set is responsible for reading an input

interval file, and a second set is responsible for writing a new interval file with the

necessary layout. A diagram of the translation architecture is shown in Figure 3.9. In this

example, the source processes (labeled PSi in the diagram) read the metadata for the

source interval set from the source interval file.

Source
Interval

Set

PS, PD

Destination
Interval

Set

Source
Interval

Set

PS, PD

Destination
Interval

Set

Source
Interval

Set

Destination
Interval

Set

Source
Interval

Set

PS 2 PD2
Destination

Interval
Set

Source
Interval

Set

PS 2 PD2
Destination

Interval
Set

Source
Interval

Set

Destination
Interval

Set

Source
Interval

Set

PS
1

// \\ « \

Destination
Interval

Set

Source
Interval

Set

PS
1

« \

Destination
Interval

Set

Figure 3.9. The Translator Architecture

The key to achieving an efficient translation algorithm is to provide a fast

mapping between the source interval set and the destination interval set. We have

54

implemented this functionality using a red-black interval tree, which combines the fast,

0(log n) lookup provided by an interval tree [61] with the self balancing features of a

left-leaning red-black tree [62].

55

4 ADVANTAGES OF USING INTERVALS

As was mentioned earlier, there are five major advantages to using Interval I/O.

These advantages include:

• Increasing I/O parallelism by eliminating false sharing

• Significantly increasing I/O performance for noncontiguous access patterns by

using interval files

• Introducing a mechanism to support I/O cooperation between applications

• Enabling an efficient technique for distributed lock management

• Reducing lock overhead by detecting private intervals

In this chapter, we discuss each of these advantages in turn.

4.1 Eliminating False Sharing

False sharing occurs when non-conflicting operations are serialized due to

granularity of locks and lack of knowledge of I/O access patterns. For instance, a parallel

I/O implementation that uses extent locking for non-contiguous operations may exhibit

false sharing. Recall that extent locking requires the full extent of a set of noncontiguous

regions to be locked, including the portions of the extent not included in the I/O

operation. For example, consider the access pattern shown in Figure 4.1. Although P0 and

Pi are performing nonconflicting accesses (as shown by the shaded regions), the extents

56

of those accesses (indicated by the arrows) do overlap, thus the accesses would be

unnecessarily serialized. In contrast, our approach would use three separate locks, two to

lock the two noncontiguous regions accessed by P0, and a third to lock the single region

accessed by Pi. Since none of these regions conflict, the locks could all be acquired

simultaneously, allowing the accesses to proceed in parallel.

M •
P o I I I I

• < — •

p
1 I I I 1

Figure 4.1. False sharing resulting from
extent locking

False sharing also occurs in systems using block based caching. For example,

Figure 4.2(a) shows an access performed in a block-based caching environment. Again,

Po and Pi are performing nonconflicting accesses. The access pattern spans three separate

cache blocks (delineated by the dashed lines, and labeled B0 - B2). Since both of the

processes access the middle cache block, access to that region is serialized. As shown in

Figure 4.2(b), our approach creates two private intervals that are aligned precisely with

the accesses, thus avoiding serialization.

57

(a) (b)

P P
1 I ! I ! I 1 I I I

Figure 4.2. False sharing resulting from block-based caching
(a) Block-based caching
(b) Interval caching

4.2 Increasing Performance for Noncontiguous Accesses with Interval Files

The I/O throughput provided by parallel file systems depends greatly on the

particular access pattern in use; unfortunately noncontiguous I/O patterns, which are

among the most commonly used access patterns in scientific applications, are very

difficult to implement with high performance in traditional (legacy) file systems. For

example, consider the access pattern shown in Figure 4.3(a), which is stored on disk as

shown in (b). ROMIO currently has three options available to deal with noncontiguous

I/O, which are:

1. Separate into contiguous accesses. This produces poor performance because it

incurs the overhead associated with a number of individual system calls to

perform the I/O.

2. Use data sieving. This approach avoids the overhead of additional system

calls to perform the I/O. However, when data sieving is performed it is

necessary for the implementation to use extent locking to maintain the

58

consistency semantics required by the MPI-IO specification. This required use

of extent locking typically introduces false contention, as discussed in section

4.1.

3. Use two-phase I/O. Two-phase I/O avoids noncontiguous accesses by

rearranging data so that file system access can be performed contiguously.

However, as discussed in section 2.3, the limited scalability of two-phase I/O

limits its use with larger numbers of processes. Furthermore, two-phase I/O

cannot be applied to independent I/O operations.

Our approach avoids the need to perform noncontiguous I/O by substituting an

equivalent file, which is rearranged so it can be accessed using contiguous accesses, as

shown in Figure 4.3(c).

Figure 4.3. Using an interval file to store a noncontiguous I/O pattern.
(a) The original access pattern, (b) Stored as a flat file, (c) Stored as
an interval file

59

4.3 Supporting I/O Cooperation

It is often the case that a file is written by one application, the producer, and

subsequently read by a different application, the consumer. One example of this is the

remote visualization of data produced by a scientific modeling application. The MPI-Tile-

10 benchmark was developed to model this type of application. The benchmark acts as a

data consumer by reading overlapping tiles from a file containing two dimensional image

data. It can also be configured to run as a data producer by writing image data to the file.

Both the producer and the consumer utilize noncontiguous I/O patterns.

With interval I/O, the producer obtains increased performance by writing a file

that is tuned to the access pattern of the producer. The problem then, is when the access

pattern used by the consumer does not match that of the producer. In this case, reading

the mismatched interval file would generally produce poor performance, canceling some

or all of the benefit achieved by the producer. To support this inter-application

cooperation, interval I/O provides a translator component, which converts the interval set

written by the producer into one that can be efficiently read by the consumer. This use of

the interval translator is shown in Figure 4.4.

Data Producer

Interval Set A Interval Set B

Interval
Translator

Figure 4.4. I/O cooperation between a data producer and a data consumer

60

4.4 Efficient Lock Management

The use of interval I/O allows a relatively simple distributed locking mechanism

to be used to support atomic operations. There are several advantages to our interval-

based locking strategy, which include:

• Interval Granularity. Using intervals as the unit of locking provides a simple

mechanism for locking non-contiguous regions. Since intervals are based on

the application's file views, the intervals (and thus the interval locks)

correspond closely to the access pattern of the application.

• Reverse access set detection. Our lock management system benefits from the

presence of reverse access set information for each interval in two ways. First,

when the reverse access set for an interval contains only a single process, that

interval is said to be private, thus no locking is required to access that interval.

Secondly, the reverse access set information is used to guide the placement of

shared locks so as to improve locking performance, for instance, by placing an

interval lock on one of the processes that accesses that interval.

• Distributed locks require no centralized control. Lack of centralized

control is crucial to the scalability of a locking system. Since our intervals are

defined to be non-overlapping, the single process to which a particular interval

is assigned will always act as a central manager for that interval. So the

handling of a lock request is always restricted to only those processes

managing the requested locks.

61

4.5 Detection of Private Intervals

A major advantage of interval-based I/O is the ability to identify private intervals,

that is, file regions that are visible to only a single process. Since accesses to private

intervals cannot be conflicting, it is not necessary to lock private intervals. This can have

a significant impact on the level of concurrency depending upon the I/O access patterns

of the application.

Figure 4.5. An access pattern containing only private intervals

Figure 4.5 shows a complex I/O pattern where all accesses are private. The

resulting intervals would all be labeled as private, thus no locking would be required.

62

5 PERFORMANCE STUDIES

In this chapter we present representative results from the performance testing that

has been performed. This testing includes three frequently used I/O benchmarks,

FLASH-IO, MPI-Tile-IO, and 2D-Column-IO

The experiments described in this document were performed using four

computing clusters that belong to the NSF sponsored Tera Grid Project [63].

1 The Mercury cluster at the National Center for Supercomputing

Applications

Mercury consisted of 1,774 Itanium 2 processors connected with Myrinet

and running SuSE Linux SLES 8. The file system used was the General

Parallel File System (GPFS) developed by IBM. This file system was

organized in a Network Shared Disk Server (NSD) configuration using 58

dedicated dual-processor 1.3 GHz Intel Itanium nodes. The GPFS Storage

Area Network (SAN), also available on the Mercury cluster, was not used

for these experiments. Since the time of our experiments, the Mercury

cluster has been decommissioned.

2. The Lonestar cluster at the Texas Advanced Computing Center

Lonestar consisted of 1300 Dell PowerEdge 1955 blades (nodes). Each

node contained two Xeon Intel Duo-Core 64-bit processors running at

63

2.66 GHz and 8 GB of DDR-2 memory. The nodes were connected by an

InfiniBand interconnect using a fat tree topology. Lonestar was attached

to a 68 TB Lustre file system comprised of 16 Dell 1850 I/O data servers.

The Ranger cluster at the Texas Advanced Computing Center

Ranger consisted of 3936 SunBlade x6420 blade nodes, each of which

contained four quad-core AMD Opteron processors for a total of 62,976

cores. Each blade was running a 2.6.18.8 x86-64 Linux kernel from

kernel.org. Ranger was attached to a 1.73 petabyte Lustre file system

comprised of 72 Sun x4500 disk servers, each containing 48 SATA drives.

The Big Red cluster at Indiana University

The Big Red cluster consisted of 768 IBM JS21 Blades, each with two

dual-core PowerPC 970 MP processors and 8 GB of memory. The

compute nodes were connected to Lustre through 24 Myricom 10-Gigabit

Ethernet cards. The Lustre file system (Data Capacitor) was mounted on

Big Red, and consisted of 52 Dell servers running Red Hat Enterprise

Linux, 12 DataDirect Networks S29550, and 30 DataDirect Networks 48

bay SATA disk chassis, for a capacity of 535 terabytes. There were a total

of 96 OSTs on the Data Capacitor, and there was a total aggregate transfer

rate was 14.5 Gigabits per second. The MPI implementation used on

BigRed was MPICH2.

64

kernel.org

5.1 FLASH-IO

The FLASH [10] simulation computes the solutions of fully-compressible,

reactive hydrodynamic equations. It was developed to study nuclear flashes on the

surfaces of neutron stars and white dwarfs. FLASH-IO [64] is a benchmark which is

based on the I/O kernel of the FLASH simulation. The benchmark uses identical I/O code

to that used in the simulation, thus any performance increase observed in FLASH-IO is

expected to translate directly to the FLASH simulation.

The principal data stored by FLASH consists of 80 three-dimensional blocks for

each processor involved in the simulation. Each block, in turn, consists of 512 smaller

sub-blocks, and the data contained in each sub-block consists of 24 variables of type

double. A simplified version of the memory and file arrangements used by FLASH is

shown in Figure 5.1. In memory, variables for each sub-block are stored together. The

512 sub-blocks comprising a block are also adjacent. In the file, however, the primary

arrangement is by variable, so all of the variables Vo from every block on every process

are stored contiguously, followed by all of the Vi's, and so forth.

The intervals created when the file is opened are shown in Figure 5.1 as dark

rectangles. Each interval contains all of the variables for a particular block on a particular

process. Each interval is 4096 bytes, and the file will contain 1920 intervals for each

processor involved in the run.

65

P(1 Memory:

Block 0, Sub-Block 0

FLASH File:

Block 0. Sub-Block 1

Vo

Block 0. Sub-Block 2 Block 0, Sub-Block 3

V„ V

v,

V v

V, V,
Proc 0, Block 0

•4 512 doubles y

]_̂ _|̂ Vo Vo V, VjVo
Proc p-1. Block 0

Vo Vol . . .

Proc 0, Block 1

Figure 5.1. The FLASH-IO data layout

We designed our experiments to study the effectiveness of using our Interval I/O

system to perform the checkpoint operations done by FLASH. We focused on the

FLASH-IO checkpoint operation, in which the current simulation state is written to a file

to allow restart in the event of system failure. The checkpoint operation is challenging for

current MPI-IO implementations because the ordering of data is different in the file and

in memory, thus requiring data reorganization to be performed. To accomplish this

reorganization, traditional approaches perform a series of noncontiguous writes or use a

two-phase I/O approach.

Using the Mercury cluster, we examined the effects of using Interval I/O on the

performance of the FLASH-IO checkpoint operation. These experiments were performed

with an early prototype of the Interval I/O System. This work was initially presented in

[42], and the results are reproduced here in Figure 5.2. We varied the processor count

66

between 4 and 64 processors and compared the performance of writing FLASH

checkpoints using our interval cache with the performance obtained using ROMIO. We

observed as much as a 50% reduction in write time (on 32 processors). In the 64

processor case, we demonstrated roughly a 38% reduction in the execution time of the

FLASH-IO benchmark as compared to ROMIO. These results were an early indication of

the potential of this approach.

FLASH Bendiimk ExecurionTim&s

Figure 5.2. Initial FLASH-IO benchmark execution times

Since the time of the initial FLASH-IO study, we have implemented a second

version of the interval cache, introducing a more modular design, and improving the

overall stability of the system. We have extended the functionality of the cache by

integrating it with the distributed lock manager. In addition, we have significantly

67

improved the performance of the cache by using interval trees to determine reverse

access sets, significantly reducing the cost of that operation and vastly improving the

scalability of interval I/O.

Our latest experiments involving FLASH-IO [43] were performed on the Lonestar

cluster. We compared write times for FLASH I/O checkpoint files using three different

file formats: Parallel HDF5 and PnetCDF, both of which use ROMIO as the underlying

I/O mechanism, and Interval Files using the Interval I/O system. The results of that

comparison are shown in Figure 5.3, and reflect up to a 93% reduction in execution time

on a 256 processor run.

40.0 i

30.0 • </>
"D
c o o 3

«£.
0
E
i= 10.0

20.0

0.0

FLASH-IO Performance
Checkpoint Write

• Interval I/O
' ROMIO - Parallel HDF5
' ROMIO - PnetCDF

64 128 192
Number of Processors

256

Figure 5.3. More recent FLASH-IO checkpointing performance results

68

There are several reasons why our Interval I/O System performs so well with the

FLASH-IO benchmark. FLASH-IO benefits from caching since a number of separate

MPI-IO write operations are performed, and the results of the writes can be combined in

the cache, which generates fewer file system operations than would be required without

caching. Furthermore, our approach avoids false sharing in the cache by using intervals

as the cache unit. Another factor is that we are able to eliminate noncontiguous file

system accesses because the intervals written by each process are stored together in the

interval file. Finally, we avoid all locking overhead by detecting that the pattern used by

FLASH-IO contains only private intervals.

5.2 MPl-Tile-IO

The MPI-Tile-IO benchmark performs I/O on a two-dimensional array that is

distributed across a number of processes. It supports both reading and writing of the array

data, and accomodates an optional overlap between adjacent tiles, thus simulating a

common I/O pattern used by scientific simulation applications. The MPI-Tile-IO access

pattern is shown in Figure 5.4. In this example, the two dimensional array stored in the

file is partitioned among four processes. The dashed lines illustrates the optional overlap

area for P0 and Pi. The array elements comprising the overlapping area are sometimes

referred to as guard cells.

69

p
0

P
1

p
2

P
3

Figure 5.4. MPI-Tile-IO data layout

The MPI-Tile-IO benchmark models quite well the cooperating application

scenario described in section 4.3 . The experiment involves a producer and a consumer,

each simulated using MPI-Tile-IO. Each producer process writes data from a local two

dimensional tile into a shared file containing the global array. Data from that file is then

read by the processes that comprise the consumer application.

The producer and the consumer are configured to use slightly different access

patterns. Each producer process writes a distinct portion of the array, with no overlap

between producer processes. The consumer processes, on the other hand, each read the

same area as the corresponding producer process, as well as an additional region of guard

cells. These access patterns are challenging for current parallel I/O implementations

because 1) they consist of a large number of noncontiguous regions, 2) the extents written

by each of the processes overlap with a potentially large number of other processes,

leading to serialization of accesses due to false sharing, and 3) complex locking required

for access to guard cells.

70

Since the access patterns used by the producer and the consumer are not identical,

the use of Interval I/O requires an additional translation step to convert the producer's

interval set into one that can be efficiently read by the consumer. We examined the

performance improvement shown by the MPI-Tile-IO benchmark in reading an interval-

based file versus the equivalent flat file. The results of that study, which was performed

on the Ranger cluster, are shown in Figure 5.4. As can be seen, read time was decreased

by as much as 35% (in the 8 x 8 configuration) when compared to ROMIO. More

significantly, however, we observe as much as an approximately 90% decrease in write

time (in the 7 x 7 configuration2). We anticipate that the performance improvements

shown here will more than offset the costs of interval translation.

MPI-Tile-IO Read Performance MPI-Tile-D Write Performance

3x3 4x4 5x5 7x7 8x8

£ 1500

• Cache
• ROMO

Figure 5.5. MPI-Tile-IO performance

2 The missing value for the 8 x 8 configuration using ROMIO indicates that the run did
not finish during the 1 hour allotted run time.

71

The use of Interval I/O with the MPI-Tile-IO benchmark provides many of the

advantages discussed in Chapter 4. First, it illustrates how Interval I/O can be used to

facilitate cooperation between applications. Second, the producer's noncontiguous writes

benefit from the reduction of false sharing and the use of interval files, and may be

performed without acquiring locks since the Interval I/O system detects that none of the

intervals are shared. Finally, the Interval-based locking system allows efficient locking in

the case of the consumer.

5.3 2D-Column-IO

The 2D-Column-IO benchmark is designed to test the atomic mode capabilities of

MPI-IO. File data consists of a large two dimensional array which is partitioned column­

wise across a number of processes such that each process writes the same number of rows

and columns. Columns written by adjacent processes overlap providing contention, and

since MPI atomic mode is used, data written by each process must be atomic. The

2D-Column-IO data access pattern is shown in Figure 5.6.

< P0 • + P2 • + P4 •

< Pj • < P3 •

Figure 5.6. The 2D-Column-IO access pattern

72

We examined the performance of the 2D-Column-IO benchmark on Ranger. For

our first experiment, we used a fixed 4 GB file size, and varied the number of processes

participating in the write operation from 8 to 128. We began with 8 processes, each

writing 16384 rows of data as a single atomic operation. For subsequent runs, we doubled

the number of participating processes and reduced the number of rows by half. We

compared the time to write the file using Interval I/O with that needed to write the file

using ROMIO.

The results, shown in Figure 5.7, were striking for three reasons. First, it was

immediately apparent that ROMIO's performance on this problem was extremely slow. In

fact, we were only able to get ROMIO performance data for the 8 and 16 process cases.

At 32 processes and beyond, our ROMIO jobs failed to complete before the allotted job

time (one hour) was up. Secondly, it appeared that we were more than doubling the

performance of Interval I/O by doubling the number of processes performing the writes.

This is due not only to the fact that the amount of parallelism is increasing, but also

because of the way that we adjusted the array to keep the file size fixed. By reducing the

number of rows, we were decreasing the number of intervals that needed to be locked,

and thus decreasing the overhead of locking. Finally, it was clear that Interval I/O

performed extremely well compared to ROMIO for this test of atomic I/O.

73

Fixed File Size (4GB)

350

300

250

200

150

100 -

50

~ i — i r
ROMO

I Interval I/O

8 16 32 64 128

Number of Processors

Figure 5.7. 2D-Column-IO performance, 4 GB total file
size

For the second experiment with 2D-Column-IO, we kept the amount of data

written by each process at a constant 256 MB, and again varied the number of processes

between 8 and 128. In this experiment, we kept the number of rows written by each

process fixed at 8192, and increased the number of columns with the number of

processes.

The results of this experiment are shown in Figure 5.8. Again, ROMIO's handling

of this case did not scale beyond 16 processes. The runs with 32 or more processes failed

to complete in the allotted one hour run time of the jobs. The performance of the Interval

I/O system was somewhat better, but still scaled poorly, with a doubling of processes

resulting in more than twice the time to complete the atomic operation in cases beyond 32

processes. We suspected that lock overhead was to blame, since each doubling of

74

processes also resulted in a doubling of the number of shared intervals, requiring a large

number of lock messages.

Fixed Data Per Processor (256MB)

8 16 32 64 128

Number of Processors

Figure 5.8. 2D-Column-IO performance, 256 MB per
process

To test this hypothesis, we developed an alternate locking mode for Interval I/O,

which we call Reverse Access Set (RAS) Locking. The RAS approach works as follows.

Instead of maintaining a lock for every interval, we group intervals together that have the

same reverse access set. So, for instance, the column of data that is shared by P0 and P i

has {Po, Pi} as the reverse access set for each interval in the column. By grouping them

together, and simply requiring one lock to represent the entire column, we significantly

75

reduce the lock overhead. This works quite well for the 2D-Column-IO benchmark, since

all intervals in each column have identical reverse access sets. The access pattern

produces only p - 1 distinct reverse access sets, greatly reducing the number of required

locks.

Fixed Data Per Processor (256MB) E

2200

2000

1800

1600

"of 1400

fl

s
(s

ec
or

1200

s
(s

ec
or

1000

T
im

800

600

400

200

0
8 16 32 64 128

Number of Processors

Figure 5.9. 2D-Column-IO performance with RAS Locking

The result obtained with this approach is shown in Figure 5.9. As can be seen, the

Reverse Access Set Locking technique caused a significant improvement in atomic I/O

performance in this case. RAS Locking would not be feasible for every situation, since

the number of distinct reverse access sets would be significantly larger in many cases. In

addition, programs which performed a larger number of smaller atomic writes would

suffer from false sharing if the RAS locks represented a larger portion of the file than was

being written at the time.

76

T i i r
RAS Locking — I —

Interval Locking —x-

The performance of Interval I/O on the 2D-Column-IO benchmark demonstrates

the effectiveness of our Interval-based locking system at handling noncontiguous atomic

mode write operations. Both private interval detection and RAS locking reduce the

expense of obtaining the required consistency semantics. The Interval I/O System

performs significantly better than ROMIO on this benchmark.

77

6 LUSTRE FILE SYSTEM OPTIMIZATION

The Interval I/O System we have described is designed to efficiently handle the

file access pattern being used by the application, and, when necessary, to reorder the data

to allow application processes to perform separate, contiguous file system accesses. The

results presented in Chapter 5 show that this approach can significantly improve the

performance of parallel I/O.

Our extensive study of the Lustre file system [31,45,46], however, has produced

evidence that large contiguous accesses do not always provide optimal performance. In

fact, we have observed that performing a large number of small (noncontiguous)

operations can, when the accesses are properly aligned with the Lustre storage

architecture, provide significantly improved parallel I/O performance.

In this chapter we present our findings regarding the effects of access patterns on

Lustre File System performance and show how the Interval I/O System provides a simple

and effective mechanism for tuning the file system access pattern to take advantage of

these findings.

6.1 Lustre Performance Overview

There are two key challenges associated with achieving high performance with

MPI-IO in a Lustre environment. First, Lustre exports only the POSIX file system API,

which was not designed for a parallel I/O environment and provides little support for

parallel I/O optimizations. This has led to the development of approaches (or

78

"workarounds") that can circumvent (at least some of) the performance problems

inherent in POSIX-based file systems (e.g., two-phase I/O [20,25], and data-sieving

[22]). The second problem is that the assumptions upon which these optimizations are

based simply do not hold in a Lustre environment.

The most important and widely held assumption, and the one upon which most

collective I/O optimizations are based, is that parallel I/O performance is optimized when

application processes perform a small number of large, contiguous (non-overlapping) I/O

operations concurrently. In fact, this is the assumption upon which collective I/O

operations are based. The research presented in this chapter, however, shows that this

assumption can lead to very poor I/O performance in a Lustre file system environment.

Moreover, we provide a large set of experimental results showing that the antithesis of

this approach, where each aggregator process performs a large number of small (non­

contiguous) I/O operations, can, when properly aligned with the Lustre storage

architecture, provide significantly improved parallel I/O performance.

In this chapter, we document and explain the reasons for these non-intuitive

results. In particular, we show that it is the data aggregation patterns currently utilized in

collective I/O operations, which result in large, contiguous I/O operations, that are largely

responsible for the poor MPI-IO performance. Such data aggregation patterns are

problematic because they redistribute application data in a way that conforms poorly with

Lustre's object-based storage architecture. To address this issue, we have developed an

alternative approach, embodied in a user-level library termed Y-Lib [46]. In a collective

79

I/O operation, Y-Lib redistributes data in a way that much more closely conforms to the

Lustre object-based storage architecture.

In this chapter, we show how Interval I/O can be used to significantly improve

parallel I/O performance in the emerging object-based file systems. We begin by

demonstrating the data aggregation patterns that are much more closely aligned with

Lustre (and other object-based file systems). We provide experimental results, taken

across two large-scale Lustre installations, showing that this alternative approach to

collective I/O operations does, in fact, provide significantly enhanced parallel I/O

performance. However, we also show that the magnitude of such performance

improvement depends on several factors, including the number of aggregator processes

and Object Storage Devices, and the power of the system's communication infrastructure.

We also show that the optimal data redistribution pattern employed by Y-Lib is dependent

upon these same factors.

6.2 Lustre Architecture

Lustre consists of three primary components: file system clients (that request I/O

services), object storage servers (OSSs) (that provide I/O services), and meta-data servers

that manage the name space of the file system. Each OSS can support multiple Object

Storage Targets (OSTs) that handle the duties of object storage and management. The

scalability of Lustre is derived from two primary sources. First, file meta-data operations

are de-coupled from file I/O operations. The meta-data is stored separately from the file

data, and once a client has obtained the meta-data it communicates directly with the OSSs

in subsequent I/O operations. This provides significant parallelism because multiple

80

clients can interact with multiple storage servers in parallel. The second driver for

scalable performance is the striping of files across multiple OSTs, which provides parallel

access to shared files by multiple MPI-IO processes.

Lustre provides APIs allowing the application to set the stripe size, the number of

OSTs across which the file will be striped (the stripe width), the index of the OST in

which the first stripe will be stored, and to retrieve the striping information for a given

file. The stripe size is set when the file is opened and cannot be modified once set. Lustre

assigns stripes to OSTs in a round-robin fashion, beginning with the designated OST

index.

The POSIX file consistency semantics are enforced through a distributed locking

system, where each OST acts as a lock server for the objects it controls [65]. The locking

protocol requires that a lock be obtained before any file data can be modified or written

into the client-side cache. While the Lustre documentation states that the locking

mechanism can be disabled for higher performance, we have never observed such

improvement by doing so.

Previous research efforts with parallel I/O on the Lustre file system have shed

some light on factors contributing to the poor performance of MPI-IO, including the

problems caused by I/O accesses that are not aligned on stripe boundaries [58,66]. Figure

6.1 helps to illustrate this problem.

Assume two processes are writing to non-overlapping sections of a file; however,

because the requests are not aligned on stripe boundaries, both processes are accessing

different regions of stripe 1. Because of Lustre's locking protocol, each process must

81

acquire the lock associated with the stripe, which results in unnecessary lock contention.

Thus the writes to stripe 1 must be serialized, resulting in suboptimal performance.

Process 0 Process 1

-TV^V /

wm
OSTl

\
Str ip^l wm

OSTl

•>pe2

OSTO

wm
OSTl OST2

Figure 6.1. Crossing Stripe Boundaries with Lustre

An ADIO driver for Lustre has recently been added to ROMIO, appearing in the

1.0.7 release of MPICH2 [24]. This new Lustre driver adds support via hints for user

settable features such as Lustre striping and direct I/O. In addition, the driver insures that

two-phase I/O aggregation is performed such that disk accesses are aligned on Lustre

stripe boundaries.

6.2.1 Data Aggregation Patterns

While the issues addressed by the new ADIO driver are necessary for high-

performance parallel I/O in Lustre, they are not, in our view, sufficient. This is because

they do not address the problems arising from multiple aggregator processes making

large, contiguous I/O requests concurrently. This point may be best explained through a

82

simple example.

OSTO OST1 OST2 OST3 OST 4 OST5 OST6 OST 7

Figure 6.2. Communication pattern for two-phase I/O with Lustre.

Consider a two-phase collective write operation with the following parameters:

four aggregator processes, a 32 MB file, a stripe size of 1 MB, eight OSTs, and a stripe

width of eight. Assume the four processes have completed the first phase of the collective

write operation, and that each process is ready to write a contiguous eight MB block to

disk. Thus, process PO will write stripes 0 - 7 , process PI will write stripes 8-15, and so

forth. This communication pattern is shown in Figure 6.2.

Two problems become apparent immediately. First, every process is

communicating with every OSS. Second, every process must obtain eight locks. Thus

there is significant communication overhead (each process and each OSS must multiplex

83

four separate, concurrent communication channels), and there is contention at each lock

manager for locking services (but not for the locks themselves). While this is a trivial

example, one can imagine significant degradation in performance as the file size, number

of processes, and number of OSTs becomes large. Thus, a primary flaw in the assumption

that performing large, contiguous I/O operations provides the best parallel I/O

performance is that it does not account for the contention of file system and network

resources.

6.2.2 Aligning Data with the Lustre Object Storage Model

The aggregation pattern shown in Figure 3 is what we term an all-to-all OST

pattern because it involves all aggregator processes communicating will all OSTs. The

simplest approach to reducing contention caused by such aggregation patterns is to limit

the number of OSTs across which a file is striped. In fact, the generally recommended

(and often the default) stripe width is four. While this certainly reduces contention, it also

severely limits the parallelism of file accesses, which, in turn, limits parallel I/O

performance. However, we believe it is possible to both reduce contention and maintain a

high degree of parallelism, by implementing an alternative data aggregation pattern. This

is accomplished via a user-level library termed Y-lib,

The basic idea behind Y-Lib is to minimize the contention for file system

resources by controlling the number of OSTs with which each aggregator process

communicates. On Ranger, we found the optimal data redistribution pattern to be what

we term a "one-to-one" OST pattern, where the data is arranged such that each

aggregator process communicates with exactly one OST. On BigRed, however, we found

84

that a "one-to-two" OST pattern, where each aggregator process communicates with two

OSTs, provided the best performance. The difference in observed optimal performance

between BigRed and Ranger is due to the different hardware configurations of the two

machines; further study would be required to determine the optimal pattern for an

arbitrary platform.

A simple example should help clarify these ideas. Assume there are four

application processes that share a 16 MB file with a stripe size of 1 MB and a stripe width

of four (i.e., it is striped across four OSTs). Given these parameters, Lustre distributes the

16 stripes across the four OSTs in a round-robin pattern as shown in Figure 6.3. Thus

stripes 0, 4, 8, and 12 are stored on OST 0, stripes 1, 5, 9, and 13 are stored on OST 1,

and so forth.

OST 1 OST 2 OST 3 OST 4

0 1

6 7

12 14 15

Figure 6.3. Lustre file layout

85

« - " — • >

OST3
C "5

OSTl OST2 OST3 OST4

P 0 J • 0 1 2 3

(FT) • 4 5 6 7

10 11

•• 12 13 14 15

Figure 6.4. Each process has its data in
the conforming distribution.

Figure 6.4 shows how the data would be distributed to the aggregator processes in

what is termed the conforming distribution, where each process can write its data to disk

in a single, contiguous I/O operation. This is the distribution pattern that results from the

first phase of ROMIO's collective write operations, which, as previously discussed,

results in an all to all communication pattern.

Figure 6.5 shows how the same data would be distributed by Y-Lib to create the

one-to-one OST pattern. As can be seen, the data is rearranged to reflect the way it is

striped across the individual OSTs, resulting in each process having to communicate with

only a single OST.

86

0 1

10 11

12 13 14 15

Figure 6.5. The one-to-one OST
pattern

87

i

Figure 6.6 and Figure 6.7 show the data redistribution patterns for the conforming

distribution and the two-to-one OST pattern, respectively.

OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7 OST 8

0-°

©-

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

| O S T l l lOSTI OST3 OST* OST5 OST6 OST 7 OST8 |

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Figure 6.6. The conforming distribution
Figure 6.7. The one-to-two
OST pattern after redistribution

6.2.3 Tradeoffs in the Aggregation Patterns

It is interesting to consider the trade-offs in the different data aggregation patterns.

When the data is redistributed to the conforming distribution, each process can write its

data to disk in a single, contiguous, I/O operation. However, this creates a great deal of

background activity as the file system client must communicate with all OSTs. In the

one-to-one OST distribution, there is significantly less contention for system resources,

but each process must perform a (potentially) large number of small I/O requests, with a

disk seek between each such request.

88

Thus the relative performance of the two approaches is determined by the

particular overhead costs associated with each. In the following sections, we provide

extensive experimentation showing that the costs associated with contention for system

resources (OSTs, lock managers, network) significantly dominates the cost of performing

multiple, small, and non-contiguous I/O operations.

6.3 Experimental Design

We wanted to determine the impact of the data aggregation patterns on the

throughput obtained when performing a collective write operation in a Lustre file system.

To investigate this issue, we performed a set of experiments on two large-scale Lustre file

systems, at two different research facilities on the TeraGrid [63]: Indiana University and

the Texas Advanced Computing Center at the University of Texas. Details of the two

platforms, Big Red and Ranger, are given in Chapter 5.

Both Ranger and Big Red host production file systems that are heavily utilized by

the scientific research community, and we were unable to obtain exclusive access to

either file system for our testing. Thus, we were unable to control the number of other

jobs, the I/O characteristics of such jobs, and the level of network contention during our

experimentation. The primary problem with not having exclusive access is the potential

for large variability in experimental results making them very difficult to interpret.

However, as will be seen below, the level of variability in these results is not large, and

we thus believe the results obtained here are reflective of what a user would experience

when accessing these file systems.

89

It is important to note that the experimental environment is quite different on

these two systems. Big Red has a smaller number of nodes (768 versus 3,936), and a

significantly longer maximum runtime (two days to two weeks on Big Red versus 24

hours on Ranger). This resulted in very lengthy queues, where the number of waiting jobs

often exceeded one thousand and was rarely less than seven hundred. Thus it was difficult

to obtain a large number of nodes, and the time between experiments could be quite large,

often taking between four days and one week.

For these reasons, we were able to complete a larger set of experiments, with a

larger number of processes and OSTs, on Ranger than we were on Big Red. We begin by

discussing our results on Ranger.

6.3.1 Experimental Study on Ranger

We varied two key parameters in the experiments conducted on Ranger: The

number of processors that participated in the operation, and the file size. In particular, we

varied the number of processors from 128 to 1024, where each processor wrote one

gigabyte of data to disk. Thus the file size varied between 128 gigabytes and one terabyte.

We kept the number of OSTs constant at 128, and maintained a stripe size of one

megabyte. Each data point represents the mean value of 50 trials taken over a five-day

period.

6.3.1.1 Data Aggregation Patterns with Redistribution

In this set of experiments, we assigned the data to the processors such that both

ROMIO and Y-Lib were both required to redistribute the data to reach the desired

90

aggregation pattern. Thus, in the case of ROMIO, we set a file view specifying the one-

to-one OST pattern. When presented with such a pattern, ROMIO uses two-phase I/O to

move the data into the conforming distribution. Once in the conforming distribution, each

aggregator process writes a single contiguous chunk of data to disk.

In the case of Y-Lib, we assigned the data to the processors in the conforming

distribution, and made a collective call to Y-Lib to redistribute the data to the one-to-one

OST pattern. Once Y-Lib completed the data redistribution, it wrote the data to disk using

multiple independent (but concurrent) write operations.

6.3.1.2 Data Aggregation Patterns without Redistribution

The next set of experiments assumed the data was already assigned to the

processors in the required distribution thus negating the need for data redistribution. Thus

in the case of ROMIO, each process performed a single contiguous write operation. In the

case of Y-Lib, each process performed multiple independent write operations.

6.3.1.3 ROMIO Write Strategies

The final set of experiments was designed to determine if we could improve the

performance of MPI itself by forcing it to use the one-to-one OST pattern rather than the

conforming distribution. We accomplished this by setting a file view specifying the one-

to-one OST pattern, and disabling both two-phase I/O and data sieving. Thus each

process was required to perform multiple independent writes. This forces ROMIO to

perform the same writes that would be performed by Y-Lib. We then compared the

91

performance of this approach with that of ROMIO where the data was already in the

conforming distribution, and ROMIO using two-phase I/O.

6.3.1.4 Experimental Results

The experimental results are shown in Figure 6.8, 6.9, and 6.10. Each data point

represents the measured throughput averaged over 50 trials and 95% confidence intervals

around the means. Figure 6.8 shows the throughput obtained when both Y-Lib ROMIO

were required to redistribute the data before performing the write operations. As can be

seen, Y-Lib improves I/O performance by up to a factor of ten. This is particularly

impressive given that each process performed 1024 independent write operations.

Data Aggregation Patterns With Redistribution

16000

Is
)

12000 -
00.
S
*«̂ 4-<
-}

a. 8000 -
.=
en 3
O
i—

j r 4000 -
I -

0

0 256 512 768 1024

Number of Processors

Figure 6.8. Mean throughput with data redistribution

92

•Y-LIb
- MPI-IO With One-To-One OST Pattern

Figure 6.9 shows the throughput obtained assuming the optimal data distribution

for each approach. That is, the data was in the conforming distribution for MPI-IO, and in

the one-to-one OST distribution for Y-Lib. Thus neither approach required the

redistribution of data. As can be seen, the one-to-one pattern, which required 1024

independent write operations, significantly outperformed the MPI_File_write_at_all

operation, where each process wrote a contiguous one gigabyte buffer to disk. In this

case, Y-Lib improved performance by up to a factor of three.

Data Aggregation Patterns Without Redistribution

IbOOO -

•5 12000 -
m
E • ^ - "

4_l

3
o 8000
g
U)
3

o
f™ 4000 •

H

0 •

• Y-Lib
-MPI File write at all

256 512 768

Number of Processors
1024

Figure 6.9. Mean throughput without data redistribution

Figure 6.10 depicts the performance of three different MPI-IO collective

operations. It includes the two previously described approaches, and compares them with

93

the performance of MPI-IO when it was forced to use independent writes. As can be seen,

we were able to increase the performance of MPI-IO itself by over a factor of two, by

forcing it to use the one-to-one OST pattern.

Comparison of MPI Write Strategies

16000 •

U) 12000
CO
2
—̂* 4-"

a a. 8000
.c O)
3
O
i—

sz 4000 -
r-

0 -

- A — One-To-One OST Pattern, Indep. Writes
-TJ—Conforming Distribution
- 0 — One-To-One OST Pattern w/ Redistribution

— *

256 512 768

Number of Processors
1024

Figure 6.10. A comparison of MPI write strategies

6.3.1.5 Discussion

These results strongly support the hypothesis that ROMIO does, in fact, perform

very poorly in a Lustre file system because of the resource contention associated with the

all-to-all pattern. They also show that it is possible to utilize all of the system resources

quite profitably when utilizing the data redistribution pattern employed by Y-lib. These

results also lend strong support to other studies on Lustre showing that maximum

94

performance is obtained when individual processes write to independent files

concurrently [56,67]. It also helps explain the commonly held belief of (at least some)

Lustre developers that parallel I/O is not necessary in a Lustre environment, and does

little to improve performance.

6.3.2 Experimental Studies on Big Red

In our initial exploration of Y-lib on Big Red, we did not obtain the improvement

in I/O performance that we observed on Ranger. Further investigation revealed that we

were under-utilizing the powerful parallel I//0 subsystem by having each process

communicate with only one OST. We then experimented with other OST patterns, and

found that the best performance was obtained when each process communicated with

exactly two OSTs (what we term a two-OST pattern). Thus all of the experiments

discussed in this section utilized this data redistribution pattern.

6.3.2.1 Data Aggregation Patterns without Redistribution

In these experiments, we compared the I/O performance obtained when the data

was arranged according to the conforming distribution or the two-OST distribution. We

varied the number of aggregator processes between 32 and 256, and the stripe width

between 32 and 96 (the maximum number of OSTs available). We scaled the file size

between 32 and 256 gigabytes (i.e., one gigabyte times the number of processes), and, for

32 to 96 processes, set the stripe width equal to the number of processes. In the case of

192 processes, we utilized 96 OSTs. In the 256-process case however, we utilized only 64

OSTs. This was because the number of processes must be a multiple of the number of

95

OSTs to ensure that each process always communicates with the same two OSTs. In all

cases, the stripe size was one megabyte, and the writes were aligned on stripe and lock

boundaries.

6.3.2.2 Experimental Results

The results of these experiments are shown in Figure 6.11. It shows the mean

throughput and 95% confidence intervals around the means, as a function of the number

of processes and I/O strategy. As can be seen, the Y-lib distribution pattern starts to

significantly outperform the conforming distribution once the number of processes

exceeds 32. The largest improvement comes with 96 processes (and OSTs), where a 36%

improvement in performance is observed. The relative improvement in performance was

approximately 32% with 192 processes (96 OSTs), and was on the order of 5% in the

256-process case (64 OSTs).

96

Impact of Data Distribution on Performance
Big Red

i i i i i i i i i
0 32 64 96 128 160 192 224 256

Number of Processors

Figure 6.11. Impact of data distribution (Big Red)

6.3.2.3 Discussion

These results are very different from those obtained on Ranger, and it is

interesting to consider the causes for such differences. There are really two separate

questions: Why did the performance of ROMIO increase with increasing numbers of

processes, and why did the rate of performance increases begin to slow for Y-lib in this

scenario? We address each question in turn.

We believe the increasing performance observed on Big Red was due to the very

powerful parallel I/O subsystem available from the Data Capacitor, combined with an

aggregate bandwidth of 240 gigabits per second between the two systems provided by the

24 10-gigabit Myricom connections. Clearly, this infrastructure was powerful enough to

handle the all-to-all communication pattern required by the conforming distribution.

However, the number of processes we were able to test was relatively small (at least

97

compared to Ranger), and it would be very interesting to execute the same tests with 512

processes.

The reduction in the rate of increasing performance observed in Y-lib was, we

believe, related to the ratio of OSTs to aggregator processes. That is, the overhead of

performing a large number of small I/O operations becomes more pronounced as

contention for OSTs and network services begins to increase. In the case of 256

aggregators and 64 OSTs, each OST is communicating with eight processes (even though

each process is only communicating with two OSTs). Thus, while the level of contention

in this case is not as significant as that resulting from the conforming distribution, it is

apparently enough to begin to impact the performance of Y-lib.

6.4 Striped Interval Files

In our initial development of the Interval I/O System, a guiding principle for

optimizing I/O performance was to favor large, contiguous I/O operations rather than

using a larger number of smaller, noncontiguous operations. This proved to be a

reasonably successful strategy, as indicated by the results presented in Chapter 5.

However, our work with the Lustre file system calls this principle into question. Our

results indicate that the performance obtained from using a single large, contiguous

access can be significantly slower than a noncontiguous access pattern that aligns

properly with Lustre's storage architecture.

Fortunately, our Interval I/O System is well suited to take advantage of this new

information. Since interval files do not store data in the order dictated by the use of a flat

file, their use effectively decouples the application's access pattern from the file system

98

access pattern. This allows file data to be written to disk using a pattern that is known to

be efficient provided that the file metadata includes a description of the pattern that was

used. A significant advantage of Interval I/O is that it does not require any additional

communication to obtain this performance improvement.

In Section 3.4.1, we described the layout of the Interval Files. The technique

described there aimed to store all data for a process contiguously on disk. Here we show

a small modification to the technique which allows process data to be arranged in the

one-to-one or one-to-two pattern as explained in Chapter 6.

Consider the parallel I/O example given in Figure 6.12, which shows cached

interval data written by three processes to a Lustre file system. The Lustre file is striped

across three OSTs as indicated by the dashed lines in the figure. Figure 6.12a shows the

cached data written as a conventional sequential file. The pattern requires each process to

write its cached data to three noncontiguous data regions, which, in this case requires

each process to write data to all three of the OSTs. This is an example of the all-to-all

access pattern discussed in Section 6.2.2 which leads to particularly poor performance

with Lustre.

Figure 6.12b shows the same cached data written as an Interval File using the

scheme described in Section 3.4.1. In this case, each process writes one contiguous data

region to the file. We have shown that this technique can improve write performance,

however, the amount of improvement is limited because this pattern still produces an all-

to-all pattern requiring each process to communicate with every OST.

99

i : :
t
1

i

i

a) Flat File a b h i
i i i
! 1 1
1 1 1
1 1 1
1 1 1

b) Interval File | metadata

c) Strkied
Interval File

Po

K
ey

K

ey

P ,

P
2

dl K b | e | h | c | f l i

metadata d b _g_ h f

Figure 6.12. Optimizing the Interval File layout for Lustre

To overcome this obstacle, we adjust the Interval File as shown in Figure 6.12c.

Here the Interval File is tuned to use a one-to-one pattern for the file data. There are three

adjustments to be made, which are:

1. Align the data section with the beginning of the first full stripe after the

metadata section. In the example, this is the first stripe assigned to OST 2.

2. Assign each process a set of stripes corresponding to a particular OST.

Here, process Pc is assigned the stripes of OST 2, Pi is assigned OST O's

stripes, and P2 uses OST l's stripes. Each process simply writes data in a

regular strided pattern into the assigned stripes.

100

3. Adjust the striping information in the metadata section to reflect the

location of the data.

101

7 CONCLUSION AND FUTURE RESEARCH

This research has investigated the use of an interval-based approach to parallel

I/O. In this chapter, we summarize our findings, and present some directions for further

study.

7.1 Conclusion

Interval I/O provides a promising new approach to parallel I/O. By considering

the available file view information and using it to decide the fundamental access units,

we have shown that I/O performance can be significantly improved. The prototype

Interval I/O System that we have developed not only provides evidence of this

improvement, but also provides a platform upon which future research on Interval I/O

can be performed.

This work has shown Interval I/O to be effective in a variety of situations. The

interval I/O approach is well suited for handling noncontiguous I/O operations as it

reduces false sharing and allows file system accesses to be done contiguously. The

Interval I/O locking system provides excellent scaling of atomic mode operations,

particularly when compared to ROMIO. Our Interval Files allow accesses to be

performed in a way that conforms to the best available access pattern for the underlying

file system (e.g. Lustre). And finally, we have outlined a strategy to support cooperating

applications, and have laid the groundwork for continued research.

102

7.2 Future Research

In this section we discuss some related areas that would be natural extensions to

this work. Items discussed here are included as suggestions to those wishing to extend

this research.

A potential research area stemming from this work is the handling of partially

cached files, which would be necessary for accessing files that are larger than the

collectively available memory across the application processors. Designing such a

mechanism would be non-trivial, but would extend the usability of interval-based caching

to include arbitrarily large files.

Our initial approach for calculating interval sets described earlier has a potential

problem when used with very large numbers of processors. As the problem size and

processor count increase, the total number of intervals also increases. Thus the current

approach has limited scalability because it requires each process to calculate every

interval in the file, regardless of whether a particular interval is used by that process.

A more scalable approach would involve distributing the responsibility for

creating intervals across the processors by breaking the file into p contiguous chunks,

where p is the number of participating processors. With this approach, a process sends the

appropriate file view information only to the processes whose assigned chunks overlap

with its file view. Each process then calculates the intervals in its chunk, which can be

done in parallel. Finally, the metadata for each interval is sent back to each process in that

interval's reverse access set, providing each process with data for only the intervals in its

view.

103

Another area of interest involves analysis of the logic used to place shared

intervals on cache processors, and the related question of lock placement. We expect that

there will be a class of access patterns that will require a more intelligent approach to

interval and lock placement than that which is used in the prototype system. A better

algorithm for placing intervals and locks would allow the cache to provide increased

performance or a wider range of application access patterns.

Another possible extension of interval-based parallel I/O is the addition of

support for parallel streaming of interval-based data through a mechanism similar to Unix

pipes. The system would use the Interval Translator to dynamically remap interval-based

streams betwen a source interval stream and a target interval stream. Use of such a

system could result in a more modular set of tools for parallel programming, similar to

the way specialized tools such as cat, grep and sed are often used in Unix scripts.

Our system places knowledge of intervals inside ROMIO, so an application has

no direct contact with the interval sets. However, there may be advantages to providing

the application with a set of tools to directly access and manipulate the intervals. The

design of an interval-based file API would be another interesting area for future research.

104

REFERENCES

[I] "Top 500 Supercomputing Sites" Available: http://www.top500.org/.

[2] "Lustre File System - Overview" Available: http://www.oracle.com/us/products/servers-
storage/storage/storage-software/031855.htm.

[3] RH. Cams, W.B.L. Ill, R.B. Ross, and R. Thakur, "PVFS: A Parallel File System for Linux
Clusters," Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, GA:
USENIX Association, 2000, pp. 317-327.

[4] "Panasas" Available: http://www.panasas.com.

[5] "MPI-2: Extensions to the Message-Passing Interface. Message Passing Interface Forum"
Available: http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[6] J.B. Drake, P.W. Jones, and G.R. Carr, "Overview of the Software Design of the
Community Climate System Model," InternationalJournal of High Performance
Computing Applications, vol. 19, Aug. 2005, pp. 177-186.

[7] G. Hernandez, "Large scale parallel and distributed simulations and visualizations of the
Olami-Feder-Christiensen earthquake model," Parallel and Distributed Processing
Symposium., Proceedings 15th International, 2001.

[8] A. Ching, Feng, W., Lin, H., X. Ma, and A. Choudhary, "Exploring I/O Strategies for
Parallel Sequence Database Search Tools with S3aSim.," Proceedings of the 15th
International Symposium on High Performance Distributed Computing, 2006.

[9] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney, "Grid -Based
Parallel Data Streaming implemented for the Gyrokinetic Toroidal Code," Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, IEEE Computer Society, 2003, p. 24.

[10] B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner,
J. Truran, and H. Tufo, "FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling
Astrophysical Thermonuclear Flashes," The Astrophysical Journal Supplement Series, Nov.
2000, pp.273-334.

[II] D. Kotz and R. Jain, "I/O in Parallel and Distributed Systems," Encyclopedia of Computer
Science and Technology, A. Kent and J.G. Williams, eds., Marcel Dekker, Inc., 1999, pp.
141-154.

[12] A. Choudhary, W Liao, K. Gao, A. Nisar, R. Ross, R. Thakur, and R. Latham, "Scalable I/O
and analytics," Journal of Physics: Conference Series, vol. 180, 2009, p. 012048.

[13] P. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed, "Input/Output Characteristics of
Scalable Parallel Applications," IN PROCEEDINGS OF SUPERCOMPUTING '95, 1995.

[14] A. Ching, A. Choudhary, K. Coloma, W. Liao, R. Ross, and W. Gropp, "Noncontiguous I/O
Access Through MPI-IO," the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID'03), IEEE, 2003.

105

http://www.top500.org/
http://www.oracle.com/us/products/servers-
http://www.panasas.com
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

[15] A. Ching, A. Choudhary, W. Liao, L. Ward, and N. Pundit, "Evaluating I/O Characteristics
and Methods for Storing Structured Scientific Data," 2006.

[16] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen, "Implementing MPI-IO Atomic
Mode Without File System Support," the 5th IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2005), 2005.

[17] R. Ross, R. Thakur, and A. Choudhary, "Achievements and challenges for I/O in
computational science," Journal of Physics: Conference Series, vol. 16, 2005, pp. 501-509.

[18] R. Latham, R. Ross, and R. Thakur, "The impact of file systems on MPI-IO scalability," the
11th European Parallel Virtural Machine and Message Passing Interface Users Group
Meeting, Springer, 2004.

[19] "The Open Group Base Specifications Issue 7, IEEE Std 1003.l™-2008" Available:
http://www.opengroup.org/onlinepubs/9699919799/.

[20] R. Thakur, W. Gropp, and E. Lusk, "On implementing MPI-IO portably and with high
performance," Proceedings of the sixth workshop on I/O in parallel and distributed systems,
Atlanta, Georgia, United States: 1999, pp. 23-32.

[21] R. Thakur, W. Gropp, and E. Lusk, "An Abstract-Device Interface for Implementing
Portable Parallel-I/O Interfaces," the 6th Symposium on the Frontiers of Massively Parallel
Computation, 1996.

[22] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and Collective I/O in ROMIO,"
Proceedings of the The 7th Symposium on the Frontiers of Massively Parallel Computation,
IEEE Computer Society, 1999, p. 182.

[23] R. Thakur, R. Ross, and W. Gropp, "Users Guide for ROMIO: A High-Performance,
Portable MPI-IO Implementation."

[24] "MPICH2: High-performance and Widely Portable MPI" Available:
http://www.mcs.anl.gov/research/projects/mpich2/.

[25] R. Thakur and A. Choudhary, "An Extended Two-Phase Method for Accessing Sections of
Out-of-Core Arrays," Scientific Programming, vol. 5, Winter. 1996, pp. 301-317.

[26] P.M. Dickens and R. Thakur, "A Performance Study of Two-Phase I/O," IN
PROCEEDINGS OF THE 4THINTERNATIONAL EURO-PAR CONFERENCE. LECTURE
NOTES IN COMPUTER SCIENCE 1470, 1998, pp. 959-965.

[27] R. Thakur, W Gropp, and E. Lusk, "Optimizing Noncontiguous Accesses in MPI-IO,"
Parallel Computing, vol. 28, Jan. 2002, pp. 83-105.

[28] K. Coloma, A. Choudhary, W. Liao, L. Ward, and S. Tideman, "DAChe: Direct Access
Cache System for Parallel I/O," International Supercomputer Conference, 2005.

[29] Wei-keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and S. Tideman, "Collective
caching: application-aware client-side file caching," HPDC-14. Proceedings. 14th IEEE
International Symposium on High Performance Distributed Computing, 2005., Research
Triangle Park, NC, USA:, pp. 81-90.

106

http://www.opengroup.org/onlinepubs/9699919799/
http://www.mcs.anl.gov/research/projects/mpich2/

[30] K. Coloma, A. Choudhary, W. Liao, L. Ward, E. Russell, and N. Pundit, "Scalable High-
level Caching for Parallel I/O," The 18th International Parallel and Distributed Processing
Symposium (IPDPS'04), 2004.

[31] P. Dickens and J. Logan, "Towards a High Performance Implementation of MPI-IO on the
Lustre File System," On the Move to Meaningful Internet Systems: OTM2008, 2008, pp.
870-885.

[32] D. Kotz, "Disk-directed I/O for MIMD multiprocessors," >1 CM 7V<ms. Comput. Syst., vol.
15, 1997, pp. 41-74.

[33] F. Isaila and W. Tichy, "View I/O: improving the performance of non-contiguous I/O," the
Third IEEE International Conference on Cluster Computing, 2003, pp. 336-343.

[34] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp, "Efficient Structured Data
Access in Parallel File Systems," the IEEE International Conference on Cluster Computing,
2003.

[35] X. Ma, M. Winslett, J. Lee, and S. Yu, "Improving MPI-IO Output Performance with Active
Buffering Plus Threads," IPDPS 2003, 2003.

[36] J.F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, "Flexible IO and integration
for scientific codes through the adaptable IO system (ADIOS)," Proceedings of the 6th
international workshop on Challenges of large applications in distributed environments,
Boston, MA, USA: ACM, 2008, pp. 15-24.

[37] W Liao, A. Choudhary, K. Coloma, G. Thiruvathukal, L. Ward, E. Russell, and N. Pundit,
"Scalable Implementations of MPI Atomicity for Concurrent Overlapping I/O,"
International Conference on Parallel Processing, 2003.

[38] P. Aarestad, A. Ching, G. Thiruvathukal, and A. Choudhary, "Scalable Approaches for
Supporting MPI-IO Atomicity.," 6th International Symposium on Cluster Computing and
the Grid (CCGrid), 2006.

[39] P. Dickens and R. Thakur, "Improving Collective I/O Performance Using Threads,"
Proceedings of the 13th International Symposium on Parallel Processing and the 10th
Symposium on Parallel and Distributed Processing, IEEE Computer Society, 1999, pp. 38-
45.

[40] N. Nieuwejaar, D. Kotz, A. Purakayastha, C.S.E. Y, and M.B. Z, "File-Access
Characteristics of Parallel Scientific Workloads," IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, vol. 7, 1996, pp. 1075-1089.

[41] "MPI File Views" Available: http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-
2.0/node 184.htm.

[42] J. Logan and P. Dickens, "Using Object Based Files for High Performance Parallel I/O,"
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, 4th IEEE Workshop on, 2007, pp. 149-154.

[43] P.M. Dickens and J. Logan, "Improving the Performance of MPI-IO Using Object-Based
Caching, University of Maine Technical Report T-09-3," Aug. 2009.

107

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-

[44] J. Logan and P.M. Dickens, "Improving I/O Performance through the Dynamic Remapping
of Object Sets," IEEE International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications, Rende (Cosenza), Italy: 2009.

[45] P.M. Dickens and J. Logan, "A high performance implementation of MPI-IO for a Lustre
file system environment," Concurrency and Computation: Practice and Experience, 2009.

[46] P.M. Dickens and J. Logan, "Y-lib: a user level library to increase the performance of MPI-
IO in a lustre file system environment," Proceedings of the 18th ACM international
symposium on High performance distributed computing, Garching, Germany: ACM, 2009,
pp. 31-38.

[47] D.E. Singh, F. Isaila, A. Calderon, F. Garcia, and J. Carretero, "Multiple-Phase Collective
I/O Technique for Improving Data Access Locality," Parallel, Distributed, and Network-
Based Processing, Euromicro Conference on, Los Alamitos, CA, USA: IEEE Computer
Society, 2007, pp. 534-542.

[48] K. Coloma, A. Choudhary, A. Ching, W. Liao, S. Son, M. Kandemir, and L. Ward, "Power
and Performance in I/O for Scientific Applications," 19th IEEE International Parallel and
Distributed Processing Symposium, Denver, CO, USA: .

[49] X. Ma, M. Winslett, J. Lee, and S. Yu, "Faster Collective Output through Active Buffering,"
IDPDS 2002, 2002.

[50] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, "Adaptable, metadata rich IO methods for
portable high performance IO," Proceedings of the 2009 IEEE International Symposium on
Parallel & Distributed Processing, IEEE Computer Society, 2009.

[51] S. Sehrish, J. Wang, and R. Thakur, "Conflict Detection Algorithm to Minimize Locking for
MPI-IO Atomicity," Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 2009, pp. 143-153.

[52] F. Schmuck and R. Haskin, "GPFS: A shared-disk file system for large computing
clusters.," Conference on File and Storage Technologies, IBM Almaden Research Center,
San Jose, California: 2002.

[53] A. Ching, W Liao, A. Choudhary, R. Ross, and L. Ward, "Noncontiguous locking
techniques for parallel file systems," Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, Reno, Nevada: ACM, 2007, pp. 1-12.

[54] "NetCDF (network Common Data Form)" Available:
http://www.unidata.ucar.edu/software/netcdf/.

[55] "The HDF Group" Available: http://www.hdfgroup.org/.

[56] W. Yu, J. Vetter, R.S. Canon, and S. Jiang, "Exploiting Lustre File Joining for Effective
Collective IO," Proceedings of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, IEEE Computer Society, 2007, pp. 267-2"/'4.

[57] J.M. Larkin and M.R. Fahey, "Guidelines for Efficient Parallel. I/O on the Cray XT3/XT4,"
2007.

[58] W Liao, A. Ching, K. Coloma, A. Choudhary, and Lee Ward, "An Implementation and
Evaluation of Client-Side File Caching for MPI-IO," 2007 IEEE International Parallel and
Distributed Processing Symposium, Long Beach, CA, USA: 2007, pp. 1-10.

108

http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/

[59] RA. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison Wesley Publishing Company, 1987.

[60] W. Liao, K. Coloma, A. Choudhary, and L. Ward, "Cooperative Write-Behind Data
Buffering for MPI I/O," the 12th European PVM/MPI Conference, 2005, pp. 102-109.

[61] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, Second
Edition, The MIT Press, 2001.

[62] R. Sedgewick, "Left-Leaning Red Black Trees" Available:
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf.

[63] "TeraGrid," TeraGrid Available: https://www.teragrid.org.

[64] "FLASH I/O benchmark routine ~ parallel HDF 5," FLASH I/O benchmark routine -
parallel HDF 5 Available: http://flash.uchicago.edu/~zingale/flash_benchmark_io/.

[65] P. Braam and Others, "The Lustre storage architecture," White Paper, Cluster File Systems,
Inc., Oct, vol. 23, 2003.

[66] W Liao, A. Ching, K. Coloma, A. Choudhary, and M. Kandemir, "Improving MPI
Independent Write Performance Using A Two-Stage Write-Behind Buffering Method,"
2007 IEEE International Parallel and Distributed Processing Symposium, Long Beach,
CA, USA: 2007, pp. 1-6.

[67] "Lustre: scalable, secure, robust, highly-available cluster file system." Available:
www.lustre.org/.

109

http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
https://www.teragrid.org
http://flash.uchicago.edu/~zingale/flash_benchmark_io/
http://www.lustre.org/

BIOGRAPHY OF THE AUTHOR

Jeremy Logan was born in Scranton, Pennsylvania. He was raised in central

Maine, and graduated from Penquis Valley High School. In 2001, he earned the B.S.

degree in Computer Science from the University of Southern Maine in Portland, Maine.

Jeremy received the M.S. degree in Computer Science from the University of Maine in

Orono, Maine in 2006.

After receiving his degree, Jeremy will join the National Center for

Computational Science at Oak Ridge National Laboratory as a Postdoctoral Research

Associate. He is a candidate for the Ph.D. degree in Computer Science from the

University of Maine in December, 2010.

110

	The University of Maine
	DigitalCommons@UMaine
	2010

	Improving Parallel I/O Performance Using Interval I/O
	Jeremy Logan
	Recommended Citation

	tmp.1319812781.pdf.B7_eM

