
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2018

The Next Generation of EMPRESS: A Metadata Management The Next Generation of EMPRESS: A Metadata Management

System For Accelerated Scientific Discovery at Exascale System For Accelerated Scientific Discovery at Exascale

Margaret R. Lawson
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lawson, Margaret R., "The Next Generation of EMPRESS: A Metadata Management System For
Accelerated Scientific Discovery at Exascale" (2018). Dartmouth College Undergraduate Theses. 129.
https://digitalcommons.dartmouth.edu/senior_theses/129

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/129?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth Computer Science Technical Report TR2018-846

The Next Generation of EMPRESS
A Metadata Management System For Accelerated

Scientific Discovery At Exascale

Margaret Lawson

Advisor: Professor Charles Palmer
External Advisor: Jay Lofstead (Sandia National Labs)

Department of Computer Science
Dartmouth College

This thesis is submitted in partial fulfillment of the requirement for the
degree of

Bachelor of Arts

June 2018

ACKNOWLEDGEMENTS

Iwould like to thank several people for their part in helping me complete this thesis and
for supporting me throughout my time at Dartmouth. First, I would like to thank my thesis
committee. In particular, I would like to thank Professor Charles Palmer for serving as

my thesis advisor and guiding me through the thesis process. A special thank you to Professor
Cormen for serving as a mentor to me these past four years, and for providing a constant source
of encouragement and guidance. Thank you also to Jay Lofstead for overseeing and guiding this
research over the past year and for serving as a mentor more generally.

I would additionally like to thank my friends and family for their support and encouragement. I
could not have done this without you.

2

The Next Generation of EMPRESS - A Metadata Management
System For Real-Time Scientific Discovery At Exascale

ABSTRACT
Scienti�c data sets have grown rapidly in recent years, outpacing
the growth inmemory and network bandwidths. This I/O bottleneck
has made it increasingly di�cult for scientists to read and search
outputted datasets in an attempt to �nd features of interest. In this
paper we will present the next generation of EMPRESS, a scalable
metadata management service that o�ers the following solution:
users can "tag" features of interest and search these tags without
having to read in the associated datasets. EMPRESS provides, in
essence, a digital scienti�c notebook where scientists can write
down observations and highlight interesting results, and an e�cient
way to search these annotations. This kind of service is crucial in
light of the current I/O bottleneck and represents a more e�cient
way to explore high-level dataset contents regardless of I/O trends.
EMPRESS also provides storage-system independentmetadata and a
portable way for users to read bothmetadata and the associated data.
EMPRESS o�ers scalability through use of a set of dedicated, shared-
nothing servers. EMPRESS also provides robust fault tolerance and
transaction management, which is crucial to supporting work�ows.

1 INTRODUCTION
Large-scale scienti�c simulations are a crucial tool for scienti�c dis-
covery. These simulations allow scientists to derive insights about
phenomena that are impractical or impossible to perform physi-
cal experiments on. In recent years, supercomputers have become
dramatically more computationally powerful as nodes have been
scaled up (with more processors and more powerful processors) and
computing clusters have been scaled out (with more nodes per clus-
ter). This has allowed scientists to run simulations at increasingly
�ne-grained spatio and temporal scales [15, 25]. These simulations
often run for extended periods of time (such as 24 hours), and at
periodic intervals, output data for analysis [26]. As a result, simu-
lations such as S3D combustion [7], XGC edge plasma fusion [20],
and GTS core plasma fusion [51] can easily generate datasets in the
terabyte to petabyte range from a single run.

Thus, the ability to use �ner-grained simulations presents both
an opportunity and a challenge. On the one hand, increased gran-
ularity makes it more likely a simulation will capture data, such
as a new or rare phenomena or a complex trend, that will lead
to discovery. On the other hand, these increasingly large datasets
are di�cult to store, manage, and explore since memory capac-
ity, network bandwidths, and disk bandwidths are growing at a
much slower pace [52]. Data size is also the rate limiting factor for
analysis and visualization, the primary means of data exploration.
Quite simply, a simulation run produces more data than a scientist
can load, scan, or visualize. This challenge is compounded by the
fact that most features of interest tend to be relatively small, and
can easily be missed if scientists use random sampling or related
techniques. The problem can therefore be compared to trying to
�nd needles in an increasingly large haystack.

In recent years, many successful technologies have been de-
veloped to reduce I/O and storage system pressure such as com-
pression [23], chunking [30], data layout reorganization [14], data
staging [3, 10], and asynchronous or adaptive I/O [31]. However,
the HPC community has yet to develop a general solution to the
search-and-discovery problem that is scalable, user-friendly, and
robust. This paper will seek to argue that the next generation of
EMPRESS, o�ers just such a solution. Namely, EMPRESS provides
an easy, light-weight, scalable way for users to tag areas of inter-
est so that, at read time, they can load only the data of interest.
A simpli�ed version of the current paradigm is seen in Figure 1
while a simpli�ed version of the paradigm EMPRESS tries to o�er
is seen in Figure 2. More generally, this paper will argue that rich,
application-level metadata management can provide e�cient data
exploration and facilitate scienti�c discovery.

Figure 1: Typical Write-Read Process (Simpli�ed)

Figure 2: EMPRESS Write-Read Process (Simpli�ed)

The rest of the thesis is organized as follows. Section 2 discusses
several insights that in�uenced EMPRESS’ design. Section 3 con-
tains an overview of the design elements and decisions. Section 4
presents the Objector, a novel object naming system that EMPRESS
uses to provide metadata-to-object mappings. Section 5 presents
the implementation that is being evaluated. Section 6 contains the
testing and evaluation information for EMPRESS while Section 7
presents the evaluation of the Objector. Next, Section 8 is a discus-
sion of how EMPRESS and the Objector met our goals. Section 9
contains an overview of related work. Finally, Section 10 contains
remarks about the next steps for the development of EMPRESS.

2 INSIGHTS
Several insights have driven our assertion that rich metadata can
reduce time-to-insight, and have in�uenced EMPRESS’s design.

3

Scientists have a set of standard practices for annotating
data. Scientists are trained to extensively document all experi-
ments they perform in a lab notebook. They will often circle, high-
light, add a sticky note, or use similar means to note unusual results.
They will also write comments that they can refer back to at a later
time. However, there are currently no tools for HPC that support
integration of these kinds of annotations with simulation outputs.
As a result, scientists are forced to rely on ad hoc methods of an-
notation such as using long, descriptive �le names, or continuing
to write all comments in lab notebooks [46]. These methods place
undue burden on the scientist, are not scalable, and are not viable
long-term solutions. Any annotation tool designed for scienti�c
users should facilitate their natural annotation practices.

Scienti�c tools should be easy to use. Many scienti�c tools
place the burden of remembering on their users. Often, scienti�c
users will be required to remember semantic information such as
ids, which mean very little to them [48]. Some tools have improved
on this, requiring scientists to remember only “meaningful” identi-
�ers, but having to remember identi�ers is still an undue burden.
Scientists use many di�erent simulations and tools, each of which
may require a di�erent set of unique, “meaningful” identi�ers. In-
stead of requiring users to remember this information, tools should
o�er a way to catalog what is stored, providing a list of meaningful
identi�ers that can be used for data access or further exploration.

Scientists need high level indexing. While there are many ma-
ture indexing techniques, most of these focus on indexing individual
data points. While this can be useful, it is often too �ne-grained,
and results in indexes that are costly to build, read, and store [57]. In
general, what scientists want to identify are interesting application
runs, outputs within an application run, or spatial areas within
an output. Storing and indexing this “interesting” metadata can
therefore facilitate insight and o�ers space and performance gains
over point-by-point indexing techniques.

Scientists need e�cient access to full-context metadata.
Once scientists have captured high-level metadata about runs, out-
puts, and areas of interest, they need an e�cient way to explore
this information. If this metadata is embedded within the �les or
objects it references, providing a global view of the metadata re-
quires crawling the storage system [45]. Using an external metadata
management system can, by contrast, provide e�cient access to
global, full-context metadata. All of the metadata for one or more
application can be explored jointly, allowing complex comparisons
to be made and facilitating the search for interesting outputs or
runs. Since the metadata is stored independently, it can be pulled to
a faster tier and can be explored without having to touch the data,
thereby greatly increasing e�ciency [48].

Scientists o�en have prior knowledge about what consti-
tutes interesting data. Scientists perform simulations because
they are searching for particular patterns or phenomena. Many of
these patterns can be expressed using a combination of variable,
geo-spatial, and temporal values [23]. Scientists can then use this
information to perform lightweight in-situ analysis to identify “in-
teresting” areas. Performing this analysis in-situ takes advantage
of the fact that, at write-time, the data is distributed across a large

number of nodes which are equipped with powerful processors.
This distribution makes the analysis highly e�cient.

Scienti�c tools must support workflows. Scientists are in-
creasingly using integrated application work�ows (IAWs) such
as Kepler [32] and Pegasus and DAGMan [9, 33] to pipeline their
data through the various steps needed for discovery. Transaction
management is crucial to the safety and e�ciency of work�ows: it
ensures that only complete and correct datasets are made visible to
work�ow components and can notify various components when a
dataset becomes available [26]. Therefore, any service that provides
data access or is coupled with the data must provide transaction
management.

3 DESIGN
No existing metadata management tool takes advantage of the
insights presented above to o�er a light-weight service for exascale
that is domain-independent, extensible, scalable, easy to use and
o�ers global metadata views and transaction management. To meet
this need, we present the new EMPRESS, which improves upon its
predecessor [24] in almost everyway. EMPRESS o�ers the following
contributions:

• A conceptual metadata model that supports domain in-
dependent, extensible, user-de�ned metadata.

• A wide range of metadata searching services. These
functions support e�cient data exploration, provide “cata-
loging” services (removing the burden of remembering from
the user), and use logically meaningful search parameters
(rather than semantic)

• A client-servermodel that o�ers scalability (for both write
and read) through use of dedicated server nodes and a dis-
tributed, shared-nothing design.

• Integration with the underlying storage system. EM-
PRESS stores only logical, spatial coordinates from the simu-
lation space. It then uses a special function called the Objec-
tor (see Section 4) to map these coordinates to the physical
location of the associated data object. This design abstracts
away low-level storage details from the user and makes
the metadata itself storage system independent (providing
portability). This design also enables EMPRESS to support a
variety of storage-independent reading capabilities. It can
be used to query and retrieve metadata, data, or metadata
and the associated data.

• Transaction management and fault tolerance. EM-
PRESS provides a set of policies for transaction management
to enable IAWs to work safely and e�ciently. EMPRESS also
uses a number of strategies to provide fault tolerance against
various client and server failures.

• A rich, simple API that is exposed to the client as a C++
library.

3.1 Metadata Model
EMPRESS uses a domain-independent metadata model to provide
a logical view of the metadata independent from the underlying
storage details. This model is displayed in Figure 3. This model
is composed of two broad categories: basic and custom metadata.
Basic metadata is composed of three categories: (application) runs,

4

timesteps (individual writes or data outputs), and variables (such
as temperature or pressure). Each basic metadata object can have
an associated set of attributes, and each attribute is associated with
a single tag or a named label.

Figure 3: EMPRESS’s Metadata Model

3.1.1 Basic Metadata. Basic metadata captures the structure of
simulation outputs and simple metadata about the various com-
ponents. As mentioned above, the three kinds of basic metadata
EMPRESS uses are runs, timesteps, and variables. The basic run
structure that EMPRESS assumes is a hierarchical one. A simula-
tion may be run one or more times, and each run is composed of
timesteps. Each timestep is composed of variables. The variables,
and number of variables, output may di�er for each timestep. An
example of this structure is shown in Figure 4.

Figure 4: Basic Metadata Model

Runs are associated with basic information such as the name
of the simulation, and the date and time it was run. Variables are
associated with a name, version, and global, logical coordinates.
For example, “temperature” version 1 could be associated with
X :[50,100], Y [50,100], Z [300,350]. The use of versions allows EM-
PRESS to maintain meaningful variable names, while allowing for
the possibility that physical variable may be captured using di�er-
ent meshes or granularities, or split into di�erent partial-precision
variables such as in APLOD level-of-detail encoding [18].

3.1.2 Custom Metadata. Custom metadata refers to extensible,
user-de�ned metadata objects, known as attributes, and their as-
sociated labels, known as tags. An attribute can be viewed as an
instance of a particular tag that is associated with a basic metadata
object. Attributes can be associated with an entire run, timestep, or

a subset of a variable. They are known as run attributes, timestep
attributes, and variable attributes respectively. Each attribute is as-
sociatedwith a user-de�ned “tag,” which provides a logical grouping
of attributes. For example, a scientist could add a “combustion” tag
to a section of the “temperature” variable for a particular timestep,
and then later request all metadata objects with “combustion” tags.
Thus, the custom metadata structure can also be viewed hierar-
chically since a single set of tags is used to refer to run, timestep,
and variable attributes and since attributes within each of these
categories can then be grouped by associated tag. An example of
this structure is shown in Figure 5.

Figure 5: Custom Metadata Model

Each attribute is also associated with a value, which can be of
any data type. Integers, �oats, and strings are stored in their given
format and all other types are serialized for storage. Variable at-
tributes also store the global spatial coordinates of the variable
subset they refer to. For example, a scientist could add a “maxi-
mum” attribute with value 10K onto the “temperature” variable
from X :[75,80], Y [60,80], Z [300,325].

3.1.3 Trade-o�s. Thus, EMPRESS allows scientists to annotate
particular experiments or �ndings, as they are used to doing, and
provides substantial �exibility through its extensible metadata and
user-de�ned attributes. While EMPRESS does assume a hierarchical
structure for data outputs (runs, timesteps, and variables), this sys-
tem �ts most simulations, and can also be used for data collection
(data collection at a particular location, timesteps, variables). This
slight reduction in �exibility allows great gains in e�ciency, and
allows EMPRESS to o�er an extensive range of built-in querying
functions. What EMPRESS does not currently address are unstruc-
tured grids and other non-stencil codes. Instead EMPRESS relies on
the fact that most of these coordinate systems can be easily mapped
to Cartesian coordinates. For example, XGC [20] outputs its particle
list as toroidal coordinates. These coordinates are then converted
into a regular Cartesian grid for visualization.

3.2 Metadata Searching
EMPRESS allows users to discover application runs, timesteps, vari-
ables, and subsets of variables that are of interest “based on the
value of descriptive attributes, rather than requiring them to know
about speci�c names or physical locations of data items” [46]. For
example, users can perform lightweight analysis in-situ to identify

5

areas of high turbulence, tag these areas, and then either immedi-
ately visualize these areas on staging nodes or use them for future
exploration. Thus, the write process, which can be seen in Figure 6,
is as follows: lightweight in-situ analysis is performed on the output
simulation data to generate custom metadata objects and tags. The
custom and basic metadata are then sent to EMPRESS while the
data itself is sent to the storage system. Then, as seen in Figure 7,
these tags can be used at read time to �nd data of interest and to
allow users to make more informed decisions about what data to
read in and what storage tier to place the data in for reading (with
higher priority data placed in faster tiers).

Figure 6: EMPRESS Write Process (Simpli�ed)

Figure 7: EMPRESS Read Process (Simpli�ed)

EMPRESS o�ers an extensive range of queries to facilitate insight
and support a wide range of use-cases. These queries o�er a range
of views from very speci�c and detailed to global and broad. In
addition, each of the queries below that can be variable constrained
can alternately be constrained based on any variable that matches
a given substring. This option allows related variables to be queried
simultaneously, such as variables with the same name but di�erent
versions, or similar names. For example, if a user has “temperature”
variables version 1 and 2 or variables “velocity X ”, “velocity Y ”, and
“velocity Z ”, attributes related to these variables can be examined
simultaneously using the substring functions.

3.2.1 Variable A�ributes. EMPRESS can return a list of variable
attributes for a particular timestep that match any subset of the
following constraints:

• Variable or any variable whose name matches a given sub-
string

• (Global, logical) spatial coordinates
• Value (for numeric values)

� supports less than, greater than, and range queries
• Tag

For example, a user can request attributes in a particular 3-D sub-
space where the maximum temperature is above 10K (where tem-
perature is the variable, the value is above 10K, and the tag is
“maximum”).

3.2.2 Run and Timestep A�ributes. EMPRESS can return a list
of run attributes or timesteps attributes (for a particular run) that
match any subset of the following constraints:

• Value (for numeric values)
� supports less than, greater than, and range queries

• Tag
For example, a user could request all observation notes for a given
run (where the tag is “observations” or something meaningful to
the user).

3.2.3 Timesteps. EMPRESS can return a list of timesteps (for a
particular run) that match either of the following criteria:

• Contains a variable
• Contains a variable attribute (along with any combination
of possible variable attribute constraints listed above)

For example, a user can query “which timesteps contain the ‘density’
variable?” or “which timesteps contain a ‘combustion’ attribute for
temperature?”

3.2.4 Tags. EMPRESS can return a list of tags that are associ-
ated with at least one variable attribute (for a particular timestep)
matching a set of constraints. These constraints can be any subset
of the following:

• (Global, logical) spatial coordinates
• Variable or variable whose name matches a given substring

For example, a user can ask “For timestep 100, what tags appear
for Temperature in slice Z?” This can be used for surveying what
tags appear (random sampling) or surveying a particular area of
interest such as an edge of a plasma fusion reactor.

3.2.5 Catalog Functions. Implicit in the above statement but
worth emphasizing is that EMPRESS o�ers means of cataloging
all metadata. Users can retrieve a catalog of all runs, timesteps,
variables, or tags (or even attributes for that matter). Users do not
have to remember what the contents of a particular timestep, run, or
even set of runs are, but instead can use a single query to determine
this information and use the returned catalog entries to perform
subsequent queries.

3.2.6 Trade-o�s. These rich querying capabilities provide a
number of bene�ts. First, this high-level indexing allows users
to quickly identify data of interest with minimal latency and space
requirements. Second, this system allows users to capitalize on the
fact that many features of interest can be identi�ed at write-time.
Users can store metadata in EMPRESS and then query it at any time.
Finally, this system provides both narrow and broad views of the
metadata (and thus the data it describes). Queries can range from ex-
amining a particular spatial area of a variable, to full-context queries
comparing timesteps within a run, to global queries comparing en-
tire application runs. Some systems have opted to let users write
their own SQL queries instead of providing a set API [47] [19] [49].
We have chosen not to do this as we believe it is an unnecessary
burden to require users to be familiar both with the underlying

6

database storage structure and SQL and require users to do all of
the work of creating a set of queries and testing them. We will
consider adding a systematic way in the future for users to add
additional queries or functionality, but still maintain that o�ering a
foundational set of queries is crucial.

3.3 Client-Server Model
EMPRESS uses an in-memory RDBMS for metadata storage and
a set of independent, distributed, share-nothing servers to ensure
scalability. The servers are connected to the clients using a “server
manager.” These design choices merit both explanation and discus-
sion as there are important trade-o�s to each of these.

3.3.1 RDBMS. Each EMPRESS server maintains an in-memory
RDBMS as the metadata storage backend.

Trade-o�s. There are some performance trade-o�s to using an
RDBMS, which uses B-tree variants both for storage and indexes. In
particular, all B-tree operations have a time complexity of �(logn),
whereas most hashing techniques o�er O(1) expected performance
for write, read, and update. However, hash tables cannot e�ciently
o�er the wide range of queries we support. EMPRESS can o�er,
for example, e�cient queries on variable attributes using any com-
bination of spatial, temporal, variable, tag and value constraints.
Hash tables, by contrast, are designed to have a single “key” as
a search value. Users are left with two options. One, they can at-
tempt to roll all of the search parameters into a single string key,
and then, for any search, crawl the entire hash table and do string
matching on each entry, e�ectively turns the hashtable into a giant
list, negating all of its performance bene�ts. The alternative is to
use one parameter as the key (such as the tag or variable), and
have all attributes of this category stored as a linked list. While this
alternative provides e�cient look-ups for attributes constrained
by this single parameter, if there are additional constraints, the
search must resort to crawling the entire linked list, and examining
the values for each entry (again, generally using string matching).
Additionally, if the search is not constrained by the parameter used
as the key name, it must perform this process (of examining all
values) for each key stored in the hash table. Thus, hash tables
are not designed for multiple, varying constraints and under these
conditions, an RDBMS is much more e�cient.

3.3.2 Independent. EMPRESS is currently designed to use a set
of dedicated server processes running in parallel, each of which
maintains an in-memory RDBMs. Following a fairly standard client-
server model, the following is the query process. First a client
application issues an EMPRESS query using the EMPRESS API.
Then the EMPRESS client sends the request to an EMPRESS server.
The server responds to this message asynchronously, using message
queueing. The EMPRESS server then interacts with the (local, in
memory) database to perform the requested service, packages the
results and returns them to the EMPRESS client. Finally, the results
are returned to the client application. It is also important to note
that EMPRESS is currently designed to be used underneath some
sort of user interface, such as an I/O system like ADIOS [30] or a
visualization system like ParaView [11] or VisIt [21]. This design
allows users to take advantage of EMPRESS’s capabilities while
eliminating the need for them to learn a new interface and manage

two separate systems. The evaluation section demonstrates that
EMPRESS can be used in tandem with an I/O system, but this
usage would not allow the I/O system to take advantage of several
of EMPRESS’s supported data read functionalities, which will be
discussed below (see Section 3.4). This model is depicted in Figure 8.

Figure 8: Client-Server Model

Trade-o�s. There are many bene�ts to using a set of independent
servers instead of having clients maintain local databases. There
are three such alternative cases to consider: each client maintains a
local database (one-to-one), a subset of clients maintains a database
(N-to-M) and a single client maintains a database (N-to-1). In the
�rst case, the disadvantages are that there are many small databases
that must be either stored (using many small, costly writes), or �rst
aggregated (which is expensive) and then stored. For reading, the
data either needs to be aggregated (if it has not already been per-
formed), or each read operation will require an expensive all-to-all
communication. If instead only a subset of clients maintains a lo-
cal database, the clients must use costly global communication to
coordinate each metadata write. If only a single client maintains a
local database, costly global communication is required and paral-
lelization of metadata access is eliminated. In all three cases, since
the metadata is maintained locally, it is not readily available for
simultaneous reads by other work�ow components. In addition,
the metadata will take away from the compute node’s available
memory, which is generally untenable. Moreover, it is impossible to
scale out the metadata operations (in terms of additional processing
power and memory). However, using independent servers does
require the allocation of nodes that could otherwise be used for
computation. If too many nodes are allocated the result may be

7

idle resources and if an insu�cient number are allocated the result
may be a metadata bottleneck. EMPRESS tries to mitigate these
concerns by o�ering e�cient service with very few resources, such
as a 1000:1 client-server processes ratio (see Section 6). In addition,
EMPRESS allows servers to be dynamically allocated so that it can
respond to server shortages or surpluses. In the future, we will
consider o�ering the option to use EMPRESS locally (see Section 10
for more).

3.3.3 Distributed, Shared-Nothing. The metadata database is
fully distributed across all EMPRESS servers. Each server maintains
a copy of all basic metadata and a horizontal shard of all user-
de�ned attributes, allowing distributed query processing. When
EMPRESS is initialized, each client is assigned to a single server by
a method that ensures the number of clients per server is balanced.
Each server runs completely independently, and never contacts
the other servers. The client side manages parallelism by directing
client requests to di�erent servers, or sending the same request to
each server when necessary.

Trade-o�s. Maintaining the metadata distributed across the
servers allows parallel query processing, and allows the clients
to write independently. However, since the servers use a shared-
nothing design, for most read queries the clients must either coor-
dinate or send the query to each server. We have found in practice
that having one client per server send the query and then distribut-
ing the results introduces a much smaller overhead since it results
in many fewer searches of the same databases. We have chosen to
use a shared-nothing design rather than aggregating queries on
the server side since this design o�ers a higher degree of �exibility.
Clients can perform individual or collective reads, depending on
resource availability and which clients ultimately need the infor-
mation. Additionally, this design provides clients with the option
of using a more systematic way of distributing metadata across the
servers and querying for the results.

3.3.4 Server Manager. When the servers are initialized, they
register their contact information with a single process called the
“server manager.” When the clients initialize, they then contact the
server manager to obtain a list of available servers, and connect
to one. All subsequent EMPRESS operations are carried out using
this server. This server manager can help the system recover from
server failure. If an operation takes longer than a certain period
of time, the client can contact the directory manager to determine
whether the server is still available and if not, connect to a new one.
The server manager can either be a separate node (independent
mode), or can itself be a server (shared mode).

Trade-o�s. Using a server manager introduces single point of
failure into the system. However, it provides a portable mechanism
of connecting the client and server nodes, thereby facilitating EM-
PRESS’s independent design. It also facilitates EMPRESS’s shared-
nothing design since no server coordination is required to connect
the clients to servers, detect server failure, or reassign clients to
servers in the case of failure or dynamic allocation of servers. Each
server manager mode comes with its own trade-o�s. Using indepen-
dent nodes requires additional resource allocation, but also allows
servers to be shared across multiple jobs. Each job uses the server
manager’s address to connect the clients to the servers, providing

support for work�ows by allowing them to access metadata updates
as soon as they are available.

3.4 Storage System Relationship
EMPRESS has a somewhat complex relationship to the data storage
system in that it manages the metadata externally, provides inte-
gration with the storage system, and also o�ers users abstraction
from the storage system. It is perhaps obvious, but since EMPRESS
is a separate system for metadata management the metadata is not
necessarily embedded in the data objects it describes. Having this
metadata external to the data o�ers several advantages, which were
outlined in the insight sections, such as o�ering e�cient access
to global and full-context metadata. EMPRESS’s metadata is also
independent of the storage backend used for the data since it stores
only logical, spatial coordinates from the simulation space and not
physical data locations (see Section 4.5 for more). However, provid-
ing a storage-independent mapping between logical and physical
locations a challenge. To do so, EMPRESS uses the Objector. The
Objector will be discussed in more detail later (see Section 4). This
ability allows great �exibility in storage backend and allows users to
perform data reads using an EMPRESS function that requires only
the associated variable metadata and the logical subsets desired.
This design abstracts away low-level storage details from the user
and removes from them the burden of remembering �le or object
names to read in �les. This design also means that a system can
use EMPRESS to provide storage-independent read functionalities
for just data, just metadata, or metadata and its associated data. In-
spired by ADIOS [30], EMPRESS o�ers an additional functionality:
it uses the simulation’s domain decomposition function to allow
clients to read the data for a particular writing process if they so
desire.

Trade-o�s. As discussed above, there are many advantages to
maintaining metadata external to the data it references. However,
the client must make calls to both the metadata and data manage-
ment systems to ensure consistency. In addition, since the metadata
is completely opaque to the storage system, the storage system
cannot leverage this information to make more informed decisions.
Programmable storage systems [43] [42] [34] are being investi-
gated at UCSC that would allow this metadata to be shared across
the layers of the stack. This technology could largely resolve the
“middleware vs. storage system layer” metadata debate.

3.5 Transaction Management and Fault
Tolerance

3.5.1 Transaction Management. As discussed above, transaction
management is crucial to supporting IAWs, which are important
tools for scienti�c discovery. EMPRESS ensures consistency and
availability by using transaction management that is largely based
on the D2T system [27]. In essence, each client independently writes
the metadata for its assigned subsection of the simulation space, and
if no client encounters an error, all of these writes are committed as
a single transaction. This management provides a slightly relaxed
version of ACID (atomicity, consistency, isolation, durability), a set
of properties that are intended to ensure the validity of a database
even in the case of di�erent kinds of failure. Transactions are atomic,
meaning they are either committed in their entirety or aborted, and

8

consistent, meaning that they guarantee the database is left in a
valid state. However, the isolation requirement is somewhat relaxed:
uncommitted transactions are not visible to any other process but
are stored in the database in an “inactive” state. In addition, the
durability requirement is somewhat relaxed because transactions
are check-pointed to disk regularly rather than immediately.

Trade-o�s. Since transactions are not immediately stored to disk,
in the case of server failure, there either needs to be amechanism for
recovering the updates since the last transaction, or just acknowl-
edgement of slightly reduced fault tolerance. The best method of
addressing this issue will be investigated in the future. However, it
is important to note that this design provides large performance
gains by reducing the frequency of costly saves to disk. Managing
the visibility of transactions within the database itself imposes a
slight overhead, but also increases concurrency since none of the
metadata tables are locked when a transaction is in process. Since
uncommitted transactions are invisible to read processes and the
metadata tables are not locked during writing, the metadata data-
base can be safely accessed for both writing and reading at the same
time. As mentioned above, this facilitates work�ows since analysis
and visualization components are given safe and immediate access
to metadata updates. This also means that if, during post-processing
and analysis, an additional feature of interest is discovered, it can
be added to the metadata database without a�ecting the stored data.
This independence is important to application scientists since any
modi�cations made to the data introduce the possibility of data
corruption.

3.5.2 Fault Tolerance. EMPRESS provides return values for all
operations to indicate whether it succeeded. Through use of the
server manager, and regular check-pointing of the databases to
disk, it can also recover from server failure. However, for the most
part, EMPRESS leaves particular failure protocols up to the user. If a
particular operation fails, the user can decide whether they want to
abort the operation, try again, or respond in some other way. This
�exibility recognizes that many users and scenarios will require a
di�erent set of responses.

Trade-o�s. EMPRESS provides a balance between fault-tolerance
and e�ciency. For example, after clients send a message to the
servers, they wait for a response. Doing so produces some idleness,
but allows clients to immediately retry the operation if it fails, or
respond is some other situation dependent way. EMPRESS has a
few additional fault-tolerance policies to address in the future (see
Section 10 for more).

3.6 API
All of the functionality discussed above is exposed to the client as
a rich, simple C++ API library. It o�ers six categories of functions:

• Write: write functions for each of the seven metadata types,
which can insert metadata objects one at a time, or in a batch:

� Basic metadata: application run, timestep, variable
� Custom metadata: run attribute, timestep attribute,
variable attributes, tag

• Delete: supported for runs, timesteps, variables and tags.
Deleting any of these entities also deletes any related meta-
data. For example, deleting a run deletes all associated

timesteps, variables, tags, and attributes. Deleting a tag
deletes all associated attributes.

• Transaction:make visible/invisible, supported for all seven
metadata types (meaning that users can safely write addi-
tional metadata of any type at any time).

• Search: the wide range of metadata query operations dis-
cussed above.

• Data Access: as discussed above, EMPRESS o�ers functions
that allow a client to map from logical spatial dimensions to
matching data object names, and from a writing process’s
MPI rank to matching spatial dimensions.

• Initialize/�nalize: the EMPRESS client is initialized with
a simple initialize function. There is also a simple �nalize
function to tell the EMPRESS clients to shut down, and a
function that tells the EMPRESS servers to shut down. As
discussed above, EMPRESS allows the same set of servers to
be shared across jobs, meaning the clients and servers will
not always be shut down at the same time.

4 THE OBJECTOR
An important piece of related work that we have developed is
the Objector. As will be discussed below, the Objector is both a
novel object name generator and is used by EMPRESS to provide
mappings from logical spatial coordinates from the simulation space
to physical data locations. A full discussion of the Objector is outside
the scope of this paper, but more details can be found in a paper by
Nasirigerdeh [34].

4.1 Motivation
Object-based storage systems are widely used in the cloud and
in HPC. Several of the most widely-used parallel �le systems use
object-based storage, such as Lustre [41] and PanFS (Panasas) [55].
The production exascale systems that EMPRESS is designed to sup-
port are expected to have around 10 trillion objects. At this scale,
it is infeasible for EMPRESS to store and search a list of all object
names in order to map from the logical space of metadata to the
physical space of the associated data. Therefore, as discussed above
(see Section 3.1), EMPRESS does not store any metadata about the
physical location of data objects and instead stores only logical
spatial coordinates. For I/O systems that support hyperslab reads
(subspace selections using o�sets and counts for each dimension),
logical spatial coordinates are su�cient. Using a variable’s log-
ical coordinates, any set of coordinates can easily be converted
into global o�sets (e.g., if a variable’s logical coordinates start at
(10,10,10), the coordinate (15,15,15) has global o�sets of (5,5,5)).
However, for EMPRESS to provide direct access to data objects in
storage systems, it needs a mechanism tomap from the logical space
to the physical space. This mapping is provided by the Objector. The
Objector is an object name generator that provides mapping from
basic metadata (such as run name, timestep, and variable name and
version) and logical spatial coordinates to matching object names
and byte o�sets within these objects. The Objector can be used
for any storage system that supports named data objects (such as
�le systems), but is especially bene�cial for object storage systems
because of their large, �at namespaces.

9

4.2 Introduction
The Objector is an object name generator that provides mappings
from user-meaningful metadata and logical spatial coordinates to
object names and data o�sets. As mentioned above, the Objector
is a piece of code that can be stored with O(1) storage space and
eliminates the need to store any object names. The Objector is
inspired by the following insight: for every simulation, scientists
write a small piece of code that assigns a portion of the logical
space to each process. Therefore, each simulation already has, in
essence, a function to map from the physical space to the logical
space. If this mapping can be captured, it can be used in an object
name generator.

4.3 Design
The Objector has a large number of parameters. First, the Objector
needs descriptive identi�ers for the run (jobID, name), timestep, and
variable (name and version). Second, it needs the object size and data
size (how many bytes per data point). Finally, it needs information
about the data decomposition so that it can determine where chunk
boundaries are, which is in turn can be used to determine where
object boundaries are.

Since simulations use the same domain decomposition through-
out an application run, the Objector only needs to be stored one
per run by EMPRESS. EMPRESS databases themselves can later be
serialized and stored into objects, using the descriptive run identi-
�ers as the key. Then, when a user wants to read from a particular
run, the associated metadata (EMPRESS databases) can be loaded
into memory.

4.4 Algorithm
With this initial prototype, a regular Cartesian grid is assumed,
meaning that each process is assigned a uniformly sized "chunk"
of the simulation space, illustrated in Figure 9. The Objector then
uses a 1-D chunk domain decomposition, meaning each chunk is
sliced along the X -axis and entire YZ planes are used to compose
the objects.

A detailed explanation of the Objector’s algorithm is included
in Appendix A along with an example. A simpli�ed version of the
algorithm is as follows:

(1) Convert the coordinates to global o�sets
(2) Find the �rst chunk that overlaps with the coordinates (by

dividing the starting coordinate by the uniform chunk size)
(3) Find the �rst object within this chunk that overlaps with the

coordinates (using the uniform object size)
(4) Iterate through all overlapping object coordinates by incre-

menting Y and Z by the �xed chunk Y and width, and incre-
menting X by the uniform object X -width.

(5) For each object, generate a name using the unique run,
timestep and var identi�ers, along with the starting coordi-
nates

4.5 Contributions
• Storage system independence. The Objector allows EMPRESS
to store storage-system independent metadata and map any
attribute to the associated data. Therefore, if the naming

Figure 9: The Objector’s Data Decomposition

scheme or backend storage system changes, only the Objec-
tor (no stored metadata) needs to be updated.

• Increased querying e�ciency. The time complexity for the
Objector is determined by the number of object names that
match the given coordinates rather than the total number
of object names, making it much more e�cient to retrieve
matching object names.

• O(1) storage. The Objector is a piece of code that can be
stored as a string using O(1) storage space. This allows an
unlimited number of object names to e�ectively be stored
with virtually no storage space requirements.

• Faster data reads. The Objector contributes to faster read
times in several ways. First, mapping data directly to ob-
jects allows logical alignment between the data and object
boundaries, increasing locality. This approach is in contrast
to typical data striping, which uses �xed byte o�sets that
generally do not align to the dataset’s logical structure. Using
smaller data blocks also allows more precise reads, resulting
in less "uninteresting" data being read and thereby increas-
ing performance. Finally, some object storage systems, such
as Ceph [54], o�er a way to slice the data on the storage side
[53], eliminating the need to send "uninteresting" data over
the network and thereby further increasing performance.

4.6 Related Work
There has been a lot of work investigating ways of managing meta-
data growth rates. PnetCDF [25] �les and the default mode of
HDF5 [12] both use logically contiguous data organization, which

10

minimizes the amount of metadata that needs to be stored for
reading particular byte o�sets. However, while this approach is suc-
cessful in keeping the metadata load small, the penalties for writing
at scale [31] and reading at scale [28] are largely not worthwhile
except in the most space constrained environments or situations.
ADIOS [30] and the new chunking mode supported by HDF5 and
netCDF-4 allow data to be written in non-contiguous chunks by
maintaining basic metadata for each chunk. This approach allows
much more e�cient writing and good read performance, but it
is well documented that the overhead of writing this metadata
per-chunk and having to linearly search this metadata to �nd a
matching chunk presents scalability limitations that will preclude
use of this approach at exascale [29]. DeltaFS [59] o�ers a similarly
modular approach to namespace management by externally storing
a separate namespace for each set of �le outputs. It has also re-
cently been extended to o�er indexing on these �les [58]. However,
DeltaFS has not yet examined how to provide more �ne-grained
indexing, or how to use this namespace system to support rich
metadata writing and searching.

4.7 Future work
This initial version of the Objector is designed for regular, rectan-
gular Cartesian grids. However, we are in the process of expanding
this technology to other topologies. In particular, we are investigat-
ing using the Objector for fusion simulations, high energy physics
(event-based data collection), and comparative genomics [34].

5 IMPLEMENTATION
The current EMPRESS implementation relies on existing embed-
dable RDBMS libraries and other support tools. Each of these is
explored below.

5.1 RDBMS
The implementation tested uses SQLite [1] [36] version 3.22 as the
RDBMS. While other relational database systems could have been
used, SQLite o�ers many desirable properties: it uses a serverless
model and a dynamic type system and is very light-weight. Since
SQLite is serverless EMPRESS can institute its own client-server
model using a di�erent networking service that uses asynchronous
communication (discussed below) and allows a single client function
call to result in many SQL command executions (more or less mes-
sage bundling). Since SQLite uses a dynamic type system, EMPRESS
can use a single attribute table to support attributes of various types
(integer, real, text, blob), which results in more e�cient querying,
and a smaller storage overhead. Some of the drawbacks of SQLite,
such as the fact that it locks the entire database during transactions,
are avoided through EMPRESS’s shared-nothing model and custom
service interface.

5.2 Database Relational Schema
The current implementation uses a separate table per class of meta-
data. There are seven in all: one each for runs, timesteps, variables,
run attributes, timestep attributes, variable attributes, and tags. This
implementation uses a highly normalized form, which eliminates
redundancy and inconsistent dependency. The implementation also
uses a number of indices to speed queries. Almost all of these strictly

index EMPRESS’s internal identi�ers for key search parameters
(i.e., a combination of run, timestep, variable or tag ids, which are
unsigned 64-bit integers).

5.2.1 Trade-o�s. Normalization reduces metadata redundancy
and increases data integrity, but requires more costly join opera-
tions.

5.3 Networking Library
For portability, EMPRESS is built using the Faodel [50] infrastruc-
ture. Faodel o�ers data management services initially conceived
to support Asynchronous Many-Tasks (AMT) applications, but has
since been generalized to support broader independent service and
work �ow integration tasks. For this project, the data management
services are being augmented with rich metadata functionality.
The base Faodel metadata is based on key-value stores driving
everything through keys. Faodel is built upon the long stable and
performant NNTI RDMA communication layer from the Nessie [35]
RPC library from Sandia. All of the layers above the communication
management have been replaced, o�ering better C++ integration
and richer functionality. EMPRESS uses the Boost serialization li-
brary to serialize the data passed as messages between the client
and servers and to store non-native types in SQLite.

5.4 The Objector
The Objector is currently implemented using Lua [17] to gain sev-
eral advantages over alternatives. First, Lua functions can be turned
into a string (easily permitting storage in EMPRESS) and then
loaded and executed like normal code. Lua is also designed to be
used as embedded code, o�ering easy access from C++ code with
near native performance. Lua is also user-friendly in that it is very
similar to Python, a language many users are familiar with. This
is important because, as the Objector expands to more complex
cases, it will be critical for users to write their data decomposition
functions in Lua so that it can be used by the Objector. Finally, Lua
also has a low footprint, adding minimal overhead.

6 EMPRESS EVALUATION
6.1 Goals
The overall goal for EMPRESS is to provide a useful tool for extreme-
scale scienti�c simulations. To do so, EMPRESS must be scalable,
introduce minimal overhead, be useful for accelerating data explo-
ration, and provide advantages over alternatives. Therefore, we had
the following goals for the evaluation of EMPRESS:

• Scalability: To determine EMPRESS’s performance with dif-
ferent client-server ratios (strong scaling) and with a �xed
client-server ratio but varying numbers of clients (weak scal-
ing). In particular, we wanted to evaluate whether EMPRESS
can e�ciently support metadata operations with limited
hardware resources.

• Overhead: To determine howmuch of an overhead EMPRESS
presents in terms of memory usage, and metadata write and
read times.

• Accelerating Data Exploration: To determine if EMPRESS can
be used to accelerate data exploration by returned tagged

11

areas of interest that limit the reading scope and thus limit
the read time.

• Comparison to Alternatives: To compare the performance
of EMPRESS’s metadata writing and reading operations to
commonly used metadata management services.

6.2 Testing Con�gurations
6.2.1 Testing Environment. Testing was performed on the Sky-

bridge capacity cluster at Sandia, a supercomputer designed to run
multiple mid-sized jobs at once. Skybridge has 1848 nodes with
16 cores/node (2 sockets each with 8 cores running 2.6 Ghz Intel
Sandy Bridge processors). It has an In�niband interconnect and 4
GB RAM per process. The software environment is RHEL7 as the
OS, the GNU C++ compiler version 4.9.2, OpenMPI 1.10, and HDF5
1.10 as the I/O system (choice discussed below). All experiments
utilized the Lustre parallel �le system, and the default stripe size
and count parameters were set by HDF5. Additional tests were also
run on the Chama and Serrano capacity clusters at Sandia. Those
show similar results and are omitted for space considerations.

6.2.2 Types of Experiments. To evaluate EMPRESS, we ran two
series of tests. One set uses HDF5 [12] for data management and
EMPRESS for metadata management and the second set uses HDF5
for both data and metadata management. The choice of HDF5 as
the comparison system merits some discussion. One reason HDF5
was chosen is that, by most measurements, it is the most commonly
used I/O library for HPC science applications [6]. It thus presents
a realistic representation of the metadata management used by
scientists today. In addition, while none of these I/O libraries o�ers
metadata tagging or searching (see Section 9.3 for more), HDF5
o�ers superior metadata management to the other alternatives.
In particular, HDF5 o�ers scoped attribute namespaces, meaning
that it can naturally support run, timestep and variables attributes
and can limit searches to the relevant set of attributes. HDF5 also
supports packet tables, which provides a means of creating an
attribute table with variable length attributes providing a compact
and global view of the attributes, and an easy way to iterate over
the relevant set of attributes [12]. It is important to note, however,
that HDF5 does not o�er any metadata indexing. HDF5 deploys
B-trees for searching data structures (such as variables, or tables
within a �le), but o�ers no other indexing. In addition, the only
attribute “querying” functionality that HDF5 o�ers is a way to
iterate through all of the attributes associated with a particular data
object. Therefore, to provide a comparison of EMPRESS and HDF5,
we �rst had to extend HDF5 using available data structures (the
packet table) so that it could o�er the same set of functionality that
EMPRESS o�ers. In this way, almost all EMPRESS functionality
was duplicated with this HDF5 packet-table-equivalent with a few
exceptions. First, since HDF5 maintains metadata internally (it is
embedded in the same structure as the data it describes), we have
omitted transactionmanagement. In addition, we rely on the natural
HDF5 data structures for o�ering the (simpli�ed) basic metadata
such as timestep values, and variable names and versions.

6.2.3 Experiment Scales. For both the HDF5 and joint EMPRESS-
HDF5 tests, experiments were performed using 1000, 2000, and 4000
processes for writing. These scales were chosen to facilitate in-depth

Table 1: Testing Con�gurations

Test Type Number of
Write Processes

Number of
Metadata Servers

EMPRESS + HDF5 1000 1
EMPRESS + HDF5 1000 10
EMPRESS + HDF5 2000 2
EMPRESS + HDF5 2000 20
EMPRESS + HDF5 4000 4
EMPRESS + HDF5 4000 40

HDF5 1000 N/A
HDF5 2000 N/A
HDF5 4000 N/A

testing, but future evaluation will use larger scales. For the joint
EMPRESS-HDF5 tests, for each testing scale, experiments were run
using ratios of 100:1 and 1000:1 write processes to EMPRESS server
process. These con�gurations are summarized in Table 1. Each of
these con�gurations was performed a minimum of �ve times, and
results were averaged across these runs.

6.3 Writing
The following outlines the testing setup used in evaluation. The
setup attempts to provide a small example of typical simulation
runs. Each test writes a single application runwith 3 timesteps. Each
timestep is composed of a set of 10 3D variables. These represent
the categories of data measured in the simulation. Variables used in
this evaluation include temperature, pressure, and density among
others. Each of these variables is distributed across the processes
using a 3D domain decomposition, so that each process writes a
regular hyper-rectangle (a ”chunk”) that is 125x160x250 data points.
Each data point is an 8 byte double. It is important to note that this
data size per chunk is held constant across all runs meaning that as
the total number of clients increases, so too does the total amount
of data written. This chunk size amounts to 0.4GB per process per
timestep (0.04GB per variable, with 10 variables). This data size was
chosen because it constitutes 10% of a process’s total RAM, which
is a reasonable estimate for how much data a process may write
per output. The processes also write a set of metadata through a
set of EMPRESS functions, which will be discussed in more detail
below (see Section 6.5). There are 10 tags, each of which has a set
frequency that determines what percentage of chunks it is asso-
ciated with. These metadata tags and frequencies were chosen to
estimate normal use. More tags and higher frequencies can easily be
supported. These tags include "blobs" (a scienti�c name for spatial
phenomena), annotations and ranges at varying frequencies, and
maximum and minimum. The blobs have a Boolean value (indi-
cating presence or absence of a particular feature), the maximum
and minimum have a double value (like the associated data), the
notes have text values, and the ranges have values that are a pair
of integers. These tags are summarized in the Table 2. In addition,
for each timestep, the processes determine their local maximum
and minimum for the ”temperature” variable and then coordinate
to determine the global maximum and minimum. One process then
writes these values as timestep attributes. At the end of the run,

12

Table 2: Tags used in Testing

Tag Data Type Frequency
(% of all chunks)

Frequent Blob Boolean 25%
Infrequent Blob Boolean 5%

Rare Blob Boolean .1%
Maximum Double 100%
Minimum Double 100%

Frequent Note String 20%
Infrequent Note String 2.5%

Rare Note String .5%
Infrequent Range 2 Integers 10%

Rare Range 2 Integers 1%

this same process calculates the maximum and minimum for tem-
perature across the entire run, and writes this as run attributes into
EMPRESS.

6.4 Reading
Each testing con�guration uses 10% of the number of write pro-
cesses for reading meaning that 100, 200 and 400 read processes are
used. For the EMPRESS-HDF5 tests, the same number of servers
are used for both reading and writing, meaning that the reading
process-server ratios are 10:1 and 100:1. Reading consists of 3 stages.
The �rst stage performs six read patterns that are identi�ed by the
Six Degrees of Scienti�c Data[28] as typical for analysis codes.
These six patterns are, for a given timestep:

(1) Read all data
(2) Read all data for a variable
(3) Read all data for 3 variables
(4) Read a plane in each dimension
(5) Read a 3D subspace
(6) Read a partial plane in each dimension

The second stage examines how rich metadata can be used to accel-
erate these read patterns. Patterns 2 and 3 (reading a single variable
and reading three variables) are performed using three di�erent
read selectivities. This process involves querying a particular fea-
ture of interest (tag) that appears with the given selectivity (found
on 25%, 5% and .1% of the data chunk), and then reading in only
the data that matches this query. Finally, the third stage performs a
wide variety of metadata queries and subsequent data reads to test
the performance of the full suite of functionality that EMPRESS
o�ers and to test the performance of the HDF5 equivalent.

6.5 Write and Read Examples
The basic write and read query process has been outlined above
(see Section 3.3.2), but here we will demonstrate how these can be
combined to write an entire application run, and perform various
read queries. These are the write and read processes used in the
testing harness.

6.5.1 Writing Example. Algorithm 1 demonstrates the basic
write process for an application run. At the start of writing, each

compute process initializes the EMPRESS client, which then con-
nects to a single EMPRESS server with which it can pass requests as
messages. It is important to note that only the functions that start
with an * are performed by each client. The remaining functions
are called by one client per server, ensuring that each server is
given a copy of each basic metadata object (runs, timesteps, vari-
ables) and tags, and that the attributes are written to a single server
(this is one of the * functions). Also, each write function supports
both an individual and batch version, for writing one or multiple
pieces of metadata. The algorithm outlined below is the single-
client "batch" insertion algorithm. All testing runs use this "batch"
insertion since initial tests revealed that at the evaluated scales,
the individual metadata writes take �ve to ten times longer than
the batched writes. This performance di�erence is understandable
since the many, small write requests overload the servers with
metadata that can easily be bundled, sent to the server and inserted
in a single batched transaction. More extensive batching is possible,
using client aggregators, and this possibility will be explored in the
future.

Algorithm 1 Batch Writing algorithm

1: procedure W����R��
2: empress_init (...)
3: metadata_create_run (...)
4: metadata_create_tags_batch (...)
5: metadata_activate_run (...)
6: metadata_activate_tags (...)
7: for all timesteps do
8: metadata_create_timestep (...)
9: metadata_create_vars_batch (...)
10: for all variables do
11: *write_chunk_data (...)
12: end for
13: metadata_insert_timestep_attributes_batch (...)
14: *metadata_insert_var_attributes_batch (...)
15: MPI_Barrier (...)
16: metadata_activate_timestep (...)
17: metadata_activate_var (...)
18: metadata_activate_timestep_attributes (...)
19: metadata_activate_var_attributes (...)
20: end for
21: metadata_insert_run_attributes_batch (...)
22: metadata_activate_run_attributes (...)
23: end procedure

One interesting thing to note is that runs are activated as soon
as they are inserted into the database, ensuring that as soon as
data is available for a timestep in the run (as soon as a timestep
within the run is activated), it will be visible and therefore usable
by downstream processing.

6.5.2 Reading Example. An example metadata exploration and
read procedure is presented in Algorithm 2. This algorithm assumes
that the user does not remember what runs, timesteps, or variables
they have stored (if any of these assumptions are false, the associ-
ated catalog functions could be omitted). Again, the �rst step for

13

reading is to initialize the EMPRESS client, which then connects to
a single EMPRESS server. Since each server maintains a copy of all
basic metadata and tags, a client needs to query only a single server.
To provide each client with the catalogs, the catalog functions can
be called once per client or can be called by a subset of clients that
broadcast the results to the remaining clients. In practice, we have
found that having a subset query and broadcast is more scalable. In
the testing harness, we just have one client catalog and then broad-
cast to all clients. However, as mentioned previously, all attribute
functions require either having each client query each server, or
having one client per server issue the query and share the results.
We have found that the latter is much more e�cient. The basic
read example, outlined below involves cataloging the set of runs to
determine which to explore, and then, for this run, cataloging the
stored timesteps. The user then catalogs the variables that were out-
put for a timestep of interest, and the tags that are associated with
the run. This is then used to catalog all attributes associated with
this variable, a tag of interest, and a logical spatial location (such
as "temperature", "maximum", X :[50,100], Y :[100,200], Z :[100,200]).

Algorithm 2Metadata Reading algorithm

1: procedure R���V��A����
2: empress_init (...)
3: metadata_catalog_runs (...)
4: metadata_catalog_timesteps (...) . For Run X
5: metadata_catalog_vars (...) . For Timestep Y of Run X
6: metadata_catalog_tags (...) . For Run X
7: metadata_catalog_all_var_attrs_with_tag_var_dims (...)
8: MPI_Allgather (...) . Each client receives all attrs
9: end procedure

6.5.3 HDF5 A�ribute and Data Reading Example. Algorithm 3
presents an example of how the HDF5 testing harness uses HDF5 to
read attributes and the data associated with these attributes. First,
a single process opens the timestep �le and the variable attribute
packet table. It then traverses the packet table to look for attributes
that match the given tag and variable name. It then closes the �le
and table. These attributes are then serialized and broadcast to
the remaining processes. Each process then iterates over the list
of attributes and, if any overlap with its assigned portion of the
simulation space, it reads in the data associated with this overlap-
ping portion. Reading only the overlapping portion ensures that
no portion of the attribute’s associated data will be read multiple
times. The attribute is then read as follows. First, the overlapping,
logical, spatial coordinates are converted into X , Y , and Z o�sets
and counts (where o�sets begin at 0). The remaining procedure is
the standard HDF5 read process: the dataset (variable) of interest is
opened; the dataspace for the dataset (variable) and hyperslab of
interest (overlapping area) are then retrieved; these dataspaces are
used along with the o�sets and counts of interest to read the data.
The HDF5 resources are then closed.

6.5.4 HDF5 and EMPRESS A�ribute and Data Reading Example.
When EMPRESS is used in conjunction with HDF5, with EMPRESS
managing all metadata attributes, the process is nearly identical.
This process is outlined in Algorithm 4. The only procedure that

Algorithm 3 HDF5 Attribute and Data Reading algorithm

1: procedure HDF5R���
2: if rank == 0 then
3: open_timestep_�le_and_var_attr_table (...)
4: md_catalog_var_attr_w_tag_var(tagname, varname)
5: serialize_attrs (...)
6: close_timestep_�le_and_var_attr_table (...)
7: end if
8: MPI_Bcast (attrs)
9: read_data_for_attrs (attrs)
10: end procedure
11:
12: procedure ����_����_���_�����
13: open_timestep_�le_collectively (...)
14: for all attrs do
15: if dims_overlap(proc_dims, attr_dims) then
16: get_overlapping_dims (proc_dims, attr_dims)
17: read_attr(attr, overlapping_dims)
18: end if
19: end for
20: close_timestep_�le (...)
21: end procedure
22:
23: procedure ����_����_�����������
24: convert_spatial_coords_to_o�set_and_count (attr)
25: HDF5_open_variable_and_dataspace (...)
26: HDF5_select_hyperslab (...)
27: HDF5_open_attr_dataspace(...)
28: data = HDF5_read (var_id, attr_dataspace, var_datasapce)
29: close_HDF5_resources (...)
30: end procedure

changes is the �rst. The query is performed using one client per
server, allowing parallel query processing. The internal search
mechanism is naturally quite di�erent since it uses EMPRESS’s
RDBMS backend instead of an HDF5 packet table. The attributes
are then allgathered (instead of broadcast) since multiple clients
have retrieved attributes.

Algorithm 4 HDF5 Read with EMPRESS

1: procedure HDF5R���W���EMPRESS
2: if rank < num_empress_servers then
3: md_catalog_var_attr_w_tag_var(tagname, varname)
4: serialize_attrs (...)
5: end if
6: MPI_Allgather (attrs)
7: read_data_for_attrs (attrs)
8: end procedure
9:

6.6 Results
6.6.1 Scalability. Figure 10 demonstrates how the EMPRESS

write performance varies with a varying client-server ratio and
14

a �xed number of clients, and how it varies with a �xed client-
server ratio with a varying number of clients. As expected, the
number of servers dramatically a�ects metadata write performance,
since clients wait to receive a response from the servers indicating
whether the writes succeeded. However, even though there is a
factor of 10 di�erence in the number of servers, the performance
varies by approximately factors of three for 1000 write processes
and six for 2000 write processes. This result is partially by the
requirement that the basic metadata (about the application run,
timesteps, variables, and tags) be written to each server. Also, with
the additional servers, there are fewer clients per server and thus
a greater chance of load imbalance. While clients are equally dis-
tributed across the servers, it is randomly determined which clients
will write an attribute for a given variable and tag (subject to the
tag’s frequency). Looking at the �xed client-server ratios, we can
see that EMPRESS scales well. For the 100:1 client-server ratio case,
the total metadata write time actually decreases from 1000 write
clients to 2000 write clients. For the 1000 client case, most oper-
ations performed better on average. However, a small fraction of
operations took signi�cantly longer. This �nding can largely be
understood as a result of bottlenecks due to load imbalancing and
random �uctuations in performance. For the 1000:1 client-server
case, the 2000 write client performance is slightly worse than the
1000 write client performance. This �nding is likely a result of slight
load imbalancing.

Figure 10

6.6.2 Overhead.

Storage Overhead. Table 3 demonstrates the metadata storage
requirement at the evaluated scales. The results show that EMPRESS
can support basic and rich metadata and can provide mapping from
logical spatial dimensions to physical storage locations with a trivial
amount of required storage space.

Write and Read Overheads. Figure 11 demonstrates the perfor-
mance of the EMPRESS’s metadata write functions with averages
represented using the green lines, 25 and 75 percentiles demon-
strated using the boxes and the maxima and minima demonstrated
by the whiskers (the header and footer lines). All metadata opera-
tions used in writing are demonstrated above. These include writ-
ing each of the seven types of metadata (runs, timesteps, variables,
tags, run attributes, timestep attributes and variable attributes) and

Table 3: Data and Metadata Sizes at Di�erent Scales

Write
Processes

EMPRESS
Servers Data Size Metadata

Size
Metadata %
of Data Size

1000 1 1.2 TB 8.1 MB .0007%
2000 2 2.4 TB 16.2 MB .0007%
4000 4 4.8 TB 32.6 MB .0007%

”activating” the metadata for use in other work�ow components
(transaction management). The graph demonstrate that EMPRESS
can support basic metadata write operations with relatively good
e�ciency. The slowest operations are writing a batch of 10 vari-
ables, which takes around .16 seconds, and writing a batch of 10
attributes, which takes around .5 seconds. The variable attributes
thus constitute both the largest performance cost and the largest
fraction of metadata written, using around 90% of the total storage
size, because variable attributes are the only kind of metadata that
is inserted by each process. Runs and tags and run attributes are
inserted once per run and once per server, and variables, timesteps
and timestep attributes are inserted once per timestep per server.
Over 95% of the variable attribute write time is spent with the mes-
sage waiting in the server’s queue for it to begin executing the
request. This time thus re�ects the bottleneck e�ect of having only
one server per thousand clients. Nevertheless, even with this very
small dedicated resource requirement, the metadata introduces only
a small performance penalty. As indicated in Table 4, the metadata
writing constitutes only a small fraction of the total write time.
Figure 12 demonstrates the performance for a small subset of EM-
PRESS’s supported read functions. These perform more quickly
than the write functions on average since reading utilizes 1/10th
as many read clients but the same number of EMPRESS servers.
These read functions thus allow users to query the high-level data
contents of various datasets with very fast performance. These
results show that EMPRESS introduces negligible storage, write
and read overhead.

Figure 11

6.7 Accelerating Data Exploration
To evaluate how EMPRESS can be used to accelerate data explo-
ration, we perform variations of read patterns 2 and 3 (reading an
entire variable and reading three variables) using four di�erent read

15

Figure 12

Table 4: Data and Metadata Write Times at Di�erent Scales

Write
Processes

EMPRESS
Servers

Data Write
Time (Sec)

Md. Write
Time (Sec)

Md. % of
Write Time

1000 1 1834.89 1.53 .09%
2000 2 3938.24 1.65 .04%
4000 4 8460.29 1.46 .02%

selectivities. First, the entire read patterns are performed without
using EMPRESS. Then, EMPRESS is used to retrieve all attributes
associated with a given tag for each pattern variable. HDF5 then
reads in the data associated with these attributes. This process is
performed for three di�erent tags, which correspond to 25%, 5%
and .1% of the data chunks. Figure 13 demonstrates the resulting
performance for the 400 read client case (where the data and meta-
data were written by 4000 write processes). An important takeaway
from the diagram is that reducing the read volume does not produce
a 1-to-1 reduction in the total read time. This �nding is due largely
to the performance impact of HDF5 having to linearly search its
stored metadata to identify the correct chunks to read, and due
to the fact that since chunks are distributed randomly, the read
could result in storage system contention. However, the read times
are still signi�cantly accelerated. The results demonstrate that EM-
PRESS can be used to store and query areas of interests leading to
accelerated read performance for subsequent data analysis.

6.8 Comparison to Alternatives
Writing. Figure 14 demonstrates the performance comparison

for writing metadata with EMPRESS and HDF5. At small scales,
HDF5 actually out performs EMPRESS. This performance is the re-
sult of three di�erent e�ects. First, in HDF5, basic metadata for runs,
timesteps and variables are written as part of creating the associated
�les and data structures, making it impossible to disentangle the
metadata write time from the other performance requirements. It
is therefore not included in the numbers presented in the table. Sec-
ond, as mentioned above, we have omitted transaction management
from the HDF5 example since all metadata is managed internally (it
is embedded in the same structure as the data it describes). Third,
and most importantly, since only a single process can write meta-
data, the clients �rst coordinate to send their variable attributes to

Figure 13

a single process. At small scales, due to the smaller number of coor-
dinating processes and the small total metadata volume, this global
coordination actually takes less time than performing thousands
of smaller writes to the EMPRESS servers. While it is possible to
perform client-side aggregation of attributes with EMPRESS, this
was not performed in the testing harness. However, we see that
as the number of processes increases, the HDF5 metadata write
performance degrades while the EMPRESS performance remains
relatively constant if the client-server ratio is held constant. Thus,
ultimately, HDF5 su�ers from the fact that it has nomeans of scaling
out and parallelizing its metadata operations.

Figure 14

Reading. Figure 15 demonstrates the summed metadata query
time that each system uses to perform the three metadata queries
for pattern 2 (retrieving all attributes for a given variable that match
a tag of 25%, 5% and .1% selectivity). The demonstrated results are
for the 100:1 read client to EMPRESS server ratios (corresponding to
the 1000:1 write process to server ratios). The results demonstrate
that while EMPRESS can perform the queries very e�ciently, HDF5
cannot. This performance is due to two di�erent e�ects. One, HDF5
has no means of parallelizing attribute querying, meaning that a
single process must crawl the entire attribute table. Two, HDF5

16

does not o�er metadata indexing, and thus must perform a linear
search. As a result of these two e�ects, it is understandable that
the search performance for HDF5 varies linearly with the amount
of metadata written (and thus searched). This performance stands
in large contrast to the fast, relatively constant performance that
EMPRESS can o�er by using a small number of dedicated resources.

Figure 15

7 OBJECTOR EVALUATION
7.1 Goals
To evaluate the Objector, we compare it to the alternative of storing
object names directly. To this end, we had three speci�c goals for
evaluation:

• Storage: Compare the storage requirements for storing the
Objector function with the storage requirements for storing
object names directly. Since the Objector can generate all
object names, the only storage cost is the size of the text
representation of the Objector function.

• Write Performance: The Objector can be used when a simula-
tion is writing to turn an array of data into a set of objects.
It does this by providing a list of object names and a list
of where to slice the data for each object. The alternative
is to generate a data decomposition scheme and set of ob-
ject names using some other means, and to store the object
names directly. We want to compare the performance of the
Objector to the performance of directly writing the object
names to storage.

• Read Performance: The Objector can be used during reading
to convert a set of spatial coordinates into a list of object
names and the matching data o�sets within the associated
objects. The alternative is to search all stored object names or
associated metadata for query matches. We want to compare
the performance of using the Objector to querying a stored
list of object names.

7.2 Testing Con�gurations
The evaluation attempts to simulate how the Objector would be
used when a set of processes are writing a simulation output to
storage or are reading part of a simulation output for analysis.
This is then compared to the alternative of storing object names
directly by storing and querying object names in a local SQLite[36]
in-memory database. As discussed above (see Section 5.1), SQLite is
a light-weight database with fast performance and minimal storage
and performance overheads and thus represents as fair as possible
a comparison. The Objector testing harness consists of the same
simulation space used in the EMPRESS-HDF5 harness, meaning
that the simulated application run is composed of three timesteps,
each of which are composed of 10 3D variables that are decomposed
using a 3D domain decomposition into chunks of 125x160x250 data
points. The testing runs simulate the processes needed to write a
simulation space with these characteristics as a set of objects for
1000, 2000, 4000, 8000, and 16000 write processes. However, unlike
in the EMPRESS-HDF5 testing harness, no data is written. Instead
only the generation, storage, and retrieval of the object names
associated with the data is considered. The object size is set to 8MB
since this is the ideal size used by Ceph [54], the targeted storage
backend for integration with EMPRESS. In addition, only a single
process is used to actually generate or write these object names
and subsequently to generate or query them for reading. This is
to provide as generous as possible a comparison to SQLite since
using multiple tables or having multiple processes share a table
introduces additional overheads either in storage, performance, or
both for SQLite.

7.3 Write Process
Both versions of the testing harness simulate the steps needed to
convert a chunk of array data into a set of objects with unique
object names. Thus, for each timestep, each (simulated) process
generates the object names associated with its assigned section
of the simulation space for each variable. In both cases, this is
done using the Objector. For each of these chunks, the Objector
returns the list of matching o�set names and where the process
should slice its data array to divide its data into these objects. For the
SQLite version of the harness, there is an additional step where each
(simulated) process writes each of these object names into a local,
in-memory database along with a few other identi�ers such as the
associated timestep and variable identi�ers and the logical spatial
dimensions (used to speed querying later). Indices are created on the
timestep and variable identi�ers to additionally speed querying. It
merits discussion that the SQLite version of the testing harness uses
the Objector. Although some system would be needed to generate
a set of object names and the data decomposition, there could be a
more e�cient system for doing this. Therefore, we will not penalize
the SQLite version for the time it spends running the Objector and
instead will compare the time needed to run with Objector as a
standalone process with just the time needed to write the names to
SQLite.

7.4 Read Process
Both versions of the testing harness simulate the process needed
to read a subsection of the simulation space for analysis by turning

17

a set of logical spatial dimensions of interest into a list of matching
object names. The reading section utilizes the same six read patterns
discussed above (see Section 6). Only a single process is used to
read. Unlike in the writing section, this process does not simulate
hundreds of read processes and instead queries the entire read
pattern at once. This again provides the most generous possible
comparison to SQLite, since for each simulated read process SQLite
would have to traverse the entire object name table to answer the
query. In the Objector version of the testing harness, for each of
the six read patterns the process passes the logical dimensions to
the Objector to generate the matching object names and the data
ranges for each of the associated objects that match the query. In
the SQLite version of the harness, the logical dimensions along with
the timestep and variable identi�ers are used to query the object
name table and retrieve matching names.

7.5 Objector Write and Read Examples
7.5.1 Objector Writing Example. An example of how the Objec-

tor is used to write data is demonstrated in Algorithm 5. A process
passes its assigned chunk coordinates to the Objector and receives
a list of object names, o�sets, and counts in return. The o�sets and
counts indicate the range of X , Y , and Z data index values associ-
ated with each object. Since, as discussed above (see Section 4), the
Objector uses a 1D domain decomposition, each object is associated
with a single, contiguous slice of the data. For each object name,
this slice of data is extracted, and then the object is written.

Algorithm 5 Objector Writing algorithm

1: procedure O�������W����
2: retrieve_obj_names (chunk_coordinates) . Use Objector
3: for all objNames do
4: objData = slice_chunk_data (...)
5: obj_storage_write (objName, objData)
6: end for
7: end procedure

7.5.2 Objector Reading Example. An example for how the ob-
jector is used to read data is demonstrated in Algorithm 6. First, the
users identi�es a set of logical, spatial coordinates of interest, for
example, by retrieving a set of variable attributes of interest using
EMPRESS. Then, one at a time, the set of coordinates are given to
the Objector along with the associated variable, timestep, and run
identi�ers. For each set of coordinates, the Objector returns the
matching object names, o�sets, and counts. For each matching ob-
ject name, the o�sets and counts are used to slice the data (�ltering
out the data points that do not match the spatial coordinates). This
data is placed into the appropriate location in an array so that, once
all of the objects for a set of coordinates have been read, the array
will contain all of the requested data in the correct order.

7.6 Results
Figure 16 demonstrates the evaluation of storage sizes for the Objec-
tor and SQLite tests. As explained previously, one of the strengths
of the Objector is that it is an O(1) storage solution. Since it is a
function that is stored as a string, it requires a �xed number of bytes

Algorithm 6 Objector Reading algorithm

1: procedure O�������R���
2: �nd_spatial_coordinates_of_interest (...) . Using EMPRESS
3: for all coordinates do
4: retrieve_obj_names (coordinates) . Use Objector
5: for all names do
6: data = obj_storage_read (name)
7: slice_data (...)
8: end for
9: patch_data (...)
10: end for
11: end procedure

(around 500) independent of the size of the simulation space and
the number of associated object names. The storage size for SQLite,
by contrast, grows linearly with the number of object names. While
the 0.2GB required in the 16000 write process case is a relatively
trivial size, it is important to keep in mind that this test represents
only a small fraction of what on object storage system on an exas-
cale machine will have to support. While the 16000 write process
case writes 2.4 million object names, the systems we are targeting
are expected to manage around 10 trillion object names. At this
scale, object names would use around 1 PB of storage.

Figure 16

Figure 17 demonstrates how performance for the Objector (gen-
erating object names) and the SQLite comparison (writing object
names to an in-memory database) vary with the number of write
processes simulated. As expected, the Objector performs much
faster than the SQLite alternative since the object name generation
time is not dependent on the size of the simulation space or the
number of corresponding object names. This time could be dramat-
ically reduced through parallelization, but still presents a dramatic
performance di�erence that will be exacerbated at larger scales.

Figure 18 demonstrates the Objector and SQLite performance
for the 16000 client case on the six read patterns. Both provide
roughly equivalent performance on the �rst three patterns, each
of which involves reading one or more variables in their entirety.

18

Figure 17

This represents the worst-case scenario for a single contiguous read
using the Objector since it must generate all object names for the
requested variables. However, patterns 4, 5, and 6 demonstrate the
strength of the Objector. When reading subsets of a variable, the
Objector has to generate only the matching object names, whereas
SQLite has to search the entire table. Thus, the Objector provides as-
good performance at the tested scales for producing the matching
object names for entire variable reads, but performs signi�cantly
faster for reading subsets of variables. In addition, although SQLite
performs quite well at the tested scales, it was not designed to
operate at the petascale or exascale level. Therefore, it is quite likely
that as the process count continues to increase, the performance
will start to degrade.

Figure 18

8 DISCUSSION
Testing shows that EMPRESS can e�ciently support a wide variety
of basic and custom metadata operations using minimal dedicated
resources. Testing further shows that these metadata services can
be used to identify regions of interest within a dataset and thereby
reduce the reading scope and required read time. This demonstrates
that EMPRESS can be used to accelerate scienti�c discovery, anal-
ysis and visualization and serves as an argument more generally
for the importance of robust metadata services in scienti�c data
management. Testing also demonstrates that there is still room

for improvement. Using minimal dedicated resources such as one
server process per thousand client processes results in the clients
spending the bulk of the metadata writing time waiting for the
servers. Means of reducing this time will be explored in the future
with possible solutions including client-side aggregation and the
possibility of using local EMPRESS servers. Although EMPRESS’s
design and this paper have focused on its use for scienti�c simula-
tions, EMPRESS has implications for other domains. In particular, it
can easily be used for scienti�c data collection, such as astronomy
photographs or weather-related sensor data.

The Objector is an example solution to the exascale object nam-
ing problem. In particular, when coupled with EMPRESS, it provides
a picture of what rich metadata can o�er: the ability to externally
manage and query metadata and the ability to map this metadata to
the associated data without having to store the physical locations
of data objects. This provides users with a highly e�cient means to
explore high level data contents and then determine which subsets
are of su�cient interest to read in.

9 RELATEDWORK
Related work falls into four general categories: storage systems,
metadata management and indexing systems at the storage level,
I/O systems, and metadata management and indexing systems at
the I/O level.

9.1 Storage Systems
There are many widely used large-scale parallel and distributed
storage systems such as Lustre [41], GPFS [40], GoogleFS [13], Ceph
[54], PVFS [39], and HDFS [44]. However, these are largely focused
on o�ering scalable storage and fault-tolerance. As a result, they
generally only maintain system metadata, such as the names and
access permissions of data objects, which is static and not exten-
sible. While some of these systems o�er extended or user-de�ned
attributes, these are not scalable. They also do not o�er "tagging"
and "searching" capabilities, which are crucial for discovery [48].
In addition, many �le systems already su�er from metadata bot-
tlenecks because they are limited to one or very few metadata
management servers [29].

One storage system that provides more extensive metadata ca-
pabilities is HP StoreAll with ExpressQuery [19]. HP StoreAll Ex-
pressQuery is a production archival storage system that uses a
distributed database for metadata management. It supports �le tags
and tag searches, but su�ers a number of limitations. The tags are
stored as string key-value pairs, which, as discussed before (see
Section 3.3.1) and with SoMeta below, comes with a number of
disadvantages. Because of this design, all queries must be phrased
as equals, range, or substring queries. ExpressQuery puts the bur-
den on the user to formulate the queries and remember key names.
In addition, these tags are associated with entire �les. This can-
not o�er su�ciently �ne-grained indexing for simulation outputs,
which tend to put an entire variable or even entire timestep in a �le.
This system also requires the users to keep track of the �le system
structure for queries instead of abstracting these low-level details
away from the user.

19

9.2 Metadata Management and Indexing at the
Storage Level

Recently, some work has been done to extend storage systems to
o�er "tag and search" capabilities. A notable recent example is TagIt
[45]. Hosting the metadata management system inside the storage
system allows metadata updates to be automatically triggered when
data objects are written or updated. This provides increased con-
sistency. However, there are costs associated with operating the
metadata system at such a low level. First, scienti�c users gener-
ally use I/O systems and do not interact with the storage system
directly. Therefore, unless the I/O system is extended to interface
with the metadata management system, users will not be able to
leverage the capabilities. Second, these systems tend to be depen-
dent on the speci�c storage back-end, limiting portability. Third,
as discussed above, many �le systems already experience a severe
metadata bottleneck, and have no means of dynamically increasing
the number of metadata servers to meet demand. TagIt points out
that it can only be used with very speci�c storage backends and its
evaluation demonstrates severe scalability limits. Fourth, manag-
ing metadata on compute nodes o�ers greater processing power
and faster interconnects than storage nodes can o�er. A few TagIt
speci�c problems are that it does not support sub-�le indexing, is
reliant on the �le system’s extended attributes, and supports very
few search queries.

9.3 I/O Systems
The four most common I/O systems used by scienti�c simulations
are ADIOS [30], PnetCDF [25], HDF5 [12], and netCDF-4 [38].
While each of these o�er user-de�ned metadata attributes, they do
not support scalable metadata services such as tagging, searching,
or indexing. Furthermore, for each of these, metadata is embedded
in associated data �les, which results in several of the issues dis-
cussed above (see Section 2 bullet 2). In addition, each of these only
uses a single client to write and read all metadata, adding a severe
scalability bottleneck. These systems are simply not designed for
large-scale metadata access or to use rich metadata as a tool for
�nding interesting data.

SciDB [5] is a popular I/O system in the astronomy community.
Unlike the others, it is an array-based system with a database back-
end. However, it does not o�er any kind of user-de�ned attributes
and concentrates instead on basic metadata.

9.4 Metadata Management and Indexing at the
I/O Level

Many systems use indexes to o�er point-by-point data searches
with a combination of variable, spatial (index), and temporal
constraints. Examples include FastBit [56], FastQuery [16], and
ISABELA-QA [15] (a block-index hybrid). However, none of these
have been extended to support these kinds of rich querying services
for metadata. In addition, bitmap based indexes (such as FastBit
and FastQuery) also su�er from very large index sizes, with indexes
typically ranging from 30%-200% of the original dataset size.

Property graphs have recently been suggested as a �exible means
of o�ering metadata management with tight data coupling. How-
ever, e�cient searching (graph traversal) has yet to be addressed,

and many of these systems are still in the early development stage
[8].

SoMeta [48], an object-based metadata management service,
o�ers many similar capabilities to EMPRESS. Like EMPRESS, it
can provide a wide range of tag-based searches. However, the two
have a fundamentally di�erent design. While EMPRESS uses an
RDBMS backend with indexes to speed querying, SoMeta uses
a distributed hash table backend (without indexes). Since SoMeta
relies on a hash table, it is subject to many of the tradeo�s described
above (see Section 3.3.1). In particular, SoMeta is optimized for
performing queries for a speci�c metadata object name, but must
resort to crawling the entire hash table if only parts of the name
are provided. If the object name is not a search constraint, it must
crawl all metadata objects. Quite simply, there is no good way to
optimize a single key for many kinds of constraints (such as spatial,
variable, temporal, and value). Since all metadata tags and values are
stored as a string, it must also perform extensive string searching
and matching for partial name, tag or value based constraints. In
addition, SoMeta su�ers from a usability problem: users are required
to give each metadata object a unique name and to remember this
name. SoMeta does not o�er anymechanism to catalog themetadata
names, tags, or timesteps stored in the hash table. SoMeta also does
not support transactions at this time, limiting its use in work�ows.
Nevertheless, SoMeta o�ers some useful services such as using
servers locally that EMPRESS will explore in the future (see Section
10).

Several related tools have been developed for a speci�c domain
or application such as the Catalog Archive Server (CAS) [49] for the
Sloan Digital Sky Survey (SDSS), ATLAS [4] for the Large Hadron
Collider, and the Atmospheric Data Discovery System (ADDS) [37].
The Catalog Archive Server o�ers a very extensive range of queries
and has been very carefully tuned. However, it is entirely domain-
speci�c, with all of its metadata and queries designed for 2D astron-
omy photos. ATLAS o�ers a much less domain speci�c metadata
model and supports a wide range of queries, but does not sup-
port user-de�ned attributes or tags. Its metadata model includes an
"events" category for tagged phenomena, but the tags supported
and the conditions under which they are added are entirely con-
trolled by the system. The Atmospheric Data Discovery System
(ADDS) supports rich metadata storage and querying, but also does
not support user-de�ned metadata. Instead, all of its metadata is au-
tomatically extracted from existing datasets. This could be a useful
capability, but does not replace the need for user-de�ned metadata.

Another category of related tools uses an external system to
manage information about the storage locations of data objects.
An example is the Scienti�c Data Manager (SDM). The SDM uses
a database to store metadata about the physical locations of data
objects and abstracts away low-level storage details from the user.
It also supports some basic attribute capabilities, but these are very
limited.

9.5 SIRIUS
In addition to these four general categories of related work, it merits
discussion that EMPRESS is part of a larger work, the DOE O�ce of
Science ASCR SIRIUS project. SIRIUS is designed to provide a sys-
tem for scienti�c data management at exascale. It therefore seeks to

20

address all of the challenges outlined in the introduction including
the I/O bottleneck, the need for e�cient search and discovery, and
severe storage space constraints. Speci�c contributions of SIRIUS
include predictable storage performance (provided by Ceph [54]),
extensible custom metadata (provided by EMPRESS), and data re-
duction techniques. Predictable storage performance allows users
to make informed decisions about how frequently to output data.
This is especially important since most users want to ensure that
only a small, �xed percentage of time is devoted to I/O (instead of
computation). As has been discussed in this paper, EMPRESS can be
used to accelerate data exploration. SIRIUS also o�ers data reduc-
tion techniques that can provide high compression with small error
bounds (reducing storage volume) and di�erent level-of-precision
read options, speeding data access for lower precision reads.

10 FUTUREWORK
EMPRESS is a work in a progress. While the new version of EM-
PRESS has greatly improved upon its predecessor, there are a few
issues for the next generation of EMPRESS to address. To support
exascale scienti�c simulations with rich annotations, EMPRESS will
need to establish when a server should start writing to a new data-
base (dividing the databases into multiple data objects for storage)
and how to track these various pieces. This is not an issue at mod-
erate scales since a single process typically has 1 to 4GB of RAM
and possibly other memory at its disposal but will be important
for exascale. It will also be important for EMPRESS to continue to
improve fault-tolerance, such as addressing the best method to re-
cover metadata operations that occur between checkpoints to disk
and identify serve failure. EMPRESS will also continue to examine
the best strategy for load balancing when the number of servers
does not equal the number of databases.

We will also explore extending EMPRESS to o�er additional
functionality. We have recently extended EMPRESS to o�er a pre-
liminary local-server version. This was not the original design
point due to the performance penalties associated with storing
many small database �les or joining many small databases into a
large database. However, we will be further exploring and extend-
ing this this new version of EMPRESS in the future. Recent work
has already begun to look at expanding the Objector to new domain
areas [34]. Similarly, we will investigate the possibility of o�ering
direct support for coordinate systems other than Cartesian and for
supporting non-uniform meshes and Adaptive Mesh Re�nement
codes. We will also look into the possibility of o�ering more ro-
bust provenance tracking. Another interesting area to explore is
point-by-point indexing. As demonstrated in the evaluation sec-
tion, clients can store maximum and minimum values to create a
sort of block index on the data. An I/O system could use this func-
tionality to narrow the search space and then perform candidate
checks on matching chunks. In the future, we will consider o�ering
this as an explicit service. We will also consider making EMPRESS
further extensible by o�ering direct support for users to generate
their own queries. Other functionalities we will consider adding
are support for multi-variable and multi-tag queries, more robust
queries on entire runs, update functions, and delete functions for
just attributes.

There are also a number of design or implementation decisions
that we need to explore more fully. Virtually all design decisions
come with inherent trade-o�s. One decision to explore is under
what conditions metadata is better suited for NoSQL databases
such as MongoDB [2] and Cassandra [22] rather than relational
databases. Another decision to explore is if there is a better way of
distributing metadata across the servers.

Finally, there is work to be done to integrate EMPRESS with
other related tools. For example, since EMPRESS is reliant on the
ability of users to identify and store areas of interest, we can work
with domain scientists and machine learning experts to ensure that
we are fully supporting their needs. In addition, we have plans to
integrate EMPRESS with ParaView [11] or [21] to allow EMPRESS’s
metadata to be used for interactive, visual exploration of datasets.

ACKNOWLEDGEMENTS
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

This work was supported under the U.S. Department of Energy
National Nuclear Security Agency ATDM project funding. This
work was also supported by the U.S. Department of Energy O�ce
of Science, under the SSIO grant series, SIRIUS project and the Data
Management grant series, Decaf project, program manager Lucy
Nowell.

REFERENCES
[1] [n. d.]. ([n. d.]). http://www.sqlite.org/
[2] [n. d.]. MongoDB. ([n. d.]). http://www.mongodb.com/
[3] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan,

and Fang Zheng. 2010. Datastager: scalable data staging services for petascale
applications. Cluster Computing 13, 3 (2010), 277–290.

[4] Solveig Albrand, Thomas Doherty, Jerome Fulachier, and Fabian Lambert. 2008.
The ATLAS metadata interface. In Journal of Physics: Conference Series, Vol. 119.
IOP Publishing, 072003.

[5] Paul G Brown. 2010. Overview of SciDB: large scale array storage, processing
and analysis. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. ACM, 963–968.

[6] Suren Byna, Mohamad Chaarawi, Quincey Koziol, John Mainzer, and Frank
Willmore. 2017. Tuning HDF5 sub�ling performance on parallel �le systems.
(2017).

[7] Jacqueline H Chen, Alok Choudhary, Bronis De Supinski, Matthew DeVries,
Evatt R Hawkes, Scott Klasky, Wei-Keng Liao, Kwan-Liu Ma, John Mellor-
Crummey, Norbert Podhorszki, et al. 2009. Terascale direct numerical simulations
of turbulent combustion using S3D. Computational Science & Discovery 2, 1 (2009),
015001.

[8] Dong Dai, Robert B Ross, Philip Carns, Dries Kimpe, and Yong Chen. 2014. Using
property graphs for rich metadata management in hpc systems. In Parallel Data
Storage Workshop (PDSW), 2014 9th. IEEE, 7–12.

[9] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al.
2005. Pegasus: A framework for mapping complex scienti�c work�ows onto
distributed systems. Scienti�c Programming 13, 3 (2005), 219–237.

[10] Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. Dataspaces: an inter-
action and coordination framework for coupled simulation work�ows. Cluster
Computing 15, 2 (2012), 163–181.

[11] Nathan Fabian, Kenneth Moreland, David Thompson, Andrew C Bauer, Pat
Marion, Berk Gevecik, Michel Rasquin, and Kenneth E Jansen. 2011. The paraview
coprocessing library: A scalable, general purpose in situ visualization library. In
Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on. IEEE,
89–96.

[12] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases. ACM, 36–47.

21

[13] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03). ACM, 29–43. http://doi.acm.org/10.1145/945445.945450

[14] Zhenhuan Gong, David A Boyuka II, Xiaocheng Zou, Qing Liu, Norbert Pod-
horszki, Scott Klasky, Xiaosong Ma, and Nagiza F Samatova. 2013. Parlo: Paral-
lel run-time layout optimization for scienti�c data explorations with heteroge-
neous access patterns. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on. IEEE, 343–351.

[15] Zhenhuan Gong, Sriram Lakshminarasimhan, John Jenkins, Hemanth Kolla,
Stephane Ethier, Jackie Chen, Robert Ross, Scott Klasky, and Nagiza F Samatova.
2012. Multi-level layout optimization for e�cient spatio-temporal queries on
isabela-compressed data. In Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International. IEEE, 873–884.

[16] Luke Gosink, John Shalf, Kurt Stockinger, Kesheng Wu, and Wes Bethel. 2006.
HDF5-FastQuery: Accelerating complex queries on HDF datasets using fast
bitmap indices. In Scienti�c and Statistical Database Management, 2006. 18th
International Conference on. IEEE, 149–158.

[17] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. 2007.
The Evolution of Lua. In Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages (HOPL III). ACM, New York, NY, USA,
2–1–2–26. https://doi.org/10.1145/1238844.1238846

[18] J. Jenkins, E. R. Schendel, S. Lakshminarasimhan, D. A. Boyuka, T. Rogers, S.
Ethier, R. Ross, S. Klasky, and N. F. Samatova. 2012. Byte-precision level of
detail processing for variable precision analytics. In High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference for. 1–11.
https://doi.org/10.1109/SC.2012.26

[19] Charles Johnson, Kimberly Keeton, Charles B Morrey III, Craig AN Soules, Al-
istair C Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton
Coutinho, Patrick J Doyle, et al. 2014. From research to practice: experiences
engineering a production metadata database for a scale out �le system.. In FAST.
191–198.

[20] S Ku, CS Chang, and PH Diamond. 2009. Full-f gyrokinetic particle simulation of
centrally heated global ITG turbulence from magnetic axis to edge pedestal top
in a realistic tokamak geometry. Nuclear Fusion 49, 11 (2009), 115021.

[21] T Kuhlen, R Pajarola, and K Zhou. 2011. Parallel in situ coupling of simulation
with a fully featured visualization system. In Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV).

[22] Avinash Lakshman and Prashant Malik. 2009. Cassandra: structured storage
system on a p2p network. In Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 5–5.

[23] Sriram Lakshminarasimhan, John Jenkins, Isha Arkatkar, Zhenhuan Gong, He-
manth Kolla, Seung-Hoe Ku, Stephane Ethier, Jackie Chen, Choong-Seock Chang,
Scott Klasky, et al. 2011. ISABELA-QA: query-driven analytics with ISABELA-
compressed extreme-scale scienti�c data. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
ACM, 31.

[24] Margaret Lawson, Craig Ulmer, Shyamali Mukherjee, Gary Templet, Jay Lofstead,
Scott Levy, Patrick Widener, and Todd Kordenbrock. 2017. Empress: Extensible
Metadata Provider for Extreme-scale Scienti�c Simulations. In Proceedings of
the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems (PDSW-DISCS ’17). ACM, New York, NY, USA, 19–24.
https://doi.org/10.1145\/3149393.3149403

[25] Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R.
Latham, A. Siegel, B. Gallagher, and M. Zingale. 2003. Parallel netCDF: A High-
Performance Scienti�c I/O Interface. In Supercomputing, 2003 ACM/IEEE Confer-
ence. 39–39. https://doi.org/10.1109/SC.2003.10053

[26] Jay Lofstead and Jai Dayal. 2012. Transactional parallel metadata services for
integrated application work�ows. HPCDB’12 (2012).

[27] Jay Lofstead, Jai Dayal, Karsten Schwan, and Ron Old�eld. 2012. D2t: Doubly
distributed transactions for high performance and distributed computing. In
Cluster Computing (CLUSTER), 2012 IEEE International Conference on. IEEE, 90–
98.

[28] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Old-
�eld, Matthew Wolf, and Qing Liu. 2011. Six degrees of scienti�c data: reading
patterns for extreme scale science IO. In Proceedings of the 20th international
symposium on High performance distributed computing (HPDC ’11). ACM, 49–60.
http://doi.acm.org/10.1145/1996130.1996139

[29] Jay Lofstead and Robert Ross. 2013. Insights for Exascale IO APIs from Building
a Petascale IO API. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’13). ACM, New York,
NY, USA, Article 87, 12 pages. https://doi.org/10.1145/2503210.2503238

[30] Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. 2009. Adaptable,
Metadata Rich IO Methods for Portable High Performance IO. In In Proceedings
of IPDPS’09, May 25-29, Rome, Italy.

[31] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Old�eld, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. 2010. Managing variability in the
IO performance of petascale storage systems. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International Conference for. IEEE,

1–12.
[32] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,

Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scienti�c work�ow
management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (2006), 1039–1065.

[33] Grzegorz Malewicz, Ian Foster, Arnold L Rosenberg, and Michael Wilde. 2007. A
tool for prioritizing DAGMan jobs and its evaluation. Journal of Grid Computing
5, 2 (2007), 197–212.

[34] Reza Nasirigerdeh, Michael A Sevilla, Margaret Lawson, NoahWatkins, Latchesar
Ionkov, Je� LeFevre, Jay Lofstead, Carlos Maltzahn, Joel Armstrong, and Mark
Diekhans. 2018. Dataset Striping: Mapping Scienti�c Datasets to Programmable
Storage Systems. In Proceedings of the 9th ACM Symposium on Cloud Computing
2018 (SoCC ’18) in submission.

[35] Ron A. Old�eld, PatrickWidener, Arthur B. Maccabe, LeeWard, and Todd Korden-
brock. 2006. E�cient Data-Movement for Lightweight I/O. In Proceedings of the
2006 International Workshop on High Performance I/O Techniques and Deployment
of Very Large Scale I/O Systems. Barcelona, Spain.

[36] Michael Owens. 2003. Embedding an SQL database with SQLite. Linux Journal
2003, 110 (2003), 2.

[37] Sangmi Lee Pallickara, Shrideep Pallickara, and Milija Zupanski. 2012. Towards
e�cient data search and subsetting of large-scale atmospheric datasets. Future
Generation Computer Systems 28, 1 (2012), 112–118.

[38] R Rew, E Hartnett, J Caron, et al. 2006. NetCDF-4: Software implementing an
enhanced data model for the geosciences. In 22nd International Conference on
Interactive Information Processing Systems for Meteorology, Oceanograph, and
Hydrology.

[39] Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel �le system for Linux
clusters. In Proceedings of the 4th annual Linux showcase and conference. 391–430.

[40] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters.. In FAST, Vol. 2.

[41] Philip Schwan et al. 2003. Lustre: Building a �le system for 1000-node clusters.
In Proceedings of the 2003 Linux symposium, Vol. 2003. 380–386.

[42] Michael A Sevilla, Reza Nasirigerdeh, Carlos Maltzahn, Je� LeFevre, Noah
Watkins, Peter Alvaro, Margaret Lawson, Jay Lofstead, and Jim Pivarski. 2018.
Tinten�sch: File System Namespace Schemas and Generators. In The 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 2018).

[43] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein,
Je� LeFevre, and Carlos Maltzahn. 2017. Malacology: A programmable storage
system. In Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 175–190.

[44] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed �le system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. Ieee, 1–10.

[45] Hyogi Sim, Youngjae Kim, Sudharshan S Vazhkudai, Geo�roy R Vallée, Seung-
Hwan Lim, and Ali R Butt. 2017. Tagit: an integrated indexing and search service
for �le systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 5.

[46] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl Kesselman,
Mary Manohar, Sonal Patil, and Laura Pearlman. 2003. A metadata catalog service
for data intensive applications. In Supercomputing, 2003 ACM/IEEE Conference.
IEEE, 33–33.

[47] Yu Su and Gagan Agrawal. 2012. Supporting user-de�ned subsetting and ag-
gregation over parallel netcdf datasets. In Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on. IEEE, 212–219.

[48] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. 2017. SoMeta:
Scalable Object-centric Metadata Management for High Performance Computing.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on. IEEE,
359–369.

[49] Ani R Thakar, Alex Szalay, George Fekete, and Jim Gray. 2008. The catalog archive
server database management system. Computing in Science & Engineering 10, 1
(2008).

[50] Craig Ulmer, Shyamali Mukherjee, Gary Templet, Scott Levy, Jay Lofstead, Patrick
Widener, Todd Kordenbrock, and Margaret Lawson. 2018. Faodel: Data Manage-
ment for Next-Generation Application Work�ows. In Proceedings of Workshop on
Infrastructure for Work�ows and Application Composition (IWAC), 2018.

[51] WX Wang, ZTWM Lin, WM Tang, WW Lee, S Ethier, JLV Lewandowski, G
Rewoldt, TS Hahm, and J Manickam. 2006. Gyro-kinetic simulation of global
turbulent transport properties in Tokamak experiments. Physics of Plasmas 13, 9
(2006), 092505.

[52] Yi Wang, Yu Su, and Gagan Agrawal. 2013. Supporting a light-weight data
management layer over hdf5. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on. IEEE, 335–342.

[53] Noah Watkins. 2013. Dynamic Object Interfaces with Lua. (Oct 2013). https:
//ceph.com/geen-categorie/dynamic-object-interfaces-with-lua/

[54] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A scalable, high-performance distributed �le system. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 307–320.

22

[55] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. 1–17.

[56] K Wu, S Ahern, E W Bethel, J Chen, H Childs, C Geddes, J Gu, H Hagen, B
Hamann, J Lauret, J Meredith, P Messmer, E Otoo, A Poskanzer, O RÃĳbel, A
Shoshani, A Sim, K Stockinger, G Weber, W m Zhang, and et al. 2009. FastBit:
Interactively Searching Massive Data. In PROC. OF SCIDAC 2009.

[57] Tzuhsien Wu, Jerry Chou, Shyng Hao, Bin Dong, Scott Klasky, and Kesheng Wu.
2017. Optimizing the query performance of block index through data analysis and
I/O modeling. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 12.

[58] Qing Zheng, George Amvrosiadis, Saurabh Kadekodi, Garth A Gibson, Charles D
Cranor, Bradley W Settlemyer, Gary Grider, and Fan Guo. 2017. Software-de�ned
storage for fast trajectory queries using a deltaFS indexed massive directory. In
Proceedings of the 2nd Joint International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems. ACM, 7–12.

[59] Qing Zheng, Kai Ren, Garth Gibson, Bradley W. Settlemyer, and Gary Grider.
2015. DeltaFS: Exascale File Systems Scale Better Without Dedicated Servers. In
Proceedings of the 10th Parallel Data Storage Workshop (PDSW ’15). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/2834976.2834984

A APPENDIX
To illustrate an example of the Objector’s algorithm, say that we
are interested in the variable “temperature” from the timestep 0 of
a run of “XGC” with the job scheduler identi�er of 123456. These
pieces of metadata are given to the Objector so that it can create a
unique identi�er (name) for this variable. Say that the “temperature”
variable goes from [1, 1, 1] to [100, 100, 100], that each chunk has
size [10, 10, 10] data points and the ideal object size is 100 data points.
Say furthermore that our identi�ed coordinates of interest within
the simulation space are [51, 51, 51] to [60, 60, 60]. The following is
the process that the Objector would use for generating the matching
object names (for either writing or reading).

(1) Convert the coordinates to global o�sets by subtracting the
starting variable coordinate from the starting coordinate of
interest
• [51, 51, 51] � [1, 1, 1] = [50, 50, 50]

(2) Find the �rst chunk number that overlaps with the coordi-
nates of interest (by dividing the global o�set for the starting
coordinate of interest by the uniform chunk size). Then, de-
termine the chunk’s starting coordinate using the uniform
chunk size.
• Chunk number: [50, 50, 50]/[10, 10, 10] = 5
• Starting chunk coordinate: 5 ⇤ [10, 10, 10] = [50, 50, 50]

(3) Find the �rst object number within this chunk that overlaps
with the global o�set for the starting coordinate of inter-
est (using the uniform object size, divide the X -o�set from
the �rst overlapping chunk by the uniform object X -width).
Then, determine the object’s starting coordinate using the
uniform chunk size.
• Uniform object size: [1, 10, 10] (since the Objector always
uses the whole Y and Z chunk widths for an object)

• Object number: (50 � 50)/1 = 0
• Starting object coordinate: 0 ⇤ [1, 10, 10] + [50, 50, 50] =
[50, 50, 50]

(4) Iterate through all overlapping object coordinates by incre-
menting X by the uniform object X -width and incrementing
Y and Z by the �xed chunk Y and Z widths.
• Second matching object’s starting coordinates: [51, 50, 50]
• ...
• Ninth matching object’s starting coordinates: [59, 50, 50]

(5) For each object, generate a name using the unique run,
timestep and var identi�ers, along with the starting coordi-
nates.
• First matching object name: XGC/123456/0/50/50/50
• ...
• Ninth matching object name: XGC/123456/0/59/50/50

23

	The Next Generation of EMPRESS: A Metadata Management System For Accelerated Scientific Discovery at Exascale
	Recommended Citation

	thesis-undergrad-empress-2.pdf

