15 research outputs found

    A Comprehensive Study of Using 2D Barcode for Multi Robot Labelling and Communication

    Get PDF
    Multi robot is an emerging field in robotic research with surprisingly various open problems. Reports have been published stating the advantages of multi robot over conventional single robot, including reducing task completion time. One of the open problem as concentrated in this study is their communication. This study focuses on using a 2D QR barcode for robot labelling suitable for vision-based multi robot communication. The aim is to prove that QR barcode could be decoded in various distances as well as in different angles. Image sampling is done in controlled environment. A two-way ANOVA without repetition is used to analyze the image data in terms of successful QR decoding. ANOVA with significant level of critical α 0.05 is used and has justified that smallest variance at different distances and angular pose will give the best position in order to decode the respective QR barcode. Hence multi robot communication by means of labelling a QR label onto them has the possibilities for further research

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Comparación de sistemas de comunicación inalámrbica para robots móviles

    Get PDF
    "Los robots móviles ofrecen nuevas soluciones a problemas críticos y también cotidianos como búsqueda y rescate, exploración, mapeo, limpieza y transporte. En muchos de estos problemas es posible incrementar el impacto de los robots móviles si estos son capaces de comunicarse y realizar dichas tareas como un equipo, de forma coordinada. Este artículo provee una visión comparativa sobre algunos de los distintos sistemas de comunicación actuales que hacen posible la interacción entre robots móviles

    FRAMEWORK FOR AD HOC NETWORK COMMUNICATION IN MULTI-ROBOT SYSTEMS

    Get PDF
    Assume a team of mobile robots operating in environments where no communication infrastructure like routers or access points is available. The robots have to create a mobile ad hoc network, in that case, it provides communication on peer-to-peer basis. The paper gives an overview of existing solutions how to route messages in such ad hoc networks between robots that are not directly connected and introduces a design of a software framework for realization of such communication. Feasibility of the proposed framework is shown on the example of distributed multi-robot exploration of an a priori unknown environment. Testing of developed functionality in an exploration scenario is based on results of several experiments with various input conditions of the exploration process and various sizes of a team and is described herein

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Small scale implementation of a robotic urban search and rescue network

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2012With the advancement of robotics technologies, it is now possible to use robots for high risk jobs that have historically been accomplished by humans. One such example is the use of robots for Urban Search and Rescue (USR): finding chemical spills, fires, or human survivors in disaster areas. With the ability to include inexpensive wireless transceivers, it is possible to network numerous robots as part of a swarm that can explore an area much more expeditiously than a single robot can. With the inclusion of wireless capabilities comes the necessity to create a protocol for the communication between robots. Also necessary is the creation of an exploration protocol that allows the network of robots to explore such a building or search area in as little time as possible yet as accurately as possible. This thesis covers the development of such a network of robots, starting with the hardware/software co-design, the individual robots' control mechanisms, and their mapping and communications protocols

    Progress and Prospects of the Human-Robot Collaboration

    Get PDF
    International audienceRecent technological advances in hardware designof the robotic platforms enabled the implementationof various control modalities for improved interactions withhumans and unstructured environments. An important applicationarea for the integration of robots with such advancedinteraction capabilities is human-robot collaboration. Thisaspect represents high socio-economic impacts and maintainsthe sense of purpose of the involved people, as the robotsdo not completely replace the humans from the workprocess. The research community’s recent surge of interestin this area has been devoted to the implementation of variousmethodologies to achieve intuitive and seamless humanrobot-environment interactions by incorporating the collaborativepartners’ superior capabilities, e.g. human’s cognitiveand robot’s physical power generation capacity. In fact,the main purpose of this paper is to review the state-of-thearton intermediate human-robot interfaces (bi-directional),robot control modalities, system stability, benchmarking andrelevant use cases, and to extend views on the required futuredevelopments in the realm of human-robot collaboration

    An adaptable fuzzy-based model for predicting link quality in robot networks.

    Get PDF
    It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead
    corecore