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auction for task allocation with greedy path planning. Experimental results sug-

gest that the proposed algorithm is more suitable for solving the aforementioned
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Chapter 1: Introduction

Recently, multi-robot systems have attracted increasing attention by providing

more robustness and efficiency than single-robot systems. Robots can achieve

goals more effectively when they are organized as a team, thus achieving better

overall performance. In many scenarios, multiple robots provide the capability to

fulfill some difficult tasks that a single robot system cannot achieve. Based on these

advantages, many multi-robot systems have been designed to help people in dif-

ferent scenarios, such as environmental monitoring [1], warehouse management[2],

and search-and-rescue [3].

On the other hand, multi-robot systems usually require more resources than

single-robot systems. This necessitates efficient coordination between robots to ac-

complish tasks well. In many scenarios multi-robot system designers also need to

consider interactions between robots and humans, in addition to environment un-

certainty. This is difficult since the complexity usually increases exponentially with

the expanding size of the robot team (i.e., coordination problems are NP-hard).

Most multi-robot problems are challenging to solve due to complex environments,

large action spaces, and uncertainty of the future environment. To provide efficient

coordination, we apply different methods to reduce the difficulty of finding a solu-

tion. Fist, we reduce the environment complexity by decomposing the global goal

to sub-tasks. Then we apply underlying representations to assign each task to one
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unique robot, which reduces the robots’ action state space. Finally, robots estimate

a finite horizon of future actions to make decisions that fulfill the sub-tasks and

reduce uncertainty about the future environment. In this work, we utilize these

methods to provide efficient coordination in three different domains. Specifically,

the main contributions of our work are:

• We first provide an effective bin management system that coordinates a team

of robotic self-propelled fruit bin carriers to retrieve and deliver fruit bins in

tree fruit harvest.

• We then discuss a more general information collection problem and present

an algorithm that balances workload while optimizing information gathered.

• Finally, we derive a multi-robot coordination system that allows a team of

mini UAVs (unmanned aerial vehicles) to explore, map, and search in un-

known environments. Moreover, we allow the operator (human controller)

to limit the time each UAV can remain without a valid communication link

to a base station.

Chapter 2 provides a literature review of general multi-robot coordination in

different scenarios. Chapter 3 presents a field multi-robot application in tree fruit

harvest: intelligent bin-managing. Then Chapter 4 discusses a informative gath-

ering problem as a generalized version of the in-orchard bin-managing. Chapter

5 proposes a related coordination solution for UAV exploration, mapping, and

searching in unknown environments. We conclude in Chapter 6 and provide our

final discussion.
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Chapter 2: Literature Review

Multi-robot coordination has been studied since 1980s [4], when some researchers

started work on distributed robotics with multiple mobile robots [5][6]. The study

of this field has grown dramatically afterwards. Many researchers have been focus-

ing on building efficient coordination for multi-robot systems in different scenarios.

Some famous practical projects include the RoboCup competition [7] and Ama-

zon’s warehouse management system (Kiva Systems) [8].

Coordination can be achieved by decision making, which also is the focus of this

research. Researchers have developed many decision making methods for multi-

robot systems. In general, those methods can be separated based on two main de-

sign principles: (1) decentralized approaches and (2) centralized approaches. Both

kinds of approaches have advantages and disadvantages. Decentralized approaches

allow each robot of the team to examine its own sensed information and makes de-

cisions based on it. Instead of making decisions on their own, centralized planners

make global assignments depending on all the robots’ current situation. Central-

ized planners usually perform better than decentralized approaches in terms of

solution quality, since they have a better understanding of the overall environment

to make decisions. Thus, the optimal solution can be potentially produced. How-

ever, centralized planners require more time to generate solutions, leading to poor

scalability with the robot team size. Some centralized real-world applications need



4

to be run offline due to expensive computation [9][10] . Centralized approaches

can be used for path planning [11][12], exploration [13][14], and transportation

[15][16]. In contrast, decentralized approaches give more freedom to the system.

Unlike centralized approaches, each robot only needs to consider its own informa-

tion, which allows robots to make decisions more quickly. Therefore, decentralized

approaches can be used on many practical applications [17][18]. In this work, we

utilize a centralized algorithm (Chapter 4) to coordinate multiple robots to gather

information in known environments. In unknown environments, a decentralized

approach is applied to avoid expensive computation.

Different communication models provide different coordination challenges. Specif-

ically, communication can be categorized as explicit communication or implicit

communication. Explicit communication allows robots to exchange information

directly with other robots, while implicit communication model refers to indirect

information swap. As an example of explicit coordination, Mostofi designs a coop-

erative network to drive robots to map obstacles [19]. Wang [20] proposes an ad

hoc wireless communication frame that allows interaction in a large robot group.

Gil et al. [21] provide an adaptive communication scheme to maintain the com-

munication of a team of robots. However, when the size of the robot team reaches

hundreds or more, explicit communication can be very expensive, and thus in-

tractable. In this case, robots can interact through the environment. A lot of work

in this domain is inspired by biological studies of insects, such as swarm robotics

[22][23]. In this thesis, explicit communication is applied, since the goals can be

achieved by a finite number of robots with knowledge of their teammates.



5

In this work, we propose efficient multi-robot systems for both indoor and

outdoor domains. We employ an auction-based approach for in-orchard bin man-

agement (Chapter 3), a centralized approach for distributed information gathering

(Chapter 4), and a decentralized method to enable multi-robot exploration in un-

known environments with limited communication (Chapter 5).
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Chapter 3: Intelligent In-Orchard Bin-Managing System for Tree

Fruit Production

3.1 Introduction

Effective and efficient production is becoming a greater challenge to the tree fruit

industry in the United States due to its heavy use of labor during harvest season.

Harvest is a labor-intensive process, and labor shortages threaten the viability of

the tree fruit industry in the long term. To overcome this problem and maintain

the industry’s competitiveness in the global marketplace, technological innovation

is required.

A traditional tree fruit harvest consists of four steps: in-orchard bin-positioning,

fruit picking, bin-filling, and bin-transporting. In the first step, human workers use

a forklift-like machine to place empty bins at different locations within the orchard.

Next, the workers pick fruits from the tree and unload them to the nearest bin.

Once a bin is full, it is transported to a collecting point (repository) by a forklift.

Among those four steps, bin-positioning and fruit picking are the most labor-

intensive tasks with high associated costs. Our (unpublished) preliminary study

shows that human workers typically spend less than half of their time picking

fruit. The rest of their time is used to move, reset, climb ladders, and walk to

and from bins. Therefore, there is a critical need to reduce labor cost by utilizing
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Figure 3.1: Layout of the orchard environment in the simulation.

autonomous robots to assist workers during these processes.

Current robotics technology is capable of meeting this need by providing a

robotic self-propelled fruit bin carrier system for transporting bins [24]. Our work

aims to develop a multi-robot system to assist human workers in placing and

moving bins in the orchard to allow for efficient harvest

3.2 Simulation Setup

To test a number of multi-robot coordination approaches, we create a simulation

of the typical orchard conditions in the real world. The remainder of this section

provides the detailed parameters and variables of the simulator.

Fig. 3.1 shows the layout of the simulation environment as a 10× 5 grid world.

The leftmost and rightmost column are headland. The repository (i.e., a collecting

point) is located in the leftmost column. Robots can move horizontally within the

harvest area and are only allowed to move vertically in the leftmost and rightmost



8

columns.

According to our conversations with orchard managers, they are working to

make the distribution of fruit uniform. In the simulation, we assume that the fruit

are uniformly distributed, with enough fruits in one grid to fill two bins. Usually,

5 pickers work together in a group to fill one bin. In our simulation, the number

of groups is set to 4 and 8 with 5 pickers in each group. Thus, there are 20 and 40

pickers in total. In the real world, 1 to 5 pickers usually work together to fill one

bin. Since each picker can fill one bin in one hour, a bin can be filled in roughly

12 minutes if 5 pickers work together. A picker can usually fill 8 to 10 bins per

day. To simplify the problem in our simulation, one group consisting of 5 pickers

can fill one bin in two time steps. Since one of the goals of this project is to have

a scalable approach, we use 2 to 20 robots in our simulation.

The robot’s speed depends on whether it is carrying a full bin. A bin-carrier

with a full bin moves more slowly than one without a workload. In our simulation,

a robot moves 2 grids per each time step while not carrying a full bin and 1 grid

otherwise. At this early stage of research, all robots are assumed to have unlimited

communication range within the environment.

3.3 Problem Statement

Groups of simulated workers are initialized randomly within the harvest area in

the orchard. Bins are placed at locations where there are workers. All robots start

from the top-left grid. Once the simulation starts, workers begin filling the bin at
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their location. When the bin is full, the workers request a new bin, which will be

delivered by a robot. If there is no more fruit in a location, the workers move to a

new location, sending a new bin request for that location. Workers cannot harvest

fruit if there is no bin at their location, and they must instead wait for a bin to be

delivered.

A robot in our system must make two decisions: (1) which (potentially) full

bin should be picked up (and returned to the repository), and (2) where should it

carry a new bin (a robot can only take a new bin if it is at the repository in the

leftmost column). Once it makes a decision, it proceeds to complete its task and

only makes another decision when it has finished its current task.

3.4 Algorithm Design

Our approach makes robots coordinate with each other using auctions based on the

market framework [25]. Before discussing the detailed algorithm, we first explain

a baseline algorithm.

3.4.1 Baseline Algorithm

The baseline algorithm is designed to use a greedy approach. An idle robot selects

the closest full bin from its current location to pick up. If there are no full bins in

the orchard, the robot estimates the closest bin that will be filled soonest based on

the number of workers at the bin’s location. Once it selects a bin, the other robots
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cannot choose to pick up the bin, even if their distance to the bin is closer than

the first robot. Selecting a new location is also done greedily: an idle robot selects

the earliest (unfulfilled) request made. A robot only considers taking a new bin to

a requested location if it does not see any bin that can be picked up because all

bins in the harvest area are, or will be, taken by the other robots.

3.4.2 Autonomous Robots with Auction for Coordination

Auction-based methods have been well studied and applied in many different multi-

robot domains for resource and task allocation. Auction-based approaches are

well suited to our scenario because they are scalable with limited computation

requirements. Among different kinds of auctions (e.g. English, Dutch, etc.), we

employ English auctions [26] as our task allocation method due to its simplicity

and effectiveness. In an English auction, every robot ’bids’ for a task. The price

of the task gets increased until no robot bids a higher price. The one with the

highest ’bid’ wins the task. In our case, the robots bid their cost to fulfill the task.

Instead of selecting the highest price, the one with the least cost wins the task.

One potential improvement to the greedy baseline approach is in the bin selec-

tion process. Instead of a single robot greedily selecting the closest (potentially)

full bin, we want the robots to perform some coordination to achieve a more ef-

ficient solution. In our current implementation this coordination is done using

one-turn English auction.

An idle robot scans the orchard environment to identify possible bins to pick
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up, which will be subsequently called idle bins. A bin is considered idle if there is

no robot that is on the way to pick it up and it is not being carried by another

robot. The robot then makes a list of plans to pick up one of the idle bins and

assign a cost to each plan. The cost C to pick up the bin in plan p is formally

defined as:

Cp = Tt + Tw

where Tt is the time required to reach the target bin and Tw is the estimated time

of the robot to wait for the target bin to be filled. Each idle robot then sorts its

plans based on the associated cost, with the plan with the lowest cost being the

most preferable.

Once all idle robots construct their plans, they broadcast their plans to each

other. If their most preferred plans conflict, the robot with the lowest plan cost

wins the auction. The other robots then remove the auctioned plan from their list

and start broadcasting their next preferred plans. This process is repeated until

all idle robots have a plan to execute. However, if a robot cannot win any plan,

then it will make an idle plan to not pick up any bin.

After the plan selection process, a robot also considers carrying a new bin to a

requested location. If the robot has a target bin to pick up, it estimates whether

there will still be fruit at the target bin’s location. If so, the robot takes a new bin

to that location. Otherwise, it has to make another decision to choose a requested

location to deliver a new bin to. In the case where a robot does not have a target

bin, it chooses to carry a new bin to the closest requested location.
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A straightforward way to select a requested location is to calculate the time

required to travel between the target bin and the requested location. A seemingly

efficient method is to choose the closest requested location to the target bin.

Alg. 1 provides our proposed algorithm.

Algorithm 1 Auction-Based Coordination

Require: Robots set R
Ensure: Robot plans
1: while Any robot ri has no plan do
2: for ri ∈ R do
3: MakePlan(ri)

4: for ri ∈ R do
5: conflictP lans← CheckP lanConflict(ri, R)
6: if conflictPlans not ∅ then
7: Auction(conflictPlans)

3.5 Experimental Results

We evaluate our algorithm with different simulation setups to observe its scalability.

We observe its performance in a 10×10 grid world with 4 groups of workers. With

this setup, fruit in the orchard will fill a maximum of 160 bins. As can be seen

in Fig. 3.2, our proposed algorithm produces better results (i.e., fewer number of

steps) compared to the baseline.

Fig. 3.3 shows the number of full bins returned to the repository within a 150

step limit. The maximum number of bins is 160 — systems with large numbers

of robots finished harvesting in fewer number of steps. As can be seen from the

figure, our proposed algorithm consistently outperforms the baseline algorithm.
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Figure 3.2: The number of steps required by different numbers of robots to retrieve
all bins(160) to the repository.
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Figure 3.3: The number of full bins returned to the repository by different algo-
rithms in 150 step limits.

Fig. 3.4 shows the scalability of both algorithms. We examine a orchard with 5

lanes and 10 trees per lane (80 bins totally). The results shows that when the size

of robot team scales to 20 robots, the auction-based approach still out perform the

baseline approach.
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Figure 3.4: The number of steps required by 2-20 robots to retrieve all bins(160)
to the repository.

3.6 Discussion

In this work, we proposed a scalable coordination between autonomous robots,

which is implemented for fruit bin-carriers to increase the effectiveness of fruit

harvesting, specifically to assist human workers to transport fruit bins within the

orchard. To achieve a more optimal system result, robots use auction-based ap-

proach to coordinate their decisions to pick up bins in the orchard.

In the auction-based coordination, it is also possible to consider not only one

step, but two or more steps ahead. For instance, each robot considers picking up

multiple bins in each plan instead of only one bin as implemented in our current

system. We briefly explored this possibility in this project, but the results were not

yet satisfactory. We observed that the only the first bin matters in the plan cost

calculation. The bins after the first will have been picked up by some other robots.

Thus, including them in the cost calculation only introduces noise. This happens
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especially when the numbers of robots and idle bins (which is related to the number

of groups of workers) are relatively close. To work around this problem, one idea

is to predict whether the next bins would still be at their current locations after

the robot finishes returning the first bin to the repository. For example, the costs

of picking up the next bins are weighted by the probability of the bins remaining

at their locations. This scenario will allow more complex coordination between

robots, thus improving the overall system performance.

In addition to the improvements that can be done on our current algorithm,

there are also potential actions that can be introduced to the robots, such as ex-

changing plans in the middle of tasks execution (even when the robots are not idle),

bins swapping between robots in the orchard, and moving bins around depending

on the remaining fruits. Given these more sophisticated actions, system efficiency

can be improved more significantly.
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Chapter 4: Multi-robot Routing for Dynamic Information Gathering

4.1 Introduction

The bin-managing system discussed in the previous chapter is closely related to

more general robotic information gathering problems. In a typical information

gathering problem, a number of pre-specified waypoints are located in different

places. Visiting a waypoint gives rewards, which may be different across different

waypoints. Thus, some waypoints have higher priorities than the others. In a

multi-robot system, several robots are required to visit the waypoints to retrieve

rewards. The overall system goal is to obtain the maximum reward within a certain

period. Often, each robot has a certain budget that limits its travel distance or

the amount of reward it can carry at any given time.

A multi-robot system for information gathering then has two key components:

task distribution and multi-robot routing. Some of the existing methods work with

pre-determined, static information depositories (e.g., stationary sensors). Such

information gathering problems can then be formulated as a Traveling Salesman

Problem (TSP) [27], specifically a variant of it called the Prize-Collecting Traveling

Salesman Problem (PC-TSP) [28]. However, in many scenarios, locations of the

waypoints and the amount of reward that can be obtained from each waypoint

can change. For example, a sensor at a waypoint can only store a certain amount
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of reward in its depository. Once the depository is full, the sensor has to stop

working, in which case the rewards that it could have gathered after its depository

is full can be seen as potentially lost. In another case, the amount of meaningful

information that can be obtained from one location can decrease over time. This

will cause a sensor to move to a new location to get newer information. Thus,

the locations of waypoints are no longer static. Previous approaches for persistent

monitoring, which consider waypoints to be static, are not suitable for this type

of problem. Novel and effective task distribution and routing methods are thus

required.

In this work, we define a novel information gathering problem with dynamic

waypoints. We propose to use distributed sampling algorithm for task distribution

with path planning based on Receding Horizon strategy to solve the problem. Our

proposed method will be compared to a baseline algorithm that performs sequential

auction to distribute tasks and uses greedy approach to path planning.

4.2 Background

As a key part of multi-robot coordination, task distribution problem has received

considerable focus from existing research. Among them, market-based approaches

are popular, since many problems can be formulated as a virtual economy. In

a market-based framework, tasks are typically allocated through auctions. For a

specific task, each robot computes the costs for the a given task and the reward

of finishing the task, and makes a bid based on them. Then, it broadcasts its cost
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and reward. The robot with the best bid wins the auction and inserts that task to

its to-do list. In [29], Gerkey et al. propose an auction-based system to allocate

the tasks for physical multi-robot coordination. Kalra et al. [25] describe a market

framework named Hoplites to solve tightly-coupled coordination problems. How-

ever, these works do not focus on how to evenly distribute the workload for the

robots. In [30], Goldberg et al. allows robots to sell some of their current tasks

to avoid overloading but the robots are assumed to explore an unknown environ-

ment (e.g., simulated Mars). In our scenario, a centralized scheduling algorithm

is feasible since the environment is known. Tovey et al. [31] propose a Sequen-

tial Single-Item (SSI) method that allocates one unassigned task to one robot so

that the total team cost increases minimally. This is similar to our approach, but

the order of assigned tasks is domain specific. In our approach, we modify their

method and derive our sequential auction approach as our baseline algorithm.

In this work, because a robot can visit a series of goals to retrieve information,

an efficient trajectory needs to be developed to minimize the total system cost.

This problem can be viewed as an Informative Path Planning (IPP) problem. In

[32], Binney and Sukhatme propose a branch and bound approach for a single

robot to find the optimal path from start to a goal on an informative map. Yu

et al. [33] formulate the problem as a Mixed Integer Quadratic Problem (MIQP)

and solve it by Gurobi [34]. Most of these works deal with stationary graphs,

where the problem can be modeled as a Traveling Salesman Problem (TSP). A very

similar problem is K-Traveling Repairman Problem (KTR) [35], where K traveling

repairman attempt to cover a set of goals with minimum global latency. The
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differences of our problem from KTR are: (1) the visiting requirement is continuous

(depositories keep collecting data as long as they are not saturated and there is

uncollected data); and (2) the object of our system is to minimize the saturated

time of the depositories. In our case, since the rewards in each depositories are

increasing with time, different decisions at a step generate different states at the

next step. This means that the graph changes dynamically during the robot’s

journey. Therefore, most TSP and KTR algorithms cannot be directly applied

to this problem. To overcome this difficulty and to avoid the computationally-

expensive brute-force search, we use a Receding Horizon (RH) strategy. Previous

work has shown that a receding horizon path planner is effective at optimizing

paths in a smooth environment [36]. Hollinger and Singh [37] describe an approach

for multiple agents searching for a target in a known environment using receding

horizon. Tisdale et al. [38] describe a receding horizon path planner for multiple

unmanned aerial vehicles to search for a stationary object. In our case, RH can be

a reasonable strategy to find a feasible solution.

4.3 Problem Statement

Our information gathering problem can be defined as follows. Given an environ-

mentW where n waypoints with sensors and m robots exist, we want to maximize

the amount of reward collected while minimizing the idle time of the sensors. In

each waypoint, a sensor with arbitrary fill rate f gathers reward from its location

and stores it in a depository with capacity C. When the depository is full, the
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sensor stops working and waits for some robots to retrieve some reward from its

depository. Also, the amount of reward that can be obtained from each location

in the environment is limited to R. When a sensor has gathered all reward at

its location, it randomly moves to another location. Each robot also has its own

depository. The job of each robot is then to visit the waypoints (i.e., sensors),

retrieve some or all of the reward in the visited depository, and returns to its base

station to unload its own depository. The total collected reward is then calculated

based on the amount of reward returned to the base stations.

Given the above setup, we want to develop a framework for multi-robot co-

ordination. Specifically, we want to solve two problems: task distribution and

path planning. Our goal is to maximize the collected reward while minimizing the

potential reward loss, which is the reward that could have been obtained while

sensors are idle. The problem can be posed as the following optimization problem:

arg min
p∈Ψ

n∑
i=1

Iifi (4.1)

where Ii is the total idle time of sensor si, i = 1, . . . , n, fi is si’s fill rate, p the set

of optimal paths of robots, and Ψ is the set of all possible paths.

Given n sensors and m robots, each robot then has to decide the sensors to

visit and the amount of reward to be collected from each depository. We formulate

the problem with a graph G = (V,E), where a vertex vi ∈ V represents an existing

bin in the orchard and an edge eij ∈ E is the edge between vi and vj. The weight
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wi of vertex vi is determined by

wi = −ti + fi (4.2)

where ti is the estimated time to fill the depository. After visiting all target loca-

tions, a robot returns to its base station. Given a team of robots, two components

in this problem need to be addressed: task distribution and path planning.

4.4 Proposed Algorithm

4.4.1 Task Distribution using Distributed Sampling Algorithm

In order to evenly distribute the workload to each robot, a partition should be

formed on the graph G. However, given m robots, the problem of splitting the

graph into m partitions is an NP-hard problem [39]. Kim and Shell [40] adjusted

the heuristic in [41] to distribute the workload in robotics environmental moni-

toring problem with time complexity of O(m3). Here, we apply their Distributed

Sampling Algorithm (DSA) to solve task distribution problem.

Consider a two-robot case. Given two robots ai and aj, in order to split the

graph into two evenly partitioned sub-graphs Gi and Gj, the problem can be

formulated as:

arg min
(Gi,Gj)

[Cost(Gi)− Cost(Gj)] (4.3)



22

where Cost(Gi), Gi = (Vi, Ei) is calculated as

Cost(Gi) =

|Vi|∑
k=1

wk +
∑

eab∈Ei

|eab| (4.4)

with wk is the weight of vertex vk that is computed using Eq. 4.2, and |eab| is the

length of edge eab (the distance between va and vb, va, vb ∈ Vi). Our goal is to

minimize the difference between sub-graphs Gi and Gj. The pseudocode of DSA

is provided in Alg. 2.

Algorithm 2 Distributed Sampling

Require: Subgraphs G1, . . . , Gm for m robots
Ensure: Reconstructed subgraphs G′1, . . . , G

′
m

1: for i← 1, . . . ,m do
2: Ri ← Cost(Gi)

3: Let Gi be the subgraph with the maximum cost Ri

4: Let Gj be the subgraph with the minimum cost Rj

5: Sij ← {(vi, vj)|vi ∈ Gi, vj ∈ Gj}
6: costTemp←∞
7: for i← 1, . . . , |Sij| do
8: R′i ← Cost(Gi − {vi})
9: R′j ← Cost(Gj + {vi})
10: if Ri −Rj > R′i −R′j and R′i −R′j < costTemp then
11: a← i
12: costTemp← R′i −R′j
13: G′i ← Gi − {va}
14: G′j ← Gj + {va}
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4.4.2 Path Planning based on a Receding Horizon Strategy

After each robot has been assigned a set of waypoints to visit, it has to determine

the order of waypoints to be visited and the amount of reward to be collected from

each waypoint. Since one of our goals is to minimize the potential reward loss

that occurs when a sensor is idle, we want to prioritize visiting the sensor with the

earliest time to fill its depository. Thus, we need to assign a score to each waypoint

that reflects its urgency. When deciding the urgency of a particular waypoint,

we need to consider the sensor’s fill rate, the contents of its depository, and the

distance from the robot’s location. At a glance, this problem is straightforward:

once the cost to visit each waypoint has been calculated, a complete and optimal

shortest-path algorithm can be used. However, in our case, visiting a waypoint

changes the urgency score of the other waypoints, since the contents and location

of waypoints can change while the robot is on the way to visit a waypoint, i.e.

our graph is dynamic. An optimal solution can be computed by exploring all

possible permutations (since the order matters) of the assigned waypoints, which

is NP-hard. Thus, to determine the order of visit, we use Receding Horizon (RH)

strategy.

Our RH-based algorithm is based on the urgency of each waypoint instead of

its cost (e.g., distance). The urgency is calculated as follows

ui =
wi

di
(4.5)

where wi is defined in Eq. 4.2 and di is the distance to reach vi. If vi is the first
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waypoint to visit, then di is the distance from the robot’s current location to vi.

Otherwise, di is the distance from the previously visited waypoint to vi. The robot

then greedily chooses the most urgent waypoint to visit with three-step look ahead

(the number of layers in the horizon is 3).

Once the order of waypoints is determined, the next step is to decide the

amount of reward taken from each waypoint. We cannot simply take all reward,

since the robot can only carry a limited amount of reward. Thus, we want to take

more from waypoints with faster-working sensors and less from slower-working

ones. The reward to collect from each waypoint should then be proportional to

the estimated total reward that the sensor would gather during the time the robot

needs to complete its tour (i.e., visit all waypoints and return to base station). Let

T be the time required by the robot to complete its tour. The estimated amount

of reward in sensor si’s depository is

δi = ci + Tfi (4.6)

where ci is the amount of reward in si’s depository at the current time step and fi

is the fill rate of si. Then, the reward collected from the waypoint is calculated as

αi =
δi∑|Vr|
j=1 δj

Cr (4.7)

Here, Gr = (Vr, Er) is the subgraph assigned to the robot and Cr is the maximum

amount of reward that can be carried by the robot.
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4.4.3 Baseline: Sequential Auction with Greedy Path Planning

In order to evaluate our task distributed sampling algorithm, we introduce a base-

line algorithm with a market-based approach. Two main sub-problems need to

be solved: (1) assigning waypoints to the robots such that the global latency is

minimized, and (2) planning a path for each robot and determining the amount of

reward collected from each waypoint such that the sensor’s idle time is minimized.

A market-based approach is applicable to this scenario. Here, we consider vis-

iting a waypoint as a task. Task assignment is then done with sequential auctions.

Each robot bids for the auctioned task, and the robot that wins the bid adds

the task to its plan. Path planning can be settled simultaneously with one-horizon

greedy approach, where a robot visits first the most urgent waypoint in their plans.

The auction are held as follows. Given n waypoints, we first sort the waypoints

based on urgency. In this approach, the urgency is slightly different from the one

used in distributed sampling algorithm. Since the tasks are not assigned yet, the

urgency is simply equal to the time to fill the depository in the waypoint. Once

the tasks are sorted, the auction starts with the most urgent task, which is the

waypoint with the shortest time to fill. Each robot then posts its bid (i.e., cost

of performing the task). If the robot has no task in its plan so far, the cost of

this robot for the auctioning task is the distance from its current location to the

target waypoint. If the robot has some tasks, the cost equals the the total previous

cost of its plan plus the distance from its last task (waypoint) in its plan to the

auctioned task. The robot with the minimum cost wins the auction and adds the
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task to the end of its plan. After the most urgent task is assigned, the second most

urgent one is auctioned, and so on. After all of the tasks are assigned, the path of

each robot will be the order of the waypoints in its plan.

After the tasks are allocated and paths are planned, the last step is to determine

how much reward a robot will collect from each waypoint. This is determined

before the robots starts its tour. The amount is calculated with Eq. 4.6.

When a robot finishes its plan and returns the gathered reward to the base

station, another round of auction will be held again. Robots with unfinished tasks

will compare the new plans to previous plans. If the rewards lost for all waypoints

in the new plan is less than the rewards lost from previous plans, then the robot

switches to the new plan. Otherwise, the previous plan is used. An additional

auction will be held for all unassigned tasks among idle robots to ensure that no

robot would be idle. This method guarantees that no robot will be idle, while

maintaining the performance of the other robots. Algorithm 2 provides more

details.

4.5 Evaluation

4.5.1 Experimental Setup

We evaluate our proposed algorithm in a grid-world simulation as depicted in

Fig. 4.1. There are ten randomly-placed waypoints and two robots with base

points on the top-left and bottom-right corners. The robots can move in eight



27

Algorithm 3 Sequential Auction

Require: m robots, n waypoints
Ensure: Information loss I
1: I ← 0
2: for i← 1, . . . ,m do
3: TaskAssign({vi, . . . , vn}, {r1, . . . , rm})
4: while Information map 6= empty do
5: if there is no idle robot then
6: for i← 1, . . . , n do
7: Move(ri)

8: if there is an idle robot then
9: TaskAssign({vi, . . . , vn})
10: for i← 1, . . . ,m do
11: if InfoLoss(pold) ≥ InfoLoss(pnew) then
12: TaskAssign(unassigned v, idle robots r)

13: I ← I+ IdleTime(v1, . . . , vn)

directions, one step at a time. There are 200 units of reward at every grid, and

each depository (either in each waypoint or each robot) can store at most 100

reward units. Each simulation is run for 1,000 time steps.

Three metrics are used to evaluate the performance of our algorithm:

• Reward gain: the total units of reward collected, i.e. returned to base sta-

tions. This quantity does not include the rewards in depositories.

• Idle time: the total number of time steps where sensors are idle. Let Ii be

the total time sensor si is idle during the period of simulation (1,000 time

steps). Then, the total idle time is calculated as

τ =
n∑

i=1

Ii (4.8)
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Figure 4.1: Grid world simulation of our information gathering problem.

where n is the number of waypoints.

• Reward loss: the amount of rewards that could have been collected while

sensors are idle. In some cases, it is not possible to provide enough space in

the depository in every waypoint, so some waypoints will be idle. However,

it is more desirable for a waypoint with slower-working sensor to be idle than

a waypoint with faster-working sensor. The idle time Γ provides the number

of time steps wasted due to the sensors being idle. But, it does not reflect

the difference between an idle sensor with faster and slower fill rate. Thus,

we calculate the potential reward loss to see this difference. Formally, the

reward loss is calculated as

Γ =
n∑

i=1

Iifi (4.9)

where fi is the fill rate of sensor si.
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4.5.2 Experimental Results and Discussions

Based on the experimental setup and evaluation metrics described in Section 4.5.1,

we compare the results between our proposed algorithm and the baseline. The re-

sults are shown in Fig. 4.2. As can be seen from the figure, the proposed algorithm

outperforms the baseline in all three metrics. In our proposed algorithm, three-

layer RH strategy is used for path planning. However, since the baseline algorithm

uses only one layer, we also present the results of our proposed algorithm with

one-layer RH for path planning. As can be observed from the figure, the results of

using one and three layers only differ slightly, and are still significantly better than

the baseline results. Thus, the proposed algorithm still outperforms the baseline

even when both use one-layer RH strategy for path planning. This suggests that

distributed sampling algorithm is more suitable than sequential auction for task

distribution in our problem.

To see the scalability of the algorithms in terms of the number of agents, we

conducted experiments with 2, 3, 4, and 5 agents. The simulation setup is identical

to the one used in previous experiments. Here, we use three-layer RH strategy for

path planning in the proposed algorithm, since using one layer does not produce a

significant difference. The results are shown in Fig . 4.3. The proposed algorithm

show monotonic improvement in reward gain, idle time, and reward loss as the

number of agents increases. This is not the case for the baseline, where the results of

4- and 5-agent systems only differ slightly. Also, the proposed algorithm produces

greater improvement in idle time and reward loss compared to the baseline.
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(a) (b)

(c)

Figure 4.2: Performance comparison of proposed algorithm with one and three
layers RH and the baseline over 1,000 time steps. (a) shows the total rewards
collected, (b) shows the total idle time , and (c) shows the potential reward loss
suffered by the algorithms. In (a), higher is better, while in (b) and (c), lower is
better.
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Figure 4.3: Performance comparison of the baseline and proposed algorithm over
1,000 time steps. The figures on the left show the results of the baseline algorithm,
while the figures on the right show the results of the proposed algorithm.



32

4.6 Discussion

Traditional information gathering problems are generally focused on environments

where points of interest (e.g., waypoints, sensors, etc.) are static. In such cases,

the points of interest are assumed to have fixed locations and reward or information

available at every point is unlimited. The sensors and robots gathering the infor-

mation can also carry unlimited amount of information. In our problem, locations

of interesting points can change and the amount of meaningful information that

can be collected from each point is limited. The information that can be stored by

sensors and robots is also limited. Thus, the problems need be solved in a dynamic

environments, which exponentially increases the difficultly. We try to solve this

problem with a combination of centralized and decentralized approaches. To dis-

tribute the tasks, a centralized partition approach provides near-even distribution

of the tasks, while the decentralized path planning reduces the computation of

finding a efficient path.
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Chapter 5: Multi-UAV Exploration, Mapping, and Searching in

Unknown Indoor Environments

5.1 Introduction

As shown in prior chapters, centralized task allocation performs well when the

environment is known. However, in uncertain environments, centralized task allo-

cation may be brittle to unforeseen losses of communication. A common domain

of interest is indoor environment exploration, in which mobile robots have been

utilized to build maps of unknown environments. In particular, unmanned aerial

vehicles (UAVs) have gained popularity due to their agility and ability to cover

large areas faster than ground robots[42][43][44]. However, UAVs generally require

shorter mission duration due to limited battery life. Therefore, efficient planners

are needed to coordinate a team of UAVs to achieve the goals.

A typical indoor exploring or mapping scenario is described as follows. Initially,

a human controller sets up the assignments and releases the UAVs. UAVs then

perform the planner’s commands to finish the tasks. Eventually, UAVs return to

the base station and retrieve the explored information.

In many domains, human controllers need to adjust the goals based on the

collected information. This requires robots to communicate with the base station

occasionally to exchange information. However, extra energy and time could be
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used to fly back to swap information, thus potentially delaying the completion of

the mission. Therefore, a effective planner should efficiently relay an information

among the whole team.

To solve this problem, we propose a multi-UAV planner that can fulfill explor-

ing, mapping, and searching simultaneously in unknown indoor environments. The

main contributions of this chapter are:

• A decentralized planner that coordinates a team of robots to fulfill three

different goals (exploration, mapping, and searching) simultaneously. We

allow human operators to set priority weights among these three subtasks.

• An effective method that allows the base station to communicate with UAVs,

so operators can conveniently adjust the weights of different tasks. Moreover,

the base station can limit the time allowed for each UAV to remain without

a valid communication link to the base station.
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5.2 Background

Muti-robot exploration, mapping, and searching have been studied under different

perspectives. In order to explore an unknown environment, Burgard et al. describe

a multi-robot system in [45] to minimize the exploration time in an unknown

indoor environment. Mirzaei et al. provides an decentralized approach to organize

a heterogeneous robot team to explore and cover a uncertain environment by a

look-ahead path planner and Voronoi regions partition in [46]. Marjovi et al [47]

describe a frontier-based planner that drives multiple UAVs search and track wild

fires. Gan et al.[48] apply a group of UAVs to search for a target while running a

gradient-based optimization algorithm. Charrow et al.[49] employ a team of robots

to create a 3D map of an indoor environment using Cauchy-Schwarz quadratic

mutual information. Yang et al. [50] utilize opportunistic learning method to

construct an online planner for multi-UAV searching in uncertain environments.

Many works studied how to maintain connectivity between robots during the

mission. Relay is a general utilized method to build the connections. Gil et al. [51]

provide both exact and approximate algorithms for finding the best relay locations.

Pei et al. [52] utilized the Minimum Steiner Tree problem to generate the best

relay positions. However, the connection needed to be consistently maintained.

We employ a similar strategy, but we allow more freedom for the UAVs to break

communication connectivity.
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5.3 Problem Setup

5.3.1 Environment Model

Indoor environments are often organized as many rooms (Fig. 5.1). As a topological

representation, the concept of room is utilized in many different domains [53][54].

Therefore, in this work we set the environment as a typical indoor office building

environment that contains a number of rooms. Each room is represented as a

node in the map. Based on the sense range of the UAVs, there are rn nodes in

this building and each node belongs to a specific room type t ∈ T (e.g., office,

lab, corridor, etc.). Each node ri has a probability pi that it contains a static

target. Initial probability is set by operator’s priors. To simplify the approach, we

formulate the indoor environment as a undirected graph G = (V,E). Each room

ri corresponds to a node ni ∈ V , and an edge eij connects ni and nj if UAVs can

reach nj from ni directly.

Figure 5.1: A typical school building with different types of rooms
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5.3.2 UAV model

UAVs in this work start with a certain amount of budget (e.g., energy, time etc).

They are equipped with sensors that allow them to sense the room type or target

existence. When a UAV arrives at a node, it can take one of the three actions at

each step: 1) observe the room type, which corresponds to mapping a room; 2)

observe the target existence, which corresponds to searching; and 3) go to one of its

neighbor node, which is exploring. Each action will return some information gain

to the UAV. The UAV makes a decision based on the information reward function

and the weight of each goal. Every action will cost a robot a certain budget c.

Each UAV has a communication range cr. If the distance between two UAVs is

less than cr, they can share the explored map as well as the knowledge of rooms.

5.3.3 Sensor Model

Different sensing actions return different information about the environment. For

a particular room ri, each UAV has a belief probability state that contains the

probability vector [Pt1, ..., Ptn], n = |T |. The UAV also has the probability of the

target existence [PT , PF ], where T indicates True, F indicates False. However,

sensor observations are noisy. Each time one UAV takes a observation, it has a

small possibility to sense the incorrect information about a room. Similarly, target

observation may be imperfect. The accuracy of the sensor depends on the real

sensor model and the target classifier on the UAV.



38

5.3.4 Bayesian Update

Before the mission begins, UAVs are set up with priors on the state of the envi-

ronment. The priors provide the probability that one type of the room contains

a target. Note there can be more than one target in the environment. In our

simulation, the types of room are: office, lab, and corridor. Each type of the room

has an initial probability that it contains a target. The initial prior is shown in

Tab 5.1

Table 5.1: Initial prior of target existence

Room Type Corridor Office Laboratory
Probability of Target Existence 0.1 0.8 0.6

Based on the priors and the noise set, the probability of a room type after a

target sense is updated as:

P (Rt+1|T ) =
P (T |R)

P (T )
P (Rt) (5.1)

where T is the set of room types and P (Rt+1|T ) is the prior at time t+ 1. Based

on the same principle, the probability of target existence is updated after a sening

action as follows:

P (T t+1|R) =
P (R|T )

P (R)
P (T t) (5.2)

The value of P (T t+1|R) is now set as the new prior P (T t+1) at time t+ 1.
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5.3.5 Reward Function

UAVs select actions based on the estimated reward of each action. In our setup,

the estimated reward of a specific action is equal to the weight of that action times

the information gain of taking that action. The information gain of observing a

room type is based on the uncertainty reduction of the node. The uncertainty is

quantified by the entropy of the room type. Initially, each node has a uniform

distribution over all room types. After each observation, the entropy of room ri

gets increased, which means the uncertainty of the room type is reduced. Thus

the information gain function for mapping a node is defined as:

Im = −
∑
t∈T

Pt log(Pt) (5.3)

where T is the set of possible room types and Pt is the probability that this

node’s type is t. The information gain Is of the target observation action is the

same as observing the room type, except the set T is changed to the binary set

{True, False}, and the Pt is changed to the probability of the target existence.

The information gain of moving to a neighbor node is defined as:

Ie = Iαc(0 < α < 1) (5.4)

where I is a constant information gain when a node is visited for the first time.

The information gain is decreased, along with increasing the visited count c of the

node. The value α is the discounting rate. Based on the information gain functions,
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the estimated reward function of UAVs for exploring, mapping, and searching are:

ωeIe, ωmIm, and ωsIs, respectively. Note the sum of ωe, ωm, ωs equals 1. Weights of

sub-tasks are set by human controllers. The benefit of this mechanism is allowing

the human controller control to influence UAV decisions based on the priors. For

example, if the human controllers have no knowledge of the environment, then the

weights can be set as Exploring: 1.0, Mapping 0, Searching: 0. The setting will

drive the UAVs to visit every room as fast as possible. After the UAVs retrieve

a rough map of the environment, the weights can be changed to Exploring 0,

Mapping 1.0, Searching 0 to allow the UAVs map the world as clear as possible.

If the human controller, on the other hand, want to find more targets instead of

mapping the environment, the weight of searching can be set higher than other

two sub-tasks.

5.3.6 Communication Loss Constraint

Each UAV has a fixed communication range cr. As mentioned in Sec. 5.1, human

controllers can set a specific time step S that one UAV can lose communication

with the base station. For example, if S equals 0, that means the UAV cannot

lose communication with the base station at any time. It is easy to see that if

the value of S is small, the UAV cannot explore some further regions if they do

not coordinate. Moreover, even if the S is big, UAVs will waste a lot of energy to

travel back to the base station in order to retrieve the information. To solve this

problem, we will present our solution in next section.
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5.4 Algorithm Design

5.4.1 Proposed Algorithm

One objective of our system is for the human controllers at the base station to

obtain the information from each UAV no more than time step S after its last

communication. An existing solution to this problem is to only allow the UAVs go

to the nodes that will not violate the constraint. We will describe this method as

our baseline in the next section. The problem with this approach is an inefficient

use of energy because UAVs are traveling back and forth to communicate with the

base station. To achieve more efficient coordination, we propose a relay system

that can retrieve information faster by allowing some UAVs to act as relay nodes.

Basically, there are two roles that each UAVs can perform: (1) explorers (Eu),

and (2) relays (Ru). The Eus execute the tasks, and they do not need to directly

communicate with the base station since there are Rus helping retrieve their in-

formation. Three problems need to be solved: (1) what is the next action of Eus;

(2) if some of the Eu request relays, will these requests be satisfied; and (3) if yes,

where to locate the Ru.

For the first problem, we propose a market-based solution. Initially, all UAVs

are all Eu. Once one Eu requires a relay, it will broadcast its request. All UAVs

who received this request will negotiate with the request robot. One UAV will

examine the tradeoff between for giving up its current plan to be the relay. If

a better global reward can be achieved, then the relay request will be fulfilled.

Among all these new plans, a best one will be selected and the UAV will be the
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relay of the request relay.

To generate their plans, the exploring UAVs need to know the candidate relay

locations. We formulate this problem as a Steiner Minimum Tree Problem with

Minimum Steiner Points and bounded edge length (SMT-MSP). Intuitively, we try

to find a best location for one Ru that minimized the sum of distances to its Eus

and distance to its own relay (if exist) or base station. The SMT-MSP will give

a good approximated location for the problem. Note that not all relays need to

have a direct connection to the base station, and relays can be chained to form a

connected network. SMT-MSP is proved as NP-Hard [55]. We modified the greedy

method from [56] to solve the SMT-MSP.

Alg. 4 provides our algorithm.

Algorithm 4 ST-EMS

Require: UAV positions at time t, {pt1, ...ptn} Explorer Set Eu, Relay Set Ru

Ensure: UAV positions at time t+ 1, {pt1, ...pt+1
n } Explorer Set Eu, Relay Set Ru

1: for ei ∈ Eu do
2: while ei positions at time t+ 1 is ∅ do
3: MakePositionDecision(ei)
4: if relayRequest(ei) then
5: if HasRelay(ei) then
6: relay ← SMT-MSP(ri)
7: else
8: relay ← LookForRelay(ei, Eu, Ru)

9: if relay then
10: break
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5.4.2 Baseline

As the baseline of this problem, the UAVs make decisions regardless of other UAVs’

request. Each UAV will follow three steps: (1). Check the best action for next

step that will not violate the communication loss constraint; (2) Communicate

with other in-range UAVs to check if its decision is overlapped with anyone else;

(3) if yes, search for another location to gain a better global utility.

5.5 Experimental Results

Results show our proposed algorithm outperforms the baseline algorithm in terms

of utility gain. More significantly, robots perform the mission with weights on

different sub-tasks. In this section, we will present our simulation setup then

propose the results.

5.5.1 Simulation Setup

The environment of the problem is set as an indoor unknown environment. The

environment is represented as a number of rooms. Rooms are connected by a edge

if they are neighbors. The map we test our algorithm is shown in Fig. 5.2. In

simulation, there are three kinds of rooms: office, laboratory and corridors. Each

type of the room has a probability that it contains one target. There may be

multiple targets, but each room can only contain one target.

To gain the environment information, UAVs are equipped with two kinds of
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Figure 5.2: Simulated indoor environment with 22 rooms. O indicates office, L
indicates Lab, C indicates Corridor. The room contains a target is underlined and
colored.

sensors. One is used to map the environment (i.e., observe the type of the room),

the other is used to search for targets. Both sensors have the possibility of pro-

ducing erroneous measurements. In our simulation, the mapping sensing noise is

set in Tab. 5.2, and the target sensing noise is in Tab 5.3.

Table 5.2: Noise of room type sense

True Room Type
Sense Results Corridor Office Laboratory

Corridor 0.5 0.3 0.2
Office 0.05 0.9 0.05

Laboratory 0.1 0.1 0.8

Table 5.3: Noise of target sense

Ground Truth
Sense Results Target No Target

Target 0.5 0.3
No Target 0.05 0.9
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5.5.2 Results

We first present results under different weight settings for the proposed ST-EMS

algorithm to show how the weight setting influences the UAVs’ decisions. Then

we compare the performance of the ST-EMS and baseline to present our relay

mechanism’s benefit. Lastly, we examine the influence of parameters changing

(eg, communication loss constraint, number of robots, etc) to the outpout of the

ST-EMS algorithm.

UAVs will get three types of utility during the mission: exploring utility, map-

ping utility, and searching utility. The performance of both algorithms under

different weights is shown in Fig. 5.3. As shown in the figures, UAVs gain more

utility for the higher weighted task. In Fig. 5.3(c), the exploring utility is higher

since, in order to search more targets, UAVs need to visit the rooms before sensing

the target in the rooms.

To evaluate the performance of ST-EMS, we compare the total utility gain with

a 100 budget. Fig. 5.5 shows that under the same weights and communication loss

constraint, ST-EMS outperforms the baseline approach consistently.

To show the scalability of our algorithm, we compare the results with the

number of UAVs from 2 to 5. The simulation setup is set as Explore 0.3, Mapping

0.3, Searching 0.4. ST-EMS shows monotonic improvement in utility gain as the

number of agents increases. One significant property of ST-EMS is that it allows

the human controller to change the communication loss constraint in order to

understand the environment better during the mission. To evaluate this property,
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Figure 5.3: Three kinds of utility gain under different weight setting for two UAVs:
(a) Exploring: 0.9, Mapping: 0.05, Searching: 0.05 and (b) Exploring: 0.05, Map-
ping: 0.9, Searching: 0.05 (c) Exploring: 0.05, Mapping: 0.05, Searching: 0.9.
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Figure 5.5: The global utility gain of ST-EMS with different number of UAVs.
The weight vector is set as [Exploring 0.3, Mapping 0.3, Searching 0.4].

we compare the results with different communication loss constraints. Fig.5.6

shows the results that with the constraint increasing, UAVs are capable to explore

more area, thus achieving higher information gain.
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straint. The weight vector is set as [Exploring 0.3, Mapping 0.3, Searching 0.4].

5.6 Discussion

In this work we present an effective muli-UAV system to explore, map, and search

in unknown environments. Based on our setup, the human controller can adjust the

weights that drive the UAV team to focus more on one of the sub-task. Moreover,

in order to keep the human controller informed of the environment features, a

communication loss constraint can be set to force the UAVs to communicate with

the base station. These two properties allows the human controller to change the

weight setting during the mission if needed.
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Chapter 6: Conclusion and Future Work

In this work we have analyzed multi-robot coordination and its applications in

task allocation and information gathering problems. The main contributions in

our work are demonstrated in three domains.

First, we presented an efficient bin-managing system supported by a team of

robotic bin carriers. This work can potentially improve the efficiency of tree fruit

harvest. For future work, we need to test the reliability and efficiency of the

algorithm in real orchards. Another interesting future research area is robot co-

ordination with human pickers. For example, we can explore learning methods to

determine the humans’ picking speeds, potentially yielding more efficient interac-

tion between humans and robots.

Second, we defined a new instance of multi-robot routing for information gath-

ering problems. We proposed to use distributed sampling algorithm for task distri-

bution and receding horizon strategy for path planning. Future research efforts can

be directed toward several aspects, including: (1) Design of a more robust task dis-

tribution algorithm. In the current implementation, task distribution is performed

only once at the beginning. This is due to complexity that arises because each

robot finishes its tour at a different time. When some robots are finished and the

others are not, using the distributed sampling algorithm for task distribution at

the current step is not straightforward. The problem becomes more complicated
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as the environment is dynamic (i.e., the cost of a subgraph in distributed sampling

at the current time step is different from the cost at a later time). To overcome

this, a form of auction may be incorporated to the task distribution algorithm.

We finally proposed an efficient multi-UAV coordination for indoor environment

exploration and mapping. Our method allows for weights on one or more sub-

tasks. Using our relay mechanism ST-EMS algorithm, human controllers can set

up a communication constraint that allows the UAVs to lose communication with

the base station no more than a certain time. These two properties provide better

knowledge of the environment to the human operators. Therefore, operators can

change their setting during the mission if the mission goal is changed.

For this scenario, many interesting research questions remain. One question is

whether relay UAVs can still explore, map, and search for targets while they are

relaying to other UAVs. Another potential improvement can be achieved if during

the mission the UAVs can automatically change their weights based on previous

experiences with human operators.

In this thesis, we reduced the difficulty of solving multi-robot problems by: (1)

considering a subset of the environment to reduce the complexity; (2) employing an

underlying representation to reduce the robots’ action space; (3) predicting a hori-

zon of future actions to reduce the uncertainty. These three components allowed

efficient multi-robot coordination across different domains. In the future, we can

potentially improve performance with (1) improved future predictions; (2) better

task decomposition and allocation; and (3) integration with human operators.
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