11 research outputs found

    Cryogenic Liquid Rocket Engine Test Bench Fault-Tolerant Control System: Cooling System Application

    Get PDF
    International audienceA nonlinear fault-tolerant control strategy relying on quantitative physics-based models for a cryogenic combustion bench operation is proposed in this paper. The aim is to improve the reliability of a cryogenic bench operation in the transients and to allow to converge to a wider range of operating points. The fault detection is performed with residual-based methods. The residual is generated by an unknown input observer with an unscented transformed which also allows to reconstruct the unknown input. Then the goal is to provide a fault-tolerant system reconfiguration mechanism with a control law which compensates for the estimated actuator additive faults to maintain the overall system stability. For that purpose we use a model predictive control method on an equivalent system with the reconstructed unknown input. An error feedback and a fault compensation control law is designed in order to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The model and the estimation part were validated on real data from Mascotte test bench (ONERA/CNES), and the reconfiguration control law was validated in realistic simulations

    A Fault Tolerant Control for Sensor and Actuator Failures of an Non Linear Hybrid System

    Get PDF
    We focused in this work on a fault tolerant control of a non linear hybrid system class based on diagnosis method (determine and locate the defects and their types) and on the faults reconfiguration method.In literature we can found many important research activities over the fault-tolerant control of non linear systems and linear Hybridsystems. But it dosen´t exist too many for the non linear hybridsystem.The main idea in this paper is to consider a new approach to improve the reconfiguration performance of the non linear hybrid system by using hammerstein method which is designed to works only for linear systems. This method compensated the effect of the faults and guarantees the closed-loop system stable. The proposed method is simulated with a hydraulic system of two tanks with 4 modes

    Anti-windup Design for Linear Discrete-time Systems Subject to Actuator Additive Faults and Saturations

    Get PDF
    International audienceIn this paper a method is proposed to design an anti-windup scheme for discrete time linear systems with input saturations and actuator additive failures. This method provides a fault tolerant system reconfiguration mechanism with a control law which compensates for the estimated actuator additive faults and maintains the overall system stability in spite of actuator saturations. The design approach is derived from the solution of linear matrix inequalities (LMI) to guarantee the stability regions. For that purpose the fault tolerant control method is based on a linear quadratic regulator (LQR) and a fault estimator for compensation purposes. This method was tested in realistic simulations with the software Carins (CNES) on a pressure and mass flow rate model of a cryogenic test bench cooling circuit

    Fault Diagnosis Techniques for Linear Sampled Data Systems and a Class of Nonlinear Systems

    Get PDF
    This thesis deals with the fault diagnosis design problem both for dynamical continuous time systems whose output signal are affected by fixed point quantization,\ud referred as sampled-data systems, and for two different applications whose dynamics are inherent high nonlinear: a remotely operated underwater vehicle and a scramjet-powered hypersonic vehicle.\ud Robustness is a crucial issue. In sampled-data systems, full decoupling of disturbance terms from faulty signals becomes more difficult after discretization.\ud In nonlinear processes, due to hard nonlinearity or the inefficiency of linearization, the “classical” linear fault detection and isolation and fault tolerant control methods may not be applied.\ud Some observer-based fault detection and fault tolerant control techniques are studied throughout the thesis, and the effectiveness of such methods are validated with simulations. The most challenging trade-off is to increase sensitivity to faults and robustness to other unknown inputs, like disturbances. Broadly speaking, fault detection filters are designed in order to generate analytical diagnosis functions, called residuals, which should be independent with respect to the system operating state and should be decoupled from disturbances. Decisions on the occurrence of a possible fault are therefore taken on the basis such residual signals

    Actuator fault tolerant control design based on a reconfigurable reference input

    No full text
    The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified by the need of maintaining a reliable system in a dynamical way in order to achieve a mission by an autonomous system, e.g., a launcher, a satellite, a submarine, etc. The effectiveness is illustrated using a three-tank system for slowly varying reference inputs corrupted by actuators faults

    Active fault-tolerant control of nonlinear systems with wind turbine application

    Get PDF
    The thesis concerns the theoretical development of Active Fault-Tolerant Control (AFTC) methods for nonlinear system via T-S multiple-modelling approach. The thesis adopted the estimation and compensation approach to AFTC within a tracking control framework. In this framework, the thesis considers several approaches to robust T-S fuzzy control and T-S fuzzy estimation: T-S fuzzy proportional multiple integral observer (PMIO); T-S fuzzy proportional-proportional integral observer (PPIO); T-S fuzzy virtual sensor (VS) based AFTC; T-S fuzzy Dynamic Output Feedback Control TSDOFC; T-S observer-based feedback control; Sliding Mode Control (SMC). The theoretical concepts have been applied to an offshore wind turbine (OWT) application study. The key developments that present in this thesis are:• The development of three active Fault Tolerant Tracking Control (FTTC) strategies for nonlinear systems described via T-S fuzzy inference modelling. The proposals combine the use of Linear Reference Model Fuzzy Control (LRMFC) with either the estimation and compensation concept or the control reconfiguration concept.• The development of T-S fuzzy observer-based state estimate fuzzy control strategy for nonlinear systems. The developed strategy has the capability to tolerate simultaneous actuator and sensor faults within tracking and regulating control framework. Additionally, a proposal to recover the Separation Principle has also been developed via the use of TSDOFC within the FTTC framework.• The proposals of two FTTC strategies based on the estimation and compensation concept for sustainable OWTs control. The proposals have introduced a significant attribute to the literature of sustainable OWTs control via (1) Obviating the need for Fault Detection and Diagnosis (FDD) unit, (2) Providing useful information to evaluate fault severity via the fault estimation signals.• The development of FTTC architecture for OWTs that combines the use of TSDOFC and a form of cascaded observers (cascaded analytical redundancy). This architecture is proposed in order to ensure the robustness of both the TSDOFC and the EWS estimator against the generator and rotor speed sensor faults.• A sliding mode baseline controller has been proposed within three FTTC strategies for sustainable OWTs control. The proposals utilise the inherent robustness of the SMC to tolerate some matched faults without the need for analytical redundancy. Following this, the combination of SMC and estimation and compensation framework proposed to ensure the close-loop system robustness to various faults.• Within the framework of the developed T-S fuzzy based FTTC strategies, a new perspective to reduce the T-S fuzzy control design conservatism problem has been proposed via the use of different control techniques that demand less design constraints. Moreover, within the SMC based FTTC, an investigation is given to demonstrate the SMC robustness against a wider than usual set of faults is enhanced via designing the sliding surface with minimum dimension of the feedback signals

    Entwurf eines Beobachterbasierten Robusten Nichtlinearen Reglers

    Get PDF
    Due to observers ability in the estimation of internal system states, observers play an important role in the field of control and monitoring of dynamical systems. In reality, using sensors to measure the desired system states may be costly and/or affects the reliability of technical systems. Besides, some signals are impractical or inaccessible to be measured and using of sensors leads to significant errors such as stochastic noise. The solution of using observers is well-known since 1964. Besides the estimation of system states, some observers are able to estimate unknown inputs affecting the system dynamics such as disturbance forces or torques. These features are helpful for supervision and fault diagnosis tasks by monitoring the sensors and system components or for advanced control purposes by realizing observer-based control for practical systems. Among the state and disturbance observers, Proportional-Integral-Observer (PIO) is highly appreciated because of its simple structure and design procedure. Furthermore, using sufficiently high gain PIO, a robust estimation of system states and unknown inputs can be achieved. Besides taking the advantages of high gain design, the disadvantages of large overshoot and strong influence from measurement noise (as typical drawbacks of high gain utilization) in the control and estimation performance can not be neglected. Recently, some researches have been done to overcome the disadvantages of high gain observers and to adaptively adjust the gain of observer based on the resulting actual performance. Considering the advantages and disadvantages of high gain PIO besides the recent developments, it is evident that there are still open problems and questions to be solved in the area of optimal design of PIO and robust nonlinear control approaches based on PIO. On the other hand, the PI-Observer can be used in combination with linear/nonlinear control approaches (due to its simple structure and capability to estimate the system states and disturbances) to improve the performance and robustness of the closed-loop control results. Therefore, this thesis focuses on development and improvement of high gain Proportional-Integral-Observer as well as utilization of this observer in combination with well-known robust control approaches for possible general application in nonlinear systems. The Modified Advanced PIO (MAPIO) is introduced in this work as the extended version of Advanced PIO (APIO) to tune the gain of PIO according to the current situation. A cost function is defined so that the estimation performance and the related energy can be evaluated. Comparison between advanced observer design approaches has been done in the task of reconstructing the nonlinear characteristics and estimating the external inputs (contact forces) acting to elastic mechanical structures. Simulation results in open-loop and closed-loop cases verified that the performance of MAPIO in the task of unknown input estimation is more robust to different levels of measurement noise in comparison to previous methods e.g. APIO and standard high/low gain PIO. Furthermore, a new gain design approach of Proportional-Integral-Observer is proposed to overcome the disadvantages of high gain PIO and to realize the estimation of fast dynamical behaviors like unknown impact force. The dynamics of this force input is assumed as unknown. The idea of funnel control is taking into consideration to design the PIO gain. The important advantage of the proposed approach compared to previously published PIO gain design is the self-adjustment of observer gains according to the actual estimation situation inside the predefined funnel area. In this thesis it is shown that the proposed funnel PI-Observer algorithm allows adaptive PIO gain calculation, being able to be situatively adjusted even in the presence of measurement noise. Stability proof of funnel PI-Observer is investigated according to the switching observer condition and Lyapunov theory. The effectiveness of the proposed method is evaluated by simulation and experimental results using an elastic beam test rig. Furthermore, a nonlinear MIMO mechanical system is used to verify the effectiveness of the proposed method in the closed-loop context. Additionally, this thesis provides two new PI-Observer-based robust controllers as PIO-based sliding mode control and PIO-based backstepping control to improve the position tracking performance of a hydraulic differential cylinder system in the presence of uncertainties e.g. modeling errors, disturbances, and measurement noise. To use the linear PIO for estimation of system states and unknown inputs, the input-output feedback linearization approach is used to linearize the nonlinear model of hydraulic differential cylinder system. Thereupon the result of state and unknown input estimation is integrated into the structure of robust control design (here SMC and backstepping control) to eliminate the effects of uncertainties and disturbances. The introduced PIO-based robust controllers guarantee the ultimate boundness of the tracking error in the presence of uncertainties. The closed-loop stability is proved using Lyapunov theory in both cases. The proposed methods are experimentally validated and the results are compared with the standard SMC and industrial standard approach P-Controller in the presence of measurement noise, model uncertainties, and external disturbances. A general comparison of SMC and backstepping control approaches is provided in the last part of this work.Die Regelung und Überwachung dynamischer Systeme kann voraussetzen, dass Informationen über interne Systemzustände bekannt sind. Die Verwendung von Sensoren zur Erfassung aller Systemzustände kann erhöhte Kosten zur Folge haben und die Systemzuverlässigkeit negativ beeinflussen. Weitere Probleme ergeben sich dadurch, dass ggf. nicht jeder Systemzustand sensorisch erfasst werden kann. Der Beobachter erlaubt die Rekonstruktion aller Systemzustände auf Grundlage weniger Messungen. Neben Systemzuständen können externe Eingangsgrößen wie Reibmomente und Störungen geschätzt werden. Als Konsequenz ermöglicht der Beobachter eine gegenüber Störungen robuste Regelung und Fehlerdiagnose technischer Systeme. Der Proportional-Integral-Observer (PIO) kann mittels bestehender Entwurfsverfahren einfach implementiert werden. Durch Anpassen der Rückkopplungsmatrix eignet sich der PIO zur kombinierten Schätzung von Zuständen und unbekannten Eingangsgrößen. In diesem Zusammenhang spielt die Wahl einer betragsmäßig großen Rückkopplungsverstärkungsmatrix, als sogenannter High Gain Ansatz, eine entscheidende Rolle. Weiterhin hängt die Performance des PIO von der unbekannten Charakteristik der zu schätzenden Eingangsgröße ab. Diese Arbeit befasst sich mit der Entwicklung optimierter Entwurfsverfahren für den Proportional-Integral-Observer und der Entwicklung und Anwendung beobachterbasierter Konzepte zur robusten Regelung nichtlinearer Systeme. In dieser Arbeit wird der modifizierte Advanced PIO (MAPIO) als erweiterte Version des Advanced PIO (APIO) eingeführt. Der Schätzfehler von MAPIO wird über ein Gütefunktional abgebildet. Das Gütefunktional wird durch Anpassung der Rückkopplungsverstärkungsmatrix an die Charakteristik der unbekannten Eingangsgröße minimiert. Die Performance der modifizierten Beobachterentwurfsansätze wird anhand eines praktischen Beispiels bewertet. Geschätzt wird eine unbekannte Kontaktkraft mit nichtlinearer Charakteristik, die auf ein mechanisches System wirkt. Anhand eines Simulationsbeispiels im offenen und geschlossenen Regelkreis wird die Performance von MAPIO gegenüber vorherigen Verfahren APIO und PIO verifiziert. Basierend auf der Idee des Funnel Reglers wird ein neuartiges Entwurfskonzept für den Proportional-Integral-Observer vorgestellt. Die Nachteile des PIO-Konzeptes mit hohem Verstärkungsfaktor können überwunden werden und Schätzungen schneller dynamischer Verhaltensweisen lassen sich realisieren. Der Vorteil der neuartigen Funnel PIO Methode ist, dass der Schätzfehler in einem definierten Bereich, der sogenannten Funnel-Area, verbleibt. In dieser Arbeit wird gezeigt, dass der vorgeschlagene Funnel PIO Algorithmus eine adaptive PIO Verstärkungsberechnung ermöglicht, die auch in Gegenwart von Messrauschen situativ eingestellt werden kann. Der Stabilitätsnachweis von Funnel PIO wird mittels der Lyapunov Theorie untersucht. Die Wirksamkeit der vorgeschlagenen Methode wird durch Simulation und experimentelle Ergebnisse validiert. Eine auf einen elastischen Balken wirkende äußere Kraft mit nichtlinearer Charakteristik wird geschätzt. Ein nichtlineares MIMO System wird verwendet, um die Wirksamkeit der vorgeschlagenen Methode im geschlossenen Regelkreis zu verifizieren. In dieser Arbeit werden zwei neue PI-Observer basierte robuste Regelungen (PIO-basierte Sliding Mode und PIO-basierte Backstepping Regelung) vorgestellt. Die Positionsregelung eines hydraulischen Differentialzylinders in Gegenwart von Modellunsicherheiten, Störungen und Messrauschen wird untersucht. Zur Anwendung der PIO-basierten Störgrößenschätzung wird eine Ein-/Ausgangs-Linearisierung des nichtlinearen Modells vorgenommen. Die Stabilität des geschlossenen Regelkreises wird in beiden Fällen mit der Lyapunov Theorie bewiesen. Die vorgeschlagenen Methoden werden experimentell validiert und die Ergebnisse werden mit dem Standard Sliding Mode Regler und einem P-Regler in Gegenwart von Messrauschen, Modellunsicherheiten und externen Störungen verglichen
    corecore