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Kurzfassung

Die Regelung und Überwachung dynamischer Systeme kann voraussetzen, dass Infor-
mationen über interne Systemzustände bekannt sind. Die Verwendung von Sensoren
zur Erfassung aller Systemzustände kann erhöhte Kosten zur Folge haben und die
Systemzuverlässigkeit negativ beeinflussen. Weitere Probleme ergeben sich dadurch,
dass ggf. nicht jeder Systemzustand sensorisch erfasst werden kann. Der Beobachter
erlaubt die Rekonstruktion aller Systemzustände auf Grundlage weniger Messung-
en. Neben Systemzuständen können externe Eingangsgrößen wie Reibmomente
und Störungen geschätzt werden. Als Konsequenz ermöglicht der Beobachter eine
gegenüber Störungen robuste Regelung und Fehlerdiagnose technischer Systeme.

Der Proportional-Integral-Observer (PIO) kann mittels bestehender Entwurfsver-
fahren einfach implementiert werden. Durch Anpassen der Rückkopplungsmatrix
eignet sich der PIO zur kombinierten Schätzung von Zuständen und unbekannten
Eingangsgrößen. In diesem Zusammenhang spielt die Wahl einer betragsmäßig
großen Rückkopplungsverstärkungsmatrix, als sogenannter High Gain Ansatz, eine
entscheidende Rolle. Weiterhin hängt die Performance des PIO von der unbekann-
ten Charakteristik der zu schätzenden Eingangsgröße ab. Diese Arbeit befasst sich
mit der Entwicklung optimierter Entwurfsverfahren für den Proportional-Integral-
Observer und der Entwicklung und Anwendung beobachterbasierter Konzepte zur
robusten Regelung nichtlinearer Systeme.

In dieser Arbeit wird der modifizierte Advanced PIO (MAPIO) als erweiterte Ver-
sion des Advanced PIO (APIO) eingeführt. Der Schätzfehler von MAPIO wird
über ein Gütefunktional abgebildet. Das Gütefunktional wird durch Anpassung
der Rückkopplungsverstärkungsmatrix an die Charakteristik der unbekannten Ein-
gangsgröße minimiert. Die Performance der modifizierten Beobachterentwurfsansätze
wird anhand eines praktischen Beispiels bewertet. Geschätzt wird eine unbekann-
te Kontaktkraft mit nichtlinearer Charakteristik, die auf ein mechanisches System
wirkt. Anhand eines Simulationsbeispiels im offenen und geschlossenen Regelkreis
wird die Performance von MAPIO gegenüber vorherigen Verfahren APIO und PIO
verifiziert.

Basierend auf der Idee des Funnel Reglers wird ein neuartiges Entwurfskonzept für
den Proportional-Integral-Observer vorgestellt. Die Nachteile des PIO-Konzeptes
mit hohem Verstärkungsfaktor können überwunden werden und Schätzungen schneller
dynamischer Verhaltensweisen lassen sich realisieren. Der Vorteil der neuartigen
Funnel PIO Methode ist, dass der Schätzfehler in einem definierten Bereich, der so-
genannten Funnel-Area, verbleibt. In dieser Arbeit wird gezeigt, dass der vorgeschla-
gene Funnel PIO Algorithmus eine adaptive PIO Verstärkungsberechnung ermöglicht,
die auch in Gegenwart von Messrauschen situativ eingestellt werden kann.
Der Stabilitätsnachweis von Funnel PIO wird mittels der Lyapunov Theorie unter-
sucht. Die Wirksamkeit der vorgeschlagenen Methode wird durch Simulation und
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experimentelle Ergebnisse validiert. Eine auf einen elastischen Balken wirkende
äußere Kraft mit nichtlinearer Charakteristik wird geschätzt. Ein nichtlineares
MIMO System wird verwendet, um die Wirksamkeit der vorgeschlagenen Methode
im geschlossenen Regelkreis zu verifizieren.

In dieser Arbeit werden zwei neue PI-Observer basierte robuste Regelungen (PIO-
basierte Sliding Mode und PIO-basierte Backstepping Regelung) vorgestellt. Die
Positionsregelung eines hydraulischen Differentialzylinders in Gegenwart von Modell-
unsicherheiten, Störungen und Messrauschen wird untersucht. Zur Anwendung
der PIO-basierten Störgrößenschätzung wird eine Ein-/Ausgangs-Linearisierung des
nichtlinearen Modells vorgenommen. Die Stabilität des geschlossenen Regelkreises
wird in beiden Fällen mit der Lyapunov Theorie bewiesen. Die vorgeschlagenen
Methoden werden experimentell validiert und die Ergebnisse werden mit dem Stan-
dard Sliding Mode Regler und einem P-Regler in Gegenwart von Messrauschen,
Modellunsicherheiten und externen Störungen verglichen.
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Abstract

Due to observers ability in the estimation of internal system states, observers play
an important role in the field of control and monitoring of dynamical systems. In
reality, using sensors to measure the desired system states may be costly and/or
affects the reliability of technical systems. Besides, some signals are impractical or
inaccessible to be measured and using of sensors leads to significant errors such as
stochastic noise. The solution of using observers is well-known since 1964. Besides
the estimation of system states, some observers are able to estimate unknown inputs
affecting the system dynamics such as disturbance forces or torques. These features
are helpful for supervision and fault diagnosis tasks by monitoring the sensors and
system components or for advanced control purposes by realizing observer-based
control for practical systems.

Among the state and disturbance observers, Proportional-Integral-Observer (PIO)
is highly appreciated because of its simple structure and design procedure. Fur-
thermore, using sufficiently high gain PIO, a robust estimation of system states and
unknown inputs can be achieved. Besides taking the advantages of high gain de-
sign, the disadvantages of large overshoot and strong influence from measurement
noise (as typical drawbacks of high gain utilization) in the control and estimation
performance can not be neglected. Recently, some researches have been done to
overcome the disadvantages of high gain observers and to adaptively adjust the gain
of observer based on the resulting actual performance. Considering the advantages
and disadvantages of high gain PIO besides the recent developments, it is evident
that there are still open problems and questions to be solved in the area of optimal
design of PIO and robust nonlinear control approaches based on PIO. On the other
hand, the PI-Observer can be used in combination with linear/nonlinear control
approaches (due to its simple structure and capability to estimate the system states
and disturbances) to improve the performance and robustness of the closed-loop con-
trol results. Therefore, this thesis focuses on development and improvement of high
gain Proportional-Integral-Observer as well as utilization of this observer in combi-
nation with well-known robust control approaches for possible general application
in nonlinear systems.

The Modified Advanced PIO (MAPIO) is introduced in this work as the extended
version of Advanced PIO (APIO) to tune the gain of PIO according to the current
situation. A cost function is defined so that the estimation performance and the
related energy can be evaluated. Comparison between advanced observer design
approaches has been done in the task of reconstructing the nonlinear characteristics
and estimating the external inputs (contact forces) acting to elastic mechanical
structures. Simulation results in open-loop and closed-loop cases verified that the
performance of MAPIO in the task of unknown input estimation is more robust to
different levels of measurement noise in comparison to previous methods e.g. APIO
and standard high/low gain PIO.
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Furthermore, a new gain design approach of Proportional-Integral-Observer is pro-
posed to overcome the disadvantages of high gain PIO and to realize the estimation
of fast dynamical behaviors like unknown impact force. The dynamics of this force
input is assumed as unknown. The idea of funnel control is taking into considera-
tion to design the PIO gain. The important advantage of the proposed approach
compared to previously published PIO gain design is the self-adjustment of observer
gains according to the actual estimation situation inside the predefined funnel area.
In this thesis it is shown that the proposed funnel PI-Observer algorithm allows
adaptive PIO gain calculation, being able to be situatively adjusted even in the
presence of measurement noise. Stability proof of funnel PI-Observer is investigated
according to the switching observer condition and Lyapunov theory. The effective-
ness of the proposed method is evaluated by simulation and experimental results
using an elastic beam test rig. Furthermore, a nonlinear MIMO mechanical system
is used to verify the effectiveness of the proposed method in the closed-loop context.

Additionally, this thesis provides two new PI-Observer-based robust controllers as
PIO-based sliding mode control and PIO-based backstepping control to improve the
position tracking performance of a hydraulic differential cylinder system in the pres-
ence of uncertainties e.g. modeling errors, disturbances, and measurement noise. To
use the linear PIO for estimation of system states and unknown inputs, the input-
output feedback linearization approach is used to linearize the nonlinear model of
hydraulic differential cylinder system. Thereupon the result of state and unknown
input estimation is integrated into the structure of robust control design (here SMC
and backstepping control) to eliminate the effects of uncertainties and disturbances.
The introduced PIO-based robust controllers guarantee the ultimate boundness of
the tracking error in the presence of uncertainties. The closed-loop stability is proved
using Lyapunov theory in both cases. The proposed methods are experimentally val-
idated and the results are compared with the standard SMC and industrial standard
approach P-Controller in the presence of measurement noise, model uncertainties,
and external disturbances. A general comparison of SMC and backstepping control
approaches is provided in the last part of this work.
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1 Introduction

1.1 Motivation and problem statement

Effects of friction, backlash, or impacts often occur in dynamical systems. Also
due to these effects, the system behavior in operation becomes nonlinear. These
effects can not be precisely modeled (by structure and/or parameters) which af-
fects the design of control approaches. Several nonlinear control methods are intro-
duced and developed during the past decades to improve the robustness of closed-
loop system (feedback linearization, sliding mode control, backstepping approach,
etc. [SL91, Isi95, Kha02]) with the general purposes of stability, small tracking er-
ror, disturbance attenuation, noise rejection, and insensitivity to the plant modeling
errors [RT06]. The well-known restriction of mentioned classical methods is require-
ment of system states as measurements which is from a practical point of view costly.
Furthermore, most of the nonlinear control approaches are based on the assumption,
that the system model is known and related to the actual control situation (load,
pressure, oil temperature, etc.). Often the existing disturbance and the related dy-
namical behavior, i.e. the friction and/or the load torque are not considered. This
results from the fact that they are unknown, not measured, or are not measurable.
For example, the well-known feedback linearization method [MVKB12] assumes an
accurate nonlinear model to design a nonlinear control law to eliminate the coupled
disturbance. It should be mentioned that approaches assuming exact models pro-
vide nonoptimal behavior in practical realizations (due to imperfect modeling). As
a consequence, effective and safe nonlinear control approaches, which are robust to
external disturbances and model uncertainties, are required.

In [LS14] limitations of nonlinear approaches applied to nonlinear systems are sum-
marized. Nonlinear control methods are developed to control the nonlinear systems
usually based on exact nonlinear system descriptions [Kha96]. Goal of the related
research works is to realize robust and practical solutions for nonlinear systems. To
achieve the availability of all modeled (also internal) states and assuming full state
feedback, observer-based robust nonlinear control approaches have been discussed.
In [HD03a] an exact feedforward linearization approach based on differential flat-
ness for nonlinear system control is proposed, showing robustness problems as the
classical feedback linearization method. In [HD03b] the robustness with respect to
uncertainties and disturbances is detailed. In [HD08], a robust nonlinear predictive
control based on exact feedforward linearization is introduced. It was demonstrated
that the nonlinear flatness-based control methods are applicable and rational. No
assumptions with respect to disturbance characteristics and availability of all states
are discussed. Comparing different methods applied to solve the robustness problem
of control methods, modeling errors or disturbances acting to the system are typ-
ically considered. Therefore, known bounds and/or dynamical properties have to
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be assumed [MT93]. Besides the robustness, the availability of (internal) modeled
states has been considered and assumed in nonlinear control design.

Summarizing open problems of nonlinear control it has to be stated that besides
the requirement of known models, assumptions have to be made according to the
availability of internal (not measured) states as well as bounds with respect to
modeling errors and external effects like disturbances. Some control approaches
to improve the robustness against uncertainties and to access the system states
are based on observers. As example the proposed control approach in [EF09] is
based on an adaptive observer design partially linearizing the considered systems.
Considering no disturbances, the adaptive control approach is suitable for a general
class of nonlinear systems. In [CK06] the authors proposed a control approach with
a full-order nonlinear observer to control the motion of an engine exhaust valve
actuator.

According to [FBF11] the desired control performance in the presence of uncertain-
ties can be achieved by (a) applying a robust control approach such as sliding mode
control, backstepping control, H∞ control, etc. able to compensate the uncertainties
or (b) estimation of uncertainties using observers to be compensated by a classical
designed control law stabilizing the nominal system e.g. in [LS14]. The performance
of mentioned approaches depends on the system structure. In [KR16] a higher order
sliding mode observer is used for a hydraulic actuated piston to estimate the system
states and unknown load force used in a classical cascaded control structure. The
effects of friction force are compensated using a static friction model.

Due to observers ability to estimate internal states of the system, observers are
widely used in different aspects of control field. Observers can be augmented or
replaced with sensors to increase the accuracy/reliability and to decrease the cost
simultaneously. Based on the structure, order, gain, and class of system considered
for observers design, observers can be categorized as the following:

• Linear and nonlinear observers

• Full-order, reduced-order, and minimal-order observers

• Observers for linear system, nonlinear system, linear system with delay, non-
linear system modeled by a multiple model approach, bilinear system, etc.

• continuous and discrete observers

• State and unknown input observers

• Stochastic and deterministic observers

• High gain and standard observers

Besides the estimation of system states, some observers are able to estimate un-
known inputs affecting the system dynamics such as disturbance forces or torques.
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This features are helpful for (1) supervision and fault diagnosis tasks by mon-
itoring the sensors and system components [PC97, YDL15, CDSM02] or for (2)
advanced control purposes by realizing observer-based control for practical sys-
tems [TLLL11,LYCC14]. Among the state and disturbance observers, Proportional-
Integral-Observer (PIO) is highly appreciated because of its simple structure and
design procedure. Furthermore, using sufficiently high gain PIO a robust estimation
of system states and unknown inputs can be achieved. Besides taking the advantages
of high gain design, the disadvantages of large overshoot and strong influence from
measurement noise (as typical drawbacks of high gain utilization) in the control and
estimation performance can not be neglected. Recently, some researches have been
done to overcome the disadvantages of high gain observers. For example a recently
published extension introduced as Advanced PI-Observer (APIO) in [LS12], adapts
the gain design based on the resulting actual performance. Despite the strong re-
searches and works in this area, there are still aspects to be improved. Therefore,
the main part and objective of this work is dedicated to the optimal design of high
gain PIO and development of robust nonlinear control approaches combined with
the estimation results of PIO for possible general application in nonlinear systems.
To achieve the principle objective the following tasks are arranged:

1. Investigation and analysis of the well-known Proportional-Integral-Observer

2. Investigation and improvement of existing adaptive APIO algorithm

3. Development of a new adaptive algorithm for design of high gain PIO

4. Enhancement of disturbance attenuation and system performance robustness
by proposing a combination of PIO and nonlinear robust control approaches
with stability analysis

1.2 Thesis organization

In this thesis, development and improvement of Proportional-Integral-Observer as
well as utilization of this observer in combination with well-known robust con-
trol approaches are discussed. The thesis consist of six chapters according to the
published/submitted journal papers ([BS17a], [BS17b], [BS17e]), conference papers
([BS14], [BS15a], [BS15b], [BS17d], [BS17c]), and workshop presentations ([BSW14],
[BSW15a], [BSW15b], [BSW16], [BSW17]).

Accordingly, in the current chapter the overall overview and scope of this thesis
including the main challenges, problems, and motivation points are discussed. The
second chapter provides a review of the principal unknown input observation with
elaboration of Proportional-Integral-Observer. In this chapter the structure, design
goals and methods, and integration of PI-Observer in different system types are
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focused. Although using of terms seems to be very flexible in the discussed area, this
chapter outlines a new perspective and a precise distinction between fundamental
concepts of observer, filter, and estimator from a scientific and pragmatic point of
view. In addition, predictor-corrector scheme including a predictor step (an explicit
method to obtain a rough approximation as a first step) and a corrector step (an
implicit method to refine the predicted value as a second step), is briefly reviewed by
considering a new perspective of observers/filters structure. The chapter is continued
with a description of some actual advanced applications of PI-Observer and high-
gain design in an abstract level.

The third chapter of thesis provides the detailed insight into Proportional-Integral-
Observer with its general structure and convergence conditions. Besides, a new de-
velopment of high gain PIO design is proposed as Modified Advanced Proportional-
Integral-Observer (MAPIO). The new approach is an improved version of previous
introduced APIO [LS12] with adaptive gain scheduling approach. Moreover, com-
parison of the proposed MAPIO with the well-known PIO and APIO is provided
by open-loop and closed-loop simulation examples. Furthermore, the advantages of
using extended PIO (MAPIO) in comparison to the well-known PIO are investigated
with respect to reconstruction of a complex nonlinear unknown input. Therefore, a
clamped beam example is considered and reconstruction of complex nonlinear spring
behavior is performed to prove the performance and advantages of MAPIO. In both
open-loop and closed-loop simulation examples, the effect of additional measure-
ment noise is investigated to illustrate the benefits of using MAPIO with adaptive
high gain scheduling design.

The forth chapter focuses on a novel gain design approach of Proportional-Integral-
Observer for contact force estimation with fast and unknown dynamics. The estima-
tion of fast dynamical behavior requires high observer gains. The novel funnel PIO
approach takes advantage of the funnel idea to adjust the PIO gains according to
the actual situation and to maintain the estimation error in a prescribed funnel area.
The introduced approach shows significant advantages with respect to estimation of
system states and unknown inputs in the presence of measurement noise which is a
considerable property for practical application of high gain observers. Both simula-
tion and experimental results verify and validate the advantages of the introduced
funnel PIO compared to known high gain PIO. Stability of the proposed adaptive
algorithm with respect to switching PI-Observers is discussed based on Lyapunov
theory. Furthermore, the advantages of using proposed funnel PIO is illustrated in
closed-loop simulation for a MIMO system example.

The fifth chapter focuses on the design of observer-based robust nonlinear control
approaches for nonlinear systems affected by uncertainties including modeling error,
external disturbances, and measurement noise to assure suitable tracking perfor-
mance as well as robustness against unknown inputs. The task of system state and
unknown input estimation is performed by a high gain linear Proportional-Integral-
Observer. Therefore, input-output feedback linearization is used to linearize the
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nonlinear system model to be used for linear PI-Observer structure. Two robust
control approaches are considered in this chapter: (1) sliding mode control and (2)
backstepping control. Estimation of system states and unknown inputs are inte-
grated into the structure of robust nonlinear control approaches to achieve a control
law that provides desired performance for closed-loop system in the presence of un-
certainties, and compensates the effects of external disturbances, plant parameter
changes, unmodeled dynamics, measurement noise, etc. Additionally, parameter se-
lection of the proposed PIO-based controllers is elaborately considered by defining
a performance/energy criterion. Stability of the closed-loop system is established
using Lyapunov method in each cases. Furthermore, a complete robustness evalua-
tion considering different level of measurement noise, modeling errors, and external
disturbances is performed in this chapter. Experimental results using a hydraulic
differential cylinder test rig validate the advantages of introduced combined ap-
proach compare to the standard sliding mode controller (as a robust controller for
nonlinear processes subject to external disturbances and heavy model uncertain-
ties) and P-Controller (as a standard classical industrial approach for hydraulic
systems). Consequently, integration of unknown input observer estimation results
into the structure of robust control approaches leads to enhance the disturbance
attenuation and system performance robustness.

In the sixth chapter the summary and conclusion of the whole thesis are discussed.
Furthermore, final remarks and future works are outlined for the next steps.
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2 Unknown input observations: state-of-the-art

with special attention to the Proportional-Integral-

Observer

The contents, figures, and tables presented in this chapter are prepared for publica-
tion as a journal paper “Unknown input observations: state-of-the-art with special
attention to the Proportional-Integral-Observer” and published in the conference pa-
per “Proportional-Integral-Observer: A brief survey with special attention to the
actual methods using ACC benchmark” [BS15a].

2.1 Introduction and problem classification

Observers are mathematical or algorithmic expressions with dynamical behavior,
designed to combine system knowledge and measurements for reconstruction of ad-
ditional information related to assumed underlying dynamical models. Observers
constitute an important component module in the control and maintenance field
because of their ability to estimate non-measured states. Using sensors to measure
internal non-measurable modeled system states may be costly or unreliable, so al-
ternative solutions using observers are advantages. Besides the estimation of system
states, some observers are able to estimate unknown inputs affecting the system
dynamics such as disturbances. The new information obtained can be used for mon-
itoring and fault diagnosis tasks as well as advanced control purposes.
A general model for a linear time invariant system with additive unknown inputs
(disturbances, unmodeled dynamics, or other nonlinearites) can be written as

ẋ(t) = Ax(t) + Bu(t) +Nd(x, t) + Eg(x, t),
y(t) = Cx(t) +Du(t) + h(t),

(2.1)

with the state vector x(t) ∈ Rn, input vector u(t) ∈ Rm, measurement vector
y(t) ∈ Rr, unknown input d(x, t) ∈ Rl, measurement noise h(t) ∈ Rr, and unmod-
eled dynamics g(x, t) ∈ Rp. Here the unknown input d(x, t) and the unknown input
matrix N are used to model unknown inputs assumed as additive inputs. Matrices
A, B, C, and D are assumed as known and of appropriate dimensions n×n, n×m,
r × n, and r ×m, respectively.
Observers are widely used to estimate system states x(t) as x̂(t). The common
primary observers used to estimate system states are Kalman Filter [Kal60] and Lu-
enberger Observer [Lue64] in discrete and continuous time, respectively. Luenberger
observer is intensively used in the classical control field because of its capability to
estimate system states. It has a feedback loop to reconstruct system states based
on measured outputs.
On the other hand, in reality even if a system model is available, the system is
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affected by unknown inputs such as disturbances and noises, as well as model uncer-
tainties interpreted as additive unknown inputs. Later to improve the non-efficient
proportional observers to deal with unknown effects, new observers have been pro-
posed. The goal of designing such an observer is to observe unknown inputs, dis-
turbances, noise, uncertainties, nonlinearities, or modeling errors. Proportional-
Integral-Observer, known as PI-Observer, has been firstly introduced in [Woj78]
for SISO-linear time invariant systems by augmenting an integral term into the
structure of Luenberger Observer. Unlike proportional observer which uses only the
current information of the estimation error (e(t) = x(t)−x̂(t)), PI-Observer also uses
the past information of the estimation error by using the additional integral term.
Later PI-Observer was improved in [Kac79] and [SC85] for MIMO-linear systems
to improve the estimation robustness against step disturbance and variations in the
system parameters. The idea of using a linear model, described the disturbances
acting upon linear systems, is proposed in [Joh76]. The authors in [ML77] came
up with the conditions and proofs for modeling disturbances as a linear model with
respect to linear systems. Constructing a disturbance model for more general use
is proposed in [SYM95] to improve the observer performance. Based on the work
in [Mül88] the authors proposed a general linear model for disturbance while no
information about the unknown input is neither used for design nor for estimation.
The proposed extended observer scheme can estimate the additive unknown inputs
(as additive nonlinearities resulting from unmodelled dynamics) using certain as-
sumptions like observability of the nonlinear inputs from the output.
This chapter provides a comprehensive survey of state and unknown input observa-
tion. Up to now several surveys have been published with the contents of linear and
nonlinear observers. In [VS00] the author presents a view leading to a generalization
of state, disturbance, nonlinearity, coupling and fault observers with internal pro-
portional and integral feedback. Special attention is given to the essential features
of PI-Observer for reconstruction of control system and from the author so-called
effect system variables. The state observer and its order reduction in connection to
state feedback control design are briefly presented in [SS15]. The subsequent devel-
opment of new observer structures for disturbance estimation and fault detection
is pointed out by the authors. Furthermore, the problem of designing a decentral-
ized PI observer with prescribed degree of convergence for a set of interconnected
systems is reviewed by the authors. A survey of observers for nonlinear dynamical
systems is given in [KKXX13] including fundamental concepts of system observ-
ability defined by numerical model/differential equations with special attention to
optimal filters e.g. Kalman Filter and H∞ filter. In [CYGL16] the authors provide a
general overview of disturbance observer-based control (DOBC). This survey gives
a systematic summary on existing disturbance attenuation approaches e.g. active
disturbance rejection control (ADRC), disturbance accommodation control (DAC),
and composite hierarchical anti-disturbance control (CHADC).
The novelty of this section compared with previous publications and reviews is its
comprehensiveness and completeness. Unlike other surveys in the related field, in
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this contribution unknown input observation approaches (e.g. Proportional-Integral-
Observer, disturbance observer, unknown input observer, and perturbation observer)
with more elaboration on Proportional-Integral-Observer is taking into considera-
tion. Accordingly the focus of this section is on PI-Observer approach with respect to
structure, design goals and methods, and integration to different system structures.
High-gain approaches and actual advanced applications of PI-Observer are taking
into consideration to summarize different aspects in this field. A new perspective of
filters and observers in the form of predictor-corrector algorithm is pointed out to
inspire the mindset about observer/filter structure, so new ideas can be presented
based on the introduced structure. This section starts with some general and basic
observer/filter structures e.g. Luenberger observer and Kalman Filter to illustrate
the predictor-corrector scheme in both deterministic and stochastic cases. Further-
more, a precise definition of basic concepts is given to avoid the misuse of terms.
Finally a clear distinction between estimator, observer, and filter definitions is given.
It is worth mentioning that the main part of this survey is dedicated to PI-Observer
and its formulation for different system types as well as recent applications of this
observer.

2.2 Fundamental and definition of basic concepts

In different articles and books (e.g. [VS00,SS15,KKXX13]) various titles have been
used for defining the observation task. Different wording has been used over decades,
in different communities, and with different purposes. In literature the observation
task is differently denoted. For example “estimation” is used to define different
tasks such as variable/parameter estimation, system state estimation, disturbance
estimation, fault estimation, etc. This denotation maybe present the concept cor-
rectly but from a scientific and also from a pragmatic point of view is confusing and
not generalizable. However, using of terms seems to be very flexible in the discussed
area. In the following part a definition of three basic concepts is precisely brought
forward to avoid misunderstanding of contents. Furthermore, it allows redefinition
of the wording.

2.2.1 Estimator

According to [BSLK04]: “Estimation is the process of inferring the values of a quan-
tity of interest from indirect, inaccurate, and uncertain measurement. Estimation
can be viewed as a scheme for information extraction and enhancement: Based on
measurements, to maximize knowledge about a parameter, a state, a signal, an im-
age, and so on.”.
An estimator realizes the estimation of parameters using measured or empirical data
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which contains a random component. The parameters are related to the underly-
ing component of a system which indirectly affects the measurements. Consequently
the purpose of an estimator is to estimate the underlying parameters using measure-
ments as accurate as possible [Sen95,KSH00]. The estimation theory can be divided
into two categories [Sen95]: Parametric estimators and non-parametric estimators.
In the first category estimation is achieved based on knowledge or assumptions of
data and desired parameter such as probability density function. The second cate-
gory deals with data without additional assumptions and therefore is more significant
related to the robustness compared to the first category.
Estimators are widely used in the field of control theory particularly in the field
of adaptive and optimal control [Sim06]. Estimation of some or all of the state
components can be also achieved using some extended estimator schemes which are
commonly known as Kalman Filter or Kalman Estimator. The extended estimator
simultaneously estimates the state and underlying system parameters.

2.2.2 Observer

According to [Oga01]: “Estimation of unmeasurable state variables is commonly
called observation. A device (or a computer program) that estimates or observes the
state variables is called a state observer, or simply an observer.”
The purpose of an observer is to observe the state of system for monitoring and fault
detection task or other intentions. State observer is a system provides the internal
state observation by using the input and output of a real system. As example,
considering a general model for a linear time invariant system

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.2)

with the state vector x(t) ∈ Rn, input vector u(t) ∈ Rm, measurement vector
y(t) ∈ Rr, and matrices A, B, C, and D as known and of appropriate dimensions
n × n, n × m, r × n, and r × m, respectively. The task of state observer is to
reconstruct the system state x(t) as x̂(t) by using the input u(t), the output y(t),
and the system model (A,B,C,D matrices).
The state observer is computer-implemented in most cases and has many applica-
tions in control approaches especially in the field of supervision and control. Ob-
servers provide valuable information about the physical process in the supervision
task as well as improve the control performance by delivering required information
or increasing the quality of existing information for control.

2.2.3 Filter

According to [Jaz07]: “The problem of determining the state of a system from noisy
measurements is called filtering. It is of central importance in engineering, since it
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is required for the control of systems. Furthermore, a large class of (system) identi-
fication problems can be regarded as problems of filtering.”
A filter can be assumed as a process, device, or module which can remove or atten-
uate undesired components and features from a signal to achieve desired spectral
characteristics of the signal. Filtering process can be categorized in the signal pro-
cessing field [RGY78]. It can be considered as a process to eliminate some aspect of
a signal regarding the desired features. These aspects in most cases are considered
as interfering signals or noise. Filters can be classified in different ways such as
linear/nonlinear, analog/digital, discrete/continuous-time, passive/active, etc. One
of the most important filter structure in the field of control is Kalman Filter which
is detailed in the following section.

2.2.4 Kalman Filter and its extensions as an exception

According to [BW01]: “The Kalman filter is a set of mathematical equations that
provides an efficient computational (recursive) means to estimate the state of a pro-
cess, in a way that minimizes the mean of the squared error.”
Kalman filter is the optimal linear filter in sense of minimizing the variance estimate
of states with the assumptions that the system model perfectly matches the real sys-
tem, the entering noise is white (uncorrelated), and the covariances of the noise are
exactly known [AM12]. In other words, for systems fulfilling the requirements the
KF is the best choice. If the assumptions are not met, the Kalman filter is again
the optimal linear estimator in the sense that no other linear filter gives a smaller
variance on the estimation error. Kalman Filter is firstly introduced in [Kal60] to
formulate and solve the Wiener Filter problem which is proper for filtering, smooth-
ing, and prediction of wide-sense stationary signals. It is worth noting that Kalman
Filter in discrete or continuous form [BJ87] and its extensions [JU97] are introduced
as a fundamental algorithm to solve a broad range of estimation problems. Indeed
in [Wie49] the authors improved a research on the extrapolation, interpolation and
smoothing of stationary time series. In [Str59] the authors investigated the theory of
optimal nonlinear filtering of random functions by selecting the useful signals from
noise in nonlinear systems. Furthermore, in [Str60] the Markov process theory in
the theory of optimal nonlinear filtering is used. The authors in [Kal60] perused the
linear filtering and prediction problems and focused on solving the Wiener problem
from another point of view as mentioned before.
For linear well-defined system influenced by Gaussian noise (system/measurement
noise) a statistically optimal solution can be reached using Kalman Filter. The
algorithm is able to remove or attenuate the effects of system/measurement noise
(wk and vk) to reconstruct the state value xk from the real measurement zk. The
Kalman Filter assumes that the state at time step k is calculated from the previous
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state step xk−1 according to

xk = Axk−1 + Buk + wk−1,
zk = Hxk + vk,

(2.3)

with A, B, and H matrices which denote the available model and normally consid-
ered as constant matrices. It is a recursive algorithm which has the ability to infer the
desired parameters from indirect, inaccurate, and uncertain data affected by noise
or uncertainties fulfilling given statistical conditions. If system/measurement noise
(wk and vk) are not Gaussian, Kalman Filter is however the best linear estimator to
reconstruct the true state value xk with a random mean and standard deviation of
noise which minimizes the mean square error of the estimated states [Gre11,AM12].
It is named as “filter” due to the design realizing the “best” estimation of states
x̂k when the measured signals are noisy. In this sense the task of Kalman Filter is
“filtering out” the noise.
Consequently Kalman Filter, known also as linear quadratic estimator (LQE), is
generally used to estimate the unknown state variables. One of the most important
applications of Kalman Filter is utilization of noisy input/output data of a sys-
tem to optimal estimation of underlying system states. Because of this application
for estimation of system states, Kalman Filter can be considered also as an dis-
crete/continuous linear observer. Therefore Kalman Filter can be categorized in the
filter, observer, and estimator area simultaneously and for different purposes such
as state estimation, fault detection/diagnosis, etc. In [FS99] the authors proposed
a multihypothesis bank of Kalman filters to detect the size and location of damages
after identification using Hilbert transform.
Besides the estimation of system states new approaches based on Kalman Filter are
also able to estimate the unknown input in discrete time. In [GDM07,SLC15b] the
authors propose the unknown input filter design based on Kalman Filter when no
information on the unknown input is available and when partial information on the
inputs exists, respectively. In [SLC15a] the authors discuss the existence condition
and relationship of the proposed approaches in [GDM07,SLC15b] with the classical
Kalman filter. The domains and interferences of estimators, observers, and filters
are illustrated in Figure 2.1.

2.3 Predictor-corrector algorithm

The main idea of using predictor-corrector methods is combining explicit and im-
plicit techniques to achieve a suitable convergence performance [PFTV92]. It in-
volves a predictor step with an explicit method to obtain a rough approximation
as a first step. Afterward in the corrector step, an implicit method is performed
to refine the predicted value from the prediction step (often denoted as innovation,
which is based on measurements). The procedure of predictor-corrector is repeated
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Figure 2.1: Illustration of basic concepts domain and interference

within a time-discrete simulation framework. By suitable design of feedback gain
matrices, convergence of the error variance to a minimum can be ensured. Several
methods can be used in each prediction and correction steps but the sufficient and
straight-forward solution uses the simplest possible pair of methods e.g. the known
Heun’s method which contains of Euler method (explicit method) and the trape-
zoidal rule (implicit method) [SM03].
The strategy of predictor-corrector scheme is widely used in mathematics and par-
ticularly numerical analysis [Pre07]. Practically, the structure of observers can also
be considered as innovation of the predictor-corrector mechanism uses the discrep-
ancy between the system output as measurements and the observer output to refine
the estimation. Also here the feedback gain is designed so that the error dynamics
between the estimated x̂(k) and real x(k) value vanishes and the system describing
the error dynamics is asymptotic stable.
Indeed the strategy of predictor-corrector means that the observers (especially Kalman
Filter) incorporate feedback into the equations describing the time behavior of the
estimation. Therefore, predictor-corrector algorithm is capable to reconstruct the
system state and refine the convergence of solution. In the following part the ba-
sic predictor-corrector observation algorithms with the special attention to Kalman
Filter are investigated.

2.3.1 Deterministic/Luenburger Observer

Some control methods assume that the intended system states are available. How-
ever, in practical applications often only a few sensors could be used. Therefore,
implementation of some control methods is significantly limited by the number of
available measurements/sensors. To overcome this limitation Luenberger observer
is introduced in [Lue64] for the first time. Luenberger observer is a linear observer
used for reconstructing the system states by using measured inputs and outputs.
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Based on (2.2) the structure of Luenberger observer can be written as

˙̂x(t) = Ax̂(t) + L[y(t)− ŷ(t)] + Bu(t),
ŷ(t) = Cx̂(t) +Du(t),

(2.4)

with observer gain L, observer state x̂(t), and observer output ŷ(t). If the estima-
tion error known as observer error (e(t) = x̂(t)− x(t)) converges to zero when time
goes to infinity, the observer is called asymptotically stable. The error dynamics
of the Luenberger observer is described by ė(t) = (A − LC)e(t) with the initial
value e(0) = x̂(0)− x(0). The error dynamics is asymptotically stable if and only if
Re {λi} for all eigenvalues λi of matrix (A − LC) is less than zero. Consequently,
the dynamical behavior of observer can be regulated by adjusting the observer gain
L, if the system is observable.
An extension of Luenberger observer for nonlinear single-input single-output sys-
tems is introduced in [Zei87] with reference to the well-known extended Kalman
filter algorithm and based upon a local linearization around the reconstructed state.
This idea is based on the assignment of nonlinear eigenvalue problems without solv-
ing the nonlinear partial differential equations. Later extended Luenberger observer
for non-linear multivariable systems is introduced in [BZ88] using a transformation
into the nonlinear observer canonical form and an extended linearization approach.
This method also requires analytic calculations of derivatives and matrix inver-
sions. Further improvement is proposed in [CDMG93] as Luenberger-like observer
for nonlinear systems to improve the structure and performance of observation. The
authors illustrate that by using an appropriate Lyapunov-like equation to design the
observer gain, the state of nonlinear system can be asymptotically observed.

2.3.2 Stochastic/Kalman Filter

If the measurements contain statistical noise and other inaccuracies, a stochastic
filter/Kalman Filter can be applied to estimate the system states. As mentioned
in section 2.2.4, Kalman Filter is actually a set of mathematical equations which
is optimal in the sense of minimizing the estimation error covariance when some
presumed conditions are met. This filter/estimator firstly proposed in [Kal60] works
in a two-step process: prediction of actual state and error covariance, correction of
estimated state and error covariance.
Based on system model a prediction is firstly performed, then the correction part
is executed using a suitable designed gain known as Kalman gain. Based on the
formulation (2.3) first of all determination of required parameters (system noise
covariance Q and measurement noise covariance R) and initial values must be done.
The random variables wk and vk are assumed to be independent, white and with
normal probability distributions

p(w) ∼ N(0, Q),
p(v) ∼ N(0, R).

(2.5)
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In practice, the process and measurement noise covariance matrices might change
during the time, however in some issues they are assumed to be constant. There are
two sets of equations for prediction and correction process (Table. 2.1). The time
update projects the current state estimation ahead in time while the measurement
update adjusts the projected estimation by an actual measurement at that time.
Kalman filter solution is optimal (minimizes errors in some respect) if the following

Table 2.1: Kalman Filter prediction/correction procedure

Prediction (time update) Correction (measurement update)

(1) Project the state ahead
x̂−k = Ax̂k−1 + Buk

(2) Project the error covariance ahead
P−
k = APk−1A

T +Q

(1) Compute the Kalman gain
Kk = P−

k H
T (HP−

k H
T +R)−1

(2) Update estimate with measurement
x̂k = x̂−k +Kk(zk −Hx̂−k )

(3) Update the error covariance
Pk = (I −KkH)P−

k

conditions are satisfied: (1) The system model is precise, (2) system/measurement
noises are white noise, and (3) the covariance of noise are precisely known [MH12].
Under these conditions, there is a unique “best” estimation x̂k. Some conditions can
be relaxed e.g. if the Gaussian assumption is removed, the Kalman Filter is however
the best linear estimator minimizing the mean square error of the estimated states.
Extended Kalman Filter (EKF) has been introduced for nonlinear systems by lin-
earizing the estimation around the current estimation and using partial derivatives
of the system/measurement equation [Sor60,Cos94]. In the presence of strong non-
linearities, extended Kalman filter leads to poor estimation results because of prop-
agation of covariance from one measurement sample time to the next through the
linearization [JU97]. In other words using of Jacobians, representing all partial
derivatives of the nonlinear system (model), may lead to sub-optimal performance
and sometimes divergence of the extended Kalman Filter. Therefore Unscented
Kalman Filter (UKF) is introduced in [Cos94] to improve the estimation perfor-
mance as well as to remove the requirement of Jacobians calculation. The UKF
exactly addresses the problem of EKF by using a deterministic sampling approach.
The UKF approximates the state distribution by a GRV (Gaussian Random Vari-
able) as well as EKF, but it is represented by using a minimal set of carefully chosen
sample points. It is worth noting that the computational complexity of UKF and
EKF are of the same order.
The time-discrete formulation in combination with the predictor-corrector scheme
allows uncomplicated practical realization due to the recursive structure of imple-
mentation as a finite difference scheme. With respect to the goal of minimizing
the error covariance Pk = E[eke

T
k ], calculation of the Kalman gain Kk (also known

as blending factor) can be recursively realized using the finite difference descrip-
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tion [Bro83]. The equations of Kalman Filter (Table. 2.1) can be algebraically ma-
nipulated to several forms and consequently a new equation calculating the blend-
ing factor can be achieved. The final goal is to minimize the error covariance Pk.
Therefore Kalman gain is one of the particular and popular form of the predictor-
corrector strategy [BW01]. The process and measurement noise are assumed to
be independent (of each other), white, and normal distributed. In practice, the
process noise covariance and measurement noise covariance matrices can change at
each time step or measurement update. Nevertheless, according to [BW01] they are
assumed as constant values. The system matrix A and measurement matrix H in
(2.3) could/should be updated by the analysis of the measurements, so appears as
a function of time.
As an example of other design methods for blending factor the well-known H∞ filter
can be considered [LJ10]. Unlike the Kalman Filter which tries to gain the minimum
mean-square estimation error, H∞ filter tries to minimize the consequence of most
nonlinearities to increase the robustness. On the other side, H∞ filter can work with
deterministic systems and it is robust against variation of the system model. It pro-
vides a trade-off between mean-square-error and peak error performance criterion
to improve the system robustness. Therefore, it is also known as robust filter. Fur-
thermore some other methods by manipulating the algebraic equations of Kalman
Filter can be find in [UJDW00] and [Hab07]. In Table 2.2 a brief survey of world
wide principal observers/filters, their properties, and developers are presented.

2.4 Unknown input observation

In this section disturbance observers (DOB), unknown input observers (UIO), and
perturbation observers (PO) are analyzed due to their advantages in disturbance
observation and related use for fault detection and isolation.

2.4.1 Disturbance observer (DOB)

In some references disturbance observer is introduced as extended observer scheme
extending state observer by adding a disturbance model and describing the addi-
tional disturbing input [AM07,Dav72, Joh76]. In this case the extension is used to
model constant [AM07], sinusoidal, or polynomial effects [Dav72,Joh76] assumed as
additive known (modeled) inputs. Using of linear models for disturbances acting
upon linear systems is introduced in [Dav72] and [Joh76] by modeling the distur-
bance using a suitable signal process (i.e. the disturbance can be modeled by a
linear differential equations with constant coefficients driven by the difference be-
tween the tracking signal and the corresponding output of the controlled system)
with the purpose of disturbance accommodation. Subsequently, [ML77] improved
the proposed method by giving the conditions and proofs for modeling disturbances



16
C
h
ap

te
r
2.

U
n
k
n
ow

n
in
p
u
t
ob

se
rv
at
io
n
s:

st
at
e-
of
-t
h
e-
ar
t

w
it
h
sp
ec
ia
l
at
te
n
ti
on

to
th
e
P
ro
p
or
ti
on

al
-I
n
te
gr
al
-O

b
se
rv
er

Table 2.2: Survey of different observers/filters and their properties

Approach-Property
Developer (first

publication//name)

S
ta
te

e
st
im

a
ti
o
n

D
is
tu

rb
a
n
ce

e
st
im

a
ti
o
n

P
a
ra

m
e
te
r
e
st
im

a
ti
o
n

R
o
b
u
st
n
e
ss

p
e
rf
o
rm

a
n
ce

a
n
d

st
a
b
il
it
y
im

p
ro
v
e
m
e
n
t

L
in
e
a
r
o
b
se
rv

e
r

N
o
n
li
n
e
a
r
o
b
se
rv

e
r

H
ig
h

g
a
in

d
e
si
g
n

A
d
a
p
ti
v
e
st
ru

ct
u
re

R
e
q
u
ir
e
s
n
o
is
e

in
fo
rm

a
ti
o
n

R
e
q
u
ir
e
s
a
cc
u
ra

te
sy

st
e
m

m
o
d
e
l

B
a
se
d

o
n

d
is
tu

rb
a
n
ce

m
o
d
e
l

C
o
m
p
le
x
it
y

D
e
si
g
n

in
ti
m
e
d
o
m
a
in

D
e
si
g
n

in
fr
e
q
u
e
n
cy

d
o
m
a
in

D
e
si
g
n

w
it
h

st
a
n
d
a
rd

m
e
th

o
d
s

K
a
lm

a
n

F
il
te
r State estimation of

a system with white
and Gaussian noise

1960 Kalman x x x x x x x x x

L
u
e
n
b
e
rg

e
r

O
b
se
rv

e
r

State estimation of
a linear system

1964 Luenberger x x x x x

D
is
tu

rb
a
n
ce

O
b
se
rv

e
r

External disturbance
estimation

1972, Davison
1976, Johnson

x x x x x x x x x

P
I

O
b
se
rv

e
r State and unknown

input estimation
SISO

1978
Wojciechowski x x x x x x

MIMO
1979,Kaczorek
1985, Shafai
and Carroll

H
ig
h
-g
a
in

o
b
se
rv

e
r States and unknown

input estimation
with high gain

Since 1993
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as linear models for more general use that no information about the disturbance is
available. Most of the recently published articles define the disturbance observer in
frequency domain [LP00, KMO07], therefore, this section elaborates on frequency
domain.
The structure of DOB is illustrated in Figure 2.2 with the real control input and out-
put ref and c, respectively following the work in [SVD02]. The external disturbance
input is denoted by d and its estimated d̂, and the measurement noise is denoted
by w. In addition the real plant P and the inverse of nominal plant transformation
P−1
n are considered. The low pass filter Q is the key component of DOB added to

compensate the causality of the inverse model P−1
n with respect to relative degree

of the nominal plant. This issue should be considered in the utilization of DOB for
non-minimum-phase systems because the inverse of non-minimum-phase systems
leads to a non-causal system. According to [SVD02] the performance of disturbance
attenuation for systems described by a linear model relies on the numerator order of
Q filter as well as the robustness depends on the relative order and the denominator
order of Q filter (further details are given in [SVD02]) which can be designed as

Q(s) = ck−1(τs)
k−1+...+c0

(τs)l+al−1(τs)l−1+...+a1(τs)+a0
, (2.6)

where c0 = a0 and l − k + 1 ≥ r (relative degree of nominal plant r) so that the
transfer function Q(s)Pn(s)

−1 becomes proper. The constant design parameters ai
should be chosen such that the polynomial sl + al−1s

l−1 + ... + a0 is Hurwitz. The
positive filter constant τ determines the bandwidth of the Q filter. An actual de-
sign of Q filter for DOB is performed in [PLY+11] for moving target tracking of an
unmanned firearm robot.
Disturbance observer (DOB) operates as a filter in frequency domain to reduce the
effects of disturbances. According to [PLY+11] implementation of DOB in real-time
systems seems to be difficult because the plant model sometimes is not accurate
enough and the inverse of the plant model can not be achieved in some cases due to
a causality problem. However, by using a low pass filter Q and by considering the
difference between the real plant and the system model as unknown disturbance,
implementation of DOB could be successful. For example in [SVD02] a DOB-based
robot tracking controller with a new structure for designing of low pass filter is
proposed, which enables the utilization of DOB for non-minimum-phase systems.
Actually DOB endeavors to compensate the difference between the nominal model
output and the plant output affected by disturbances.
Estimation of unknown disturbances in addition to the system states is the key idea
of using disturbance observers. An actual utilization of DOB is given in [PLY+11] to
minimize the vibration of a moving object. A valuable work on relationship between
time domain (based on [Joh71]) and frequency domain (based on [SVD02]) distur-
bance observer is provided in [SCY16]. The authors concluded that the traditional
DOB in frequency domain [SVD02], using the low pass filter with unity gain, is able
to estimate the special kind of disturbances satisfying the matching condition (the
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disturbance affects the system in the same channel as the known input of the sys-
tem). From the other side the classical time domain DOB [Joh71] generates higher
order observer to deal with disturbances and to estimate the system states.

+

+

+

- +

+

+

-

d

c

w

d̂

ref

P

QP−1
nQ

Disturbance
observer

Figure 2.2: Block diagram of disturbance observer (redrawn from [PLY+11,SJK12])

2.4.2 Unknown input observer (UIO)

The term unknown input observer (UIO) is widely used in literature, especially in
the Fault Detection and Isolation field (FDI) [Ger98,PC97,FD97]. Concluding the
literature review and according to the assumptions to be made for the unmeasurable
(unknown) inputs, a distinction between two classes of UIO can be considered. In
the first category a-priori assumptions are made concerning the dynamical behavior
[Joh75,MH74], in the second class no assumptions about the unknown terms are
made [YW88,WWD75].
The system with additive unknown input can be described as

ẋ(t) = Ax(t) + Bu(t) + Ed(t),
y(t) = Cx(t),

(2.7)

with state vector x(t) ∈ Rn, output vector y(t) ∈ Rm, known input vector u(t) ∈ Rr,
and unknown input vector d(t) ∈ Rq. Matrices A, B, and C are known and of ap-
propriate dimensions. The following definition is used as a starting point of the
discussion [Che95].
Definition: “An observer is defined as an unknown input observer for the system
described by (2.7), if its state estimation error vector e(t) approaches zero asymptot-
ically, regardless of the presence of the unknown input (disturbance) in the system.”
Without loss of generality the unknown input distribution matrix E is assumed
as a full column rank matrix. Otherwise a rank decomposition procedure can be
considered as
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+

+

+

+
+

u(t) y(t)

d(t)

System

TB K H

∫

z(t) x̂(t)

F

Unknown input observer

Figure 2.3: Block diagram of unknown input observer, redrawn from [Che95]

Ed(t) = E1E2d(t), (2.8)

with full column rank matrix E1 and unknown input E2d(t) [Che95] illustrated in
Figure 2.3. Following [Che95] the structure of a full-order UIO can be described as

ż(t) = Fz(t) + TBu(t) +Ky(t),
x̂(t) = z(t) +Hy(t),

(2.9)

with estimated vector x̂(t) and full-order observer state z(t). Matrices F, T,K, and
H are design matrices to achieve unknown input decoupling. By applying (2.9) to
system (2.7) the estimation error

ė(t) = (A−HCA−K1C)e(t) + [F − (A−HCA−K1C)]
︸ ︷︷ ︸

D1

z(t)

+ [K2 − (A−HCA−K1C)H]
︸ ︷︷ ︸

D2

y(t) + [T − (I −HC)]B
︸ ︷︷ ︸

D3

u(t) + (HC − I)E
︸ ︷︷ ︸

D4

d(t),

(2.10)

with

K = K1 +K2, (2.11)

as the gain of observer can be obtained. When the observer is designed in such a
way that the following conditions are established

D1 : F = A−HCA−K1C,
D1, D2 : K2 = FH,
D3 : T = I −HC,
D4 : (HC − I)E = 0,

(2.12)
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then the state estimation error is achieved as

ė(t) = Fe(t). (2.13)

By choosing the appropriate stable eigenvalue for matrix F the estimation error e(t)
will be asymptotically stable, i.e. x̂ → x. Designing of UIO means to solve (2.11)
and (2.12) while matrix F has to be appropriately chosen including the stability of
the error dynamics (2.13) [Che95].
According to [Che95] the necessary and sufficient conditions for existence of the UIO
(2.9) are considered as the following.

- rank(CE) = rank(E)

- Pair (C,A1) is a detectable pair, where A1 = A− E[(CE)TCE]−1(CE)TCA

The proof is given in [Che95] using a special solution for H as H∗

H∗ = E[(CE)TCE]−1(CE)T . (2.14)

According to the first condition, the maximum number of disturbances (number of
independent columns of matrix E) should be less than the number of independent
measurements (number of independent rows of matrix C). Similarly, according
to the second condition the transmission zeros from the unknown inputs to the
measurements should be stable. Accordingly, the matrix K1 has to be designed
to stabilize the matrix F and to design the whole structure of UIO which is also
perused in [Che95].

2.4.3 Perturbation observer (PO)

According to [KC04] perturbation denotes lumped uncertainty, defined as one or
several sources of parametric and/or unmodelled dynamics uncertainty and affects
the nominal model of a system used for designing a controller. Perturbation ob-
server (PO) is adjusted with the purpose of estimating the perturbation adaptively.
Disturbance observer introduced in section 2.4.1 is a special kind of PO in frequency
domain. The disturbance observer (DOB) and Time-Delayed Controller (TDC) are
the representative formulation of PO in frequency domain and time-domain, respec-
tively. By considering a plant model as

ẋ(t) = a(x, t) + b(x, t)(u+ ω), (2.15)

when x, a, b ∈ Rn×1, perturbation ω denotes the lumped matched uncertainty.
Therefore in the case of single-input system, the perturbation can be calculated
as

ω(t) = b+(x, t)(ẋ(t)− a(x, t))− u(t), (2.16)
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Table 2.3: Survey of unknown input observation techniques and their properties
System/disturbance description
and estimated signal

Input/Output behavior of observer Properties
Some recent
applications

Disturbance observer
(DOB)

y(s) = Pn(s)(u(s) + d(s))

d̂(s) = [P−1
n (s)ŷ(s)− u(s)]Q(s)

{u(s), y(s), Pn(s)} →
{

d̂(s)
}

- Able to estimate disturbances,
no state estimation
- Formulation in frequency domain
- Able to estimate external disturbances

[LHCT17,CLTT17,NSL+17,LCTT17]

Unknown input observer
(UIO)

ẋ(t) = Ax(t) + Bu(t) + Ed(t)
y(t) = Cx(t)

ż(t) = Fz(t) + TBu(t) +Ky(t)
x̂(t) = z(t) +Hy(t)

{u(t), y(t), A,B,C,E} →
{

d̂(t), x̂(t)
}

- Able to estimate disturbances
and system states
- Formulation in time domain
- Able to estimate external disturbances

[LWA+17,GLC16,ZJC16,ZLJ17]

Perturbation observer
(PO)

T
im

e
d
om

ai
n
(T

D
C
)

ẋ(t) = a(x, t) + b(x, t)(u+ ω)
ω(t) = b+(x, t)(ẋ(t)− a(x, t))− u(t)
ω̂(t) = b+(x, t− h)(ẋ(t− h)− a(x, t− h))− u(t− h)

{x, ẋ, u, a, b} → {ω̂(t)} - General form of DOB
- Formulation in frequency/time domain
- Able to estimate external and internal
(unmodeled plant variations) disturbances

[AGZM17,YJZ+16,YHH+17,YSS+16]

F
re
q
u
en
cy

d
om

ai
n
(D

O
B
)

y(s) = Pn(s)(u(s) + ω(s))
ω(s) = P−1

n (s)y(s)− u(s)
ω̂(s) = Q(s)(P−1

n (s)y(s)− u(s))
{u, y, Pn} → {ω̂(s)}

D
is
cr
et
e
ti
m
e
(i
n
cl
u
d
in
g
T
D
C

&
D
O
B
)

x(k + 1) = Ax(k) + B(u(k) + ω(k))
ωeq(x, u, k) = B+(x(k + 1)− Ax(k))− u(k)
ω̂(k) = Qωeq(x, u, k − 1)

{x(k), x(k − 1), u(k), A,B} → {ω̂(k)}

PI-Observer
(PIO)

ẋ(t) = Ax(t) + Bu(t) +Nd(x, t) + Eg(x, t)
y(t) = Cx(t) + h(t)

˙̂x(t) = Ax̂(t) +NHv̂(t) + Bu(t) + L1(y(t)− ŷ(t))
˙̂v(t) = V v̂(t) + L2(y(t)− ŷ(t))

d̂(t) = Hv̂(t)
ŷ(t) = Cx̂(t)

{u(t), y(t), A,B,C} →
{

d̂(t), x̂(t)
}

- Able to estimate disturbances
and system states
- Formulation in time domain
- Able to estimate external and internal
(unmodeled plant variations) disturbances

[KS17,YCKW17,RHRB17,NNGR17]
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Figure 2.4: Block diagram of Discrete perturbation observer (redrawn from [KC04])

with pseudo-inverse b+(x, t). By assuming smooth change in the perturbation vari-
ation, TDC perturbation estimation can be calculated as

ω̂(t) = b+(x, t− h)(ẋ(t− h)− a(x, t− h))− u(t− h), (2.17)

with sampling time h. Similarly, if the relation between system input and output is
available as

y(s) = Pn(s)(u(s) + ω(s)), (2.18)

the perturbation estimation can be achieved in the frequency domain as

ω(s) = P−1
n (s)y(s)− u(s). (2.19)

By using a low pass filter Q(s) for decreasing the high frequency noise the typical
form of DOB can be achieved similar to section 2.4.1

ω̂(s) = Q(s)(P−1
n (s)y(s)− u(s)). (2.20)

As illustrated in (2.17) TDC is a mapping of (x, ẋ, u) → ω̂ when the full state is
available while DOB is a mapping of (u, y) → ω̂. In this section the perturbation
observer is introduced as a discrete-time version [KC04] which includes TDC and
DOB simultaneously. The discrete state space model of a system can be considered
as

x(k + 1) = Arx(k) + Bru(k) + Bω(f(k) + d(k)), (2.21)

where f(k) and d(k) denote the unmodeled dynamics and external disturbance,
respectively. By considering the additive parameter perturbation Ar = A+∆A and
Br = B +∆B the following plant model

x(k + 1) = Ax(k) + Bu(k) + ∆Ax(k) + ∆Bu(k) + Bω(f(k) + d(k))
︸ ︷︷ ︸

unknown vectors

,
(2.22)
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with x ∈ Rn×1, {A,∆A} ∈ Rn×n, {B,∆B,Bω} ∈ Rn×r, and {u, f, d} ∈ Rr×1 can be
concluded. By considering the following assumptions (referring to [KC04])
- The pairs (Ar, Br) and (A,B) are controllable.
- The matching condition is satisfied for the unknown vector in (2.22), so the per-
turbation enters the plant with the same input distribution matrix b(x, t) as the
control input u(t), so ∆Ax(k) + ∆Bu(k) + Bω(f(k) + d(k)) = Bω(k).
The plant model can be rewritten as

x(k + 1) = Ax(k) + B(u(k) + ω(k)), (2.23)

with the perturbation vector ω ∈ Rr×1

ω(k) = B+(∆Ax(k) + ∆Bu(k)) +B+Bω(f(k) + d(k)). (2.24)

By taking the pseudo-inverse of B matrix an equivalent quantity to the perturbation
can be calculated as

ωeq(x, u, k) = B+(x(k + 1)− Ax(k))− u(k). (2.25)

Finally a causal discrete perturbation observer can be considered as

ω̂(k) = ωeq(x, u, k − 1). (2.26)

In reality implementation of (2.25) is difficult due to pseudo-inverse B+. To avoid
high frequency noise a low-pass filter Q is added to (2.26) and is modified as

ω̂(k) = Qωeq(x, u, k − 1), (2.27)

which has to be properly designed. The block diagram of the perturbation observer
is illustrated in Figure 2.4. More information about the analysis of robustness and
sensitivity is provided in [KC04]. The low-pass filter Q clarifies the stability, robust-
ness, and sensitivity of the perturbation observer combined with a discrete controller
regarding the change of filter parameters e.g. numerator order, denominator order,
and cut-off frequency.
Comparison of unknown input observation techniques are detailed in Table 2.3 by
considering the system description, input/output signals and matrices, general prop-
erties, and the recent main applications of each approach.

2.5 Proportional-Integral-Observer (PI-Observer)

2.6 PI-Observer formulation for different type of systems

According to section 2.3.1 the Luenberger observer is a linear observer used for
reconstruction of system states by using the measured inputs and outputs. This
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kind of observer has no ability to estimate the unknown inputs affecting the system.
In the presence of unknown input the Proportional-Integral-Observer (PI-Observer)
can be used to estimate uncertainties, disturbances, and modeling errors (considered
as an unknown input package affects the system). The PI-Observer can be used in
combination with linear and nonlinear control methods to improve the robustness
against unknown inputs affecting the system. In this section PI-Observer design for
different type of systems is investigated to realize the formulation of PI-Observer for
different system structures.

2.6.1 Linear system

A general model for a linear time invariant system with unknown inputs (distur-
bances, unmodeled dynamics, or other nonlinearites) is given as

ẋ(t) = Ax(t) + Bu(t) +Nd(x, t) + Eg(x, t),
y(t) = Cx(t) + h(t),

(2.28)

with the state vector x(t) ∈ Rn, input vector u(t) ∈ Rm, measurement vector y(t) ∈
Rr, unknown input d(x, t) ∈ Rl, measurement noise h(t) ∈ Rr, and unmodeled
dynamics g(x, t) ∈ Rp. Here the unknown input d(x, t) and the input matrix N are
used to model the additive unknown inputs. Matrices A, B, and C are assumed
as known and of appropriate dimensions. The following assumptions are considered
for the unknown input d(x, t).

- d(x, t) is as a bounded signal |d(x, t)| ≤ α.

- d(x, t) has small variation rate |d(x, t2)− d(x, t1)| ≤ β for ∆t = t2 − t1 → 0.

The unknown input d(x, t) can be assumed as a function of time d(t)1. One approach
proposed in [SYM95] to approximate the additive acting dynamics d(t) uses the
approximation

v̇ = V v(t),
d(t) ≈ Hv(t),

(2.29)

in which V acts as a linear model describing the disturbance behavior. By consider-
ing the system states and unknown inputs as the states of an extended system, the

1Note that the unknown input d is allowed to be a function of known inputs u(t) and states
x(t) as d(x, u, t). Due to the fact that no information of the dynamical behavior is available, it is
written as d(t) without loss of generality.
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extended state space representation can be written as

[
ẋ(t)
v̇(t)

]

=

[
A NH
0 V

]

︸ ︷︷ ︸

Ae

[
x(t)
v(t)

]

+

[
B
0

]

︸︷︷︸

Be

u(t) +

[
Eg(t)
0

]

,

y(t) =
[
C 0

]

︸ ︷︷ ︸

Ce

[
x(t)
v(t)

]

.

(2.30)

Matrices H and V are used to calibrate the input’s relation between the real system
and the model H as well as the disturbance dynamic model (2.29). If the dynamic of
the uncertainty is known, an appropriate model, respectively appropriate matrices
V and H can be built up [Joh76,HW85]. For example in [Joh68] constant distur-
bance is considered. In [Joh71] determination of V and H is examined for a scalar
uncertainty d(t) assumed to be composed of known Laplace-transformable functions
with unknown coefficients. In [Dav72] a disturbance with the states described by a
differential equation is taking into consideration. According to [Joh71], sufficiently
slowly varying disturbances can be assumed as piecewise constant. As introduced
in [SYM95], an adequate choice is V = 0 or V ⇒ 0 and H = I. The task of a
high-gain observer-based scheme is to approximate step-wise the unknown input as
constant (it is clear that in the reality the disturbance is not always a constant value
and this assumption is considered to simplify the observer design procedure). The
system states x̂ and unknown inputs v̂ using PI-Observer are estimated as

[
˙̂x(t)
˙̂v(t)

]

=

[
A N
0 0

] [
x̂(t)
v̂(t)

]

+

[
B
0

]

u(t) +

[
L1

L2

]

︸ ︷︷ ︸

L

(y(t)− ŷ(t)),

ŷ(t) =
[
C 0

]
[
x̂(t)
v̂(t)

]

.

(2.31)

The matrix L in (2.31) has to be designed as the observer gain (containing the
proportional gain and the integral gain). The principal convergence behavior of PI-
observer scheme is discussed in [SYM95] and the combination of PI-Observers as a
suitably guided observer bank in [LS12].
A necessary requirement for PI-Observer design is the full observability of the ex-
tended system (2.30). The condition

rank





λiIn − A −N
0 λiIr
C 0



 = n+ r, (2.32)

has to be fulfilled for all λi of Ae. Here n and r denote the number of states and
number of unknown inputs, respectively. This condition leads to the fact that the
dimension of unknown input vector n(t) should be equal or less than the number of
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independent measurements (proof is provided in [ML77]).
The error dynamics of the extended system (2.30) and (2.31) can be written as

[
ėest(t)

ḟe(t)

]

=

[
A− L1C N
−L2C 0

]

︸ ︷︷ ︸

Ae,obs

[
eest(t)
fe(t)

]

−
[
Eg(x, t)

ḋ(x, t)

]

+

[
L1

L2

]

︸ ︷︷ ︸

L

h(t),
(2.33)

with eest(t) = x̂(t)−x(t) and fe(t) = d̂(t)−d(x, t). To converge the estimation error
the condition

CAk−1N = 0, with k = 2, ..., n, (2.34)

has to be fulfilled [MB00].
For investigation of PI-Observer stability in time domain the estimation error of state
and unknown input are considered according to (2.33) and the observer gain L has
to be designed to achieve eest(t) → 0 and fe(t) → 0. In [MB00] sufficient conditions

for asymptotic stability of PI-Observer in time domain are given as
∥
∥
∥ḋ

∥
∥
∥ ≤ g and

related to the high gains L1 → aL10, L2 → aL20, a → ∞. Furthermore, for a given
bound of

∥
∥eAe−LCe

∥
∥ ≤ ce−bt, with c, b > 0, (2.35)

the errors eest(t) and fe(t) are bounded by

∥
∥
∥
∥

[
eest(t)
fe(t)

]∥
∥
∥
∥
≤ ce−bt

∥
∥
∥
∥

[
eest0
fe0

]∥
∥
∥
∥
+
c

b
(1− e−bt)

∥
∥
∥ḋ

∥
∥
∥ and (2.36)

‖fe‖ ≤ c

b
g, for t→ ∞. (2.37)

2.6.2 Linear system with delay

Time-delay systems are more complex in stability analysis and observer design than
regular systems [Nic01]. With this interpretation, designing of PI-Observer for time-
delay systems is a challenging point compared to the normal linear/nonlinear sys-
tems. Designing an asymptotic observer for this type of systems is elaborated by
some authors such as [CS06] and later in [SSS08]. In this section a formulation
of PI-Observer integrated with a time-delay system is perused based on the work
in [SSS09]. A general time-delay system can be described as

ẋ(t) = A0x(t) + A1x(t− τ) + B0u(t) + B1u(t− τ) + Ed(t),
y(t) = C0x(t) + C1x(t− τ) + Fd(t),
x(t) = φ(t), t ∈ [−τ, 0],

(2.38)
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with the state variable x(t) ∈ Rn, input variable u(t) ∈ Rm, output variable y(t) ∈
Rp, disturbance vector d(t) ∈ Rq, and continuous initial value function vector φ(t) ∈
C[−τ ; 0]. A constant known time-delay duration can be assumed as 0 ≤ τ < ∞.
In (2.38) matrices E and F contain some uncertainties or modeling errors. The
extended system, comprises the linear time-delay system and a PI-Observer, can be
written as

˙̂x(t) = A0x̂(t) + A1x̂(t− τ) + B0u(t) + B1u(t− τ)
−B0w(t)− B1w(t− τ) + Lp[y(t)− C0x̂(t)− C1x̂(t− τ)],

ẇ(t) = Li[y(t)− C0ẋ(t)− C1ẋ(t− τ)] + w(t) + w(t− τ),
(2.39)

with state estimation x̂(t) ∈ Rn, proportional and integral gain Lp and Li respec-
tively, which can be designed based on several designing methods. By considering
the estimation error e(t) = x(t)− x̂(t) the error dynamic is calculated as

ė(t) = (A0 − LpC0)e(t) + (A1 − LpC1)e(t− τ)
+B0w(t) + B1w(t− τ) + (E − LpF )d(t)

ẇ(t) = LiC0e(t) + LiC1e(t− τ) + w(t) + w(t− τ)− LiFd(t).
(2.40)

The proof of asymptotically stability as well as generalized algorithm for multi-delay
systems is provided also in [SSS09].

2.6.3 Nonlinear system

Estimation of unknown inputs with the purpose of control is known as disturbance
observer-based control (DOBC) method which has been developed and implemented
for linear system in two past decays [NOM87]. When a nonlinear system with un-
known inputs should be controlled, the challenging points are analysis and design
of a complex controller containing a nonlinear control and a nonlinear disturbance
observer. Sliding model-based nonlinear disturbance observer or Lyapunov-based
disturbance observer [CBGO00] have been introduced as alternative solutions. On
the other hand well-known linear PI-Observer can be extended to nonlinear struc-
tures to be used in combination with nonlinear systems. Based on the proposed
structure in [Che04], the class of nonlinear system to be mentioned is defined as

ẋ(t) = f(x(t)) + g1(x(t))u+ g2(x(t))d(t),
y(t) = h(x(t)),

(2.41)

with x(t) ∈ Rn as state, u(t) ∈ R as input, and d ∈ R as unknown input. Nonlinear
functions f(x), g1(x), g2(x) are assumed as smooth functions in terms of x. Fur-
thermore it is assumed that the dynamics of the unknown input or disturbance can
be approximated as linear system, described by

ξ̇ = Aξ,
d = Cξ,

(2.42)



28
Chapter 2. Unknown input observations: state-of-the-art

with special attention to the Proportional-Integral-Observer

with A and C matrices which represent the disturbance model and are defined based
on the disturbance information. The observer structure to estimate unknown inputs
acting to the system can be assumed as

ż(t) = (A− l(x)g2(x)C)z + Ap(x)− l(x)(g2(x)Cp(x) + f(x) + g1(x)u),

ξ̂ = z + p(x),

d̂ = Cξ̂.

(2.43)

Here l(x) is a nonlinear gain function and z ∈ Rm is considered as the internal state
variable. Nonlinear function p(x) ∈ Rm should be designed (design method provided
in [Che04]). The nonlinear observer gain l(x) can be calculated as

l(x) = ∂p(x)
∂x

. (2.44)

The disturbance observer (2.43) for considered system (2.41) affected by disturbance
(2.42) can exponentially track the disturbance by choosing a suitable nonlinear gain
function l(x) such that

ė(t) = (A− l(x)g2(x)C)e(t), (2.45)

with estimation error

e(t) = ξ − ξ̂, (2.46)

is exponentially stable. The introduced method is proposed in [Che04] with the
proof of global exponential stability of the proposed nonlinear observer scheme.

2.6.4 Nonlinear system modeled by a multiple model approach

A multiple model approach can be used to model the complex nonlinear systems
for analysis, control, and observer design purposes. Decomposition of the operat-
ing space into finite operating zones using multiple model approach provides the
advantage of defining finite simple/linear submodels. It is worth noting that using
of multiple model approach is appealing because of its intrinsic simplicity to model
the complex nonlinear systems [NBC95]. On the other hand there are parameter
uncertainties can be assumed to be norm bounded but with unknown time-varying
behavior. Therefore, integration of PI-Observer into the structure of multiple model
system can be realized. For the class of uncertain and nonlinear system to be de-
scribed using a multiple model approach it is assumed that the i-th submodel can
be written as [OMRM08]

ẋi(t) = (Ai +∆Ai)xi(t) + (Bi +∆Bi)u(t) +Diw(t),
yi(t) = Cixi(t),

y(t) =
∑L

i=1 µi(ξ(t))yi(t) +Ww(t),
(2.47)
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with the state vector xi ∈ Rni and output yi ∈ Rp for ith submodel, input u ∈ Rm,
output y ∈ Rp, and unknown input/disturbance w ∈ Rr. The matrices Ai, Bi, Ci,
Di, and W are known and of appropriate dimensions. The parametric uncertainties
are denoted by ∆Ai and ∆Bi. The decision variable ξ(t) is assumed to be known.
The contribution of submodels are quantified using the weighting function µi(ξ(t))
which satisfies the condition

∑L
i=1 µi(ξ(t)) = 1,

0 ≤ µi(ξ(t)) ≤ 1.
(2.48)

The decoupled multiple model (3.12) can be rewritten in the following form proposed
in [OMRM08].

ẋ(t) = (Ã+∆Ã)x(t) + (B̃ +∆B̃)u(t) + D̃w,

ż(t) = C̃(t)x(t) +Ww(t),

y(t) = C̃(t)x(t) +Ww(t),

(2.49)

with

Ã = diag {A1 ... Ai ...AL} , B̃ =
[
BT

1 ... BT
i ...BT

L

]T
,

D̃ =
[
DT

1 ... DT
i ...D

T
L

]T
, C̃(t) =

∑L
i=1 µ(t)C̃i, C̃i = [0 ... Ci ...0] ,

(2.50)

and with the supplementary variable

z(t) =
∫ t

0
y(ξ)dξ, (2.51)

which is needed for designing of PI-Observer. The multiple model (2.49) can be
changed to the following format [OMRM08]

ẋa(t) = (Ãa(t) + C̄1∆ÃC̄
T
1 )xa(t) + C̄1(B̃ +∆B̃)u(t) + D̃aw(t),

y(t) = C̃(t)C̄T
1 xa(t) +Ww(t),

z(t) = C̄T
2 xa(t),

(2.52)

with

xa(t) =

[
x(t)
z(t)

]

, Ãa(t) =

[
Ã 0

C̃(t) 0

]

,

D̃a =

[
D̃
W

]

, C̄1 =
[
I 0

]T
, C̄2 =

[
I 0

]T
.

(2.53)

Based on the augmented decoupled multiple model defined in (2.52) the structure
of PI-Observer can be defined as [HG05]

˙̂x(t) = Ãa(t)x̂a(t) + C̄1B̃u(t) +KP (y(t)− ŷ(t)) +KI(z(t)− ẑ(t)),

ŷ(t) = C̃(t)C̄T
1 x̂a(t),

ẑ(t) = C̄T
2 x̂a(t),

(2.54)
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with gain matrices Kp and KI to be designed. The error dynamics can be calculated
as

ėa(t) = (Ãa(t)−KPC(t)C̄
T
1 −KIC̄

T
2 )ea(t)

+C̄1∆Ãx(t) + C̄1∆B̃u(t) + (D̃a −KPW )w(t),
(2.55)

with ea(t) = xa(t)− x̂a(t) as the state estimation error. The stability of PI-Observer
estimation can be investigated by considering two assumptions [OMRM08]. At
first the considered multiple model (2.49) with uncertain parts is assumed to be
stable. Secondly, the input energy and the uncertainties are considered with bounded
energy signals (i.e. ‖u(t)‖22 < ∞ and ‖w(t)‖22 < ∞). Based on these assumptions
the error dynamics is stable if KP and KI are suitably chosen so that the term
(Ãa(t)−KPC(t)C̄

T
1 −KIC̄

T
2 ) is stable. Therefore by designing suitable gain matrices

KI and KP the influence of [wT (t) uT (T )] on the estimation error is eliminated and
the estimation error ea(t) remains in a bounded area for any bounded uncertainties
(‖w(t)‖22 <∞).

2.6.5 Bilinear system (as a specific class of nonlinear system)

Bilinear systems are highly regarded because of their special importance in the
nuclear reactor, ecological, and biological systems, as well as in heat exchangers.
Bilinear systems can be classified between linear and nonlinear systems [Kha96].
The observability of bilinear systems can be affected by system inputs. Therefore
designing an observer for bilinear systems is more difficult than for linear systems
[Moh91]. The authors in [YS97] proposed a disturbance decoupled observer for
bilinear systems based on the concept of decoupling estimation error from the input.
The authors in [SC12] have proposed a method to construct the PI-Observer for
bilinear systems based on Lyapunov stability. A general model of bilinear systems
can be assumed as

ẋ = Ax+Bu+
∑m

i=1D
iuix+ Ew,

y = Cx,
(2.56)

with the states x ∈ Rn, the inputs u ∈ Rm, the unknown constant disturbance
vector w ∈ Rq, the outputs y ∈ Rp, and Di as a constant matrix of appropriate
dimension. The known and constant matrices A, B, C, and E are considered with
the appropriate dimensions. The structure of PI-Observer to reconstruct the system
states and unknown input is defined as

˙̂x = Ax̂+ Bu+
∑m

i=1D
iuix̂+ Eŵ +Kp(y − Cx̂),

˙̂w = KI(y − Cx̂).
(2.57)

Comparison of (2.57) with the PI-Observer for linear system illustrates that PI-
Observer for bilinear systems affected by the term

∑m
i=1D

iuix̂ which makes the
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design of PI-Observer more complex. Based on (2.57) the error dynamics of esti-
mated states and disturbance are obtained as

ė = (A−KpC +
∑m

i=1D
iui)e+ Ed,

ḋ = −KICe,
(2.58)

where e and d denote the state estimation error and disturbance estimation error,
respectively. The additional term

∑m
i=1D

iui (3.13) can be interpreted as depen-
dency of the state estimation errors to the system inputs. In [SC12] an additional
constraint on the input vector u is proposed which augments a condition for exis-
tence of PI-Observer. For an observable bilinear system (3.9) with initial condition
x0(t), according to [SC12] PI-Observer can be used to estimate the system state x(t)
and unknown input w if the condition

∑m
i=1D

iui <
λmin(Q)
2λmax(P )

, (2.59)

is satisfied when for any Q > 0 the positive definite solution P is achieved from

ATv P + PAv = −Q,
Av = Ax −KxCx, Ax =

[
A E
0 0

]

, Kx =

[
Kp

KI

]

, Cx =
[
C 0

]
.

(2.60)

2.7 High gain scheduled PI-Observer

Proportional-Integral-Observer can be used either to improve the accuracy of steady-
state estimation or to enhance the estimation robustness in the presence of unknown
inputs. Based on literature, PI-Observer can be used for various purposes such as

• Improving the stability margin in Loop Transfer Recovery (LTR) design with
the especial attention to time recovery effect of PI-Observer [BS90]

• Identifying and estimating of system nonlinearities and model uncertainties
assumed as additive nonlinear input [SYM95]

• Fault Detection and Isolation (FDI) for both sensors and/or actuators [NSS97]

• Removing or attenuation of disturbance in control loops [GS11]

• State estimation with the purpose of robust control of nonlinear I/O-linearizable
system [LS14]

On the other hand, in the past half century several design methods for different types
of system (linear, nonlinear, bilinear, etc.) and with different purposes have been
proposed. For instance Linear Quadratic Regulator (LQR) method [SYM95] and
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eigenstructure assignment design [DLT01] are proposed to estimate the states and
system nonlinearities using the weighting matrices for suitable scaling of high gains.
H-infinity norm minimization method has been proposed in [SPN02] to design the
PI-Observer gain with the purpose of disturbance attenuation and fault detection.
Linear Matrix Inequality-based (LMI) robust design assuming convex bounded un-
certainties, known as convex optimization method, has been proposed to improve
the robustness against system nonlinearities and model uncertainties [JHH08].
Increasing the gain of PI-Observer will improve the estimation performance [SYM95].
In spite of improvement, to mitigate large overshooting behavior and to reduce influ-
ence from measurement noise and unmodeled dynamics, high-gain observers are usu-
ally prevented. Therefore, in recent works providing an adaptive algorithm to define
the suitable gains regarding the current influence from different aspects is consid-
ered. An extension in [LS12] introduced as Advanced PI-Observer (API-Observer),
adapts the gain design based on the actual performance. Online adaption of observer
gain is embedded in the numerical integration procedure. It contains three paral-
lel PI-Observers with different gains to schedule the ‘relative optimal gain’. A cost
function is defined so that the estimation performance and the related energy can be
evaluated. Therefore the introduced algorithm searches between limited number of
gains to find the relative optimal one. In consequence the performance is adequately
improved compare to PI-Observer and especially in the presence of noise.
To achieve an absolute optimal gain which is the best possible gain with respect to
criterion evaluated at each step of numerical integration procedure, Modified API-
Observer (MAPI-Observer) has been proposed in [BS15a]. Unlike API-Observer,
MAPI-Observer attempts to find the ‘absolute optimal gain’ within a suitable de-
fined continuous interval of gain options and not only between a few limited ones.
Besides, improvement of observer efficiency by performing a suitable gain at the
current integration step can be achieved using MAPI-Observer approach. Therefore
MAPI-Observer can be considered as a modified version of PI-Observer by applying
adaptive gains in combination with an observer bank (firstly introduced in [LS12]).
In addition to the approach introduced in [LS12] the MAPI-Observer approach com-
bines the adaption of gains with the integration of the observer scheme (more detail
is given in chapter 3).

2.8 Actual advanced applications using PI-Observer

2.8.1 Advantages and disadvantages of PI-Observer

Along the importance of control techniques, observers are of particular interest in
recent researches due to their role in realizing control. Based on the evidence in
literature, PI-Observer is regarded as one of the most admissible approaches in the
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field of control and unknown input estimation. It is worth noting that PI-Observer-
based control and PI-Observer-based fault diagnosis are still current key research
areas. The superiority of using PI-Observer approach can be summarized as follows.

• Full order easy to design linear observer scheme

• Ability to estimate the system states and unknown inputs simultaneously un-
like disturbance observers or state observers

• Robust approach in the presence of unknown inputs compared with some other
methods such as Luenberger observer approach

• Simple linear structure compared with nonlinear methods with the same func-
tionality

• No assumptions with respect to dynamics of the disturbances are required.

• No information about the system/measurement noise are assumed unlike Kalman
Filter and its extensions.

On the other hand, PI-Observer approach also has some disadvantages such as

• The number of independent disturbances to be considered must be smaller
than the number of independent outputs/measurements available.

• The location that the unknown inputs affect the system is assumed as known.

• A nominal linear state space model of the system should be available (for the
most of observers is usually required).

• Generally it can cope with slowly-varying/piecewise-constant disturbances,
high-gain design is required in the case of wide-varying disturbances.

Recent main applications of PI-Observer (since 2008) approach are briefly summa-
rized in Figure 2.5. As illustrated the main applications can be divided into four
main categories: (1) fault detection, (2) estimation, (3) synchronization, and (4)
control.
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Fault detection Synchronization

Estimation Control

- Monitoring sensors
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to plant modeling errors

PI-Observer

[Theilliol et al., 2008], [Hamdi et al., 2012],
[Aguilera-Gonzalez et al., 2012], [Gao et al., 2015]

[Bialon et al., 2013], [Xu, et al., 2014], [Oh et al., 2015]

[Hua et al., 2005], [Farid et al., 2009],
[Luviano-Juarez et al., 2010], [Pourgholi et al., 2011]

[Naik et al., 2013], [Yang et al., 2013], [Yao et al., 2014]

Figure 2.5: Recent main applications of PI-Observer approach (since 2008)

2.8.2 Fault detection

Proportional-Integral-Observer is one of the useful observer-based approaches used
for model-based fault diagnosis when a deterministic system model is available.
In the case of stochastic system model, Kalman Filter can be used [GCD15]. The
scheme of observer-based fault diagnosis is illustrated in Figure 2.6 and includes fault
detection, isolation, and identification, where fa, fc, fs, d, and w denote the actuator
fault, component fault, sensor fault, process disturbance, and measurement noise,
respectively. This structure has been investigated and summarized as a recent survey
of Fault Detection and Isolation (FDI) in [GCD15]. The authors in [HRM+12] in-
vestigated the problem of state estimation and fault detection for dynamic systems
that can be modeled by a Linear Parameter Varying (LPV) descriptor structure.
The PI-Observer is used to estimate the system states and unknown inputs or dis-
turbances. The estimation results are used for detection, isolation, and estimation
of actuator faults that affects the system inputs. The actuator fault may occur in
the system because of material aging or abnormal operation. They can be described
as additive and/or multiplicative faults which can affect the system performance or
even lead to instability of the whole system [TJZ08]. Furthermore, in [AGTAM+12]
a PI-observer-based approach with a bank of observers for fault isolation purpose
is proposed as illustrated in Figure 2.6. The idea behind is to individualize a single
residual which is sensitive to the fault considered and robust against other faults
and uncertainties called as ‘structure residual fault isolation’ [Ger88]. The proposed
method reconstruct the sensor fault with the assumption of auxiliary state and rep-
resents the dynamic behavior of fault.
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Figure 2.6: Scheme of model-based fault diagnosis (redrawn from [GCD15])

2.8.3 Estimation

PI-Observer has the ability to estimate state variables and disturbances in linear
control systems. State variables reconstruction of a linear, time-invariant dynamical
system (induction motor) can be considered as a recent application of PI-Observer
performed in [BLPN13b]. The authors have also introduced an adaptive mechanism
for parameter selection of PI-Observer [BLPN13a]. PI-Observer is also used for the
state of charge estimation of Lithium-Ion batteries in [XMC+14] as a recent work.
Robust separate estimation of transmitted torque on each clutch of the dual clutch
transmission is performed in [OC15] for ground vehicles. The estimations are ob-
tained through three subcomponents: shaft model-based observer, unknown input
observer, and a model reference PI-observer. The results of subcomponents are pro-
cessed and fused together to calculate the final estimation of the torque transmitted
through the first and second clutches with high accuracy.

2.8.4 Synchronization

Synchronization of chaos means adjusting of minimum two chaotic systems (either
equivalent or nonequivalent) to a common behavior due to a coupling or other pur-
poses. Synchronization problem of chaotic systems via observer method is taking
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into consideration in recent researches. According to [HG05] synchronization is ad-
justing of a second system which has the synchronized state with the first system in
limited time. To solve the synchronization problem it is normally considered that
the states of the first system are completely known. On the other hand, due to
existence of noise and disturbances in the output channel considered for chaos syn-
chronization, PI-Observer is proposed to solve the synchronization problem [HG05].
A robust PI adaptive observer is designed in [PM11] for synchronization of chaotic
systems and the stability conditions based on Lyapunov technique are derived. Since
PI-Observer gain is usually obtained from off-line calculations, the idea behind is to
calculate the observer gain adaptively to make the estimation results robust against
small perturbations in the control performance and to avoid the estimation error
divergence. In [LJCRSR10] the authors have proposed a Generalized Proportional
Integral (GPI) observer for the accurate estimation of phase variables and pertur-
bation input of the nonlinear output dynamics. Synchronization problem of chaotic
systems is solved in the presence of external disturbances using designing PI-fuzzy
observer in [FIAZ09]. The authors use a general Takagi-Sugeno fuzzy model to de-
scribe the chaotic systems by considering one premise variable in fuzzy rules. Based
on the proposed fuzzy model, PI-fuzzy observer is designed using Linear Matrix
Inequality (LMI) approach. Stability analysis of the proposed method is also inves-
tigated by the authors to show the convergence of error system in the presence of
external disturbances.

2.8.5 Control

Observer-based control design is investigated by many researchers to improve the
robustness of classical linear/nonlinear controllers especially in the presence of un-
known inputs and model uncertainties. All mentioned applications of PI-Observer
(i.e. fault detection, estimation, and synchronization) are more or less intended for
control purposes. Utilization of PI-Observer in linear/nonlinear control structures is
of considerable importance because of its capability to estimate system nonlinearities
and uncertainties. For example in [NSI+13] a PI-Observer-based model predictive
controller (MPC) is proposed to integrate the estimation of system states and uncer-
tainties into the structure of controller. The proposed approach is practically evalu-
ated by applying MPC to DC servomotor for position control purpose. Furthermore,
PI-Observer approach for nonlinear systems has been used in [YLY13] to overcome
the effect of mismatched uncertainties by designing a novel sliding surface. The
proposed method behaves the same as the baseline sliding-mode controller (SMC)
in the absence of disturbances and uncertainties. The chattering problem is sub-
stantially alleviated using observer-based SMC compared with traditional SMC and
integral SMC. In [YJM14] a nonlinear robust controller is proposed for a hydraulic
system using backstepping technique combined with uncertainties observation. The
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prescribed tracking transient performance and the final tracking accuracy of the pro-
posed approach are evaluated by experimental results of an electrohydraulic system.
Combination of a robust control method with uncertainties observation is performed
in [LS14]. The authors introduced a robust control approach for a class of I/O-
linearizable nonlinear systems affected by nonlinearities. A high-gain PI-observer is
used to estimate the system states and unknown inputs to provide the requirements
of input-output linearization approach. Feasibility of the proposed approach is pe-
rused using a nonlinear multi-input multi-output mechanical system as a simulation
example.

2.9 Summary and conclusion

In this chapter a review of the principal unknown input observation is provided with
special attention to the Proportional-Integral-Observer. Integration of PI-Observer
in different system types is surveyed, including: linear system, linear system with
delay, nonlinear system, nonlinear system modeled by a multiple model approach,
and bilinear system (as a specific class of nonlinear systems). Furthermore, this
survey incorporates some recent advanced applications and high-gain approaches of
PI-Observer to summarize different aspects in this field. The significant advantages
of this chapter compared with previous publications is its comprehensive and com-
pleteness in representing different observers/filters properties. Although using of
terms seems to be very flexible in the discussed area, a precise distinction between
fundamental concepts of observer, filter, and estimator is given from a scientific and
pragmatic point of view. In addition, predictor-corrector scheme including a predic-
tor step (an explicit method to obtain a rough approximation as a first step) and a
corrector step (an implicit method to refine the predicted value as a second step),
is briefly reviewed by considering a new perspective of observers/filters structure.
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Because of non-efficiency of proportional observers in the presence of unknown input
acting to the system, Proportional-Integral-Observer (PIO) has been proposed with
the purpose of unknown input estimation. One advantage of this method is its ability
to produce an acceptable estimation of system states in the presence of unknown
inputs. Accordingly, PIO can be used for monitoring and fault diagnosis tasks as
well as advanced control purposes. The name ‘PIO’ was firstly proposed in [Woj78]
for SISO-linear time-invariant systems by augmenting an integral term into the
structure of Luenberger Observer. Later it was improved in [Kac79] and [SC85]
for MIMO-linear systems to improve the estimation robustness. Some extensions
in the structure of PIO has been introduced in [LM79]. The authors proposed a
general linear model for disturbance while no information about the unknown input
is neither used for design nor for estimation. Based on this strategy by increasing the
gain of PIO, the estimation performance will be improved. Due to high gains, the
performance is influenced by measurement noise. This result was firstly proposed
in [Mül88] as a first observation and later including proofs in [LS12].

The contents, figures, and tables presented in this chapter published in the confer-
ence papers “Proportional-Integral-Observer: A brief survey with special attention
to the actual methods using ACC benchmark” [BS15a], “Reconstruction of nonlin-
ear characteristics by means of advanced observer design approaches” [BS15b], and
“High-gain scheduling of the Proportional-Integral-Observer” [BS14].

3.1 Structure of high-gain PI-Observer

Proportional-Integral-Observer can be used to estimate uncertainties, disturbances,
and modeling errors considered as unknown input to the system. This observer con-
tains two feedback loops, proportional and integral, to reconstruct system states as
well as to estimate unknown input, respectively. The integral loop, as an additional
degree of freedom in comparison to Luenberger observer, enables PIO to improve
the steady-state estimation accuracy besides the estimation of unknown inputs.
The structure of PI-Observer is illustrated in Figure 3.1. As it is shown in this
figure, the position of unknown input affecting the system (matrix N) is assumed
as known. As explained, PI-Observer can be used either to improve the accuracy
of steady-state estimation or to enhance the estimation robustness in the presence
of unknown inputs. The equations of PI-Observer for the linear system and related
observer gains can be considered according to section 2.6.1.
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Figure 3.1: Structure of PI-Observer integrated to the real system

3.1.1 Convergence of estimation errors

In the following convergence of estimation error in the frequency domain is consid-
ered to investigate the consequence of using high gain PI-Observer in estimation
performance and noise influence. According to [LS12] and based on (2.31), the error
dynamics is calculated as

[
ė(t)

ḟe(t)

]

=

[
A− L1C N
−L2C 0

]

︸ ︷︷ ︸

Ae,obs

[
e(t)
fe(t)

]

−
[
Eg(t)

ḋ(t)

]

+

[
L1

L2

]

︸ ︷︷ ︸

L

h(t), (3.1)

when e(t) = x̂(t)− x(t) and fe(t) = d̂(t) − d(t) are estimation errors of state and
unknown input, respectively. The objective is to design a desired observer gain L
leading the estimation error to zero (e→ 0, fe → 0). The error dynamics in (3.1) is
affected by the term ḋ(t). In [Kra06], the authors have proposed an approximative
decoupling ḋ(t) to e(t) and fe(t) by applying high gain matrix L. The error dynamics
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in (3.1) (stationary behavior) is described in frequency domain as

e(s) = G−1Nfe(s)−G−1Eg(s) +G−1L1h(s) , (3.2)

fe(s) = −[sI + L2CG
−1N ]−1s d(s)

+[sI + L2CG
−1N ]−1L2CG

−1Eg(s)

+[sI + L2CG
−1N ]−1L2(I − CG−1L1)h(s),

with G = [sI−(A−L1C)], state estimation error e(s), and unknown input estimation
error fe(s) in the frequency domain. To minimize the influence from the disturbance
to the state estimation error in (3.2), the transfer function from sd(s) to fe(s) should
satisfy ‖[sI + L2CG

−1N ]−1‖∞ ≤ γ, γ −→Minimum.

Without loss of generality a full rank of matrix G can be assumed. By considering
a high gain design for L2 and less value of gain L1 in G regarding high gain L2

(‖L2‖F ≫ ‖L1‖F 1), the considered parameter γ is achieved very small. Assuming
that the unknown input ‖s d(s)‖F is bounded, the estimation error ‖fe(s)‖F can be
reduced to an arbitrary small value (but not to zero), if the measurement noise and
the unmodeled dynamics are not taken into account.
From the remain parts in (3.2), it is obvious that high gain design of ‖L2‖F increases
the influence from measurement noise h(s) and unmodeled dynamics g(s) to the
estimation error ‖fe(s)‖F simultaneously. Consequently, a compromise is required
to achieve the best estimation performance.

To design the high gain PIO feedback matrix L in Eqn. (2.31), Linear Quadratic
Regulator (LQR) method is performed by solving the algebraic matrix Riccati equa-
tion. For a stable observer, suitable observer gains can be calculated, if for given
positive definite matrices Q and R the Riccati equation

AeP + PATe +Q− PCT
e R

−1CeP = 0, (3.3)

has a unique positive definite solution matrix P . The observer feedback matrix is
then calculated with L = PCT

e R
−1.

As discussed, high observer gains, which are evaluated by ‖L2‖F , will possibly lead
to non-negligible influence from measurement noise and unmodeled dynamics. On
the other hand, the ratio between ‖L2‖F and ‖L1‖F , δ = ‖L2‖F/‖L1‖F , should
be large to compensate the effect from unknown input dynamics. These principle

1The norm ‖·‖F denotes here the Frobenius norm, ‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a2ij =
√

trace(A∗A) for A

in Rm×n.
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aspects can be seen from the discussion in Eqn. (3.2). Without loss of generality
the weighting matrices in Eqn. (3.3) are chosen as

Q =

[
In 0n×r
0r×n qIr

]

, R = Im, (3.4)

with only one scalar design parameter q > 0. It is proven in [LS12] that the param-
eter q can reflect almost all relevant aspects to be considered for suitable estimation
of unknown inputs. According to [Liu11]:

“Theorem 1 : For increasing design parameter q, the ratio δ, and the norm ‖L2‖F
will increase correspondingly.

Mathematical description:

For two general design parameters qa and qb, the corresponding solution matrices
P a and P b are denoted by

P a =

[
P a

11 P a
12

P a
12
T P a

22

]

and P b =

[

P b
11 P b

12

P b
12

T
P b

22

]

. (3.5)

Similarly,

La =

[
La

1

La
2

]

=

[
P a

11C
T

P a
12
TCT

]

, and Lb =

[
Lb

1

Lb
2

]

=

[

P b
11C

T

P b
12

T
CT

]

are defined.

With assumed parameters qa > qb > 0, it follows that

i) ‖La
2‖F >

∥
∥Lb

2

∥
∥
F
and correspondingly

ii) δa = ‖La
2‖F/‖La

1‖F > δb =
∥
∥Lb

2

∥
∥
F
/
∥
∥Lb

1

∥
∥
F
.”

Detailed proofs and further applications are introduced in [Liu11]. Therefore, to
reach suitable estimation error for both states and unknown inputs, the design
parameter q has to be adaptively chosen at each step of the integration procedure.
The relation between estimation error of unknown input and design parameter q
is illustrated in Figure 3.2. The influences from unmodel dynamics, measurement
noise, and unknown input on the estimation error are clearly shown in this figure.
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According toAccording to
,

‖fe(t)‖

q

g(t) h(t) ḋ(t)

qopt(tk)

Figure 3.2: Relations between estimation error ‖fe(t)‖ and design parameter q

3.2 Modified advanced PI-Observer design

Increasing the gain of PI-Observer will improve the estimation performance. How-
ever in the presence of measurement noise, the performance would be influenced
by the measurement noise [SYM95]. A recently published extension introduced as
Advanced PI-Observer (API-Observer) in [LS12], adapts the PIO gain based on the
resulting actual performance. The online adaption of observer gain is embedded in
the numerical integration. It contains three parallel PI-Observer with different gains
to schedule the ‘relative optimal gain’. To evaluate the estimation performance and
to choose the appropriate parameter q at each step of integration procedure, a cost
function is defined as

J(q), J = µ
1

h

∫ t

t−h

ey(τ)
T ey(τ)dτ + q, (3.6)

with µ parameter to normalize the calculation at each step, variable h as the current
step size of the numerical integration time for the observer calculation, and estima-
tion error ey(t) = y(t)− ŷ(t) which implicitly contains the design parameter q. Here
the design parameter q is considered to reduce the effects from unmodeled dynam-
ics and measurement noise on the estimation performance. The goal is achieving
an acceptable relative minimum level of estimation error at each step of integration
procedure. Therefore the introduced algorithm searches between the limited number
of gains to find the relative optimal one. In consequence of changing and scheduling
the gain of PI-Observer based on the cost function, the performance is adequately
improved in comparison to PI-Observer and especially in the presence of noise.
To achieve an absolute optimal gain which is the best possible gain with respect
to the criterion evaluated at each step of numerical integration procedure, Modi-
fied API-Observer (MAPI-Observer) was proposed [BS15a]. Unlike API-Observer,
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MAPI-Observer attempts to find the ‘absolute minimal level of estimation error’
within a suitable defined continuous interval of gain options and not only between
a few limited ones. Therefore, MAPI-Observer is a modified version of PI-Observer
by applying adaptive gains in combination with an observer bank (firstly introduced
in [LS12]).

3.2.1 Structure of modified advanced PI-Observer

To achieve an absolute optimal gain, defined as the best possible gain with respect
to criterion evaluated at each step of numerical integration procedure, Modified
API-Observer (MAPI-Observer) is proposed in this work [BS14]. In Figure 3.3
MAPI-Observer algorithm with q and J parameters (observer design parameter and
cost function, respectively) for three different observers is illustrated. Furthermore
two other parameters α and β are considered (0 < α < β < 1) as additional design
parameters which can improve the performance of output estimation. As mentioned
in section 2.7, API-Observer is based on a bank of PI-Observers with limited numbers
of gains to find the relative optimal one. Unlike API-Observer, MAPI-Observer
attempts to find the absolute optimal design parameter q within a suitable defined
continuous interval of options and not only between a few limited options. The
proposed method receives the first relative optimal design parameter q and the
desired step size of integration as inputs from API-Observer algorithm. Thereafter
it finds the second relative optimal design parameter q by shrinking the interval
between three assumed parameters. Consequently the absolute optimal parameter
q can be calculated by searching in the interval between mentioned two relative
optimal parameters. Optimization methods can be used to achieve the absolute
one in this interval. The MAPI-Observer has also the capability to implement the
designed parameter q at the present integration time and not in the next step of
integration procedure.

3.2.2 Workflow and convergence of modified advanced PI-Observer

The algorithm starts by three parallel PI-Observer with predefined gains qm, qr =
βqm, and ql = αqm (0 < α < 1 and β > 1 are design parameters). The estimated
values of system output using three parallel PI-Observer go through the structure of
APIO to calculate the cost functions J(qm), J(ql), and J(qr). The cost functions are
compared and the minimum cost function is selected. If the minimum cost function
is equal to the cost function achieved by design parameter qm the APIO algorithm
goes to the next step of integration procedure (it means that the selected qm is in
the gray area illustrated in Figure 3.2). If this condition is not fulfilled the same
procedure is repeated by substituting qm = qopt, qr = βqopt, and ql = αqopt.
By considering the modification algorithm introduced as MAPIO in this work, in the
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case that the minimum cost function is equal to the cost function achieved by design
parameter qm, the procedure of MAPIO starts by substituting qm1 = qm, qr = aqm1,
and ql = qm1/a (in this work a is considered equal to 10). The cost functions are
calculated for the new design parameters and new estimated values for the system
output. If the minimum cost function is smaller than the predefined small value ǫ1
the procedure can be stopped and go to the end of MAPIO algorithm otherwise the
left and right interval are calculated as dr = qr − qm1 and dl = qm1 − ql. If dr and
dl are smaller than predefined design parameter ǫ2 the procedure can be terminated
and continued with qm1 because in this case the gray area in Figure 3.2 is very small
and the values of qm1, qr, and ql are very close to each other. If the mentioned
condition is not fulfilled new design parameters ql and qr are defined closer to qm1

(qr = qm1 + cdr and ql = qm1 − cdl, in this work c is considered equal to 3/4) and
the cost functions are checked again. In the case that the minimum cost function is
not related to the design parameter qm1 the value of achieved parameter is assigned
to qm2 as qm2 = qopt which leads to better estimation error. By considering the
behavior of changing q parameter according to Figure 3.2, it can be concluded that
the best design parameter is in the interval of |[qm1, qm2]| and can be calculated by
using a simple search in this interval or any optimization solution.
Considering the conditions in the procedure of MAPIO algorithm, it can be con-
cluded that the observer gain (parameter q) is changed only in the case that the cost
function Jk+1 is smaller than the current cost function Jk. Therefore, the change
and improvement in the structure of MAPIO is towards the direction that minimizes
the cost function J compared to APIO which ensures the convergence of estimation
error (further information about the APIO stability refer to [Liu11]).

3.2.3 Verification in open-loop simulation examples

Force

Contact

Displacement
sensors

sensors

surface

b(t)

d(x, t)

y1(t) y2(t)

z

x

Figure 3.4: Elastic beam model

In this study verification of the introduced approaches is given using contact force
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estimation of an elastic beam system. The elastic beam system used here is shown in
Figure 3.4. For observer design the model of the system (without unknown input)
has to be obtained. Therefore the elastic beam is modeled using Finite Element
Method (FEM) to achieve a linear model of the system. For the example system
the length of each element is 98 mm and the cross-sectional area is 125 mm2. The
displacements zi, the angles θi (i = 1, ..., 5) the corresponding velocities, and angular
velocities are considered as the system states to define the state space representation.
Therefore the linear state space model of this elastic beam can be described as

ẋ(t) = Ax(t) + b(t) +Nd(x, t),
y(t) = Cx(t),

(3.7)

with the state vector

x(t) = [z1 θ1 ... z5 θ5 ż1 θ̇1 ... ż5 θ̇5]. (3.8)

One known input b(t) and one unknown input d(x, t) acting at the moment of
contact between vibrating beam and contact device are considered. The displace-
ments of the second and forth nodes (y1(t) = x3(t), y2(t) = x7(t)) are used as
measurements. The goal is to estimate the unknown input d(x, t) as a disturbance
acting on the fifth node when the elastic beam is in contact. In this contribution
the unknown input d(x, t) is considered as a bounded signal with smooth varia-
tion rate. The relevant matrices of elastic beam system are the system matrix

A =

[
010×10 I10×10

−M−1K −M−1D

]

, input matrix N =





018×1

1
0



, and the output matrix

C =

[
01×2 1 01×17

01×8 1 01×11

]

. The stiffness matrix K and the mass matrix M are cal-

culated using Finite Element Theory. The damping matrix is taken as D = ξK,
with a suitable ξ chosen by using the Raleigh damping hypothesis. The goal is to
estimate the unknown contact force and system states simultaneously and by using
the system measurements.

Comparison of low/high gain PIO, APIO, and MAPIO approaches

The goal of this section is to compare the introduced MAPI-Observer with previous
approach as API-Observer [LS12] and low/high gain PI-Observer with respect to
the task of nonlinear behavior estimation to show the advantage of MAPI-Observer.
To achieve this goal some simulations are considered for the introduced simulated
elastic beam. First of all estimation of contact force and system states without con-
sidering measurement noise is simulated. The results are illustrated in Figure 3.5(a)
and Figure 3.5(b) for contact force estimation and displacement estimation of the
elastic beam fifth node, consequently. Furthermore, gain adjustment of PI-Observer
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Figure 3.5: Comparison of APIO and MAPIO without measurement noise

in this case is illustrated in Figure 3.5(c) for APIO and MAPIO approaches. From
the results shown in Figure 3.5 the effect of increasing gains can be seen by compar-
ison of low gain and high gain PI-Observer, here only the high gain approach is able
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to estimate the unknown input and displacement at node 5, as known from the lit-
erature [SYM95]. By increasing the observer gain, estimation result for PI-Observer
with a constant high gain is comparable with MAPI-Observer. It is obvious that by
using MAPIO approach, the gain of PIO can be accurately adjusted compare to the
APIO approach especially in the moment that the elastic beam has contact with
the obstacle or in other words when the system is affected by the unknown input
d(x, t) (time ≈ 0.016 s and time ≈ 0.02 s).
Additional simulations are done to analyze the sensitivity with respect to mea-
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Figure 3.6: Comparison of APIO and MAPIO in the presence of measurement noise

surement noise. The gain adjustment is noteworthy and required in the case that
the system is affected by measurement noise to avoid the drawbacks of high gain
observer design. This claim can be evaluated by the results shown in Figure 3.6. As
illustrated in Figure 3.6, precise adjustment of PIO gain leads to better unknown
input estimation performance and decreases the influence from measurement noise.
From the results presented in Figure 3.6(a) the main effect resulting from the intro-
duced gain adaption of MAPIO observer can be seen. The results clearly indicate
that constant high gain PI-Observer estimation is strongly affected by the measure-
ment noise. This effects strongly results from the high gain approach, which can be
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detected in comparison with the low gain PI-Observer results not effected by the
noise (but not able to estimate the disturbances). In Figure 3.6(b) estimation of fifth
node displacement is illustrated. According to the results it can be concluded that
in the task of system state estimation MAPIO outperforms also the APIO. From the
other side, it can be concluded that measurement noise has no significant influence
on the estimation of system states because low gains are used in this situation and
for estimation of system states. Gain adjustment of PI-Observer is illustrated in
Figure 3.7 for APIO and MAPIO approaches.
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Figure 3.7: Comparison of APIO and MAPIO gains in the presence of measurement
noise
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Reconstruction of nonlinear characteristics by means of advanced ob-
server design approaches
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Figure 3.8: Reconstructed behavior of the nonlinearity (here: nonlinear spring be-
havior), based on both: estimation of one state (here tip displacement) and the
unknown input (here: the contact force) - Complex characteristic behavior

As an example for complex contact characteristics a numerically example illustrat-
ing a complex contact behavior (as an elastic-plastic rubber contact behavior) is
simulated. Assuming that the behavior is neither known nor can be measured, only
the implicit measurements and the model-based observer approaches are used for
reconstruction. Here estimations of the tip force in combination with the estimation
of tip displacement is used to reconstruct the underlying displacement-related spring
behavior.
Contact characteristics reconstruction results are illustrated in Figure 3.8(a) and
Figure 3.8(b). The results show that in the task of complex contact characteristics
(artificial nonlinearity) reconstruction, MAPI-Observer by scheduling the gain of
PI-Observer produces precise results like high gain PI-Observer without considering
the measurement noise. All approaches allow distinction between the backlash part
and the contact part. The estimation of the nonlinear characteristic can be realized
using high gain PI-Observer and MAPI-Observer approaches. Additionally it can
be stated that also in the presence of noise the estimated contact characteristics
produced by MAPI-Observer is not affected by measurement noise as much as high
gain PI-Observer. A numerical comparison between advanced observer design ap-
proaches has been done in the task of estimating the external inputs (contact forces)
acting to elastic mechanical structures. The numerical comparison is illustrated in
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Table 3.1: Comparison of different approaches in unknown input (contact force)
estimation task

Method
W/O noise W/ noise

MSE Max. |error| MSE Max. |error|
Low gain PIO 5.799e1 8.009e1 4.368e2 8.668e1
High gain PIO 1.606e1 1.729e1 9.274 2.143e1

MAPIO 1.047e1 1.963e1 4.782 2.320e1

Table. 3.1 and is graphically shown in Figure 3.9.
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Figure 3.9: Comparison of different approaches in unknown input (contact force)
estimation task

3.2.4 Verification in closed-loop simulation examples

In this section ACC Benchmark introduced by [WB92] is considered to evaluate
the proposed observer. The two-mass-spring system illustrated in Figure 3.10 is an
uncertain dynamical system comprises two bodies with the masses m1 and m2 which
are connected by a spring with the stiffness k. The introduced model is defined as






ẋ1
ẋ2
ẋ3
ẋ4






=
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
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0
0
0

1/m2






w2,

y = x2 + n,

(3.9)

with x1 and x2 denoting the positions of the masses 1 and 2, x3 and x4 the velocities
of the masses 1 and 2, u the control input acting on the masses 1, w1 and w2 the
unknown input forces acting on the masses 1 and 2 (as friction forces resp.), and n
the measurement noise.
This benchmark problem is mostly used to evaluate the robustness of control

design. Therefore, a close loop system consisting of an observer to estimate the



52
Chapter 3. New design of high-gain

Proportional-Integral-Observer

2014© SRS

u

w1

x1 x2

m1 m2

k

w2

Figure 3.10: Two-mass-spring system, ACC Benchmark [WB92]

system states as well as the unknown inputs, and a full-state feedback control have
been considered. Based on the extended state space representation of linear system
according to (2.30) and disturbance dynamics as v̇ = V v(t) + δx(t) the extended
model is rewritten as

[
ẋ(t)
v̇(t)

]

=

[
A NH
δ V

]

︸ ︷︷ ︸

Ae

[
x(t)
v(t)

]

+

[
B
0

]

︸︷︷︸

Be

u(t) +

[
Eg(t)
0

]

,

y(t) =
[
C 0

]

︸ ︷︷ ︸

Ce

[
x(t)
v(t)

]

,

(3.10)

where δ couples system states to unknown disturbances and is usually a matrix
containing elements with very small values considered to design an external feedback
[Dav72]. The δ is chosen as zero in the case of observer design. Based on observer
formulation for linear systems (2.31) the states x(t) and the unknown input d(t) can
be estimated using a high-gain observer design

[
˙̂x(t)
˙̂v(t)

]

=

[
A NH
0 V

] [
x̂(t)
v̂(t)

]

+

[
B
0

]

u(t) +

[
L1

L2

]

︸ ︷︷ ︸

L

(y(t)− ŷ(t)),

ŷ(t) =
[
C 0

]
[
x̂(t)
v̂(t)

]

.

(3.11)

The high-gain PI-Observer feedback matrices L can be designed using LQR method.
For the time-invariant cases this task can be realized by solving Algebraic Riccati
equation. For an asymptotic stable observer, positive definite matrices Q and R are
considered as

Q =

[
I4 04×1

01×4 q

]

, R = I, (3.12)

with the scalar design parameter q which can be scheduled to improve the system
robustness and output performance. This task can be done using API-Observer or
MAPI-Observer methods. As mentioned in (3.11) with considering δ parameter the



3.2 Modified advanced PI-Observer design 53

extended system will be fully controllable and a feedback control can be proposed
as

u = −Kxx̂(t)−Kvv̂(t). (3.13)

Control gains Kx and Kv have been designed using LQR method and with positive
definite matrices Q and R which have appropriate dimensions. For evaluation part
two scenarios has been considered. For all scenarios, combined with different ob-
server strategies, the performance of the observer part is of interest. To avoid effects
from feedback, the same control feedback is applied for all combinations. Therefore,
comparison between three introduced methods is limited only to the performance of
observers.
First of all simulation results without considering measurement noise and with an
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Figure 3.11: Estimation results and system output of the closed-loop system using
ACC Benchmark example

external unit impulse disturbance w2 applied on the mass 2 (Scenario 1) are illus-
trated in Figure 3.11(a). In the case without consideration of measurement noise it
can be concluded that PI-Observer with high gain in combination with the proposed
controller has suitable settling time in the output response. But on the other hand,
in disturbance estimation results it can be seen that the design gain parameter q
has to be properly chosen. With considering a low gain, PI-Observer is not able to
estimate the impulse disturbance and consequently has low performance with os-
cillation in the output signal. However by increasing the observer gain, estimation
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result for PI-Observer is comparable with API-Observer and MAPI-Observer. As
regards the difficulty of determining suitable gain of PI-Observer especially in prac-
tical applications, API-Observer and MAPI-Observer are more considerable. From
the results it becomes obvious that disturbance estimations and output response
using API-Observer and MAPI-Observer are almost as good as the results using
PI-Observer with a constant high gain.
In Scenario 2 impulse disturbance w2 applied on the mass 2 and in the presence of
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Figure 3.12: Comparison by means of criterion C

measurement noise is taking into consideration. Results presented in Figure 3.11(b)
clearly indicate that with high constant gain for PI-Observer estimation, the dis-
turbance estimation is strongly affected by the measurement noise. This effect is
expected and also described in previous publications. In contrast, estimation result
using low constant gain for PI-Observer illustrates no influence from the measure-
ment noise and also no acceptable performance in the disturbance estimation. On
the contrary, API-Observer and MAPI-Observer have capability to estimate the
disturbance also in the presence of noise because of combining the advantages of
both high and low gain based on the desired performance evaluation. From the
simulation results it can be seen that MAPI-Observer reacts faster and with smaller
time delay than API-Observer. Furthermore, in the disturbance estimation process
MAPI-Observer acts almost equal or better than API-Observer.
From the output response shown in Figure 3.11(b) it can be concluded that in
combination with the proposed controller, PI-Observer with high gain has suitable
settling time and output response (the effect of noise is not visible in the output
signal regarding the level of additional measurement noise). However judging only
based on the output response is not completely reliable. In this work evaluation of
the observer-based control results using the introduced example is done based on
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a suitable criterion C = [
∫ T

0
e2(t)dt,

∫ T

0
u2(t)dt] which has to be minimized [LS12].

This criterion considers both the control error e(t) and the input energy u(t). The
interval length T is considered as 10 sec which denotes the time window, where the
performance is considered and compared.
Results with/without noise and with the same controller for three different ob-
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Figure 3.13: Gain adjustment of APIO and MAPIO in the case of no measurement
noise

servers are illustrated in Figure 3.12. With the same input energy the controller
which has lower output error or correspondingly with the same output error which
uses less input energy (closer to the origin) has better performance. From the re-
sults it is evident that without considering measurement noise, output error using
PI-Observer is always less than the output error for other two observers but in the
presence of noise PI-Observer requires the maximum energy and has the maximum
distance from the origin in comparison to the API/MAPI-Observer. On the other
hand MAPI-Observer requires always the minimum input energy. Output error
using MAPI-Observer is always less than the output error using API-Observer. Re-
sults with smaller change in the trajectory under consideration of noise have more
robustness. From Figure 3.12 it can be concluded that MAPI-Observer has better
performance in comparison to API-Observer, however API-Observer has more ro-
bustness because of its smaller change in the trajectory under consideration of noise.
Gain adjustment of APIO and MAPIO approaches is illustrated in Figure 3.13
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3.3 Summary and discussion

In this chapter high gain Proportional-Integral-Observer is introduced considering
its structure and conditions for the convergence of estimation error. Furthermore,
MAPIO is proposed as the extended version of APIO to tune the gain of PIO ac-
cording to the current situation. A cost function is defined so that the estimation
performance and the related energy can be evaluated. The MAPI-Observer approach
combines the adaption of observer gain with integration of the observer scheme. In
this chapter a comparison between advanced observer design approaches has been
done in the task of reconstructing the nonlinear characteristics and estimating the
external inputs (contact forces) acting to elastic mechanical structures. Verifica-
tion of introduced approaches is also given on node displacements estimation of an
elastic beam system. Simulation results using PI-Observer and related extension
are illustrated and advantage of using adaptive high gain PI-Observer in contact
characteristics estimation is verified.
Besides comparison of different approaches in open-loop estimation task, a closed-
loop simulation example known as two-mass-spring system (ACC Benchmark) is
used to illustrate the advantages of the proposed approach in the closed-loop con-
text. From the results, it can be concluded that in the task of unknown input
estimation MAPIO is more successful by considering different level of measurement
noise in comparison to previous methods known as APIO and standard PIO.
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Estimation of contact force is a nontrivial task because of the fast and unknown
dynamics of the contact characteristic. According to the capabilities of PIO in es-
timation of external inputs with unknown dynamical behavior, the focus of this
section is utilization of PIO for contact force estimation purpose. The contact force
estimation here works as a typical task dealing with unknown effect in the control
of elastic mechanical systems. From a structural point of view this task is identical
with the estimation and compensation of friction forces or torques in motor driven
drives, unknown effects acting to the endeffector of robots, etc. The first assumption
to describe this problem class is that the number of (modeled, internal) states n is
much larger than the number of independent measurements and inputs available for
control. This class is also described by the fact that the system model is known, the
unknown inputs are unknown, and the location of unknown and control inputs are
different. To achieve an adequate estimation of states and unknown input, suitable
observer gains have to be carefully designed.
As mentioned in chapter 3 estimation of contact force usually requires high observer
gain to fulfill the estimation of fast dynamical behavior. On the other hand, high
observer gain deals with the influence of gains measurement noise [LS12]. In con-
trast, low observer gain leads to unaffected results from measurement noise, whereas
estimation of contact force with fast dynamics is infeasible. Therefore a compro-
mise or an adjustment of observer gains is required. In several research contribu-
tions [AK09,EE03], switching gain approach is addressed to cope with the problem
of high gain observers. The algorithm is based on two sets of observer design (one set
with high observer gain and the other with low observer gain) regarding a switching
condition. This idea can be applicable only if the moment of force contact is known
to switch from low gain to high gain.
In chapter 3 a switching gain procedure is introduced and verified as MAPIO (the
modified version of APIO) to adaptively change the gain of PIO to avoid the draw-
backs of high gain observers especially in the presence of measurement noise. The
difficulty of using MAPIO is its implementation with respect to real-time applica-
tions/real experiences in closed-loop system because of its execution time which can
be improved by using a fast processor. However, estimation task of fast unknown
dynamics in the context of closed-loop system requires a fast adaptive change in the
observer gain regarding the actual state of the system. Considering the required
high execution time for APIO and MAPIO leads to elaborate a more flexible and
fast procedure to design and achieve an adaptive high gain PIO. Therefore, fun-
nel adaptive PIO is proposed in this chapter. The structure of PIO is taken and
the observer gains are chosen using an adaptive adjustment method. The idea is
to use the funnel control method [IRS02] as a high gain adaptive (time-varying)
adjustment approach. The observer gain increases (aggressive reaction) only when
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the estimation error increases and has less distance to prescribed boundaries (fun-
nel function). Correspondingly, the gain decreases (more relaxed reaction) when no
aggressive reaction is required for estimation error compensation (less estimation
error).

The contents, figures, and tables presented in this chapter are prepared for publica-
tion in the journal paper “Contact force estimation of an elastic mechanical structure
using a novel adaptive funnel PI-Observer approach” [BS17a] and published in the
conference paper “Proportional-Integral-Observer with adaptive high-gain design us-
ing funnel adjustment concept” [BS17c].

4.1 Adaptive funnel adjustment of PI-Observer gain

e(0)

e(t)

−1/ϕ(t)

1/ϕ(t)

t

Funnel area

Funnel boundaries

Figure 4.1: Basic idea of funnel adjustment [IRS02]

Tracking with prescribed transient accuracy was firstly proposed in [MD91]. The au-
thors have designed a high gain-based switching discrete controller that contributes
a satisfactory predefined transient behavior. On the other hand, the switching dis-
crete behavior and non-decreasing gain are not desirable in industrial applications.
In [IRS02] the authors proposed a high gain adaptive (time-varying) control con-
cept known as Funnel Control (FC). Funnel Control is a proportional (memory-less
i.e. no dynamics) approach applicable for wide range of linear/nonlinear systems
under certain conditions [IRS02, IRT05]. Despite other adaptive control methods,
identification or estimation of system parameters is not required. Therefore Funnel
Control can be considered as an nonidentifier-based adaptive control strategy with
predefined transient accuracy [ITT04].
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Assuming certain conditions funnel control is applicable for the systems with rela-
tive degree one or two [IRS02]. Here without considering the conditions of funnel
control approach the idea of funnel adjustment method is considered. In Figure 4.1
the main idea of funnel function is illustrated with the funnel boundary

∂Fϕ(t) =
1
ϕ(t)

, (4.1)

which contains an arbitrary chosen bounded, continuous, and positive function ϕ(t)
for t ≥ o and supt≥0ϕ(t) <∞ [IRT05]. The funnel is defined as

Fϕ : t→ {e(t)| ϕ(t)‖e‖ < 1} , (4.2)

which encloses the error e(t) for t > 0 when the initial error e(0) is surrounded by
the funnel boundaries. Here e(t) is considered as the estimation error corresponding
to the output reconstruction as

e(t) = σ(ŷ − y), (4.3)

with constant σ used to make the estimation error large enough for the following
steps. The funnel gain can be calculated as

k(t) = 1
1−ϕ(t)‖e(t)‖

, (4.4)

to ensure that the error e(t) evolves inside the funnel area. When the error e(t) tends
close to the upper or lower funnel boundaries, the funnel gain k(t) increases. Cor-
respondingly the funnel gain decreases when the error becomes smaller. Therefore,
funnel gain k(t) is only large if more aggressive reaction is required. This contri-
bution elaborates more on the design of PIO gain based on the funnel idea. The
purpose of proposed algorithm is to find suitable observer gains to achieve reason-
able/acceptable estimation errors for both state and unknown input (contact force)
for each estimation step and especially in the presence of measurement noise and
requirement of high gain PI-Observer. To achieve this goal in the following part
detailed steps of gain adjustment are explained.

4.2 Structure of funnel PI-Observer

According to section 3.1.1 the design parameter q can reflect almost all relevant as-
pects to be considered for suitable estimation of unknown inputs. To reach suitable
estimation error for both states and unknown inputs, the design parameter q has
to be adaptively chosen at each step of integration procedure [LS12]. This idea has
been investigated in [LS12] and improved in [BS15b] by using a bank of PI-Observers
with different design parameters q based on an optimization method. In this contri-
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Figure 4.2: Sketch of proposed adaptive funnel PIO algorithm (Here min, max,
and γ have to be defined according to the desired performance of the estimation
results. They are considered as design parameters to define the suitable range of
design parameter q)

bution a novel algorithm using funnel adjustment approach is proposed to achieve a
simple high gain adaptive structure. It is worth noting that utilization of funnel idea
leads to take the advantages of high observer gain only when high gain is required.
Design of parameter q is adjusted based on the funnel gain k(t). So at first k(t) is
calculated by considering the output estimation error and according to the funnel
gain design approach in (4.4). Afterward, the calculated funnel gain k(t) is addi-
tionally scaled to a reasonable interval and then replaced with design parameter q.
The sketch of proposed algorithm, denoted as funnel PIO in the sequel, with online
adaption of observer gains process is given in Figure 4.2. It is worth mentioning that
in this contribution only the idea of funnel control is of interest, and subsequently
the funnel conditions are not considered by authors (further details can be found
in [IRS02]). Using this idea allows to calculate the design parameter q adaptively
at each step of estimation procedure.
In Figure 4.3(b) the relation between state estimation error ‖e(t)‖ and design pa-
rameter q is illustrated. The state (output) estimation error is preserved under the
boundary shown by β which indicates the funnel boundary introduced in Figure 4.1.
According to Figure 4.3(c) when ‖e(t)‖ is bounded by boundary β the unknown in-
put estimation error ‖fe(t)‖ is maintained by the boundary α. Indeed, according to
Figure 4.3(a) when the estimation error of the system state ‖e(t)‖ is preserved in a
prescribed funnel area β, the estimation error of the unknown input ‖fe(t)‖ is also
preserved in the area of optimal q parameter (boundary α). This shows the relation
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between funnel PIO and the optimal design of q parameter in Figure 3.2. Therefore,
using of proposed funnel PIO leads to optimal selection of q parameter as discussed
in MAPIO structure. In the following sections an evaluation of the proposed funnel
PIO approach is given in experimental and simulation results using an elastic beam
system.
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q
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qopt

(a) Relation between un-
known input estimation er-
ror ‖fe(t)‖ and design pa-
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q
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(c) Relation between un-
known input estimation er-
ror ‖fe(t)‖ and state esti-
mation error ‖e(t)‖

Figure 4.3: Illustration of estimation errors for unknown input and system states
with regards to design parameter q and the boundaries

4.3 Stability of estimation error dynamics

According to the funnel PI-Observer algorithm introduced in Figure 4.2, the gain
of PI-Observer is varied stepwise and adaptively. Therefore, adjustment of PI-
Observer gain at each step turns the estimation problem to a switching PI-Observer
issue which is illustrated in Figure 4.4. Accordingly, the PI-observer gain can be
switched between different designed values L1, L2, ..., Lp. Generally speaking, chang-
ing of observer gain at each step of integration procedure can lead to an unstable
total estimation error. Even if every observer gain matrix is designed so that the
error dynamics converges to a small value asymptotically, the possibility of unstable
estimation error of the general system still remains. Therefore, stability analysis
for the whole state and unknown input estimation procedure is required. According
to Eqn. (3.1) the error dynamics of the extended system for the certain step i of
switching PI-Observer can be rewritten as

[
ė(t)

ḟe(t)

]

=

[
A− L1iC N
−L2iC 0

]

︸ ︷︷ ︸

Ae,obs(i)

[
e(t)
fe(t)

]

−
[
Eg(t)

ḋ(t)

]

+

[
L1i

L2i

]

︸ ︷︷ ︸

L

h(t),
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Figure 4.4: Block diagram of the switching PI-Observer

which consists of internal and external uncertainties (modeling errors, disturbances,
etc.). In this chapter the goal is to estimate the unknown contact force which acts
to the system as a disturbance.

Assumption: The lumped disturbance is constant i.e. ḋ(t) = 0.

Remark : If the lumped disturbance d(t) is slowly time varying i.e. ḋ(t) ≃ 0 then
the aforementioned assumption is no longer necessary.

Therefore, by assuming just the external uncertainties the error dynamics can be
revised as

Ė(t) =

[
ė(t)

ḟe(t)

]

=

[
A− L1iC N
−L2iC 0

]

︸ ︷︷ ︸

Ae,obs(i)

[
e(t)
fe(t)

]

. (4.5)

The Lyapunov function candidate and its derivative can be defined as

V (t) = ET (t)PE(t),

V̇ (t) = ET (t)ATe,obs(i)PE(t) + ET (t)PAe,obs(i)E(t)

= ET (t)(ATe,obs(i)P + PAe,obs(i))E(t).
(4.6)

By defining

P =

[
P0 0
0 P0

]

, (4.7)
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the derivative of Lyapunov function can be calculated as

V̇ (t) = ET (t)(

[
(A− L1iC)

T −(L2iC)
T

NT 0

]

︸ ︷︷ ︸

AT
e,obs(i)

[
P0 0
0 P0

]

+

[
P0 0
0 P0

] [
A− L1iC N
−L2iC 0

]

︸ ︷︷ ︸

Ae,obs(i)

)E(t)

= ET (t)ΨE(t),

(4.8)

when

Ψ =








(A− L1iC)
TP0 + P0(A− L1iC)

︸ ︷︷ ︸

ψ11

P0N − (L2iC)
TP0

︸ ︷︷ ︸

ψ2

NTP0 − P0(L2iC)
︸ ︷︷ ︸

ψT
2

0
︸︷︷︸

ψ22







, (4.9)

which has to be less than zero to make the derivative of the Lyapunov function
candidate negative definite. This proves the convergence of the error dynamics
toward zero. To achieve this goal the conditions







1. (A− L1iC)
TP0 + P0(A− L1iC)

!
< 0

2. − ψ2ψ
T
2

!
< 0

(4.10)

have to be satisfied. Considering the positive term ψ2ψ
T
2 the second condition is

always fulfilled. To assure the stability of the error dynamics for the whole estimation
procedure the condition

{

ÃTP0 + P0Ã
!
< 0

Ã = A− L1iC,
(4.11)

should be satisfied. This converts the problem of switching PI-Observer stability to
the stability proof of switching Luenberger observer with observer gain L1i.
The stability proof of switching observers and switching systems are taking into
consideration in several contributions, e.g. in [Lun00] the authors elaborate several
conditions for the design of switching observers (especially switching Luenberger
observer) which guarantee the asymptotic stability of the observer error. According
to [Lun00] for Luenberger observer:
“If all the observer gains are chosen/designed to have the Euclidean norm of the
estimation error ‖e(t)‖ as a Lyapunov function of the error dynamics, then the total
estimation error vanishes asymptotically (limt→∞ ‖e(t)‖ = 0).”
To prove this assertion the authors consider that the system is always observable.



64
Chapter 4. Adaptive gain scheduling of Proportional-Integral-Observer using

funnel adjustment concept

As illustrated in Figure 4.5 the gain of observer is changed at time tk (k = 1, 2, ...)
between different values L1i (i = 1, 2, ..., p) achieved by the funnel PI-Observer
algorithm. The system state does not change by switching procedure at step k. In
other words

x(tk − 0) = x(tk + 0), (4.12)

so for the ith operating condition the estimation of system states is

dx̂
dt

= (A− L1iC)x̂+ Bu(t) + L1iy(t)
x̂(0) = x̂0,

(4.13)

which leads to the following estimation error dynamics

ė(t) = (A− L1iC)e(t),
e(0) = x0 − x̂0.

(4.14)

It is assumed that the system is in the time interval tk−1 < t < tk with observer
gain L1i−1 and after the switching time k for the observer design the system is in the
time interval tk < t < tk+1 with observer gain L1i. As explained, in this section the
observer matrix is designed using Linear Quadratic Regulator (LQR) approach for
different design parameter. Therefore, according to the properties and conditions
of LQR approach, there is a piecewise Lyapunov function of the estimation error
dynamics at each step of switching gain design. Considering the switching moment
tk as shown in Figure 4.5 and according to the fact that at each step the Euclidean
norm of the estimation error is a Lyapunov function of the error dynamics, it can
be concluded [Lun00] that

d ‖e(t)‖
dt

< 0 for

{

tk−1 ≤ t < tk

tk ≤ t < tk+1

, (4.15)

holds. By considering the principle that the state of the system does not change
during the switching procedure [Lun00] it can be concluded that

e(tk − 0) = e(tk + 0), (4.16)

as a result

‖e(tk − 0)‖ = ‖e(tk + 0)‖ . (4.17)

Therefore, ‖e(t)‖ decreases monotonous in the whole time interval tk−1 < t < tk+1

as shown in Figure 4.5. This result can be generalized to every switching time
tk (k = 1, 2, ...).
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Figure 4.5: Switching procedure (system state, observer gain, and Lyapunov func-
tion
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4.4 Evaluation using simulation and experimental results
of an elastic beam test rig

0 0.005 0.01 0.015 0.02 0.025

−3

−2

−1

0

1

2

3

x10
−5

0

0.5

1

1.5

2

2.5

3

x10
18

Funnel boundaries
Estimation error

E
st
im

a
ti
o
n
er
ro
r
o
f
n
o
d
e
2
[m

m
]

A
d
a
p
ti
v
e
d
es
ig
n
p
a
ra
m
et
er
q
[-
]

Time [s]

Figure 4.7: (a) A time-varying error bound with estimation error, (b) Funnel adap-
tive gain adjustment of PI-Observer (simulation result)

4.4.1 Simulation results

In this study verification of the introduced approaches is given using contact force
estimation of an elastic beam system. The elastic beam system used here is in-
troduced in section 3.2.3. The goal is to estimate the unknown input d(x, t) as a
disturbance acting on the fifth node when the elastic beam is in contact.
As clarified, in this contribution the funnel idea is utilized to adaptively adjust the
gain of PIO. To achieve this goal the funnel function is considered according to Table
4.1. In Figure 4.6 comparison of estimated contact force using high gain PIO and
funnel PIO is given to show at a glance the difference of approaches: adaption of
the high gain PIO introduced as funnel PIO leads to better contact force estimation
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Table 4.1: Parameters of adaptive funnel PIO algorithm (open-loop evaluation)

Funel function min max γ a1 a2 a3

Simulation ϕ(t) =
1

(a1e−a2t
2 + a3)

1 1.5 e10 1 2e7 0.06

Experiment ϕ(t) =
1

(a1e−a2t
2 + a3)

2 0.5 2 e5.5 50 1 0.04

©SRS 2016

1

2

3

Figure 4.8: Test rig of elastic beam system at the Chair of Dynamics and Control
(UDuE), 1. laser displacement sensors, 2. piezo force sensors, and 3. contact tip.

than high gain PIO and MAPIO (less influence from measurement noise).
Estimation error and related funnel function are illustrated in Figure 4.7 which
clearly shows that the estimation error of the available output remains in the pre-
scribed funnel function. The error band is about 2 × 10−4 which illustrates a sat-
isfactory estimation error for system output. The adaptation observer gain (design
parameter q) is also displayed in Figure 4.7. It is obvious that the design gain
parameter increases in the presence of contact force (t≃0.017s and t≃0.022s). Cor-
respondingly, it is adaptively adjusted more relaxed when the estimation error has
large distance to the funnel boundaries.

4.4.2 Experimental validation

An elastic beam test rig [Kra06] is shown in Figure 4.8. The elastic beam sys-
tem is modeled using Finite Element Method as mentioned in section 3.2.3. Two
measurements, the displacements at the second and the fifth nodes (y1(t) = x3(t),
y2(t) = x9(t)), are measured using laser sensors. The task is to estimate the not
measured contact force d(t) acting on the last node of the beam which is unknown
with respect to the time behavior.

Here the adaptive funnel PIO is performed due to its ability to adjust the ob-
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Figure 4.9: Measured real contact force and its estimations (experimental result)

server gain. Experimental results are achieved for different observer approaches,
high/low gain PIO and funnel PIO. Especially the results at t≃2.4s are of interest,
in the moment the contact occurs. The experimental results shown in Figure 4.9
illustrate inefficient estimation quality regarding low gain PIO due to the fast dy-
namical behavior of the contact force. On the other hand utilization of high gain
PIO represents strong influence from measurement noise in the unknown input es-
timation task. The novel proposed approach, introduced as funnel PIO, adjusts the
PIO gain adaptively so that the estimation follows rapidly the contact force whit
designed adaptive gain. Besides, when no aggressive high gain is required (absence
of contact force), the proposed method treats as relaxed low gain PIO and is not
impacted by measurement noise (Figure 4.9).
Estimation error and related funnel function illustrated in Figure 4.10 clearly show
that the output estimation error of the second node remains in the prescribed fun-
nel area. Accordingly, the adaption behavior of observer gain (design parameter q)
in Figure 4.10 demonstrates the advantages of proposed funnel PIO method. It is
worth mentioning that during the time interval when the unexpected contact exists
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Figure 4.10: (a) A time-varying error bound with estimation error, (b) Funnel adap-
tive gain adjustment of PI-Observer (experimental result)

(begin at t≃2.4s) the gain is adjusted to be larger, otherwise it is adjusted more
relaxed.
Single-sided amplitude spectrum of contact force estimation is illustrated in Fig-
ure 4.11 to detail further performance differences of the approaches. It can be
concluded that low gain PIO is not suitable to estimate the fast dynamical behav-
ior of the real contact force, as known. Furthermore, it can be stated that other
approaches (high gain PIO and funnel PIO) show a roughly similar behavior with
respect to the dynamics of the real contact force. On the other hand funnel PIO
behavior shows less higher dynamical parts of the contact force (less influence of
measurement noise). It should be mentioned that no further filtering is applied.
In Table 4.2 a comparison of different observer approaches in state and unknown
input estimations for both simulation and experimental results are numerically rep-
resented. Besides, the numerical results are normalized to the interval [0,1] and
graphically illustrated in a spy diagram (Figure 4.12). Accordingly, it can be con-
cluded that funnel PIO has the best performance in state and unknown input estima-
tion. On the other hand high gain PIO is more or less successful in state estimation
while it has the worse performance in the unknown input estimation task.
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Table 4.2: Comparison of different observer approaches

Simulation Experiment

Approach/
∫ T

0
e2dt UIEE11 SEE12 SEE23 UIEE21 SEE32 SEE43

Funnel PIO 1.51e5 3.64e-7 2.94e-9 1.27e1 1.36e1 3.71e1

Low gain PIO 3.34e5 7.04e-3 1.44e-3 4.49e1 2.57e4 1.48e3

High gain PIO 1.80e6 3.79e-7 4.80e-9 3.55e2 1.46e1 4.56e1

1Unknown input estimation error (estimation of unknown contact force)
2 State estimation error of the second measurement
3 State estimation error of the first measurement

4.5 Funnel PI-Observer-based robust control approach
of a MIMO mass-spring system

The high-gain PI-Observer as a state and disturbance observer can be applied to
design an observer-based nonlinear robust control [BS89]. Due to the simple linear
structure of PI-observer, the exact feedback linearization method is the best com-
plementary nonlinear method to be combined with this observer. Therefore, the key
point of this section is to combine the advantages of exact feedback linearization
control method with those of high-gain PI-Observer. Accordingly, the structure of
PIO is taken and the observer gains are chosen using an adaptive adjustment method
introduced in section 4.2. The idea is to use the funnel control method [IRS02] as
a high-gain adaptive (time-varying) adjustment approach. The advantage of the
proposed approach compared to previously published PIO gain design is the self
adjustment of the observer gains according to the actual estimation situation. The
results of state and disturbance estimation are incorporated into the structure of
exact feedback linearization method to improve the closed-loop robustness. The
effectiveness of the proposed approach is verified by simulation results of a MIMO
mass-spring system. Briefly speaking, the goals and objectives of this section can
be summarized as:

• Utilization of funnel control concept as a high-gain adaptive (time-varying)
adjustment approach to adaptively design the gain of PI-Observer at each
step of integration time and to decrease the influence from measurement noise
in combination with high-gain approaches

• Application of input-output feedback linearization approach to linearize the
nonlinear MIMO system to be used in combination with the proposed funnel
PI-Observer and state feedback control as an observer-based control approach
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• Investigation and comparison of the closed-loop robustness in the presence of
external disturbances and measurement noise for the introduced funnel PI-
Observer-based control approach using a performance/energy criterion

4.5.1 Funnel PI-Observer-based robust control design

An example of a nonlinear MIMO mechanical system, based on the benchmark sys-
tem [AM99] shown in Figure 4.13, is given to verify the proposed method. According
to [LS14] the simulation example is composed of three equal bodies with mass m
that slide along the horizontal axis x. The friction force is neglected in the following
system model. The first mass is connected to a fixed point at x = 0 using a nonlin-
ear elastic spring. The second/third mass is connected to the first/second one with
a similar nonlinear elastic spring as the previous one. The control inputs are the
external forces u1(t) and u2(t) affecting the first and second mass, respectively. The

m

u1

x1 x2
x 3

d1

m m

u2

d2 d3

k,kp k,kp k,kp

Figure 4.13: Nonlinear MIMO mechanical system example

system equations are

mẍ1 = k(−2x1 + x2) + kp[−x31 + (x2 − x1)
3] + u1 + d1,

mẍ2 = k(x1 − 2x2 + x3) + kp[(x3 − x2)
3 − (x2 − x1)

3] + u2 + d2,

mẍ3 = k(x2 − x3) + kp(x2 − x3)
3 + d3,

ymeas =
[
x1 x2 x3

]T
, and

ycontr =
[
y1 y2

]T
=

[
x1 x3

]T
.

(4.18)

The parameters used in simulation are m = 0.5 kg, k = 217.0 N/m, and kp =
63.5 N/m3. The dynamics of the disturbances in the inputs d1, d2, d3 are as-
sumed as unknown to the control design but present in the simulation as d1 = 5,
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d2 = 10sin(5t), and d3 = 20sin(10t). The system can be linearized by input-output
linearization approach as

ÿ1 = v1 +
d1
m

= v1 + η̄1, (4.19)

y2
(4) = v2 + [

k

m
+

3kp
m

(x2 − x3)
2](
d2
m

− d3
m
) = v2 + η̄2,

if the inputs are chosen as

u1 = m
[

v1 − k
m
(−2x1 + x2)− kp

m
[−x31 + (x2 − x1)

3]
]

,

u2 =
m

k
m
+

3kp
m

(x2−x3)2
× {v2 −

[
k
m
+ 3kp

m
(x2 − x3)

2
]

×
[
k
m
(x1 − 3x2 + 2x3) +

kp
m
[2(x3 − x2)

3 − (x2 − x1)
3]
]

− 6kp
m
(x2 − x3)(ẋ2 − ẋ3)

2}.
(4.20)

The remaining zero/internal dynamic

ẍ2 =
1
m
[k(x1 − 2x2 + x3) + kp((x3 − x2)

3 − (x2 − x1)
3) + u2 + d2],

is stable, if the disturbance d2 is bounded. Two funnel PI-Observers are designed
for the transformed decoupled dynamics (4.19) (FPIO1 and FPIO2 respectively)

ża =

[
0 1
0 0

]

za +

[
0
1

]

v1 +

[
0
1

]

ˆ̄η1 + L1a(y1 − ŷ1),

ˆ̄̇η1 =L2a(y1 − ŷ1),

ŷ1 =
[
1 0

]
za,

(4.21)

and

żb =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






zb +







0
0
0
1






v2 +







0
0
0
1






ˆ̄η2 + L1b(y2 − ŷ2),

ˆ̄̇η2 =L2b(y2 − ŷ2),

ŷ2 =
[
1 0 0 0

]
zb,

(4.22)

with the state vectors za =

[
ŷ1
ˆ̇y1

]

and zb =







ŷ2
ˆ̇y2
ˆ̈y2
ŷ
(3)
2






, to estimate the transformed

states and disturbances, namely x̂1, ˆ̇x1, ˆ̄η1, x̂3, ˆ̇x3, ˆ̈x3, x̂
(3)
3 , and ˆ̄η2. To construct the
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inputs in (4.20), besides the displacements x1, x2, and x3 the velocities ẋ2 and ẋ3 are
also required. As a transformed coordinate, the velocity ẋ3 can be estimated using
the funnel PI-Observer (4.22). To estimate the velocity ẋ2, an additional funnel
PI-Observer is designed (FPIO3) by

żc =

[
0 1
0 0

]

zc +

[
0
1

]

v3 +

[
0
1

]

ˆ̄η3 + L1c(x2 − x̂2),

ˆ̄̇η3 =L2c(x2 − x̂2),

(4.23)

with the state vector zc =

[
x̂2
ˆ̇x2

]

, input

v3 =
k
m
[(x1 − 2x2 + x3) + kp[(x3 − x2)

3 − (x2 − x1)
3] + u2],

and η̄3 = d2
m
. Using the estimations of the three funnel PI-Observers mentioned

above, the system (4.18) can be transformed into an input-output linearized form
with nonlinear feedback (4.20). To realize the robust control, linear control methods
can be applied to the linearized model (4.19), for example as linear state feedback
control (achieved by pole placement control method)

v1 = −20ˆ̇x1 − 100(x1 − x1ref )− ˆ̄η1,

v2 = −200x̂
(3)
3 − 15000ˆ̈x3 − 500000ˆ̇x3 − 6250000(x3 − x3ref )− ˆ̄η2.

(4.24)

The desired values taken in the simulation are x1ref = 0.25 and x3ref = 0.3. The
additional measurement noise with different levels is added to the measurements x1,
x2, and x3. Estimations of the unknown disturbances d1, d2, and d3 are calculated
from the estimations ˆ̄η1, ˆ̄η2, and ˆ̄η3. The block diagram of the proposed method is
illustrated in Figure 4.14 (Stability proof of the closed-loop system refer to [LS14]).

Exact feedback
linearization

Nonlinear
system model

Funnel

u (t) y (t)

Linearized system

v(t)
L L

Linear robust control
with disturbance rejection PI-Observer

Figure 4.14: Sketch of the proposed closed-loop control approach
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Table 4.3: Parameters of adaptive funnel PIO algorithm (closed-loop evaluation)

min max γ a1 a2 a3
FPIO1 1 10 e4 10 180 0.18
FPIO2 1 2.6 e13 50 180 0.05
FPIO3 1 10 e7 10 180 0.01

4.5.2 Simulation results and discussion

As clarified, in this contribution the funnel idea is utilized to adaptively adjust
the PIO gain. It means that the structure of funnel PI-Observer is the same as
PI-Observer and the gain designing procedure is different as explained in the pre-
vious sections. The funnel function considered for designing of three mentioned
PI-Observer structures is supposed as

ϕ(t) =
1

(a1e−a2t
2 + a3)2

, (4.25)

with constant design parameters a1, a2, and a3 according to Table 4.3 for the three
funnel PIO. In Figure 4.15 comparison of the estimated disturbances using high
gain PIO and funnel PIO is given to show at a glance the difference of approaches:
adaption of the high gain PIO introduced as funnel PIO leads to better disturbance
estimation than high gain PIO (less influence from measurement noise).
To examine the performance with respect to sensitivity to noise or model uncer-

tainties, two representative control results (system outputs) are illustrated in Figure
4.15 for different control approaches (PIO-EFL and FPIO-EFL). From the results
it can be concluded that FPIO-based exact feedback linearization approach shows
better performance and less tracking error compared to the other illustrated ap-
proach. However judging only based on the output performance (position of the
first and third masses) is not comprehensive. Therefore, to perform the comparison
of different controllers comprehensively the criterion

Ccriteria = [
∫ T

0
e2(t)dt,

∫ T

0
u2(t)dt], (4.26)

with the relation between input energy
∫ T

0
u2(t)dt and control error

∫ T

0
e2(t)dt is

used. The principle relation is illustrated in Figure 4.16. The interval length T
denotes the time window where the performance is compared. With the same input
energy, the result which has lower output error or correspondingly with the same
output error which uses less input energy (closer to the origin) has better perfor-
mance. In Figure 4.16 a comparison of different control approaches in the presence
of additional measurement noise and by considering two state feedback controllers
(achieved by pole placement control method) is represented. As illustrated, FPIO-
EFL has always the best tracking performance compared to PIO-EFL. It is worth
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Figure 4.15: Illustration of effects resulting from added noise (to measurements)

mentioning that when robustness is taking into consideration, the proposed FPIO-
EFL has convenient and better tracking performance compared to the PIO-EFL
regarding to the performance variation in the presence of additional measurement
noise.

4.6 Summary and discussion

In this chapter, an adaptive estimation approach is proposed and applied for the
task of contact force estimation (with fast dynamics) of an elastic beam. The pro-
posed funnel PIO approach takes advantage of the funnel idea to adjust the PIO
gains according to the actual situation and to maintain the estimation error in a
prescribed funnel area. The introduced approach shows significant advantages with
respect to estimation of system states and unknown inputs in the presence of mea-
surement noise which is a considerable property for practical application of high
gain observers. Both simulation and experimental results of an elastic beam verify
and validate the advantages of the introduced funnel PIO compared to the known
high gain PIO. The stability of the proposed adaptive algorithm with respect to
switching funnel PI-Observers is discussed based on Lyapunov theory.
Furthermore, in this chapter, an observer-based robust control approach is proposed
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Figure 4.16: Comparison of different control methods by means of performance
criterion, with consideration of measurement noise

for an input-output linearizable nonlinear system with unknown inputs (e.g., dis-
turbances and model uncertainties). The system and unknown input estimations
achieved by funnel PI-Observer is used together with the system measurements
to realize the exact feedback linearization (EFL) approach. A robust disturbance
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rejection control is realized by using state feedback of the linearized model and es-
timations of the unknown inputs. The new introduced approach FPIO-EFL shows
significant advantages compared to PIO-EFL with respect to estimation of system
states and unknown inputs in the presence of measurement noise and integration
of the estimation results in the structure of EFL approach. Simulation results of a
mechanical MIMO system verify the advantages and effects of the introduced funnel
PIO-based robust control method.
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Motion control of power trains, drive trains, or even actuators has been in the focus
of several scientific and industrial efforts of the last decade. Advanced control ap-
proaches are based on knowledge (models resp.) about the system to be controlled,
realized by mathematical models (e.g. sets of differential equations).

In this chapter the introduced high-gain PI-Observer (chapter 3.1) is applied in
the experimental context. The experimental application of PI-Observer approach
is performed to estimate the system nonlinearities and uncertainties and to inte-
grate the estimation results into the structure of Sliding Mode Control (SMC) and
backstepping control (BC) approaches. These novel approaches are experimentally
evaluated using a hydraulic differential cylinder test rig. Briefly speaking, the goals
and objectives of this chapter to control a hydraulic differential cylinder test rig can
be summarized as:

• Investigation and implementation of novel PI-Observer-based Sliding mode
control and PI-Observer-based backsteppin control approaches

• Stability proof considering the convergence of controller position tracking error
and unknown input observation error simultaneously

• Design and selection of SMC and BC parameters by defining and elaborating
a performance/energy criterion

• Investigation of closed-loop robustness against modeling errors and external
disturbances by using an improved implementation environment

• Comparison and discussion of experimental results of hydraulic differential
cylinder test rig by considering the proposed approaches (in both approaches
PI-Observer is used to estimate the uncertainties)

• Enhancement of disturbance attenuation and system performance robustness
using the proposed combination of linear observer and nonlinear robust con-
trollers

The contents, figures, and tables presented in this chapter are prepared for publication
in the journal papers “Robust control of a hydraulic cylinder using an observer-based
sliding mode control: theoretical development and experimental validation” [BS17e]
and “Proportional-Integral-Observer-based backstepping approach for position control
of a hydraulic differential cylinder system with model uncertainties and disturbances”
[BS17b], and is published in the conference paper “Robust control approach for a
hydraulic differential cylinder system using a Proportional-Integral-Observer-based
backstepping controller [BS17d].”
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5.1 Structure of considered class of nonlinear systems

The general class of system with nonlinear relation between the input variables (ini-
tial conditions or external inputs) and output or state variables, is called nonlinear
system. Common description of nonlinear systems are by (nonlinear) state equa-
tions, differential equations, or difference equations. Throughout this chapter, the
discussion is restricted to the class of nonlinear systems which are linear with respect
to the manipulated input (control-affine system). The considered class of nonlinear
systems with unknown inputs, called also continuous time smooth nonlinear system,
is described by

ẋ(t) = f(x) + g(x)u(t)
︸ ︷︷ ︸

Nominal model

+Ed(x, t),

y(t) = h(x),

(5.1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

l the input vector, y(t) ∈ R
m

the output to be controlled. The vector d(x, t) ∈ R
s with s ≤ n together with the

constant matrix E ∈ R
n×s represents the unknown inputs. Disturbances, modeling

errors, parameter uncertainties, or other uncertainties to the nominal model can be
summarized under Ed(x, t), possibly in all the dynamical equations (when the rank
of E equals n).

The objective is to design a controller that stabilizes the system behavior (5.1) or
in other words, to realize stable tracking and regulation control in the presence of
disturbances d(x, t). In the following several assumptions are considered regarding
the system structure (5.1).

• The vector fields f(·) ∈ R
n, d(·) ∈ R

s, g(·) ∈ R
n×l, and h(·) ∈ R

m are
smooth1.

• The system has an equilibrium at point x = 0.

• The unknown inputs d(x, t) and the corresponding derivatives are bounded,
but the bounds and the related dynamical behavior are unknown.

• The nominal model of the system is available and is input-output linearizable.
Besides, the internal dynamics are stable.

• In MIMO cases, the number of inputs is equal to the number of outputs,
namely l = m (in this chapter just a SISO system is considered).

1A smooth function is a function that has continuous derivatives up to desired order over some
domain.
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5.2 Model of a hydraulic differential cylinder system

Hydraulic cylinders are actuators with strongly nonlinear behavior. They are widely
used in several industrial areas, such as heavy machines, cranes, robots, etc. The
dynamical behavior of hydraulic differential cylinders can be described by a coupled
set of nonlinear differential equations [JK12]. A model of a hydraulic differential
cylinder with a proportional control valve as shown in Figure 5.1 [JK12] is given by

© SRS 2015
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(a) Test rig of hydraulic differential cylinder
system at the Chair of Dynamics and Control
(UDuE), 1. directional control valve, 2. oil sup-
ply in chamber A, 3. oil supply in chamber B,
4. moving mass, and 5. load cylinder

Total

(b) Sketch of the hydraulic differential
cylinder system

Figure 5.1: Hydraulic differential cylinder system
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d(t)
0
0
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


,

= f(x) + g(x)u(t) + d(t),

y(t) = h(x) = x1(t),

(5.2)

with the variant mass

m(x1) = mbasic + ρfl(VA(x1) + VB(x1)), (5.3)
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Table 5.1: Definition of parameters and variables

Variable Physical meaning Value (Unit)

x1(t) = xcyl(t) Displacement of the mass cart - (m)
x2(t) = ẋcyl(t) Velocity of the mass cart - (m/s)
x3(t) = pA(t) Pressure in chamber A - (pa)
x4(t) = pB(t) Pressure in chamber B - (pa)
fd(t) External force acting on the piston - (N)
mbasic Basic mass of the cart 279.6 (kg)
ρfl Density of the hydraulic oil 870 (kg/mm3)
p0 Supply pressure 8×106 (pa)
pt Tank pressure 5×105 (pa)
AA Cylinder piston area 3117.2 (mm2)
AB Cylinder ring area 1526.8 (mm2)

ϕ =
AA

AB
Area ratio 2.042 (-)

Eoil,max Max. bulk modulus of elasticity 1.8×109 (pa)
pmax Max. supply pressure 2.8 ×107 (pa)
VcA Pipeline and dead volume (A) 198.6 (cm3)
VcB Pipeline and dead volume (B) 297.8 (cm3)
H Stroke of the cylinder 0.5 (m)
Imax Max. input current 0.63 (A)
QN Nominal valve flow 85 (L/min)
∆pN Pressure drop of valve 9×105 (pa)

the volumes VA, VB in chambers A and B as

VA(x1(t)) = VcA + x1(t)AA,

VB(x1(t)) = VcB + (H − x1(t))AB, 0 ≤ x1(t) ≤ H,

the disturbance d(t) as

d(t) =
fTotal(t)

m(x1)
, (5.4)

the hydraulic flows

QA(x3(t)) =

{

Bνsgn(p0 − x3(t))
√

| p0 − x3(t) |, u ≥ 0

Bνsgn(x3(t)− pt)
√

| x3(t)− pt |, u < 0
,

QB(x4(t)) =

{

−Bνsgn(x4(t)− pt)
√

| x4(t)− pt |, u ≥ 0

−Bνsgn(p0 − x4(t))
√

| p0 − x4(t) |, u < 0
,
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with

Bν =
QN√
0.5∆pN

, (5.5)

and the bulk modulus of elasticity

Eoil(p) =
1

2
Eoil,max log10(90

p

pmax
+ 3).

The input u(t) is the electrical current which is limited as −Imax ≤ u(t) ≤ Imax.
The flow characteristic of the valve is assumed to be proportional and no internal
and external leakage effects are considered. The friction of spool, piston, and cart
are neglected in the modeling of cylinder valve. The variables and constants are
defined in Table 5.1.

Incremental

encoder interface

dSPACE 1104 R&D

controller board

DAC interface

Power ampli erfi

Sensor

Actuator

Matlab/Simulink
Control Desk

Host PC Real time control Plant

Figure 5.2: Block diagram of experimental setup

5.2.1 Model Verification

Before using the introduced model in the procedure of observer/controller design
for the hydraulic differential test rig, the introduced nonlinear system model has to
be validated to verify the reliability of the model. Afterward, the simulated model
can be used to verify the control and observer designs before implementation in real
time on the test rig. As a key component of model-based approaches, simulation of
system model enables the designer to find the design errors, validate requirements,
and verify the control system performance before implementation. This procedure
is practical in the development proceeding through the simulation. Therefore, in
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this section the results of simulated model are compared with the results of real
experimental implementation from the hydraulic differential cylinder test rig. Af-
terward, the considered model is used to verify the control/observer design before
implementation on the real system. To implement the different control methods in
real time, a compact system is designed as shown in Figure 5.2.
To validate the system model, a simple P-Controller is considered in the simulation
and experimental cases. The experimental and simulation results carried out using
regular working conditions. The reference signal is considered as a sinusoidal signal
with the same frequency, amplitude, and bias for the both simulation and experi-
ment. The comparison between simulation and experimental results is illustrated
in Figure 5.3. In this figure it is obvious that in the moment of changing direction
of the cylinder, there is an unexpected peak in the velocity results of experimental
test. This unexpected behavior can be considered as effect of friction force as an
unknown input or an external disturbance.

5.3 PIO-based sliding mode controller

Due to the nonlinear valve geometry as well as the nonlinear temperature and pres-
sure depending viscosity of the fluid, hydraulic drives are categorized as strong
nonlinear systems [JK12]. Typical control approaches in this field are based on
Proportional-Integral SISO control. Reviews e.g. [JK12] state the dominance of
these kind of approaches. On the other hand, robust nonlinear controllers for
hydraulic systems are widely discussed because of the strong nonlinear electro-
mechanical behavior with a large extent of model uncertainties. These uncertainties
can be categorized as parametric uncertainties (e.g. large variations in load and
hydraulic parameters such as bulk modulus due to component wear or temperature
change) or uncertain nonlinearities (e.g. external disturbance, leakage, and friction).
Due to the above mentioned facts, in [SLF13] SMC is recommended for controlling
the hydraulic systems because once the state of system reach the predefined sliding
surface, thereafter the system performance is not dependent on the system param-
eters, disturbances, or other nonlinearities.

Sliding Mode Control (SMC) approach is a particular approach in the field of robust
control design which has been widely employed because of its ability to eliminate
disturbances and to handle effects of uncertainties. The SMC approach has been
studied for over 40 years [Itk76,Utk78,ES98] because of its applicability to complex
high-order nonlinear dynamic plants under uncertain conditions. The SMC is well-
known because of its low sensitivity to unknown disturbances and variations of
plant parameters. It is worth mentioning that the exogenous perturbations that
can be compensated by the traditional SMC have to satisfy the so-called matching
condition [Dra69] means acting in the same channel as the system input. The SMC
approach is a specific type of Variable Structure Control Systems (VSCS) combining
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feedback control laws and decision rules. It contains two main parts: (a) design of
the switching function also using measurements of the system to be controlled and
(b) selection of the control law which is not necessarily discontinuous.

Using unknown input observers like disturbance observers to estimate the effects
in real-time and integration of estimation results into the SMC structure is highly
regarded [YLY13, GSP13] because (a) the SMC approach frequently relies on the
availability of the state measurements [IS97] and (b) even though the traditional
SMC approach is invariant to the class of bounded matched uncertainties, in the
presence of large extent of uncertainties in practical applications, implementation
of traditional SMC is challenging due to the limited bandwidth actuators [Wel02].
In [ZKZL13] a sliding mode controller is proposed for time-delay systems affected
by system nonlinearities and stochastic perturbation. Asymptotic stability of the
overall closed-loop system besides the disturbance attenuation strategy is proposed
using LMI approach. In [BGK09] a high gain sliding mode observer is designed
to reconstruct the states of the system. The estimation results are considered for
designing of a sliding mode controller for a class of mismatched uncertain systems.
In [WYL15] the disturbance, considered as the effects of parameter uncertainties
and external interferences, is modeled as a kind of unknown derivative-bounded
disturbance. A nonlinear disturbance observer is used to estimate the modeled
disturbances integrated to the SMC structure.

It is worth noting that most of the studies on SMC concentrate on the matched un-
certainties condition. So the disturbances or uncertainties occurs in the same channel
as the system input. Since the conventional SMC approach is inefficient in the pres-
ence of mismatched uncertainties, newer studies focus on the mismatched uncertain-
ties in SMC approach [YLY13,WC08,ZSX10,Cho07]. In [WC08] an adaptive SMC
is proposed for stabilizing a class of dynamic systems with matched/mismatched
uncertainties using an adaptive mechanism embedded in the sliding surface function
design. In [ZSX10] an adaptive SMC is proposed via a convex optimization tech-
nique for a fuzzy system affected by mismatched disturbance. In [Cho07] Integral
SMC is combined with linear matrix inequality method to dominate the mismatched
norm bounded uncertainties in the state matrix as well as the input matrix. Inte-
gration of uncertainties estimation into the structure of SMC has been proposed
in [YLY13]. In [GSP13] the approach has been extended by combining the SMC
with Disturbance Observer (DO). This combination provides the possibility to re-
duce the magnitude of discontinuous component in the control law and thereby the
chattering problem as detailed in [GSP13].

In the following part a combination of the well-known SMC method with a lin-
ear high-gain Proportional-Integral-Observer (PIO), able to estimate both system
states and unknown effects, is discussed to improve the tracking performance of
the closed-loop system. The key property of the new approach is that neither di-
rect measurements of the disturbances are needed, nor measurements of the system
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states are used. Modeling errors and disturbances are estimated as unknown in-
puts together with the system states using a high-gain PIO [LS12], which solves the
problems mentioned above. Thereupon the results are integrated into the structure
of sliding surface design to eliminate the effect of uncertainties. The block diagram
of the proposed PIO-SMC is illustrated in Figure 5.4. In the following the robust
nonlinear control based on combination of PIO and SMC is performed and the com-
bination is explained for the considered motion/position control task. The system
model is linearized using input-output linearization method. Furthermore, PIO is
used to estimate disturbances and model uncertainties such as friction force, mass
acceleration forces, and modeling errors for the motion control task. The estimation
is integrated into the SMC structure to realize the robust motion control of hydraulic
differential cylinder system.

Sliding Mode Controller

-

u t( ) y t( )

Linearized ystems

v t( )

PI-Observer

( )td t( )
[ ], ,y y yref

+
~

s( )

d t( )

Hydraulic

differential cylinder
I/O feedback
linearization

Control law design Sliding surface

ref ref

Figure 5.4: Block diagram of the proposed PIO-SMC method

5.3.1 Linearization of hydraulic cylinder model

The main idea of input-output linearization approach is to transform the nonlinear
system dynamics to a fully or partly linear one. Afterward, linear control or observer
techniques can be applied to the linear dynamical model of the system. Therefore, a
nonlinear transformation has to be performed to express the system model in a new
coordinates as a linear model. To find the mentioned nonlinear transformation first
of all the derivative of output signal is calculated so many times until an explicit
relation between the input signal u and the output signal y is achieved. The number
of differentiations to achieve this explicit relation is called system relative degree. If
the relative degree of the system is equal to the system order it is called exact input-
output linearization approach. The nonlinear model of the hydraulic differential
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cylinder with proportional valve is linearized by input-output linearization (Figure
5.5). The system (5.2) has one input u(t) = xv,effect(t) and one output to be
controlled y(t) = x1(t). For the nonlinear model (5.2), the input-output linearized
model is described by

...
y (t) = v(t) + d̃(t), (5.6)

with

v(t) = L3

f
h(x) + LgL

2

f
h(x)u(t),

L3

f
h(x) =

AAx2
ϕ2m2(x1)VA(x1)VB(x1)
[ρfl(AB − AA)(x3ϕ

2VA(x1)VB(x1)− x4ϕVA(x1)VB(x1))
−AAϕ2m(x1)VB(x1)Eoil(x3)− AAm(x1)VA(x1)Eoil(x4)],

LgL
2

f
h(x) =

AA
ϕm(x1)VA(x1)VB(x1)
[ϕVB(x1)Eoil(x3)QB(x3)− VA(x1)Eoil(x4)QA(x4)],

(5.7)

and

d̃(t) = LdL
2

f
h(x) +

d2

dt
Ldh(x) +

d

dt
LdLfh(x) = ḋ(t), (5.8)

where Lf (·), Lg(·), and Ld(·) denote the Lie derivatives2 and f , g, d, and h are

defined according to (5.2). The nonlinear system model also has to be analyzed
with respect to the system dynamics. The zero dynamics of the system (5.2) can be
written by

ż(t) = −m(x1 = 0)

AA
d̃(t), (5.9)

2Here Li

G
H denotes the i−th Lie derivative of H with respect to G,

where the Lie derivatives are defined by L0

G
H = H, Li

G
H = LGLi−1

G
H = ∇(Li−1

G
H)G(i =

1, 2, . . .) with ∇G , ∂G
∂x and H = H(x) and G = G(x) are functions of x.
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with z(t) = x3(t) −
x4(t)

ϕ
. To guarantee the zero output the input u∗(t) can be

considered as

u∗(t) =
−L3

f
h(x)− d̃(t)

LgL2

f
h(x)

. (5.10)

Assuming d̃(t) and error ||d̃(t)− ˆ̃d(t)|| as bounded (the first one is one of the usual
assumptions in this field and the second one can be achieved according to the stabil-
ity proof of PI-Observer) it can be concluded that the zero dynamics stay bounded
(the disturbance in the original coordinates d(t) is assumed with smooth variation
rate to be differentiable). The linearized dynamics (5.6) is described as

η̇(t) =





ẏ(t)
ÿ(t)...
y (t)



 =





η2(t)
η3(t)

L3

f
h(x)



+





0
0

LgL
2

f
h(x)



 u(t) +





0
0
1



 d̃(t)

= α̃(η) + β̃(η)u(t) + Ñ d̃(t).

(5.11)

5.3.2 PI-Observer design for the linearized model of hydraulic differen-
tial cylinder system

The linear PI-Observer can be used for the state and unknown input estimation of
linearized system (5.11). The linear system model (5.11) can be rewrite as

η̇(t) =





ẏ(t)
ÿ(t)...
y (t)



 =





0 1 0
0 0 1
0 0 0





︸ ︷︷ ︸

A

η(t) +





0
0
1





︸︷︷︸

B

v(t) +





0
0
1





︸︷︷︸

N

d̃(t),
(5.12)

with

v(t) = L3

fh(x) + LgL
2

fh(x)u(t). (5.13)

A linear PI-Observer can be designed for linearized system model (5.12) as

˙̂η(t) = Aη̂(t) +Bv(t) +N
ˆ̃d(t) +L1(y(t)− ŷ(t)),

˙̃̂
d(t) = L2(y(t)− ŷ(t)),

ŷ(t) =
[
1 0 0

]
η̂(t),

(5.14)
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Figure 5.6: Estimation results using linear high gain PI-Observer

with suitable observer gain matrices L1 (proportional observer gain) and L2 (in-
tegral observer gain). The transformed states η and the disturbance d̃(t) can be

estimated as η̂(t) and ˆ̃d(t). The states in the original coordinates are available from
measurement and estimation of η̂2(t) = ˙̂xcyl(t). The derivative of the disturbance in
the original coordinate ḋ(t) = d̃(t) is also estimated by (5.14). According to chap-
ter 3, high-gain PI-Observer can be utilized for appropriate estimation of unknown
inputs together with the linearized system states. The estimation results using the
introduced PI-Observer in (5.14) is illustrated in Figure 5.6. In the following section
combination of PI-Observer estimation results with SMC structure is proposed and
validated with experimental results.
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5.3.3 Sliding mode control design

Sliding mode control is a specific type of variable structure control systems (VSCS)
with combination of feedback control law and decision rule. Decision rule part
contains of a switching function with some measures of the current system as input
and a particular value as output which should be used at that moment for feedback
controller. Variable structure control system is used to constrain the system state
to the situate in the defined neighborhood of the switching function. Accordingly,
sliding mode design approach contains two main part: (a) designing of the switching
function and (b) selection of the control law which is not necessarily discontinuous.
Finally, the feedback control can switch from one continuous structure to another
based on the current position in the state space and it can be considered as a hybrid
dynamical system. Implementation of SMC requires more precision in comparison
to the other nonlinear control methods because of chattering problem, energy loss,
plant damage, and excitation of unmodeled dynamics caused by hard sliding mode
action.
As explained, the main idea of SMC is design of a switching control. The main
purpose of using switching control is to drive the nonlinear system states on a
predefined trajectory and to maintain the states on this trajectory for the subsequent
time. This trajectory (called sliding surface or sliding manifold) defines the rule for
proper switching conditions. Design of the switching control to drive the system
state to the sliding surface can be done using the so-called Lyapunov approach.
A general system state space model can be considered as

ẋ(t) = f(x, t, u), (5.15)

with a sliding surface s(x) = 0 and switching gain

u =

{

u+(x, t), s(x) > 0

u−(x, t), s(x) < 0,
(5.16)

where u+(x, t) and u−(x, t) are continuous functions, with u+(x, t) 6= u−(x, t). The
switch controller is designed as a discontinuous function of the system state which
drives the system state to the sliding surface (see Figure 5.7). It is worth mentioning
that SMC is one of the efficient and useful robust controller approaches for complex
high-order nonlinear dynamic plant affected by uncertainties and unknown factors.
The advantages of using this control approach is its low sensitivity to parameter
variations and disturbances that leads to elimination of exact model requirement.
According to [YLY13,CC10], to track the desired trajectory (to force the tracking
error et = y − yref to approach the sliding surface) as well as to attenuate the
disturbance effect asymptotically, the sliding surface in this work is designed as

s(η) = cT (η − ηref )
= c1(η1 − yref ) + c2(η2 − ẏref ) + c3(η3 − ÿref )
= c1et + c2ėt + c3ët,

(5.17)
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Figure 5.7: Phase trajectory in sliding mode

with sliding surface design parameters ci (i = 1, 2, 3) to be adjusted. As stated
in [Utk78] the design parameters ci are chosen as positive constant such that the
polynomial po(s) = c3s

2+c2s+c1 is Hurwitz so that asymptotic stability of the sliding
motion can be guaranteed. In this contribution according to [Utk78], parameter c3
is considered as c3 = 1. Here yref denotes a reference or desired signal has to be
tracked by the closed control loop. Based on the sliding surface design introduced
in [Utk78] the derivative of the sliding surface ṡ(η) can be calculated as

ṡ(η) = −ksgn(s(η)) = gradT s(η).η̇

= gradT s(η).(α̃(η) + β̃(η)u(t) + Ñ
ˆ̃d(t)).

(5.18)

The control input u(t) is achieved directly from (5.18) as

u(t) = −
c1η2+c2η3+

ˆ̃
d+k sgn(s(η))+L3

f
h(x)

LgL2

f
h(x)

, (5.19)

with constant design parameters c1, c2, and k. The introduced approach requires
the estimation of d̃. In this contribution the transformed disturbance d̃ is estimated
as ˆ̃d using the introduced PI-Observer in section 5.3.2.
To make the control function (5.19) continuous/smooth and to avoid the high-
frequency oscillation of the input the discontinuous function sgn(s(η)) in (5.18)
is replaced by

sat(
s(η)

σ
) =







s(η)

σ
,

∣
∣
∣
s(η)

σ

∣
∣
∣ ≤ 1

sign(
s(η)

σ
),

∣
∣
∣
s(η)

σ

∣
∣
∣ > 1,

(5.20)

in which σ denotes the boundary layer which can be chosen to achieve the smooth
control action and the desired control performance simultaneously. In this work σ
is considered equal to 0.05.
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5.3.4 Stability analysis

In the following part the stability proof of the proposed method is given.

Lemma 1 [SYM95]: Assume that the unknown input d(x,u, t) is bounded. Then
there exists a high-gain PI-Observer for system (5.12) such that eest(t) = x̂(t) −
x(t) → 0 and fe(t) = d̂− d→ 0 for t > 0 for any initial states x(0), x̂(0), and d̂(0)
if

• pair (A,C) is observable,

• rank(

[
A N

C 0

]

) = n+ r, and

• CAiN = 0 for i = 0, 1, ..., k − 2, where k is the observability index of pair
(A,C).

Lemma 2 [LS12]: The feedback matrices L1 and L2 are required to stabilize the
extended system described by the matrix Ae and are also required to minimize
the influence from the unknown inputs to the estimation errors eest(t) and fe(t).
Therefore the two requirements

• Re {λi} < 0, for all the eigenvalues of matrix

[
A−L1C N

−L2C 0

]

which illustrates

the dynamics of the estimation error for the extended system, and

• ‖L2‖F ≫ ‖L1‖F 3

for the PI-Observer gain matrices design have to be fulfilled.

Lemma 3 [Kha96]: Considering a nonlinear system ẋ = F (x,w) which is input-
to-state stable (ISS), if lim

t→∞
w(t) = 0, then lim

t→∞
x(t) = 0.

Assumption 1 : By using PIO the state and disturbance estimation errors are
bounded defined as e∗

est = supt>0 |eest(t)| with eest(t) = x̂(t) − x(t) and fe
∗ =

supt>0 |fe(t)| with fe(t) = ˆ̃d− d̃.

Theorem 1 : Suppose that Assumption 1 is satisfied for the considered linearized
system (5.11). If the switching gain k in control law (5.19) is designed as a positive
value therefore, the control-loop system with SMC is asymptotically stable.

3The norm ‖·‖F denotes here the Frobenius norm, ‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a2ij =
√

trace(A∗A) for A

in Rm×n.
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Proof 1 : Considering a candidate Lyapunov function as

V (s) = 1
2
s2, (5.21)

by replacing ṡ from (5.18) and by substituting the control law (5.19) the derivative
of V (s) is achieved as

V̇ (s) = sṡ

= s (gradT s(η).(α̃(η) + β̃(η)u(t) + Ñ d̃(t)))
≤ − |s| (k + f ∗

e )

≤ −
√
2(k + f ∗

e )V
1/2.

(5.22)

By designing an appropriate positive switching gain k for the sliding mode controller,
it can be derived from (5.22) that the proposed control law can force the system
state to reach the defined sliding surface s = 0. The condition s = 0 implies that

c1(η1 − yref ) + c2(η2 − ẏref ) + c3(η3 − ÿref ) = 0, (5.23)

or

c1(η1 − yref ) + c2(η̇1 − ẏref ) + c3(η̈1 − ÿref ) = 0. (5.24)

Combining (5.24) with the observer dynamics yields (the closed-loop system with
PI-Observer and SMC)







c1(η1 − yref ) + c2(η̇1 − ẏref ) + (η̈1 − ÿref ) = 0

ėest(t) = (A−L1C)eest(t) +Nfe

ḟe = −L2Ceest.

(5.25)

To proof the stability of system (5.25) containing the system states and the observer
dynamics, let assume ξ = [ξ1, ξ2, ξ3, ξ4]

T = [η1 − yref , η̇1 − ẏref , eest, fe]
T therefore

ξ̇(t) = Aξξ(t),

Aξ =







0 1 0 0
−c1 −c2 0 0
0 0 A−L1C N

0 0 −L2C 0






.

(5.26)

Under the conditions that the polynomial s2+c2s+c1 and the matrix

[
A−L1C N

−L2C 0

]

are Hurwitz (assuming the sliding surface design condition, Lemma 1, and Lemma
2 ), the matrix Aξ in (5.26) is also Hurwitz so the system ξ̇(t) = Aξξ(t) is exponen-
tially stable. Therefore, according to Lemma 5.5 in [Kha96] system (5.26) is ISS.
Consequently, it can be derived from Lemma 3 and design condition of sliding sur-
face that the states of system (5.26) satisfy lim

t→∞
ξ(t) = 0. Subsequently the steady

state reference tracking error together with the observer estimation errors converge
to zero under the proposed observer-based control law.
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Table 5.2: Experimental conditions considered for the evaluation of proposed PIO-
based robust control approaches

Case I Case II Case III

∆m = 0:

no mass uncertainty

fcylinder = 0:

no disturbance force

No measurement error

∆m = 0:

no mass uncertainty

fcylinder = 0:

no disturbance force

Measurement error (about ±2.5%)

∆m = 0:

no mass uncertainty

fcylinder = 0:

no disturbance force

Measurement error (about ±5%)

Case IV Case V

∆m = 100kg

fcylinder 6= 0

No measurement error

∆m = 100kg

fcylinder 6= 0

Measurement error (about ±2.5%)

5.3.5 Experimental validation and discussion

The robust control design is validated using the test rig shown in Figure 5.1 and
related system model (5.2). The disturbances and uncertainties are the friction
force ffric(x, t) between the mass and its bearing surface and the disturbance force
fcylinder(x, t) generated from a 2nd hydraulic cylinder with passive dynamics acting
oppositely (see Figure 5.1). An uncertainty of the moved mass ∆m can be consid-
ered additionally. Leakages between the cylinder chambers as well as external oil
leakages are neglected in this consideration; their influence on the cylinder dynamics
is negligible. The implementation of the proposed robust control design is carried
out using regular working conditions. For evaluating the robustness performance
additional noise of different levels is added to related measurements.

For experimental comparison three different controller types, P-control, SMC,
and PIO-SMC, are applied. To illustrate the results different cases according to
Table 5.2, are performed to verify the performance of SMC approach in combina-
tion with PIO. It is worth noting that an appropriate design of SMC parameters
is required to achieve a good performance. Two parameter sets k and C (c1, c2 are
linear dependent) have to be designed. To tune the control parameters the criterion

Ccriteria = [
∫ T

0
e2(t)dt,

∫ T

0
u2(t)dt], (5.27)

with the relation between input energy
∫ T

0
u2(t)dt and control error

∫ T

0
e2(t)dt is

used like the previous chapters. The principle relation is illustrated in Figure 5.8.
The interval length T denotes the time window where the performance is compared.
The comparison is done using different parameters for sliding surface and for both
approaches: SMC and SMC combined with PIO, so four arbitrary parameter sets
for c1, c2, and three different k are considered according to Table 5.3 to evaluate
the principal perform of this kind of control in comparison to others. Consequently,
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Figure 5.8: Comparison of design parameters by means of criterion Ccriteria to tune
the design parameters of SMC/PIO-SMC approaches (Case I)
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Figure 5.9: Position control error w/o additional measurement noise (Case I) for
different approaches with sinusoidal signal as reference signal

Table 5.3: Parameters of sliding surface and switching gain

cT = [c1, c2, c3]
T k1 k2 k3 Ccriteria

[4, 4, 1]T 770 820 870 C1

[9, 6, 1]T 770 820 870 C2

[16, 8, 1]T 770 820 870 C3

[25, 10, 1]T 770 820 870 C4
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Figure 5.10: Position control error w/ additional measurement noise (Case III) for
different approaches with sinusoidal signal as reference signal
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Figure 5.11: Input signal w/o additional measurement noise (Case I) for different
approaches with sinusoidal signal as reference signal

the results of performance criterion (5.27) are calculated based on the experimen-
tal results for 12 different situations for both SMC and PIO-SMC. With the same
input energy, the result which has lower output error or correspondingly with the
same output error which uses less input energy (closer to the origin) has better
performance. From the results it is evident that for the considered situations and
parameters, PIO-SMC always shows better performance compare to SMC. This com-
parison clearly states the superiority of PIO in combination with SMC. To tune the
design parameters a compromise between total input energy and control error can
be considered. The results of the comparison provides that both methods (SMC and
PIO-SMC) generally have better performance with C2 by considering the mentioned
compromise. Therefore, the implementation task in the following parts is performed
using parameter set C2 for design parameters.
To examine the performance with respect to sensitivity to noise or model uncer-
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Figure 5.12: Comparison of different control methods (PIO-SMC, SMC, and P-
Controller) by means of criterion (5.27)

tainties, two representative control results are illustrated in Figure 5.9 and Figure
5.10 as well as the input signal in Figure 5.11 for different controller types (P-
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Figure 5.13: Single-sided amplitude spectrum of y(t) for different approaches (Case
IV)

Controller, SMC, and PIO-SMC). The reference signal is considered as a sinusoidal
signal. From the results it can be concluded that for this dynamical motion control
task, PIO-SMC shows better performance and less tracking error. However judging
only based on the output performance (position of hydraulic cylinder) is not com-
prehensive. Therefore, the introduced criterion (5.27) is used for different control
methods and by considering different level (without/with low/high) of measurement
noise. Results are illustrated in Figure 5.12(a). It is evident that without consider-
ing additional measurement noise, output error using PIO-SMC is always less than
those obtained by other methods. By increasing the additional noise PIO-SMC
method provides better performance compare to normal SMC. However, the results
of PIO-SMC are very sensitive to high level noise. On the other hand P-Controller
requires always less input energy but shows worse performance in comparison to
other ones. When the total input energy is taking into consideration, P-Controller
will be a suitable choice.
In Figure 5.12(b) comparison of different control approaches in the presence of mass
uncertainty ∆m and passive dynamics force fcylinder(x, t) is illustrated. The P-
Controller has inadequate performance in the presence of uncertainties either in
tracking error or in required input energy. Furthermore, the better performance of
PIO-SMC is considerable compare to SMC approach.
Single-sided amplitude spectrum of y(t) is illustrated in Figure 5.13 to detail fur-
ther performance differences. It can be concluded that all three approaches show a
roughly similar behavior with respect to the dynamics of desired reference motion
(harmonic reference function with frequency≈ 0.04Hz). The detailed analysis of the
frequency domain behavior shows differences with respect to higher order dynamics
of the control error as shown in Figure 5.13. Here the PIO-SMC behavior shows
less higher dynamical parts of the output signal (frequency≈ 0.12Hz). It should be



100
Chapter 5. PI-Observer-based robust nonlinear control

design: establishing new approaches

mentioned that no further filtering is applied to all approaches. The same result can
be concluded for the control output (the systems input) signal.
In Table 5.4 a comparison of different methods is presented. It can be concluded
that PIO-SMC requires less measurements in comparison to SMC approach because
of using PI-Observer to estimate the system states. It is worth mentioning that the
velocity of cylinder is required for defining the sliding surface which has to be mea-
sured in the SMC approach. As respects, PIO-SMC approach can use the estimated
velocity provided by PIO. The requirement of using only one (easy to have) mea-
surement is - in comparison to the two measurements required for SMC approach -
with respect to practical application a strong advantage worth to mention. Accord-
ingly, the following statements can be concluded for the experimental results of this
section:

• By considering additional noise the performance is decreased. However, the
best achievable results are obtained using PIO-SMC.

• In the presence of low level additional noise, PIO-SMC is sensitive as SMC
(same robustness).

• In the presence of high additional noise level, PIO-SMC is more sensitive than
SMC (more variations in the results).

• The improvement obtained by PIO (comparing SMC and PIO-SMC) can be
clearly shown (with/without noise).

• By considering model uncertainties and unknown inputs, PIO-SMC always
shows the best results either in tracking performance or required input energy.

• By considering different level of additional noise, P-Controller requires always
less total input energy but on the other hand in the tracking task shows worse
performance.

• The maximum input energy used and the maximum tracking error produced
by PIO-SMC are less than SMC and P-Controller approaches (see Table 5.4
and Figure 5.14).

• The PIO-SMC is based on the use of only one sensor (same as P-control).

Table 5.4: Robust comparing different position control methods
Number of sensors used

∫
e2dt

∫
u2dt Max. |error|[m] Max. |input|[V]

Without additional

measurement noise

P-Controller 1 3.639 109.875 0.0611 0.3053

SMC 2 1.6464 135.0846 0.0443 0.2999

PIO-SMC 1 1.2692 123.1733 0.0285 0.2990

With additional

measurement noise

P-Controller 1 4.452 111.269 0.0717 0.3519

SMC 2 1.8787 138.754 0.0507 0.3076

PIO-SMC 1 1.4459 132.8480 0.0438 0.3091
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Figure 5.14: Comparison of different position control methods considering the effects
of measurement noise

Summarizing the results of the new approach it has to be stated that the PIO-
SMC approach shows strong advantages in comparison to existing approaches. This
mainly results from the option to choose a linearized system model and therefore the
nonrequirement of exact models and assumptions of bounds. In comparison with
SMC this approach combines two advantages: inherent control robustness features
of SMC as well as the shown robustness of the PIO. The results obtained from
PIO-SMC clearly show the superiority of the introduced novel approach as stated
in detail in the current section.

5.4 PIO-based backstepping controller

Backstepping method provides a designing control approach to track a reference
signal by specifying an adequate Lyapunov function and by recursively designing
the intermediate control laws for so-called “virtual controls” [KKK92,KKM91]. At
each step the stability of the considered subsystem should be ensured using the
specified Lyapunov function. The method is used to achieve the asymptotic tracking
of reference signals while the global stability of the system is guaranteed.

In the following section the task of system states and unknown input estimation
is performed using linear high gain Proportional-Integral-Observer. Therefore, the
simplified model of the hydraulic differential cylinder is used according to [Liu11]
to be used for linear PI-Observer structure. From the other hand, backstepping
controller is utilized for nonlinear system model to construct the Lyapunov function
and to design the control input simultaneously so that the stability or the nega-
tiveness of the derivative of every-step Lyapunov function is fulfilled. The main
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contribution of this section is improved structure of backstepping controller leads
to the novel stability proof and new conditions for the whole control loop together
with the PI-Observer estimations.

Table 5.5: Symbols used in the design of BC

x1d = w(t) Tracking signal
x2d, x3d Virtual controller of x2, x3, respectively
e1, e2, e3 Error of x1 − x1d, x2 − x2d, x̄3 − x̄3d, respectively
V1, V2, V3 Lyapunov functions
k1, k2, k3 Positive parameters for design of virtual controllers
ρ1, ρ2, ρ3 Positive parameters for Lyapunov functions V1, V2, V3

5.4.1 Backstepping control design

The result of PI-Observer is integrated into the structure of BC design to eliminate
the effect of mismatched uncertainties. By defining the new system state x̄3 =
AAx3 − ABx4 as the pressure difference between chambers A and B, the nonlinear
model (5.2) can be rewritten as

ẋ1(t) = x2(t),
ẋ2(t) = x̄3(t)/m(x1(t)) + d(t),
˙̄x3 = f(x)u(t) + g(x),
y(t) = x1(t),

(5.28)

with

f(x) =
Eoil(x3)

VA(x1)
QA(x3)AA − Eoil(x4)

VB(x1)
QB(x4)AB,

g(x) = −Eoil(x3)
VA(x1)

(
A2
Ax2

)
− Eoil(x4)

VB(x1)

(
A2
Bx2

)
.

(5.29)

In the following the main steps of BC design are listed. The symbols used in the
deduction are shown in Table 5.5. In this subsection, the backstepping controller is
designed to compensate the unknown disturbance, to stabilize the close loop system
(PIO and BC), and to track the given desired signal simultaneously. The block
diagram of the proposed PIO-BC is shown in Figure 5.15.

Assumption 1 : The disturbance d and its derivative ḋ are bounded such that
|ḋ| ≤ |ḋ|max but the related bounds are unknown.

Theorem 1 : Considering the position tracking error e1 = x1 − x1d and the system
model (5.28), by considering the positive parameters k1, k2, k3, ρ1, ρ2, ρ3 defined in
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Figure 5.15: Block diagram of the proposed PIO-based backstepping control method

Table 5.5, the goals of disturbance compensation, system state stabilization, and
desired signal tracking are achieved by defining the control law

x2d = ẋ1d − k1e1,

x̄3d = m(x1)(−d̂(t) + ẍ1d − k1x2 + k1ẋ1d − ρ1
ρ2
e1 − k2e2),

u(t) = (−k3e3 − ρ2
mρ3

e2 + ˙̄x3d − g(x))/f(x).

(5.30)

5.4.2 Lyapunov stability

Proof 1 : Step 1: The derivative of e1 with respect to time gives

ė1 = ẋ1 − ẋ1d = x2 − ẋ1d. (5.31)

The control Lyapunov function (CLF) candidate V1 can be defined as

V1 =
1
2
ρ1e

2
1. (5.32)

The derivative of V1 with respect to time is given by

V̇1 = ρ1e1ė1 = ρ1e1(e2 + x2d − ẋ1d) (5.33)

Substituting x2d from (5.30) into (5.33) results in

V̇1 = −ρ1k1e21
︸ ︷︷ ︸

negative term

+ ρ1e1e2
︸ ︷︷ ︸

cross term

.
(5.34)

Step 2: The derivative of e2 with respect to time is

ė2 = ẋ2 − ẋ2d = x̄3(t)/m(x1(t)) + d(t)− ẋ2d. (5.35)

The second control Lyapunov function (CLF) candidate V2 can be defined as

V2 = V1 +
1
2
ρ2e

2
2 +

1
2
f 2
e (t), (5.36)
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considering the estimation error of the unknown input together with the tracking
error. According to (3.1) and by considering fe(t) = d̂(t)− d(t) the derivative of V2
with respect to time is given by

V̇2 = V̇1 + ρ2e2ė2 + feḟe
= −ρ1k1e21 + ρ1e1e2 + ρ2e2[

1
m(x1)

(e3 + x̄3d) + d(t)− ẍ1d + k1(x2 − ẋ1d)] + feḟe.

(5.37)

Substituting x̄3d from (5.30) and d̂(t) from (2.31) into (5.37) results in

V̇2 = −ρ1k1e21 − ρ2k2e
2
2

︸ ︷︷ ︸

negative term

+
ρ2

m(x1)
e2e3

︸ ︷︷ ︸

cross term

+ feḟe − ρ2e2fe
︸ ︷︷ ︸

robust term

.
(5.38)

Step 3: The derivative of e3 with respect to time is

ė3 = ˙̄x3 − ˙̄x3d = f(x)u(t) + g(x)− ˙̄x3d. (5.39)

The third control Lyapunov function (CLF) candidate V3 which is the overall Lya-
punov candidate can be defined as

V3 = V2 +
1
2
ρ3e

2
3 (5.40)

The derivative of V3 with respect to time is given by

V̇3 = V̇2 + ρ3e3ė3
= −ρ1k1e21 − ρ2k2e

2
2 +

ρ2
m
e2e3 + feḟe − ρ2e2fe + ρ3e3(f(x)u(t) + g(x)− ˙̄x3d).

(5.41)

Substituting u(t) from (5.30) into (5.41) results in

V̇3 = −k1ρ1e21 − k2ρ2e
2
2 − k3ρ3e

2
3 + feḟe − ρ2e2fe, (5.42)

which can be rewritten as

V̇3 = −k1ρ1e21 − k3ρ3e
2
3 − k2ρ2(e2 +

fe
2k2

)2 + ρ2f2e
4k2

+ feḟe

= −k1ρ1e21 − k3ρ3e
2
3 − k2ρ2(e2 +

fe
2k2

)2 − k2
ρ2
ḟ 2
e

︸ ︷︷ ︸

negative term

+
ρ2
4k2

(fe +
2k2ḟe
ρ2

)2

︸ ︷︷ ︸

robust term

≤ −k1ρ1e21 − k3ρ3e
2
3 − k2ρ2(e2 +

fe
2k2

)2 − k2
ρ2
ḟ 2
e +

ρ2
4k2

(femax +
2k2ḟemax

ρ2
)2

≤ −(1− θ)V̇30 − θV̇30 +
ρ2
4k2

(femax +
2k2ḟemax

ρ2
)2,

(5.43)

where

V̇30 = k1ρ1e
2
1 + k3ρ3e

2
3 + k2ρ2(e2 +

fe
2k2

)2 + k2
ρ2
ḟ 2
e , (5.44)
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and 0 < θ < 1. By considering the closed-loop error as ecl = [e1e2e3fe], if ‖ecl‖ ≥ ψr
where

ψr = {ecl | θV̇30 = ρ2
4k2

(femax +
2k2ḟemax

ρ2
)2}, (5.45)

then

V̇3 = −(1− θ)V̇30 ≤ 0. (5.46)

Therefore, ecl is globally uniformly bounded if k1, k2, k3, ρ1, ρ2, ρ3 > 0 holds. By
assuming the unknown input as a piecewise constant signal, the size of the ball ψr
in (5.45) mainly depends on the design parameters ρ2 and k2. It is worth mentioning
that (5.40) is the Lyapunov function of the total system in (5.28) and the control
law given in (5.30) makes the derivative of Lyapunov function in (5.40) negative
semi-definite. Consequently, the closed-loop system with the proposed PIO-BC is
stable.

5.4.3 Experimental validation and discussion

The proposed robust control design is experimentally validated using the test rig
shown in Figure 5.1. The system model is described by (5.28). The disturbances
and uncertainties are the friction force ffric(x, t) between the mass and its bear-
ing surface and the disturbance force fcylinder(x, t) generated from a 2nd hydraulic
cylinder with passive dynamics acting oppositely (see Figure 5.1). An uncertainty
of the moved mass ∆m can be considered additionally. Leakages between the
cylinder chambers as well as external oil leakages are neglected in this consider-
ation; their influence on the cylinder dynamics is negligible. The experiments of
the robust control design are carried out using regular working conditions. For
evaluating the robustness performance additional measurement noise is added to
the related measurement. For experimental comparison three different controller
types, P-Controller, PI-Observer-based sliding mode controller (PIO-SMC), and PI-
Observer-based backstepping controller (PIO-BC) are considered. To illustrate the
results different cases are performed according to Table 5.2, to verify the performance
of backstepping approach in combination with PIO.

Parameter selection of BC approach

It is worth noting that an appropriate design of PIO-BC parameters is required to
achieve a good controller performance. As explained in section 5.4.1 there are two
groups of parameters for design of virtual controllers k1, k2, k3 and for Lyapunov
functions ρ1, ρ2, ρ3. In order to tune the design parameters the criterion

Ccriteria = [
∫ T

0
e2(t)dt,

∫ T

0
u2(t)dt], (5.47)



106
Chapter 5. PI-Observer-based robust nonlinear control

design: establishing new approaches

Table 5.6: Parameters of BC approach

ρ1 ρ2 ρ3 [k1, k2, k3] Ccriteria

3e10 2e5 7e-5

[85, 0.001, 0.01]
[40, 0.001, 0.01]
[85, 0.1, 0.01]
[85, 0.001, 1]
[40, 0.1, 1]

Set1

25e8 e6 7e-5

[85, 0.001, 0.01]
[40, 0.001, 0.01]
[85, 0.1, 0.01]
[85, 0.001, 1]
[40, 0.1, 1]

Set2

25e8 2e5 6e-5

[85, 0.001, 0.01]
[40, 0.001, 0.01]
[85, 0.1, 0.01]
[85, 0.001, 1]
[40, 0.1, 1]

Set3

25e8 2e5 7e-5

[85, 0.001, 0.01]
[40, 0.001, 0.01]
[85, 0.1, 0.01]
[85, 0.001, 1]
[40, 0.1, 1]

Initial set

considering the input energy
∫ T

0
u2(t)dt (Integral Square Input (ISI)) and control er-

ror
∫ T

0
e2(t)dt (Integral Square Error (ISE)) is used. The interval length T denotes

the time window where the performance is compared. With the same input energy,
the result which has lower output error or correspondingly with the same output
error which uses less input energy (closer to the origin) has better performance. Due
to the high number of parameters the procedure of parameter selection is started
from an appropriate initial set. The initial values are achieved according to the
working point of system and considering stability conditions. As illustrated in Fig-
ure 5.16 the initial parameter set is considered for the fixed Lyapunov parameters
ρ1, ρ2, ρ3 and for five combinations of different virtual control parameters k1, k2, k3
(see Table 5.6). Afterward, the influence of changing parameters are investigated by
considering set1, set2, and set3 which means changing of ρ1, ρ2, and ρ3, correspond-
ingly. To choose the design parameters a compromise between total input energy
and control error is considered. From the principle relation shown in Figure 5.16 it
is evident that

• changing of parameter ρ1 has a positive effect on the performance of the con-
troller.

• changing of parameter ρ2 has a negative effect in combination with some of
the design parameters k1, k2, k3.
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• changing of parameter ρ3 has almost no influence on the performance of the
controller.

In this work Set1 is selected for the further implementations.
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Figure 5.16: Comparison of design parameters by means of criterion Ccriteria to tune
the design parameters of PIO-BC (Case I)

Results and comparison

In this subsection comparison of P-Controller, PIO-SMC, and PIO-BC in the sense
of performance and robustness against measurement noise, model uncertainties, and
external disturbances is considered. Correspondingly, different conditions are con-
sidered for experimental results according to Table 5.2. The PIO-SMC results are
achieved using the same test rig and same conditions (Table 5.2) which deals with
controlling of nonlinear hydraulic cylinder system with uncertainties using input-
output feedback linearization method, sliding mode controller, and PI-Observer. In
Figure 5.17 the position tracking error of the proposed method compare to the PIO-
SMC and P-Controller for case I is illustrated. The reference signal is considered as
a sinusoidal signal. It is evident that the proposed PIO-BC has the best position
tracking performance according to the illustrated experimental result in Figure 5.17.
Furthermore, to compare the robustness of different approaches, the criterion in

(5.47) is used by considering different level (without/with low/high) of measurement
noise according to Table 5.2 for cases I-III. Experimental results shown in Figure
5.18(a) indicate that the proposed method has the best performance (minimum total
error) compared to PIO-SMC and P-Controller while P-Controller outperforms the
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Figure 5.17: Position control error w/o additional measurement noise (Case I) for
different approaches with sinusoidal signal as reference signal

other two approaches when total input energy is taking into consideration. By in-
creasing the level of additional measurement noise, the proposed PIO-BC preserves
more or less the same performance whereas more input energy is required. In con-
trast, in the presence of additional measurement noise PIO-SMC and P-Controller
reach unsatisfactory performance compared to the proposed method. By increasing
the level of noise the performance is decreased (case III). Therefore, the proposed
method is less sensitive to the different level of additional measurement noise com-
pared to PIO-SMC and P-Controller.
For further robustness evaluation, some external disturbances (passive dynamics
force fcylinder(x, t)) and model uncertainties (mass uncertainty ∆m) are considered
according to Table 5.2. As illustrated in Figure 5.18(b) PIO-BC leads to a better
tracking performance compare to the considered approaches even when the external
disturbance and internal model uncertainty affect the system. By considering the ro-
bustness of the controlled system in dealing with unknown internal/external effects,
it is evident that the proposed method has more sensitive performance because
of more variation in the behavior of tracking performance/required input energy
(see Figure 5.18(b)). This fact can not be detected from the PIO-SMC behavior.
P-Controller requires always less total input energy but on the other hand in the
tracking task shows worse performance. However, PIO-BC always shows the best
results in tracking performance either in the presence of measurement noise or ex-
ternal disturbance/model uncertainty.
In Table 5.7 a comparison of different methods in number of used sensors, maximum
error, and maximum input energy is presented. It can be concluded that PIO-BC
requires less measurements in comparison with SMC approach. Furthermore, it can
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Figure 5.18: Comparison of different control methods (PIO-SMC, PIO-BC, and
P-Controller) by means of criterion (5.47)

be stated that the proposed method uses the estimation of system states provided
by PI-Observer instead of measuring the whole set of system state variables. With
respect to practical application this is a strong advantage worth to mention. The
total input energy and tracking error obtained using the proposed method is always
less than PIO-SMC and the tracking performance is always better than P-Controller.
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Figure 5.19: Comparison of different position control methods considering the effects
of measurement noise

Table 5.7: Robust comparing different position control methods
Number of sensors used

∫
e2dt

∫
u2dt Max. |error|[m] Max. |input|[V]

Without additional

measurement noise

P-Controller 1 40.74 1.09e3 0.05 0.25

PIO-SMC 1 15.79 1.39e3 0.02 0.23

PIO-BC 1 2.59 1.08e3 0.012 0.44

With additional

measurement noise

P-Controller 1 46.11 1.18e3 0.06 0.29

PIO-SMC 1 22.26 1.40e3 0.04 0.27

PIO-BC 1 7.96 1.26e3 0.03 0.71

The point which has to be mentioned is that maximum input required by PIO-BC is
more than other approaches which has to be considered in terms of implementation
(see Figure 5.19).
To effectively evaluate the performance of PIO-SMC and PIO-BC, the fundamental
difference between SMC and BC could be identified. Sliding mode control is an use-
ful approach for degradation of the system order to a lower one by defining a suitable
sliding surface. It can facilitate the controller design because of more variety and
experience in the field of control and stability analysis for low-order systems. From
the scientific analysis point of view, relation between the sliding surface and the orig-
inal variables of the system must be clarified to analyze the stability of controlled
system. From the other side, backstepping control is a well-known approach with
construction of the Lyapunov function and designing of the control input simulta-
neously. To achieve the stability through a suitable definition and differentiation of
candidate Lyapunov functions at each step, cancellation of the indefinite cross terms
(e.g. in (5.34) and (5.38)) is required (typical feature of backstepping controller).
This appears as the most prominent difference between backstepping control and
sliding mode control. The cross term cancellation in backstepping approach leads to
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possible unsatisfactory robustness which is not expected in sliding mode approach
regarding the input-output analysis. This is in accordance with the experimental
results illustrated in Figure 5.18(b).
Furthermore, in the proposed sliding mode control approach the rate of convergence
can be controlled by choosing suitable sliding surface parameters ci(i = 1, 2, 3) im-
plicitly and sliding control law design parameter k explicitly. On the other side the
convergence rate of backstepping approach introduced in this section depends on
the Lyapunov functions parameters ρ1, ρ2, ρ3 implicitly and the virtual controllers
parameters k1, k2, k3 explicitly. In Figure 5.20(a) and Figure 5.20(b) the response
of closed-loop system using proposed approaches are illustrated for step signal and
sinusoidal signal as reference signal, respectively. It it obvious that the proposed
PIO-BC has better convergence rate compare to the other considered approaches
and based on the selected parameters introduced in Table 5.3 and Table 5.6. This
can be improved by changing the design parameters of all approaches.
In Table 5.8 a general comparison of traditional sliding mode control and backstep-
ping control approach is surveyed to show the advantages and disadvantages of each
approach. The properties are preserved in the case that PI-Observer is combined
with the introduced robust control approaches for estimation of system states and
unknown inputs.
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Figure 5.20: Comparison of convergence speed for different control methods (PIO-
SMC, PIO-BC, and P-Controller)
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Table 5.8: Comparison of traditional Sliding Mode and backstepping controllers
Properties Sliding Mode Control Backstepping Control

Matching condition

Insensitive to matched uncertainties.

In the case of mismatched uncertainties

the sliding motion depends on the

uncertainties and the condition for the

well-known robustness of SMC

does not hold.

**

Insensitive to

matched/mismatched uncertainties

Chattering problem

High frequency oscillation

around the predefined switching

manifold(s) because of switching

condition of SMC or parasitic

dynamics (fast actuator and

sensor dynamics).

Solution: Nonlinear gains, dynamic

extension, or higher order SMC.

**

No chattering problem

Switching control strategy

(discontinuous control action)

Control is shaped as a

high frequency discontinuous signal.

**

No switching control strategy

Design and computational complexity

(so-called explosion of complexity)

**

Choise of sliding surface and

determination of existence

condition and stability condition

(switching manifold selection and

discontinuous control design)

Design of control laws and

stability together.

The complexity increases

with system order because of

performing a repeated

differentiations of the

nonlinear functions.

Implementation difficulty
**

Degradation of system order
Depends on system order

Convergence rate

Depends on the design parameters

of sliding surface

and sliding control law design

Depends on the design parameters

of virtual controllers

and Lyapunov functions

Recursive structure/procedure No recursive structure

The design procedure can be

started from a known stable system

and back out new controllers.

The stability of each outer system

can be progressively reached till

the final external control is achieved.

** Indicates the utility and efficiency of the method in the desired property

5.5 Summary and conclusion

This chapter provides two novel PI-Observer-based robust controllers as PIO-SMC
and PIO-BC to improve the position tracking performance of a hydraulic differential
cylinder system in the presence of uncertainties e.g. modeling errors, disturbances,
and measurement noise. The proposed methods consist of a Proportional-Integral-
Observer as a state and unknown input observer to be combined with SMC or BC.
Since linear PI-Observer is utilized, input-output linearization method is consid-
ered for the linearization of nonlinear hydraulic cylinder system model. Thereupon
the result of state and unknown input estimation is integrated into the structure
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of robust control design (here SMC and BC) to eliminate the effect of related un-
certainties. The introduced PIO-based robust controllers guarantee the ultimate
boundness of the tracking error in the presence of uncertainties. The closed-loop
stability is proven using Lyapunov theory in both cases. Evaluation of the proposed
methods is experimentally shown using a hydraulic differential cylinder test rig. Ex-
perimental results validate the advantages of introduced PIO-SMC in comparison
to standard SMC and industrial standard approach P-Controller in the presence of
measurement noise, model uncertainties, and external disturbances.
Furthermore, PIO-BC approach is compared with PIO-SMC and standard P-Controller.
The results illustrate significant improvement with respect to sensitivity to different
level of measurement noise. Robustness of the closed-loop system in the presence of
external disturbances (passive dynamics force fcylinder(x, t)) and model uncertainties
(mass uncertainty ∆m) is evaluated for the three considered approaches. Although
the proposed PIO-BC approach has no satisfactory robustness performance in this
evaluation, it has always a better tracking error performance compared to other
two approaches. Finally, this chapter is concluded with comparison of PIO-BC and
PIO-SMC from the design process perspective which shows the advantages and dis-
advantages of both considered approaches. The introduced approaches illustrate
significant theoretical and practical advantages with respect to all criterion relevant
for industrial applications like less sensitivity or improved robustness with respect to
model uncertainties and/or noise. The illustrated approaches can be implemented
on industrial DSP or PLC systems.
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6 Summary, conclusion, and future work

6.1 Summary and conclusion

This thesis provides a review of the principal unknown input observation with elabo-
ration of Proportional-Integral-Observer. The structure, design goals and methods,
and integration of PI-Observer in different system types are focused. Furthermore,
fundamental concepts of observer, filter, and estimator are distinguished with the
main issues in each field to avoid the misuse of terms. In addition, the first chap-
ter of this thesis outlines a new perspective of filters and observers with respect to
predictor-corrector algorithm to inspire the reader about observer/filter structure,
so new ideas can be presented based on the introduced structure. A description of
some actual advanced applications of the PI-Observer and high-gain design in an
abstract level is detailed and investigated.

The literature review presented in this work, emphasizes the role of observers partic-
ularly Proportional-Integral-Observer to be combined with linear/nonlinear control
approaches to achieve a robust control method to deal with unknown effects such
as internal/external disturbances, model uncertainties, measurement noise, unmod-
eled dynamics, etc. Based on analysis of PI-Observer design, two objectives are
considered as the key parts of this thesis: (a) investigation and improvement of
high gain PI-Observer by adaptively design of observer gain and (b) decrement of
unknown effects and enhancement of system performance/robustness by combining
the PI-Observer approach and nonlinear robust control methods. Both of the re-
search directions are discussed and accordingly the solutions are investigated and
implemented to achieve the aforementioned goals.

The structure and convergence conditions of PI-Observer are detailed and the ad-
vantages and disadvantages of using high gain is focused. This analysis leads to the
point that the gain of PI-Observer has to be adaptively selected at each step of in-
tegration procedure (gain compromise is required to overcome the disadvantages of
high gain utilization). Therefore, a new development of high gain PI-Observer design
is proposed as Modified Advanced Proportional-Integral-Observer (MAPIO) as an
improved version of previous introduced Advanced Proportional-Integral-Observer
(APIO) with adaptive gain scheduling approach. Unlike API-Observer, MAPI-
Observer attempts to find the ‘absolute minimal level of estimation error’ within
a suitable defined continuous interval of gain options and not only between a few
limited ones. In consequence of changing and scheduling the gain of PI-Observer
based on the cost function, the performance is adequately improved in comparison
to PI-Observer and Advanced PI-Observer especially in the presence of measure-
ment noise. The adaption procedure and its evaluation are detailed by simulation
results in open-loop and closed-loop contexts. An illustrative example of an elastic
beam is considered where the task of PI-Observer is estimation of contact force as
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an unknown input to the system. Furthermore, a two-mass-spring system (ACC
Benchmark) is used to illustrate the advantages of the proposed approach in the
closed-loop context. Different scenarios are defined to compare the proposed ap-
proach with the previous Advanced PI-Observer and low/high gain PI-Observer.
From the results, it can be concluded that the performance of Modified Advanced
PI-Observer in the task of unknown input estimation is more robust to different level
of measurement noise in comparison to previous methods. It can also be concluded
that the gain of proposed observer approach is adaptively changed according to dif-
ferent situations and has to be defined online at each step of integration procedure.
That leads to the difficulty of implementation with respect to real-time applications.

To overcome the disadvantages of high gain design of PI-Observer and difficulties
of Modified advanced PI-Observer, an adaptive estimation approach is proposed
based on funnel control idea. The proposed funnel PI-Observer approach takes
the advantage of the funnel idea to adjust the PI-Observer gains according to the
actual situation and to maintain the estimation error in a prescribed funnel area.
The proposed approach shows significant advantages with respect to estimation of
system states and unknown inputs in the presence of measurement noise. Both sim-
ulation and experimental results of an elastic beam system verify and validate the
advantages of the introduced funnel PI-Observer compared to the known low/high
gain PI-Observer. The stability of the proposed adaptive algorithm with respect to
switching funnel PI-Observers is discussed based on Lyapunov theory.
Furthermore, application of funnel PI-Observer for nonlinear systems (robust con-
trol design) is taking into consideration for an input-output linearizable nonlinear
system with unknown inputs. The system and unknown input estimations achieved
by funnel PI-Observer is used together with the system measurements to realize
the exact feedback linearization (EFL) approach. A robust disturbance rejection
control is realized by using state feedback of the linearized model and estimations
of the unknown inputs. Simulation results are carried out using a nonlinear MIMO
mass-spring system for two approaches (funnel PIO-EFL and PIO-EFL). For both
approaches the same control design is considered and combined with different ob-
servers. The new introduced approach FPIO-EFL shows significant advantages com-
pared to PIO-EFL with respect to estimation of system states and unknown inputs
in the presence of measurement noise and integration of the estimation results in
the structure of EFL approach. To perform the comparison of proposed controller
comprehensively, a criterion based on the control error and the corresponding input
energy is considered. From the simulation results it can be concluded that the pro-
posed FPIO-EFL has always better tracking performance compared to PIO-EFL. It
is worth mentioning that when robustness is taking into consideration, the proposed
FPIO-EFL has convenient and better tracking performance compared to the PIO-
EFL regarding the performance variation in the presence of additional measurement
noise.

The application of PI-Observer-based robust nonlinear control is performed using
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the hydraulic differential cylinder test rig to assure suitable tracking performance as
well as robustness against unknown inputs. The task of system states and unknown
input estimation is performed by a high gain linear Proportional-Integral-Observer.
Therefore, input-output feedback linearization is used to linearize the nonlinear
system model to be used for linear PI-Observer structure. Two robust control ap-
proaches are considered as (1) sliding mode control and (2) backstepping control.
The estimation of system states and unknown inputs are integrated into the struc-
ture of robust nonlinear control approaches to achieve a control law that provides
the desired performance to the closed-loop system in the presence of uncertainties,
and compensates the effects of external disturbances, plant parameter changes, un-
modeled dynamics, measurement noise, etc. Additionally, parameter selection of
the proposed PIO-based controllers is elaborately considered by defining a perfor-
mance/energy criterion. The stability of the closed-loop system is established using
Lyapunov method for both cases. Furthermore, a complete robustness evaluation
considering different level of measurement noise, modeling errors, and external dis-
turbances is experimentally evaluated.
Experimental results validate the advantages of using introduced combined approach
compare to the standard sliding mode controller (as a robust controller for nonlin-
ear processes subject to external disturbances and heavy model uncertainties) and
P-Controller (as a standard classical industrial approach for hydraulic systems).
Consequently, integration of unknown input observer estimation results into the
structure of robust control approaches leads to enhance the disturbance attenuation
and system performance robustness. In addition, a comprehensive comparison be-
tween the introduced PIO-based sliding mode control and PIO-based backstepping
control is experimentally performed with focusing on the fundamental difference be-
tween sliding mode control and backstepping control approaches. The experimental
results illustrate that in the presence of additional measurement noise PIO-based
backstepping control approach acts more robust while in the presence of model un-
certainties and disturbances, PIO-based sliding mode control is more robust than
the other approaches. However, PIO-based backstepping approach has always the
best tracking performance. This appears as the most prominent difference between
backstepping control and sliding mode control. The cross term cancellation in back-
stepping approach leads to possible unsatisfactory robustness which is not expected
in sliding mode approach regarding the input-output analysis (in the case that the
zero dynamics are stable or at least bounded).

To summarizing the whole work, the advantages of gain scheduling for Proportional-
Integral-Observer is shown by improving the Advanced PIO approach as Modified
advanced PIO and using funnel theory to adaptively design the high gains. Further-
more, integration of PI-Observer estimation results into the structure of nonlinear
control approaches (sliding mode control and backstepping control) evidence the
feasibility of improving the robustness and control performance. In this work the
following new methods are developed and the described new results are obtained:
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• Design and development of Modified Advanced PI-Observer (MAPIO) as an
improved version of Advanced PI-Observer (APIO) with adaptive gain schedul-
ing procedure

• Comparison of the proposed MAPIO with previous advanced observers in
open-loop and closed-loop simulation results

• Proposing a new gain design approach of Proportional-Integral-Observer as
funnel PI-Observer algorithm able to self adjustment of observer gains accord-
ing to the actual estimation situation inside the predefined funnel area

• Stability proof of the proposed funnel PI-Observer according to the switching
observer condition and Lyapunov theory

• Evaluation of the proposed funnel PI-Observer by simulation and experimental
results using an elastic beam test rig (open-loop estimation) and a nonlinear
MIMOmechanical system (closed-loop estimation combined with input-output
feedback linearization approach)

• Investigation and implementation of novel PI-Observer-based Sliding mode
control and PI-Observer-based backsteppin control approaches

• Stability proof of proposed approaches combined with PI-Observer structure
using Lyapunov theory

• Implementation of the proposed PIO-based SMC and PIO-based BC using the
hydraulic differential cylinder test rig

• Design and selection of SMC and BC parameters by defining and elaborating
a performance/energy criterion

• Enhancement of disturbance attenuation and system performance robustness
using the proposed combination of linear observer and nonlinear robust con-
trollers

• Interpretation and analysis of system performance and robustness according
to the basic features of SMC and BC approaches

6.2 Future work

For future work, the following points are considered and suggested:
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The efficiency of the proposed funnel PI-Observer is evaluated by simulation and ex-
perimental results for the contact force estimation of an elastic beam system (open
loop situation). Furthermore, the advantages of using this observer is evaluated
in the closed-loop system structure by combining the funnel PI-Observer with the
input-output feedback linearization and state feedback control approach. Implemen-
tation of the proposed approach in the real time context and in combination with
linear/nonlinear control approaches (hardware in the loop) can be considered as the
future work.

The proposed funnel PI-Observer contains different design parameters for the funnel
function. For the future work an adaptive and flexible approach can be designed
for parameter selection of the funnel PI-Observer method. In addition, the funnel
function can be adaptively changed during the run time and according to the desired
situation of estimation procedure.

In this work the PI-Observer estimation results are integrated into the structure of
sliding mode control and backstepping control. For the future work following this
study, combination of PI-Observer or funnel PI-Observer with adaptive version of
the mentioned controllers can be considered. For example using of high order SMC
or integral SMC combined with observer estimation results can be considered to
improve the control performance and robustness.
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[MB00] Müller, P. C. ; Başpinar, C.: Convergence of nonlinearity esti-
mations by linear estimators. In: ZAMM-Journal of Applied Math-
ematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik 80 (2000), No. S2, pp. 325–326

[MD91] Miller, D. E. ; Davison, E. J.: An adaptive controller which
provides an arbitrarily good transient and steady-state response. In:
IEEE Transactions on Automatic Control 36 (1991), No. 1, pp. 68–81

[MH74] Meditch, J. S. ; Hostetter, G. H.: Observers for systems with un-
known and inaccessible inputs. In: International Journal of Control
19 (1974), No. 3, pp. 473–480

[MH12] Matisko, P. ; Havlena, V.: Optimality tests and adaptive Kalman
filter. In: IFAC Proceedings Volumes 45 (2012), No. 16, pp. 1523–
1528

[ML77] Müller, P. C. ; Lückel, J.: Zur The-
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[BS15b] Bakhshande, F; Söffker, D.: Reconstruction of Nonlinear Characteristics
by Means of Advanced Observer Design Approaches. In: ASME 2015
Dynamic Systems and Control (DSC) Conference, Ohio, USA, Vol. 2,
2015, pp. V002T23A007
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[BS17d] Bakhshande, F; Söffker, D.: Robust control approach for a Hydraulic Dif-
ferential Cylinder System using a Proportional-Integral-Observer-based
Backstepping Control. In: American Control Conference 2017, IEEE,
pp. 3102-3107



136 BIBLIOGRAPHY
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[BS17h] Spiller, M; Bakhshande, F; Söffker, D.: The uncertainty learning filter: a
revised smooth variable structure filter. In: Signal Processing, accepted
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