13 research outputs found

    Algorithmic Support for Railway Disruption Management

    Get PDF
    Disruptions of a railway system are responsible for longer travel times and much discomfort for the passengers. Since disruptions are inevitable, the railway system should be prepared to deal with them effectively. This paper explains that, in case of a disruption, rescheduling the timetable, the rolling stock circulation, and the crew duties is so complex that solving them manually is too time consuming in a time critical situation where every minute counts. Therefore, algorithmic support is badly needed. To that end, we describe models and algorithms for real-time rolling stock rescheduling and real-time crew rescheduling that are currently being developed and that are to be used as the kernel of decision support tools for disruption management. Furthermore, this paper argues that a stronger passenger orientation, facilitated by powerful algorithmic support, will allow to mitigate the adverse effects of the disruptions for the passengers. The latter will contribute to an increased service quality provided by the railway system. This will be instrumental in increasing the market share of the public transport system in the mobility market.

    Algorithmic Support for Railway Disruption Management

    Get PDF
    Disruptions of a railway system are responsible for longer travel times and much discomfort for the passengers. Since disruptions are inevitable, the railway system should be prepared to deal with them effectively. This paper explains that, in case of a disruption, rescheduling the timetable, the rolling stock circulation, and the crew duties is so complex that solving them manually is too time consuming in a time critical situation where every minute counts. Therefore, algorithmic support is badly needed. To that end, we describe models and algorithms for real-time rolling stock rescheduling and real-time crew rescheduling that are currently being developed and that are to be used as the kernel of decision support tools for disruption management. Furthermore, this paper argues that a stronger passenger orientation, facilitated by powerful algorithmic support, will allow to mitigate the adverse effects of the disruptions for the passengers. The latter will contribute to an increased service quality provided by the railway system. This will be instrumental in increasing the market share of the public transport system in the mobility market

    Real-time Train Driver Rescheduling by Actor-Agent Techniques

    Get PDF

    Real-time train driver rescheduling by actor-agent techniques

    Get PDF
    Passenger railway operations are based on an extensive planning process for generating the timetable, the rolling stock circulation, and the crew duties for train drivers and conductors. In particular, crew scheduling is a complex process. After the planning process has been completed, the plans are carried out in the real-time operations. Preferably, the plans are carried out as scheduled. However, in case of delays of trains or large disruptions of the railway system, the timetable, the rolling stock circulation and the crew duties may not be feasible anymore and must be rescheduled. This paper presents a method based on multi-agent techniques to solve the train driver rescheduling problem in case of a large disruption. It assumes that the timetable and the rolling stock have been rescheduled already based on an incident scenario. In the crew rescheduling model, each train driver is represented by a driver-agent. A driver-agent whose duty has become infeasible by the disruption starts a recursive task exchange process with the other driver-agents in order to solve this infeasibility. The task exchange process is supported by a route-analyzer-agent, which determines whether a proposed task exchange is feasible, conditionally feasible, or not feasible. The task exchange process is guided by several cost parameters, and the aim is to find a feasible set of duties at minimal total cost. The train driver rescheduling method was tested on several realistic disruption instances of Netherlands Railways (NS), the main operator of passenger trains in the Netherlands. In general the rescheduling method finds an appropriate set of rescheduled duties in a short amount of time. This research was carried out in close cooperation by NS and the D-CIS Lab

    Application of an iterative framework for real-time railway rescheduling

    Get PDF
    Since disruptions in railway networks are inevitable, railway operators and infrastructure managers need reliable measures and tools for disruption management. Current literature on railway disruption management focuses most of the time on rescheduling one resource (timetable, rolling stock or crew) at the time. In this research, we describe the application of an iterative framework in which all these three resources are considered. The framework applies existing models and algorithms for rescheduling the individual resources. We extensively test our framework on instances from Netherlands Railways and show that schedules which are feasible for all three resources can be obtained within short computation times. This case study shows that the framework and the existing rescheduling approaches can be of great value in practice

    Railway Crew Rescheduling: Novel approaches and extensions

    Get PDF
    Passenger railway operators meticulously plan how to use the rolling stock and the crew in order to operate the published timetable. However, unexpected events such as infrastructure malfunctions, or weather conditions disturb the operation every day. As a consequence, significant changes, such as cancellation of trains, to the timetable must be made. If these timetable changes make the planned rolling stock and crew schedule infeasible, one speaks of a disruption. It is very important that these schedules are fixed such that no additional cancellations of trains are necessary. Nowadays this rescheduling is still done manually by the dispatchers in the control centers. In this thesis we use Operations Research techniques to develop solution approaches for crew rescheduling during disruptions. This enables us to solve the basic operational crew rescheduling problem in a short amount of computation time. Moreover, we studied an extension to the basic problem where the departure times of some trains may be delayed by some minutes. We show that this can lead to significantly better solutions for some real-life instances. Furthermore, we presented two new quasi robust optimization approaches that deal with the uncertainty in the length of the disruption. The computational study reveals that one of these approaches outperforms a naive approach in many cases. We believe that the methods developed in this thesis provided the foundation for a decision support system for railway crew rescheduling

    Practice Oriented Algorithmic Disruption Management in Passenger Railways

    Get PDF
    How to deal with a disruption is a question railway companies face on a daily basis. This thesis focusses on the subject how to handle a disruption such that the passenger service is upheld as much as possible. The current mathematical models for disruption management can not yet be applied in practice, because several important practical considerations are not taken into account. In this thesis several models are presented which take important practical details into account: (1) Creating a macroscopic global feasible solution for all three resource schedules, instead of focussing on one individual resource schedule. (2) Scheduled maintenance appointments required

    Crew Management in Passenger Rail Transport

    Get PDF
    __Abstract__ Crew management in passenger rail transport is an important factor that contributes to both the quality of service to the railway passengers and to the operational costs of the train operating company. This thesis describes how the (railway) Crew Management process can be improved with the introduction of advanced decision support systems, based on advanced mathematical models and algorithms. We provide a managerial perspective on the change process, related to the introduction of these systems, and give an overview of the lessons learned. We have shown that introducing decision support can give substantial improvements in the overall performance of a railway company. Within NS, the support for the Crew Management process has led to a stable relationship between management and train crew. In addition, the lead-time of the planning process is shortened from months to hours and NS is now able to perform scenario analyses, e.g., to study effects of adjusting the labour rules. Also, NS can adjust their service when severe weather conditions are expected, by creating a specific winter timetable shortly before the day of operation. Finally, we also introduced a decision support system for real-time rescheduling of crew duties on the day of operations. This enables us to adapt the actual crew schedules very quickly. As a result, we reduce the number of cancelled trains and fewer trains will be delayed in case of unforeseen disruptions
    corecore