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l)RAILWAY CREW RESCHEDULING
NOVEL APPROACHES AND EXTENSIONS 

Passenger railway operators meticulously plan how to use the rolling stock and the
crew in order to operate the published timetable. However, unexpected events such as
infrastructure malfunctions, or weather conditions disturb the operation every day. As a
consequence, significant changes, such as cancellation of trains, to the timetable must be
made. If these timetable changes make the planned rolling stock and crew schedule
infeasible, one speaks of a disruption. It is very important that these schedules are fixed
such that no additional cancellations of trains are necessary. Nowadays this rescheduling is
still done manually by the dispatchers in the control centers.

In this thesis we use Operations Research techniques to develop solution approaches
for crew rescheduling during disruptions. This enables us to solve the basic operational
crew rescheduling problem in a short amount of computation time. Moreover, we studied
an extension to the basic problem where the departure times of some trains may be
delayed by some minutes. We show that this can lead to significantly better solutions for
some real-life instances. Furthermore, we presented two new quasi robust optimization
approaches that deal with the uncertainty in the length of the disruption. The
computational study reveals that one of these approaches outperforms a naive approach
in many cases. We believe that the methods developed in this thesis provided the
foundation for a decision support system for railway crew rescheduling.
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to my officemate Çerağ for his enjoyable company during my four years at the EUR. Many

thanks also to Martijn and Twan for bringing more life and the Dutch point of view into

our office. Furthermore, I thank Gabriella for providing a roof during my first six weeks

in the Netherlands. Many special thanks to Wilco for always being helpful. I also like

to thank all members of the Econometric Institute. I also thank Vereniging Trustfonds

EUR for supporting my research visit at the Group for Research in Decision Analysis

(GERAD) in Montreal.

Due to the subject of my research I happened to also spend quite some time at the

Innovations Group at Netherlands Railways. For the good work atmosphere, and many

interesting discussions I would like to thank Dirk, Erwin, Joël, Luuk, Pieter-Jan, Ramon,
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Chapter 1

Introduction

Passenger railway transportation plays an important role in everyday life in many coun-

tries. Railway companies offer train services according to well designed timetables. Sched-

ules for rolling stock and crew must not only make efficient use of the resources, they

should also be robust and recoverable, since railway operations are exposed to unforeseen

events such as infrastructure malfunctions, weather conditions, accidents, etc. Disruption

management is the process of reacting to events that make it impossible to operate the

timetable and the resource schedules as planned. Within disruption management, crew

rescheduling is, next to timetable adjustment and rolling stock rescheduling, one of the

major tasks.

This thesis deals with railway crew rescheduling. In particular we are interested in the

development of mathematical models for crew rescheduling problems. Due to the opera-

tional context, we need to design efficient algorithms to solve these models to near opti-

mality within a couple of minutes of computation time. These algorithms will be based on

Operations Research techniques. We will evaluate the applicability of the proposed models

and algorithms using real-life data from Netherlands Railways (Nederlandse Spoorwegen,

or NS), the largest passenger operator in the Netherlands. The models and algorithms

should, however, be applicable also to crew rescheduling problems at other companies.

We will describe the dependencies and interactions of timetable adjustment, rolling stock

rescheduling, and crew rescheduling, but models and algorithms for timetabling and rolling

stock rescheduling are outside the scope of this thesis.

Let us now examine the role of passenger railway traffic in the Netherlands, a small

and densely populated country in Western Europe. Railway traffic is the backbone of the

Dutch public transport system. The market share of rail in commuter traffic during rush

hours between the four major cities –Amsterdam, Rotterdam, The Hague, and Utrecht–

is above 50 percent. Reliable railway operations are vital to the Dutch economy, because

the already congested highway system between those cities would collapse if it also had

to accommodate the commuters that are currently using the train.



2 Introduction

The Dutch rail infrastructure is owned by the state. The state-owned, non-profit orga-

nization ProRail is responsible for maintaining and allocating the infrastructure. A num-

ber of freight operators make use of the same infrastructure as the passenger operators.

However, about 95 percent of the trains are passenger trains. The yearly total amount

of passenger transport by rail was 16.3 billion passenger kilometers in 2009 (Netherlands

Railways (2010)).The Netherlands have the highest ratio of passenger kilometers over line

kilometers within Europe. On an average workday about 1.2 million passengers travel by

train.

Gvc

Rtd
Ut

Asd

NS

Other operators

Figure 1.1: The Dutch passenger railway network as of January 2010 (now).

NS owns a license to operate passenger trains on all main lines until 2015. Approxi-

mately 90 percent of the passenger demand occurs on these lines. Moreover, NS operates

passenger trains on some smaller lines. The completed network on which NS operates pas-

senger trains is shown in Figure 1.1. In order to operate its timetable, NS employs around

6,000 crew members (train drivers and conductors) of which circa 1,000 train drivers and

1,300 conductors are on duty on an average workday. Each crew member is assigned to

one of the 29 crew bases. NS has contracts with the Dutch government where, among

others, targets for four key performance indicators, punctuality, percentage of canceled

trains, percentage of maintained connections, and customer satisfaction are specified. The

latter target itself consists of several points. If NS misses some of these targets, they have

to pay a contractual fee and the government reserves the right to withdraw the license.
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Therefore, good disruption management, including crew rescheduling, is vital not only

for NS but for the Dutch economy as well. Its importance puts the reliability of railway

traffic in the focus of Dutch society as illustrated by the following example.

During a period of ice and snow, the railway system almost broke down completely for

several days in December 2009. The discussion about the causes and possible consequences

made national headlines in the Dutch media on several days. On January 20, 2010 the so-

called “rail chaos” was topic of a debate in the Dutch parliament. The aims of the debate

were to find out about the reasons for the railway system to brake down and discuss

about a possible course of action for the ministry of transportation. Frozen switches

have been the major cause of the problems. However, it is evident from log files of some

control centers from ProRail that have been published by a Dutch television station (RTL

(2010)) that the problem was getting even worse since NS was not able to reschedule its

train drivers. This resulted in a number of trains that did not depart, even though

the infrastructure was available. This weather induced incident clearly indicates the

importance of decision support tools for crew rescheduling in a disrupted situation which

is the topic of this thesis. Of course, this is a very extreme example. Nonetheless, smaller

but still significant disruptions happen several times per day.

1.1 Contributions of the thesis

The main results of this thesis belong to two categories. First we contribute to the scien-

tific literature. This is done by presenting novel algorithms for railway crew rescheduling.

Moreover, we consider two extensions to the basic crew rescheduling problem. The first

extension integrates crew rescheduling with the possibility to delay the departure of some

trains, which is called retiming, in order to allow better solutions. The second extension

considers the uncertainty in the disrupted situation. The latter topic has not been dis-

cussed in the literature. We present new optimization models for these extensions along

with sophisticated algorithms.

Our second contribution is that we provide computational evidence that the proposed

models and algorithms can be applied in a practical setting. This follows from our com-

putational experiments on real-life data from NS, where we could show that the proposed

algorithms find good solutions to the considered optimization models within a couple of

minutes of computation time on a desktop PC. This means that next to its scientific

contribution, this thesis can be seen as a proof of concept for Operations Research based

decision support for railway crew rescheduling. The application of decision support as

presented in this thesis is a key to limit the consequences of disruptions. With decision

support for crew rescheduling available, NS will be able to react much better to disruptions

and consequently will be able to provide a better service to its customers.



4 Introduction

1.2 Overview of the thesis

In this thesis we present mathematical formulations and algorithms to solve crew reschedul-

ing problems that arise at passenger railway operators. The thesis is set up as follows.

Chapter 2
Disruption Management in

Passenger Railway Transportation

Chapter 3
Column Generation with

Dynamic Duty Selection

Chapter 5
Railway Crew Reschedul-

ing with Retiming

Chapter 4
Computational Evaluation

of Solution Approaches

Chapter 6
Railway Crew Reschedul-

ing under Uncertainty

Figure 1.2: Graph showing the dependencies of Chapters 2–6.

In Chapter 2 we describe disruption management for passenger railway operators as a

whole. We outline the three major tasks of the disruption management process, namely:

(i) timetable update, (ii) rolling stock rescheduling, and (iii) crew rescheduling. Further-

more, we discuss the interdependencies between these tasks and we present an overview

of the existing literature.

A novel algorithm to solve the crew rescheduling problem is presented in Chapter 3.

First of all, we present a fast heuristic based on the combination of Lagrangian relax-

ation, Lagrangian heuristics and column generation. This heuristic is used in an iterative

neighborhood exploration approach to tackle difficult problem instances using only a short

amount of computation time. In the remainder this algorithm will be called Column Gen-

eration with Dynamic Duty Selection (CGDDS). We present computational results using

real-life data from NS that illustrate the applicability of our solution approach.

In Chapter 4 we compare the solution approach presented in Chapter 3 with two

alternative approaches. The first of these two is a greedy two phase heuristics that tries

to mimic manual rescheduling. The second alternative approach is a heuristic based on

dynamic constraint aggregation, a relatively new advanced column generation method.

Comparing the results of the three methods for real-life data form NS we show that

the greedy two phase heuristic fails to find good solutions for the larger disruptions.
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Moreover, the quality of the solutions of this heuristic heavily depends on the availability

of drivers on stand-by. The dynamic constraint aggregation heuristic is able to find good

quality solutions, but in terms of computation time it is not competitive with the CGDDS

approach. From the comparison of the three methods we conclude that the CGDDS

approach is the best method for crew rescheduling since it finds solutions of good quality

in a short amount of computation time.

Chapter 5 deals with an extension of the basic crew rescheduling problem. In this

extension we allow to slightly change the timetable. The problem is motivated by the

interdependencies between timetable adjustment and crew rescheduling as discussed in

Chapter 2. The goal of the problem considered in Chapter 5 is to improve the overall

disruption management process. We model the modifications to the timetable as a discrete

choice of different departure times for some trains, or in other words we allow retiming

for some trains. We propose a new solution approach based on the solution approach

presented in Chapter 3. Our computational experiments, again with data provided by

NS, point out the potential of crew rescheduling with retiming to improve the overall

disruption management process.

In Chapter 6 we consider the uncertainty of the duration of a disruption and its

consequences for crew rescheduling. This aspect is a new field in the scientific literature.

We show that crew rescheduling under uncertainty can be seen as a two phase stochastic

optimization problem with different scenarios representing the timetables that could be

operated depending on the duration of the disruption. The real challenge in this problem

lies in the fact that the computation time available for crew rescheduling is very limited.

Therefore, we propose a quasi robust optimization model in order to take the uncertainty

into account. Moreover, we show how the solution approach from Chapter 3 can be

modified in order to solve the quasi robust optimization model. Finally, the quasi robust

optimization approach is compared with an approach that only considers the expected

scenario. Again, we use real-life data from NS for this comparison and we show that the

quasi robust optimization approach gives more robust solutions for most of the instances.

The dependencies between Chapter 2–6 are shown in Figure 1.2. Chapter 3 builds on

Chapter 2 and Chapters 4–6 build on Chapter 3. For the reader this suggests that after

reading Chapters 2 and 3 the remaining chapters can be read in any order.

Finally, we summarize our main results in Chapter 7. We finish by giving some advice

on steps to be taken to make Operations Research based decision support available for

the crew dispatchers of NS.





Chapter 2

Disruption Management in

Passenger Railway Transportation

2.1 Introduction

Many Europeans travel frequently by train, either to commute or in their leisure time.

Therefore, the operational performance of railway systems is often discussed in the public

debate. Travelers expect to arrive at a specific time at their destination. If they travel by

rail, they expect to arrive more or less at the time published in the timetable. However,

unforeseen events often take place, which cause delays or even cancellations of trains. As

a result, passengers arrive later than expected at their final destinations. Due to missed

connections, the delay of a passenger can be even much larger than the delays of his

individual trains.

Due to the importance for the public on one hand and the deregulation of the rail-

way market on the other, railway operators now put more emphasis on their operational

performance than in the past. Furthermore, due to the separation of the management of

the infrastructure and the operations in many European countries (including the Nether-

lands), several organizations are responsible for the performance of the railway system.

This chapter deals with passenger railway transport only. However, in addition to

the passenger railway operator itself, the infrastructure manager and other (also cargo)

operators have a strong influence on the performance of the railway services of that single

operator. Therefore, the role and the objectives of the infrastructure manager and of the

operators are also discussed.

We will focus on the situation for Netherlands Railways (NS), which is the main

operator in the Netherlands, having the exclusive right to operate passenger trains on the

so-called Dutch Main Railway Network until 2015, see Figure 2.1. NS operates a set of

lines, where a line is defined as a route between a start and an end station and a number
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of intermediate stops, operated with a certain frequency, e.g. once or twice per hour. The

route of the 500 intercity line from Groningen (Gn) to The Hague (Gvc) with stops in

Assen (Asn), Zwolle (Zl), Amersfoort (Amf), Utrecht (Ut) and Gouda (Gd) is shown in

Figure 2.1.

Amf

Zl

Gn

Ut
Gd

Gvc

Asd

Asn

Figure 2.1: The network on which NS operates passenger trains (in 2007). The dashed

line shows the 500 intercity line from Gronigen (Gn) to The Hague (Gvc) with its five

intermediate stops.

Unfortunately, trains do not always run on time due to unexpected events. Exam-

ples are infrastructure malfunctions, rolling stock break downs, accidents, and weather

conditions. Such events are called disruptions. The Dutch railway network has approxi-

mately 17 disruptions related to the infrastructure per day with an average duration of

1.8 hours. About 35% of these infrastructure related disruptions are due to to technical
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failures, while another 35% is related to third parties (e.g. accidents with other traffic).

Next to the disruptions to infrastructure failures, there are also disruptions caused by

the operators. The main reasons for the latter are passengers causing longer dwell times,

rolling stock problems and delayed crew members. The proportion between the disrup-

tions caused by the operators and the infrastructure is roughly 50-50 in the Netherlands.

Of course, infrastructure managers and operators try to avoid disruptions. Unfortu-

nately, many of them are hard to influence. Therefore, it is very important to limit the

consequences of these disruptions. A very common problem in railways is that, due to

the strong interdependencies in the railway network and due to cost efficient resource

schedules, disruptions are very likely to spread over the network in space and time. This

well-known phenomenon is called knock-on effect. The key to a good performance of rail-

ways is to limit the knock-on effect and thereby to limit the impact of single disruptions.

Therefore, operating plans should be robust and effective disruption management is re-

quired. In this chapter, we will only look at the second problem. In addition, note that

the consequences for passengers can be limited by delaying connecting trains such that

passengers can still have their connection even if their arriving train has a delay. This

latter problem is known as delay management (Schöbel (2006, 2007)), however this topic

falls outside the scope of the current chapter.

So far, Operations Research (OR) models have hardly been applied in practice for

disruption management in railway systems. Nevertheless, it is our strong belief that

OR models can play an important role to limit the impact of disruptions and thereby

to improve the performance of railway systems. This belief is supported by the fact

that nowadays OR models and techniques play a major role in several railway companies

during the planning phase, where the focus is on a good balance of the service level offered

to the passengers and the efficiency of the resources rolling stock and crew. The best

example is probably the introduction of the new Dutch timetable, for which NS received

the 2008 Franz Edelman Award (Kroon et al. (2009)). For an overview on these models

and techniques, we refer to surveys of Assad (1980); Cordeau et al. (1998); Huisman et al.

(2005b), and Caprara et al. (2007), and to the book of Geraets et al. (2007). Moreover OR

models have proven to be quite effective already for supporting disruption management

processes in the airline context, see e.g. Yu et al. (2003) and in many other fields (Yu and

Qi (2004)).

With this chapter, which is partly based on Jespersen-Groth et al. (2009), we intend

to give a comprehensive description of the problems arising in disruption management for

railway systems. In this way we set the stage for the remaining chapters of this thesis

which deal with crew rescheduling, one of the main subproblems in railway disruption

management.

The remainder of this chapter is organized as follows. In Section 2.2 we give a de-

scription of disruption management for railway systems, including a description of orga-
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nizations and actors involved in this process. In Sections 2.3-2.5, we discuss timetabling,

rolling stock and crew aspects of the disruption management process. Section 2.6 deals

with the advantages and possibilities of integrating some of these processes. Finally, we

finish the chapter with some concluding remarks in Section 2.7.

2.2 Description of disruption management

For railway operations we define a disruption as an event or a series of events that lead

to conflicts in the planned resource schedules for rolling stock, crew, etc.. By definition,

a disruption is hence a cause rather than a consequence.

A disruption does not necessarily have immediate influence on the timetable - some

disruptions like a track blockage renders the planned timetable immediately infeasible,

while others as e.g. shortage of crew due to sickness may lead to cancellations either

immediately, in the long run or not at all, depending on the amount of stand-by crew.

Note that a disruption leads to a disrupted situation. Even though this is a slight abuse

of terms, we will occasionally refer to the disrupted situation as the disruption itself.

Accordingly, we define railway disruption management as the joint approach of the

involved organizations to deal with the impact of disruptions in order to ensure the best

possible service for the passengers. This is done by modifying the timetable, and the

rolling stock and crew schedules during and after the disruption. The involved organiza-

tions are the infrastructure manager and the operators.

Of course, one first has to answer the question if the situation is disrupted, i.e. if the

deviation from the original plan is sufficiently large or not. Similar to the airline world

(see Kohl et al. (2007)), this question is normally answered by dispatchers monitoring the

operations. In the remainder of this chapter, this issue is not considered further.

The Sections 2.2.1 to 2.2.3 introduces a framework of organizations, actors and pro-

cesses in disruption management, which is valid for several European railway systems. In

Section 2.2.4 we discuss the organizational context of the disruption management process.

2.2.1 Organizations

The organizations directly involved in disruption management are the infrastructure man-

ager and the railway operators. These organizations usually have contracts with the in-

volved government. Moreover, they have a certain relationship with each other. These

issues are described below.

The infrastructure manager has a contract with the government that obliges it to

provide the railway operators with a railway network of a certain infrastructure capacity

and reliability. The infrastructure manager has also the responsibility of maintaining the

railway network as efficiently as possible.
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A passenger railway operator obtains from the government a license to operate passen-

ger trains on the network. The operator is contractually bound to provide a performance

that exceeds certain specified thresholds on certain key performance indicators. For ex-

ample, there may be thresholds for the number of train departures per station, for the

(arrival) punctuality at certain stations, for the percentage of maintained connections,

for the seating probability, etc. Here, the punctuality is the percentage of trains arriving

within for example 3 or 5 minutes of their scheduled arrival time at certain stations. The

realization figures on these performance indicators have to be reported to the government

periodically. If an operator does not reach one of the thresholds, it has to pay a certain

penalty to the government. If the performance is very poor, another operator may get

the license to operate trains on the network.

As a consequence, usually the main objective of the railway operator is to meet all

thresholds set in the contract with the government at minimum cost. The latter is due

to the fact that the railway operators are commercially operating companies. Thus the

number of rolling stock units on each train must match with the expected number of

passengers. Deadheading of rolling stock units between depots and to and from mainte-

nance facilities must be minimized. Furthermore, the number of crews needed to run the

operations and to cover unforeseen demand must be minimized as well.

In more detail, an important objective of the operators in the disruption management

process is to minimize the number of passengers affected by the disruption, and to min-

imize the inconvenience for the affected passengers. Indeed, small delays of trains are

usually not considered as a bad service by the passengers, but large disruptions are. If

passengers are too often confronted with large disruptions, which usually lead to long

extensions of travel times and, even worse, to a lot of uncertainty about travel options

and travel times, they may decide to switch to a different mode of transport. In relation

to this, passenger operators usually prefer to return to the original timetable as soon as

possible after a disruption. Indeed, the original timetable is recognizable for the passen-

gers. Therefore, the original timetable provides a better service than a temporary ad hoc

timetable during a disruption.

The passengers are the direct customers of the railway operators, and they are only

indirect customers of the infrastructure manager. This may imply that the infrastructure

manager has less knowledge of the expected passenger demand on each train and of the

real-time passenger locations in the operations. The latter may prohibit a passenger

focused dispatching, and may instead lead to a network capacity focused dispatching, i.e.

dispatching focusing on supplying sufficient buffer times in the network to recover from

disruptions.

Furthermore, each delay of a train may be attributed either to a railway operator

or to the infrastructure manager, depending on the nature of the disruption. However,

this creates a natural conflict between the organizations that may prohibit an effective
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communication and co-operation in the operations. The latter may be counter-productive

for the operational performance of the railway system. Thus, although the infrastructure

manager and the railway operators have the same general objective of providing railway

services to the passengers of a high quality level, there are also conflicting elements in

their objectives.

2.2.2 Actors

In railway disruption management, the actors are the dispatcher of the infrastructure

manager and those of the railway operators. The major tasks to be carried out are

timetable adjustment, rolling stock rescheduling, and crew rescheduling. Figure 2.2 shows

how the responsibilities for the different elements are shared among the actors.

Network Traffic Control (NTC) Network Operations Control (NOC)

Local Traffic Control (LTC) Local Operations Control (LOC)

Infrastructure manager Operators

Network

Local
(Station)

Timetable

Operators timetable Rolling stock schedule
Crew schedule

Shunt planningTrain routing

Platform assignment

Figure 2.2: Schematic view of actors, timetables and resource schedules

The infrastructure manager controls and monitors all train movements in the railway

network. Network Traffic Control (NTC) covers all tasks corresponding to the synchro-

nization of the timetables of the different operators. NTC has to manage overtaking,

rerouting, short turning, or canceling trains in order to prevent them from queuing up.

The latter is a permanent threat at the basically one-dimensional railway infrastructure.

Queuing up of trains immediately leads to extensions of travel times.
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On a local level, the process is managed by the Local Traffic Control (LTC). For

example, LTC is responsible for routing trains through railway stations and for platform

assignments. Safety is ensured by headways and automatic track occupancy detection

systems.

The Network Operations Control (NOC) of each passenger operator keeps track of

the operations of the operator on a network level. The dispatchers of NOC are acting

as decision makers for the operator in the disruption management process. Depending

on the size of the operator, there are one or more dispatchers for rolling stock and crew,

respectively. These dispatchers monitor and modify the rolling stock and crew movements.

NOC dispatchers are the counterparts of the dispatchers of NTC.

Dispatchers of the Local Operations Control (LOC) of the railway operators are respon-

sible for coordinating several local activities at the stations, such as shunting processes.

They support NOC by evaluating whether changes to the rolling stock schedules can be

implemented locally.

Train drivers and conductors are also important elements in the disruption manage-

ment process. They are usually the first ones who are confronted with trains or passengers

affected by a disruption. If train drivers and conductors work on different lines, they may

carry a delay from one line to another.

In order to avoid this situation, the crew dispatchers may have to modify several

duties. Besides making the decisions, the dispatchers also have to instruct and sometimes

to convince the crew members to carry out the modifications, see Section 2.5.

2.2.3 Processes

NTC dispatchers constantly monitor the operations and have to decide if an actual sit-

uation is a disruption or will lead to a disruption in the near future. When this is the

case, they start the disruption management process. Within this process, the original

timetable may need to be changed. This is done by carrying out a dispatching plan.

Figure 2.3 displays the information flows between the different actors in this process.

First, NTC determines all trains that are affected by the disruption. NOC of the

corresponding operators must then be informed about the disruption and its direct con-

sequences. In the next step, the dispatchers have to find out to which extent it is still

possible to run traffic on the involved route. Some pre-defined emergency scenarios give

an indication about which trains should be overtaken, rerouted, short turned, or canceled.

Using this information, an initial dispatching plan can be constructed. This dispatching

plan must be evaluated by LTC. Almost simultaneously, the proposed dispatching plan is

communicated to NOC of the operators. A complicating factor is the uncertainty about

the duration of the disruption, for example NTC can only estimate how long it will take

to repair a broken switch or signal.
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Figure 2.3: Information flow during the dispatching plan development

The dispatching plan may correspond to changes in the planned operations of several

operators. As a whole, these changes are compatible with respect to the safety regulations.

However, for the operators it may be impossible to operate the dispatching plan due to

their resource schedules for rolling stock or crew. Therefore, the decision about the

dispatching plan is taken in consultation between the infrastructure manager and the

operators.

Hence, NOC dispatchers have to check whether it is possible for them to operate the

proposed dispatching plan. In particular, they have to check whether they can adapt

their resource schedules to the proposed dispatching plan. Furthermore, LOC has to

verify that the modified timetable and the adapted resource schedules can be carried out

locally. Because of the combinatorial nature of the resource schedules and the limited

time available, not all rescheduling options can be evaluated. The rescheduling solutions

represent a trade-off between the available time and the quality of the solution. The

most important aspect is to find resource schedules that are feasible with respect to the

proposed dispatching plan.

This evaluation procedure can basically have three different outcomes. First, NOC

and LOC may find a rescheduling solution to the proposed dispatching plan where no

additional cancellations or delays are needed. Second, they may find an initial solution,

but trains have to be canceled in a second stage because rolling stock and/or crews are

unavailable. A cancellation of a train has, however, a strong negative impact on the

service level. Finally, NOC may come up with a request for changes to the proposed

dispatching plan if this enables them to construct a much better solution.
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Of course, not only one but several operators may ask for changes in the proposed

dispatching plan. When these requests are conflicting, it is the responsibility of NTC

to make a fair decision. This may involve another iteration of proposal and evaluation

between NTC and the operators.

After the final decision about the dispatching plan has been taken by NTC, it is com-

municated to LTC and to the operators. LTC has to implement the new train routes and

to change platform assignments. NOC has to inform the train drivers and conductors

whose duties have been changed. LOC has to generate new shunting plans. LOC com-

municates directly with LTC to ask for time slots for shunting movements in the station

area.

Furthermore, passengers need to be informed in trains, at stations, and via Internet

and teletext about the changes in the timetable and alternative travel routes.

2.2.4 Organizational issues

The description in Section 2.2.2 of the actors in the disruption management process is

a functional description, and not an organizational. For example, it suggests that all

dispatchers of each of the mentioned actors are located in the same office. However, this

need not be the case.

The Netherlands have been split up into 4 regions, and each region has its own NTC

office and its own NOC office of NS. Moreover, there is a central NOC office of NS for

coordinating the rolling stock rescheduling process. Similarly, there are 13 LTC offices

and 13 LOC offices of NS. Obviously, this organizational split leads to a lot of additional

communication within NTC and within NOC, which is counter-productive in the disrup-

tion management process. Therefore, it is discussed how to redesign the responsibilities

of the NTC and the NOC offices. Moreover, it is investigated how the separation between

the infrastructure manager and the operators can be reduced.

2.3 Timetable adjustments

2.3.1 Problem description

NTC has the overall responsibility of the railway operations and coordinates the disruption

management process. When a disruption is recorded, NTC evaluates its effect and, if it

is considered as severe, NTC tries to reschedule the timetable events affected by the

disruption.

The severeness of a disruption is not easily assessed. It is described as a combination

of how much time will pass until the operations are according to plan again and how

many trains will be affected. The number of passengers that get delayed because of a
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disruption also contributes to its degree of severeness. Finally, it makes a large difference

to the severeness whether the time intervals between trains on the same track (headways)

are small or large. The effect caused by a blockage will be less on sections of the network

with much time between consecutive trains than on sections with little time between the

trains.

Timetables are constructed with included buffer time. Therefore, a timetable is able

to absorb some disruptions. Buffer times are included in the dwell times, the running

times, and the headways. When a disruption occurs, the buffer times in the timetable are

used to gain time whenever possible. Thus they enable recovery from a disruption.

In general one can distinguish between disruptions with low and high impact on the

timetable. Low level impact disruptions are those where recovery to the originally planned

timetable is possible by using so-called dispatching rules. High level impact disruptions

are those where recovery in this way is not possible, for example, if a complete blockage

occurs at some part of the network. In such a case, more significant recovery measures

are needed. These measures are presented in Section 2.3.2. Chapters 3–6 of this thesis

will focus on these kind of disruptions. For a discussion of dispatching rules for low level

disruptions we refer the interested reader to Jespersen-Groth et al. (2009).

A survey of optimization models for railway related problems is given by Cordeau

et al. (1998). This survey describes various optimization models developed for railway

problems. One of the described problems is the Train Dispatching Problem (TDP). TDP

is the problem of minimizing delays by scheduling arrivals at bottlenecks of the railway

network and overtakings, thereby taking into consideration operational costs. The velocity

of trains is included in TDP as a decision variable (see D’Ariano (2008)). The paper of

D’Ariano et al. (2007) describes how conflicts caused by timetable perturbations can be

resolved in real-time.

Recently, a survey of algorithms and models for railway traffic scheduling and dis-

patching was given by Törnquist (2006). The problems mentioned are subdivided into

tactical and operational scheduling and rescheduling. Of specific interest is rescheduling

of trains, which focuses on the replanning of an existing timetable when a disruption has

taken place.

2.3.2 Larger disruptions

For high impact disruptions, a set of emergency scenarios may exist, e.g. when tracks in

one or both directions are completely blocked. These emergency scenarios describe for

each section in the network and each direction an alternative timetable.

The immediate reaction to a high impact disruption is to apply an appropriate emer-

gency scenario. On heavily utilized networks, the headways are so tight that the system

will queue up immediately if no adequate measures are taken after a high impact disrup-
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tion has occurred. Therefore, almost all railway traffic is canceled around the disrupted

area. Trains may be turned around as closely as possible to this location. Otherwise,

trains may be rerouted, but this requires sufficient capacity on the detour route. Finally,

some lines may be canceled completely. Note that in practice the transformation from

the planned timetable to the emergency scenario and back may involve some intermediate

steps. E.g. by first not turning the trains anymore and then by restarting the service on

the canceled train lines. Jespersen-Groth et al. (2006) present a model for calculating the

order in which train lines should be restarted minimizing the time of the latest restart

and taking the rolling stock inventories at the depots into account.

Example 2.1

As an example, consider a situation in which the tracks in both directions between stations

Hoogeveen (Hgv) and Beilen (Bl) (see Figure 2.4) are blocked from 7:10 to 10:10. Three

train lines use this route each with a frequency of once per hour: The earlier mentioned

500-line (intercity) between The Hague (Gvc) and Groningen, the 700-line (intercity)

between Schiphol and Groningen, and the 9100-line (regional) from Zwolle to Groningen.

9
10

0
7
00

50
0

Groningen

Haren

Assen

Beilen

Hoogeveen

Meppel

Zwolle

Station where the trains stop

Station where the trains do not stop

Figure 2.4: The train lines operated between Groningen (Gn) and Zwolle (Zl).

According to the emergency scenarios, the trains of the 500-line coming from Gronin-

gen are turned around in Assen (Asn) and the trains from The Hague are turned around

in Hoogeveen, respectively. The same pattern is applied to the 700-line. The regional

trains of the 9100-line from Zwolle are turned around in Meppel (Mp) and the trains from

Groningen are turned around in Beilen, respectively. The resulting timetable and new
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turns for the rolling stock are shown in Figure 2.5. Since there is no convenient alternative

to go from Zwolle to Groningen by train during the time the route is blocked, bus-services

between Beilen and Hoogeveen will be launched.
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Figure 2.5: The adapted timetable between Groningen (Gn) and Zwolle (Zl).

2.4 Rolling stock rescheduling

2.4.1 Problem description

This section describes rolling stock rescheduling in a disrupted situation. Here the as-

sumption is that, whenever this is necessary, the timetable has already been adjusted to

the disrupted situation. The main goal is to decide how the rolling stock schedules can

be adjusted to this new timetable at reasonable cost and with a minimum amount of

passenger inconvenience.

The most characteristic feature of rolling stock is that it is bound to the tracks:

rolling stock units cannot overtake one another, except at locations with parallel pairs

of tracks. A broken rolling stock unit may entirely block the traffic – actually, this is a

frequent cause of disruptions. Moreover, the operational rules of rolling stock units are

largely determined by the shunting possibilities at the stations. Unfortunately, shunting

is a challenging problem in itself, even for a medium-size station. Therefore, NOC must
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constantly keep contact with LOC and check whether or not their intended measures can

be implemented in practice. The modifications may be impossible due to lack of shunting

drivers or infrastructure capacity.

Timetable services must be provided with rolling stock of any type. Also, the as-

signment must fulfill some elementary requirements. For example, the rolling stock type

must be compatible, and each train should not be longer than the shortest platform on

its route. Especially in a disrupted situation, shunting operations are reduced as much as

possible. In particular, shunting operations at locations or points in time where they do

not occur in the original schedules are highly undesirable.

Railway operators usually keep a certain amount of rolling stock on stand-by. These

units can be used only in case of disruptions. Moreover, many of the rolling stock units

are idle between the peak hours, since the rolling stock capacity is usually too large for

off-peak hours. If a disruption takes place during off-peak hours, these idle units can act

as stand-by units.

In case of a disruption, the first dispatching task is to assign the available rolling

stock units to train tasks. These decisions are taken under high time pressure, often

guided by the emergency scenarios which tell how the trains have to turn. E.g. the

emergency scenario for Example 2.1 says that the rolling stock from train 715 from Zwolle

to Hoogeveen should go back to Zwolle as train 724. Whenever there is room for changes,

the planners try to cover the seat demand as well as possible. In some cases, however,

they are forced to cancel trains due to lacking rolling stock or to have a train that offers

too little capacity.

After a disruption, it is preferable for the rolling stock schedules to return to the

originally planned schedules as quickly as possible, since the feasibility of the originally

planned schedules has been checked in detail. As a consequence of all these measures,

the rolling stock units will not finish their daily duties at the locations where they were

planned prior to the disruption. This is not a problem if two units of the same type get

switched: rolling stock units of the same type can usually take each other’s duty for the

rest of the day. More likely, however, the numbers of units per type ending up in the

evening at a station differ from the numbers of units per type that were planned to end

up there. Thus, unless expensive deadheading trips are used, the traffic on the next day

is influenced by the disruption. Modifications of the schedules for the busy peak hours of

the next morning are highly undesirable. Therefore additional measures are taken such

that at night the actual rolling stock balance is as close as possible to the planned balance.

A further important element in rolling stock rescheduling is maintenance of rolling

stock. Train units need preventive maintenance after a certain number of kilometers

or days, roughly once a month. Due to efficiency reasons, units are usually in service

just until they reach a certain maintenance limit. Units that are close to this limit and

have to undergo a maintenance check in the forthcoming couple of days are monitored
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permanently. The latter is particularly important during and after a disruption which

may have distracted these units from their planned route towards a maintenance facility.

NOC has to make sure that these units reach a maintenance facility in time. Usually,

only a small number of rolling stock units is involved in planned maintenance routings.

Other units of a given type are interchangeable, both in the planning stage and in the

operations.

2.4.2 Current practice at NS

NS operates a dense railway system. This basically allows for many alternative rolling

stock schedules through exchanges of train units. However, usually trains have short

turn-around times, which rules out complex shunting operations at end points. Also,

the shunting capacity (shunting area and crews) of stations is often a bottleneck. NS

operates rolling stock units of several types. Moreover, a train may contain units of

different types. In this case, the order of the train units in the train is important. On

one hand, this allows adjusting the rolling stock types well to the passenger demand. In

case of disruptions, however, the dispatchers have the additional task of monitoring and

rebalancing exchanged rolling stock types.

NS uses a sophisticated computer system for rolling stock management, which pro-

vides automated tracking and tracing of the real-time positioning of individual units. The

system, however, lacks algorithmic decision support tools; nearly all decisions have to be

taken and to be fed to the system manually. As a consequence of the lack of decision sup-

port, the dispatchers focus on the immediately forthcoming time period only. Moreover,

planning for a longer period of time may be a waste of effort since new disruptions can

occur. Dispatchers identify possible conflicts, and handle them in order of urgency.

2.4.3 New developments

Compared to medium-term planning, there is a very scarce literature on real-time rolling

stock rescheduling. In the recent years intensive research has been conducted to develop

methods for the real-time problems as well.

Budai et al. (2009) study the Rolling Stock Balancing Problem. It is assumed that

the timetable and a feasible rolling stock schedule are given. Moreover, the target rolling

stock balance is given. This target is equal to the number of units per type that were

originally supposed to arrive at the stations at the end of the planning horizon. The

Rolling Stock Balancing Problem aims at modifying the input schedule in such a way

that the realized end-of-day balance is as close to the target as possible.

Although the problem was first studied for the operational planning phase, it is also

relevant in real-time rescheduling after a disruption when all immediate conflicts have
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been resolved (that is, there is a feasible schedule) but the realized end-of-day rolling

stock balance differs from the target balance.

Budai et al. (2009) prove that an off-balance of a single train unit leads to an NP-

hard optimization problem. Also, two heuristic algorithms are developed and compared

to exact optimization methods. The computational results on real-life problem instances

of NS indicate that the heuristic algorithms provide solutions of promising quality very

quickly, within a few seconds.

Another track of research aims at applying an existing rolling stock circulation model

of Fioole et al. (2006) for real-time planning. The basic model of Fioole et al. (2006) is a

very flexible linear integer programming model that has been used by NS since 2004 for

medium term planning. However, it cannot deal with uncertainties of the input data, and

solving it by commercial MIP software can take several hours. Therefore Nielsen (2008)

developed a rolling horizon based solution approach for dealing with real-time rescheduling

problems of NS. The cornerstone of the method is the extension of the model of Fioole

et al. (2006).

The main idea is to consider at any moment the forthcoming, say, 3 hours only. The

extended MIP model is solved for this restricted time horizon based on the latest forecasts

on the duration of the disruption. This optimization can indeed be performed in a few

seconds. An hour later, or whenever new, relevant information arrives, the model is solved

again for the forthcoming hours. This process is repeated until the end of the day. The

algorithm is highly inspired by the current rolling stock disruption management.

The algorithm of Nielsen (2008) deals with three objective criteria: (i) cancellation

of trips; (ii) deviation from the originally planned shunting process; and (iii) deviation

from the originally planned end-of-day balance.

Criterion (i) is related to keeping a high service quality. Criterion (ii) enhances the

chance that the found solution can be implemented in practice. Indeed, new, non-planned

shunting operations can turn out to be impossible due to lacking shunting capacity. Fi-

nally, criterion (iii) tries to reduce the disruption’s consequences for the next day.

While the first two criteria are easily incorporated in a rolling horizon framework,

the deviation from the target rolling stock balance is conceptually more difficult: The

end of the day is not visible until the very last iteration. Nielsen (2008) proposes the

following heuristic way to cope with this issue. Consider a single iteration of the rolling

horizon algorithm where the current horizon is from 12:00 till 15:00. Then one computes

what should be the rolling stock balance at 15:00 according to the original, undisrupted

schedule, and this is defined to be the target balance in the current iteration. Clearly,

this guidance is inaccurate in the middle of the day, but it gets more and more precise

as the end of the rolling horizon approaches the end of the day. Accordingly, the relative

importance of criterion (iii) increases as the rolling horizon proceeds.
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Nielsen (2008) reports computational results on several realistic problem instances of

NS. These include disruptions on the so-called “Noord-Oost” case, a particularly complex

rolling stock scheduling instance. The rolling horizon based algorithm found solutions

with very little deviation from the undisrupted schedule, both in terms of shunting and in

terms of rolling stock balance. On-going research focuses on making the algorithm fully

comply with the restrictions of railway practice. This includes fine-tuning the algorithm

as well as some extensions such as dealing with maintenance of rolling stock units.

Jespersen-Groth et al. (2008) and Jespersen-Groth (2009) propose to decompose the

rolling stock rescheduling problem into three steps. In the first step a position model is

solved that determines a suitable assignment of rolling stock compositions to train tasks.

In the second, optional, step a sequence model assigns train units to sequences of train

tasks that require a single unit. Finally, in the routing model train units are assigned

to paths of train tasks. If the sequence model was used, the assignments found in the

sequence model are fixed in the routing model. Experiments were conducted with data

from DSB S-tog, the operator of local trains in the greater Copenhagen area. The results

show that using the sequence model computation times for the routing model decrease

dramatically. Good quality solutions for instances of realistic problem sizes could be found

within minutes.

2.5 Crew rescheduling

2.5.1 Problem description

Recall that the recovery of the timetable, the rolling stock schedule, and the crew schedule

is usually done in a sequential fashion. For an estimated duration of the disruption, a

modified rolling stock schedule has been determined for a modified timetable. Both are

input for the operational crew rescheduling problem (OCRSP), in which the crew schedule

needs to be modified in order to have a driver and an appropriate number of conductors

for each task of the modified timetable. Tasks can be either passenger train movements,

empty train movements, or shunting activities. From this point on, we will focus on train

drivers. The problem of rescheduling conductors is, however, quite similar.

All operations that need to be performed by a driver are represented by a task, where

a task is an elementary sequence of activities starting and ending at a relief point. Relief

points are the subset of all stations where drivers can transfer from one rolling stock

unit to another one. The trains of the 500-line (see Figure 2.1), for example, are split

up into the following tasks: Groningen–Zwolle, Zwolle–Amersfoort, Amersfoort–Utrecht,

Utrecht–Gouda, and Gouda–The Hague. Within this thesis, 12345/i will refer to the i-th

task of train “12345”. E.g. 522/b is the task Zwolle–Amersfoort of train 522.
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On the day of operations the crew schedule is given by the original duties, each assigned

to a driver. These original duties are either active duties, in the sense that they are a

sequence of tasks, or reserve duties, meaning that a driver is on standby at a major station

for a given time period and tasks can be assigned to the driver. All duties start and end at

the same crew base, where crew bases are a subset of the relief points. For repositioning

from one relief point to another, duties can also contain taxi trips or deadhead tasks. The

latter means that a driver is traveling as a passenger on a task.

Due to a disruption on the day of operations the timetable is modified according to

the estimated duration of the disruption. This could mean that the new timetable and

the driver duties have become incompatible. In this case it is necessary to reschedule

the drivers. Because NS operates very few night trains, for rescheduling it is generally

sufficient to consider a crew schedule of a single day.

Given the point in time of rescheduling, for every unfinished original duty we need to

find a replacement duty. A replacement duty is composed of all tasks of the associated

original duty that started before the time of rescheduling, and a feasible completion.

Feasible completions are (possibly empty) sequences of tasks such that the replacement

duty satisfies the following rules.

• The replacement duty needs to start and end at the same crew base associated

with the original duty. Furthermore, a replacement duty may end earlier or at the

planned time. In addition, it is allowed to end up to 60 minutes later than the

planned end time of the original duty.

• If in a replacement duty two tasks are performed after each other on different rolling

stock units, then a minimum connection time between the two tasks needs to be

respected. This connection time is less during rescheduling than in the planning

phase.

• Every replacement duty longer than 5 1/2 hours must contain a meal break of at

least 30 minutes. Meal breaks are possible only at relief points that have a canteen.

Moreover, the working time before and after the break is not allowed to exceed 5 1/2

hours.

• Every driver is licensed to drive on certain parts of the railway network. Moreover,

he is licensed to drive certain rolling stock types. These two attributes determine

the set of tasks that can be performed by a replacement duty.

If an original duty is not affected by a disruption, one feasible completion is to follow

the sequence of tasks as in the original duty.
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a) 724/a 724/b 5827/b 5830/a MB 5841/a 743/b 9145/a

Gn Zl Amf Amf Asd Asd Amf Zl Gn

b) 724/a r Taxi 530/b MB 732/c 743/a 743/b 9145/a

Gn ZlGn AmfAmf Hfdo Amf Zl Gn

c) 724/a r 728/a r 732/a r 736/a MB 735/b 9150/a 9149/a

Gn Gn Gn Gn Zl Zl Gn Zl Gn

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Time of rescheduling

task deadheading MB meal break

modified or rerouted task Taxi deadheading using a taxi

Figure 2.6: Examples of feasible completions for an affected original duty from crew base

Groningen (Gn).

Example 2.2

Figure 2.6.a shows how original duty Gn 7 from crew base Groningen was planned. At

7:10, when the rescheduling takes place, the duty is performing task 724/a belonging to

the 700-line. Since the route is blocked south of Beilen, the train is turned in Assen,

from where it goes back as train 715 to Groningen (cf. Figure 2.5). This means that task

724/a is replaced by task 724/a r which starts and ends in Groningen. This means that

after performing his first task of the day the driver will be back in Groningen. It is not

possible to get to Zwolle in time to perform task 724/b which was supposed to be the

next task. Hence duty Gn 7 is not feasible anymore. Now we will show two examples

of feasible completions of Gn 7. Given 7:10 as the time of rescheduling, Gn 7 must first

complete task 724/a r. Then it is possible to deviate from the plan. One possibility

(Figure 2.6.b) would be to take a taxi from Groningen to Zwolle and drive task 530/b

to Amersfoort. After a meal break (MB) in Amersfoort, task 732/c to Hoofddorp on the

700-line could be performed, followed by 743/a and 743/b also on the 700-line. Finally,

the duty could finish with driving the regional train (9100-line) from Zwolle to Groningen

(9145/a). Note, that in this feasible completion the last two tasks are the same as in the

original duty, except that in the original duty the driver was deadheading as a passenger

on task 743/b. Another possibility shown in Figure 2.6.c would be to continue driving

rerouted tasks of the 700-line (728/a r, 732/a r) before going from Groningen to Zwolle
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(736/a), also on the 700-line. After a meal break in Zwolle the driver could perform task

735/b back to Groningen. Since it is allowed to end up to 60 minutes later, the duty

could finish with driving two trains (9150/a, 9149/a) of the 9100-line to Zwolle and back.

Now we can formulate the OCRSP as follows. Given the modified timetable, the mod-

ified rolling stock circulations, and the planned crew schedule, find a new crew schedule

that covers as many tasks as possible such that every original duty is assigned to one

feasible completion. The objective of the OCRSP is a trade-off between different aspects,

namely feasibility, operational costs, and robustness. We will now briefly discuss these

aspects.

First of all, there is the feasibility aspect. It is not evident that all tasks can be

covered by a solution. Given two solutions with different uncovered tasks, there may

exist a preference for one of them, depending on the urgency and the expected numbers

of passengers of the uncovered tasks. If a task cannot be covered, canceling it will lead

to a feasible crew rescheduling solution. An additional cancellation, however, leads to

more inconvenience for the passengers, which is against the general aim of disruption

management. Moreover, such a cancellation has to be approved by the rolling stock

dispatchers and the local planners, since it disturbs the rolling stock circulation. Because

a cancellation is a change of the timetable, it has to be approved by NTC.

Operational costs are the second aspect in the objective. In the railway context, the

crew payments are often based on fixed salaries. Nevertheless, some parts of a rescheduling

solution influence the operational costs. Crew deadheading on trains can be considered

to have no costs other than time, whereas using other transport options (e.g. taxis) for

repositioning and taking home stranded crews is not free. Also, operator specific com-

pensations for overtime work due to modified duties need to be considered.

The third aspect in the objective is stability. Humans are involved in the implemen-

tation of every rescheduling solution and can cause its failure. A crew dispatcher may,

for example, forget to call a driver and inform him about the modifications in his duty.

Therefore, a solution is considered to be more stable if the number of modified duties is

smaller.

2.5.2 Current practice at NS

A closely related problem is crew rescheduling in short term planning. This occurs for

instance due to timetable changes based on maintenance work on tracks. The resulting

crew schedule is called a special plan. For the construction of special plans additional

rules have to be taken into account. If a special plan is made prior to 72 hours before the

day of operation, duties may start and end up to 30 minutes earlier (respectively later)

compared to the planned schedule. Within the last 72 hours before the day of operation

duties may start earlier or end later only if this is accepted by the crew member.
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NS nowadays use optimization software to construct special plans. The dedicated

approach (Huisman (2007)) has been integrated into the CREWS planning system (Mor-

gado and Martins (1998)). The algorithm relies on a combination of column generation

and Lagrangian relaxation.

For crew rescheduling on the day of operation NS is not using a decision support

system. The crew dispatchers use an interactive software system. This provides them

with information about the actually planned duties, and enables them to store their duty

modifications in the system. The system informs them about delays of trains and about

modifications in the timetable and rolling stock schedules. The system also indicates

time and location conflicts in the duties. Recovery options, however, have to be found

manually without algorithmic support. In the manual procedure, conflicts are resolved

one at a time in order of urgency.

As mentioned earlier several agreements exist about the way duties may be modified

on the day of operations. However, if a dispatcher finds an option outside these rules he

might ask the affected drivers if they are willing to accept the changes to their duties.

Experiments were carried out to inform crew members automatically via SMS about duty

modifications. However, communicating modifications via telephone is still the common

practice.

2.6 Integrated Recovery

The integrated recovery approach has received little attention up till now. To the best of

our knowledge Walker et al. (2005) is the only paper presenting a model that manipulates

the timetable and the crew schedule at the same time. The objective is to simultaneously

minimize the deviation of the new timetable from the original one, and the cost of the

crew schedule. One part of the model represents the timetable adjustment, the other part

corresponds to a set partitioning model for the crew schedules. Both parts are linked

in order to get a compatible solution. It should be mentioned that the railway systems

addressed in the research is of a relatively simple structure.

The benefits of such an approach compared to the sequential approach may, however,

be large in terms of quality of service, and the field is expected to become an active

research field in the future.

In Chapter 5 we present a model that allows retiming for some tasks. This can be

viewed as a partial integration of timetabling and crew rescheduling. We only consider

a limited number of retiming possibilities. This keeps the resulting model tractable such

that we can compute near optimal solutions in a very short amount of computational time.

We show that with our approach less tasks need to be canceled compared to classical crew

rescheduling without retiming.
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2.7 Conclusions

Railway operators pay much attention to improve their operational performance. One

of the key issues is to limit the number of delays by reducing the knock-on effect of

single disruptions. To achieve this goal, effective disruption management is required.

In this chapter, we have explained the role of the different organizations and actors in

the disruption management process. An important issue here is that next to the operator

itself, the infrastructure manager plays a major role in the disruption management process.

The different objectives of both organizations on one hand and difficult communication

schemes on the other hand, complicates the disruption management process a lot.

After the description of disruption management, we have discussed the three subprob-

lems arising in railway disruption management: timetable adjustment, and rolling stock

and crew rescheduling. To adjust the timetable, several dispatching rules are applied in

practice. Unfortunately, no optimization techniques are involved to solve this problem

currently. For the rescheduling of rolling stock and crew some first attempts have been

made in the literature to come up with OR models and solution techniques. Current

developments can be divided into two major categories. The first category includes at-

tempts to integrate the already developed approaches into decision support systems and to

finally use these tools in practice. The second category consists of research into extending

the current approaches. Possible extensions include (partial) integration of timetabling

and resource rescheduling (see Chapter 5), the consideration of passenger flows, and the

uncertainty about the duration of the disruption as discussed in Chapter 6.





Chapter 3

Column Generation with Dynamic

Duty Selection for Railway Crew

Rescheduling

3.1 Introduction

In Chapter 2 we presented the disruption management process at a passenger railway

operator. In this chapter we will present a mathematical model and an innovative solution

approach to solve the OCRSP, introduced in Section 2.5, one of the three challenging

problems within railway disruption management. The OCRSP is challenging because

decisions have to be made quickly, while one has to deal with a large number of crews. As

mentioned in Section 1, the crew schedule of Netherlands Railways (NS) contains around

1,000 duties for drivers on an average workday.

The contribution of this chapter, which is based on Potthoff et al. (2010), is twofold.

We propose a new algorithm that heuristically solves the problem for dynamically selected

subsets of the duties. This is our first contribution and this idea can be applied to many

other domains of rescheduling as well. The heuristic follows ideas from Huisman (2007)

for crew rescheduling in short-term planning. Our second contribution lies in the fact

that we test our methods on real-life data of NS and we show that we can find good

solutions in a reasonable amount of time. As a result, the methods that we propose

can lay the foundations for algorithmic decision support for dispatchers in the operations

control centers of NS.

The remainder of this chapter is organized as follows. In Section 3.2 a literature

overview on crew rescheduling is given. A mathematical formulation and the outline of

our solution approach is presented in Section 3.3. In Section 3.4, we present a heuristic

based on column generation and Lagrangian relaxation to solve the OCRSP for a fixed
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subset of duties. In Section 3.5, we discuss how we can dynamically adjust the subsets of

duties. Computational results are reported in Section 3.6. We finish with some concluding

remarks in Section 3.8.

3.2 Literature review

During the last decade crew rescheduling, also known as crew recovery, has received a

lot of attention in the airline literature. The application of a crew rescheduling decision

support system at Continental Airlines (Yu et al. (2003)) won the Franz Edelman award.

Stojković et al. (1998) published the first results for a rescheduling model dealing with

crew pairing and rostering simultaneously. They apply a column generation approach

for a preselected subset of crews. Column generation in combination with core problems

defined by a selection of crews and/or time windows has also been used by Lettovský

et al. (2000); Nissen and Haase (2006); Medard and Sawhney (2007).

Stojković and Soumis (2001) propose to consider time windows in order to allow

retiming of flights. The situation that a crew (e.g. pilots and flight attendants) assigned

to a flight do not need to stay together for the whole rescheduling period is modeled

by Stojković and Soumis (2005) and Abdelghany et al. (2004). Recently, Abdelghany

et al. (2008) extend the work of Abdelghany et al. (2004) by integrating aircraft and crew

rescheduling.

For a recent review of airline crew recovery we refer the interested reader to Clausen

et al. (2010).

To the best of our knowledge, the first attempt to come up with an approach including

the aspect of railway crew rescheduling was made by Walker et al. (2005). The paper

presents a model for simultaneous railway timetable adjustment and crew rescheduling.

A timetabling part where the departure of tasks can be chosen within time windows is

linked to a crew scheduling part where generic driver shifts are chosen. Here a generic

driver shift is a sequence of tasks that is feasible with respect to the start and end locations

of consecutive tasks. Shift length and task (piece-of-work) sequencing constraints ensure

that the departure times are chosen such that only the break rule may be violated in

the selected shifts. Breaks are added into the shifts during the branching process. A

conflict free timetable could be achieved by adding an enormous number of train crossing

and overtaking constraints. The authors propose to relax these constraints in the initial

model and to resolve violations by branching on the waiting decisions between involved

train pairs. Since the model size would explode for a network as operated by NS, their

approach is not applicable to the Dutch situation.

Crew rescheduling within disruption management was subject to research projects at

NS. Experience from short term planning has already made clear that it is not possible
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to consider all duties and tasks in the rescheduling problem due to too long computation

times. Therefore all studies on rescheduling on the day of operations consider only a small

part of the crew schedule, given by a subset of the duties and a time window.

One such tailored solution method to solve the crew rescheduling problem was devel-

oped by Rezanova and Ryan (2010) and Rezanova (2009). The problem is formulated as

a set partitioning problem and possesses strong integer properties. The proposed solution

approach is therefore a depth-first search in a branch-and-price tree. The LP-relaxation

of the problem is solved with a column and constraint generation algorithm. The problem

is first initialized with a very small disruption neighborhood, which contains only duties

that cover delayed, canceled or re-routed tasks and is limited by a recovery period. As

long as, while solving the LP-relaxation, constraints are uncovered, the disruption neigh-

borhood is extended by either adding more duties to the problem or by extending the

recovery period. The algorithm was tested on instances based on historical disruptions

using real-life crew schedules from DSB S-tog. The obtained results are very good in

terms of solution quality as well as in terms of computation time. In order to deal with

new information becoming available, the author(s) propose to use the crew rescheduling

algorithm in a rolling time horizon approach similar to the one proposed by Nielsen (2008)

for rolling stock rescheduling. However, tests about the effects of changing information

are not reported.

Finally, there are some experiments at NS with multi-agent technology. In this ap-

proach each driver is represented by a driver-agent. If due to the disruption a driver-agent

can no longer perform a certain task, this driver-agent starts a negotiation process with

other driver-agents to transfer the task to another driver-agent. For more details, we refer

to Abbink et al. (2009) and Mobach et al. (2009).

3.3 Mathematical model and solution approach

In the remainder of this chapter we use the following notation.

• S: Set of stations (in our case limited to relief points).

• D: Set of crew bases.

• N : Set of tasks which have not started at the time of rescheduling, where for every

i ∈ N we have:

– sdep
i , tdep

i : Departure station and time.

– sarr
i , tarr

i : Arrival station and time.

• ∆ = ∆A ∪ ∆R: Set of unfinished original duties, where ∆A are active and ∆R are

reserve duties, respectively. Moreover, for every δ ∈ ∆ we have:
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– csδ: The station where the original duty δ is at the time of rescheduling or the

arrival station of the task performed by the driver at the time of rescheduling.

– bδ: The crew base where the original duty δ starts and ends.

• Kδ: Set of all feasible completions for original duty δ ∈ ∆. For every feasible

completion k ∈ Kδ we have:

– cδk: Cost of feasible completion k for original duty δ. The cost of a feasible

completion is zero if the duty is not modified. Otherwise, the cost is the sum

of the cost for changing a duty, the cost for taxis, and the penalties for short

connection times and overtime.

– aδik: Binary parameter indicating if task i is covered by feasible completion k

or not.

• fi: Cost for canceling task i.

We can formulate the OCRSP using binary variables xδk corresponding to the selection

of the feasible completions of duty δ and binary variables zi indicating if task i is canceled

(1) or not (0).

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fizi (3.1)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ N (3.2)∑

k∈Kδ

xδk = 1 ∀δ ∈ ∆ (3.3)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ,∀i ∈ N (3.4)

In the above model, constraints (3.2) make sure that every task is either covered by a

feasible completion or canceled. Furthermore, constraints (3.3) ensure that every original

duty is assigned to exactly one feasible completion.

Note that, in the above model, deadheading can occur in two ways. Firstly, a feasible

completion can explicitly use deadheading on tasks, e.g., if the driver of the original duty

does not have the required route knowledge. In this case, the corresponding aδik coefficient

is equal to 0. Secondly, a task can be overcovered in the solution of the model, then one

of the drivers has to perform the driving, the other(s) deadhead on this task, but all

coefficients aδik are equal to 1.

Recall from Chapter 1 that we can have about 1,000 original duties, of which about 90

are reserve duties, in (3.3). Moreover, the number of set covering constraints in (3.2) can
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be up to 10,000. The number of feasible completions for an original duty can range from

only a few if the duty is almost finished when we reschedule, to millions if the duty has not

started or has just started. If rescheduling is done on the day of operations, the emphasis

is on obtaining the best possible solution within a couple of minutes of computation time

rather than solving (3.1)–(3.4) to optimality.

Moreover, a local disruption like the one described in Example 2.1 affects only a limited

number of original duties. Because we want to stay close to the planned schedule, it seems

highly unlikely that an original duty covering tasks only in another part of the country

will be modified in an optimal solution of (3.1)–(3.4) in this case. Therefore, it seems

reasonable to consider a core problem containing only a subset of the original duties and

tasks.

The advantage of a core problem is its reduced size, which will lead to shorter compu-

tation times. A drawback is that the solution quality might depend on the choice of the

core problem. In particular, one might be able to reduce the number of canceled tasks by

increasing the size of the core problem.

For the case of airline crew rescheduling this has been observed by Lettovský et al.

(2000) and Nissen and Haase (2006). In both papers the core problems are generated

using a set of parameters, which makes it possible for the dispatcher to solve the problem

again with a larger core problem, if he is unsatisfied with the quality of the solution

obtained so far. The drawback of this scheme is that computation times increase rapidly

with the size of the core problems.

In order to overcome this drawback, we propose a different way, illustrated in Fig-

ure 3.1, of exploring promising parts of the solution space of (3.1)–(3.4). As in the other

approaches, we start with an initial core problem. This initial core problem is defined

such that it has a high probability of containing a good solution and is of a size that

allows us to explore it within a small amount of time. If tasks need to be canceled in the

solution obtained for the initial core problem, we try to cover them by exploring a neigh-

borhood for each uncovered task in turn. We use a heuristic based on column generation

and Lagrangian relaxation to explore the core problems. This heuristic is described in

Section 3.4. In Section 3.5, we discuss how we define the core problems.

Starting with an initial feasible solution and trying to improve it iteratively by fix-

ing a part of the solution and reoptimizing the remaining part has been proposed for

several combinatorial problems. Examples are the heuristic of Caprara et al. (1999) for

the set covering problem, the large neighborhood search (LNS) heuristics of Ropke and

Pisinger (2006) and Prescott-Gagnon et al. (2009) for the vehicle routing problem with

time windows, and of Pepin et al. (2009) for the multiple depot vehicle scheduling prob-

lem. The latter two papers have in common with this chapter that they use heuristic

column generation for neighborhood exploration.
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Define an ini-
tial core problem

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

Update the list of
uncovered tasks

List empty? STOP

Explore the core problem
using the CG heuristic

Remove a task from
the list and de-

fine a core problem

YES

NO

Figure 3.1: Overview of the algorithm.

3.4 Exploring the core problems

We compute a lower bound and near optimal solutions for the core problems with a column

generation based heuristic. We will first describe the building blocks of our heuristic,

before we present it in Section 3.4.3.

3.4.1 Combining column generation and Lagrangian relaxation

A core problem is given by a subset ∆̄ of the original duties and a subset N̄ of the tasks.

Given ∆̄, N̄ contains the tasks that are covered by at least one δ ∈ ∆̄ plus the tasks

uncovered in the current solution. More formally a core problem reads:

min
∑
δ∈∆̄

∑
k∈K̄δ

cδkx
δ
k +

∑
i∈N̄

fizi (3.5)

s.t.
∑
δ∈∆̄

∑
k∈K̄δ

aδikx
δ
k + zi ≥ 1 ∀i ∈ N̄ (3.6)∑

k∈K̄δ

xδk = 1 ∀δ ∈ ∆̄ (3.7)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆̄, ∀k ∈ K̄δ, ∀i ∈ N̄ (3.8)
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where K̄δ ⊆ Kδ. This subset contains all feasible completions that are represented by a

path in graph Ḡδ, to be discussed in Section 3.4.2. To find good feasible solutions to (3.5)

subject to (3.6)–(3.8) fast, we use a Lagrangian heuristic similar to the one proposed by

Huisman (2007). Therefore, we relax the covering constraints (3.6) in a Lagrangian way

introducing nonnegative Lagrangian multipliers λi, i ∈ N̄ . The Lagrangian subproblem

then becomes:

Θ(λ) = min
∑
δ∈∆̄

∑
k∈K̄δ

cδkx
δ
k +

∑
i∈N̄

fizi +
∑
i∈N̄

λi(1−
∑
δ∈∆̄

∑
k∈K̄δ

aδikx
δ
k − zi)

s.t. (3.7) and (3.8)

which can be rewritten as

Θ(λ) = min
∑
i∈N̄

λi +
∑
δ∈∆̄

∑
k∈K̄δ

(cδk −
∑
i∈N̄

λia
δ
ik)x

δ
k +

∑
i∈N̄

(fi − λi)zi (3.9)

s.t. (3.7) and (3.8)

The Lagrangian subproblem is separable and therefore its optimal solution can be

found with the following procedure. In order to not violate constraints (3.7) we set xδk = 1

for one k ∈ arg min{c̄δk(λ) : k ∈ K̄δ} for each δ ∈ ∆̄, where c̄δk(λ) := cδk−
∑

i∈N̄ λia
δ
ik is the

reduced cost of feasible completion k. All other xδk variables are set to 0. Furthermore,

for each i ∈ N̄ , we set zi = 1 if fi − λi < 0 and zi = 0 otherwise.

Now the Lagrangian dual problem is to find

Θ∗ = max Θ(λ), λ ≥ 0

Because the number of feasible completions for every driver can still be huge we com-

bine Lagrangian relaxation with column generation. We assume that the reader is familiar

with the general ideas of column generation, for a short introduction into this topic we

refer to Section A.2.1. We thus consider a restricted master problem (RMP) of (3.7)–(3.9)

containing only a subset of the xδk variables. In the nth column generation iteration the

xδk variables in the RMP are given by ∪δ∈∆̄{xδk : k ∈ K̄δ
n}, where K̄δ

n ⊆ K̄δ is a subset

of feasible completions. Let Θ∗n be the optimal value of the associated Lagrangian dual

problem. For every RMP we use subgradient optimization (see e.g. Fisher (1981)) to ap-

proximate Θ∗n. Let λ∗n be the corresponding multiplier vector. We solve a pricing problem

for every original duty δ ∈ ∆̄ to check if Θ∗n is a good approximation of Θ∗. Otherwise, we

need to add feasible completions to the RMP in order to potentially improve on Θ∗n. The

pricing problems are modeled as resource constrained shortest path problems in dedicated

graphs as described later in Section 3.4.2. Let rδn := min{c̄δk(λ∗n) : k ∈ K̄δ
n} be the smallest

Lagrangian reduced cost of the already generated feasible completions for original duty δ

and pδn := min{c̄δk(λ∗n) : k ∈ K̄δ} the optimal value of the pricing problem for δ. Then the
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feasible completion k corresponding to pδn should be added to the RMP if pδn − rδn < 0.

Moreover, LBn := Θ∗n +
∑

δ∈∆̄ (pδn − rδn) is a lower bound on Θ∗.

Furthermore, when the subgradient method terminates, we invoke a greedy procedure

to find feasible solutions to the core problem. This procedure, which takes as input a

multiplier vector, is repeated up to maxMulti times using the multiplier vectors obtained in

the last maxMulti iterations of the subgradient algorithm. In our experiments, maxMulti

was set to 100 or 200. The greedy procedure is presented in Algorithm 1. First, we order

the original duties by increasing reduced cost of the xδk variables that were set to 1 in the

Lagrangian subproblem solution. Moreover, we set all zi = 1 (Line 2). We initialize λ̂

with the current vector of multipliers λ (Line 3). Then, we choose for every original duty

the best feasible completion with respect to quasi reduced cost depending on λ̂ (Lines 4–

6). If there are uncovered tasks, we try to cover these using reserve duties where the

feasible completion selected in the loop of Lines 4–6 does not cover any tasks. We will

refer to these reserve duties as idle reserve duties and they are determined in Line 9. In

Line 8 we have set multipliers corresponding to the uncovered tasks to fi. Given suitable

values for the objective function, this means that feasible completions covering any of the

uncovered tasks will have negative pseudo reduced cost and will be very attractive when

we (possibly) revise the selection of the feasible completion for the idle reserve duties in

Lines 10–13.

1 Order the original duties δ ∈ ∆̄ by increasing reduced cost of the xδk variables that

were set to 1 in the Lagrangian subproblem solution;

2 Set zi = 1 for all i ∈ N̄ ;

3 Set λ̂ = λ;

4 foreach δ ∈ ∆̄ do

5 Choose k∗(δ) ∈ arg min{c̄δk(λ̂) : k ∈ K̄δ
n} and set the corresponding xδk∗(δ) = 1;

6 Set λ̂i = 0 and zi = 0 for all i ∈ N̄ with aδik∗(δ) = 1;

7 if ∃i ∈ N̄ with zi = 1 then

8 Set λ̂i = fi if zi = 1 for all i ∈ N̄ ;

9 Construct the set of idle reserve duties ∆̄I = {δ ∈ ∆̄R : aδik∗(δ) = 0 ∀i ∈ N̄} ;

10 foreach δ ∈ ∆̄I do

11 Set xδk∗(δ) = 0;

12 Choose q∗(δ) ∈ arg min{cδk(λ̂) : k ∈ K̄δ
n} and set xδq∗(δ) = 1;

13 Set λ̂i = 0 and zi = 0 for all i ∈ N̄ with aδiq∗(δ) = 1;

Algorithm 1: Greedy procedure to construct feasible solutions.

When we explore a new core problem, we warm start the RMP with columns generated

earlier if possible. In order to do so, we store all generated columns in a column pool.
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If a new core problem contains original duties that have been considered in other core

problems, we scan the column pool and add columns to the RMP if all tasks covered by

the column are included in the new core problem.

3.4.2 Pricing problems

For every original duty δ ∈ ∆̄ we build a graph Ḡδ in which every feasible completion k

that satisfies the following criterion is represented by a path in Ḡδ: Every task i covered

by k as well as every task that is used for deadheading in k belongs to N̄ .

In these graphs we use several types of nodes and arcs in order to model the feasible

completions. The source of graph Ḡδ captures the position of original duty δ at the time

of rescheduling. There are three possibilities: The duty might not have started (i). If the

duty has started, the driver is either performing a task (ii), or he transfers at a station

(iii). The sink node of Ḡδ corresponds to the end of an original duty.

Besides the source and sink, we introduce a pair of nodes for the departure and the

arrival of each task i. These nodes are connected by an arc representing driving task i.

The weight for a task arc wi = costRole(i, δ)− λi. Where

costRole(i, δ) =

{
costOwnRole , if i appears in δ with the same role

costOtherRole , otherwise.

A copy of the arc is used to model deadheading of a driver on task i, if the driver is not

allowed to drive task i due to his route and/or rolling stock licenses. The weight for these

deadhead arcs is given by wi = costRole(i, δ).

A transfer arc from the arrival node of a task i to the departure node of a task j

exists, if a driver can perform task j immediately after task i. In general, this is possible

if task j starts at the end station of task i and if either the time between the arrival

and the departure is larger than the minimum connection time, or the two tasks are

operated with the same rolling stock. The weight for the transfer arc between tasks i and

j, wij = costTransfer(i, j). Here

costTransfer(i, j) =

{
costPlanned , if the transfer is in any original duty δ

costNew , otherwise.

Transfer arcs have a property indicating if this transfer can be used as a meal break.

This is the case if the transfer takes place at a station that has a canteen and the transfer

time is long enough.

From some stations there are taxi connections to other stations for given periods of the

day. This occurs for example if the shunting area is located far from a station or crew base.

In this case drivers travel by taxi between the stations and the shunting areas to perform
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pull-out and pull-in tasks. Moreover, alternative ways of transportation might be used

during rescheduling to reposition drivers. These deadhead transfers are also modeled by

taxi arcs although they could be bus trips or trips on trains of other operators in reality.

For taxi arcs, wij = costTaxi(i, j) is used to penalize the repositioning.

All arcs leaving the source have weight wsi = costModifyDuty . Moreover, overtime

can be penalized via the weight on arcs entering the sink wit = costOvertime.

Constructing the graphs in this way, not every path corresponds to a feasible comple-

tion because it might violate the meal break rule. Therefore, we solve the subproblems

as resource constrained shortest path problems (see Irnich and Desaulniers (2005)). As

resources we use the working time before and after the meal break. Moreover, given a

vector of Lagrangian multipliers λ, the cost of every path corresponds to the reduced cost

of the feasible completion.

3.4.3 The column generation based heuristic

Our column generation based heuristic using the building blocks as described in Sec-

tion 3.4.1–3.4.2 is outlined in Algotihm 2. It can be seen as a depth first search in a

branch-and-bound tree with column generation in every node. This is a common way

of designing column generation based heuristics for crew scheduling problems (see De-

saulniers et al. (2001)). In Line 5 a dual solution for the RMP is obtained by Lagrangian

relaxation as explained above. Another specialty in our approach is that we generate

solutions throughout the algorithm (see Line 6). We denote by UB∗ the cost of the best

found feasible solution. When solving the pricing problems for the original duties, we do

pricing and stop if we have found promising columns for more than maxPP of the duties.

In Line 9 we use three criteria to decide if we stop column generation in the current node.

First, we stop if no columns have been added to the RMP. Second, we stop if Θ∗n is close

to LBn. As a third criterion we use a maximum number of column generation iterations

maxItCG to perform in the current node. In the root node, where no feasible completions

have been fixed, maxItGC =∞, in the other nodes we can use a relatively small number

to speed up the algorithm.

After terminating column generation for a node we check in Line 11 if the best feasible

solution of value UB∗ is close to the lower bound LBF which is the sum of the fixed part

UBF and the lower bound of the free variables Θ∗n. If this is the case, we can terminate

the algorithm since we know that it is unlikely to find a better feasible solution if we only

fix more variables. Otherwise, we fix the feasible completions for more original duties.

For selecting the columns that we fix in a given node, we use information about how

often a column appeared in a Lagrangian subproblem solution while solving the last RMP.

For every feasible completion k for every original duty δ, we compute the ratio Rδ
k =

sδk
U

,

where sδk is the number of times xδk was set to 1 in a Lagrangian subproblem solution during
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subgradient optimization of the last RMP and U is the number of iterations performed

by the subgradient algorithm. We order the feasible completions by decreasing values of

Rδ
k. We start with setting the feasible completion with the largest value of Rδ

k to 1 and

all other feasible completions from the same original duty to 0. For the same node, we

then continue with the feasible completion with the next largest value of Rδ
k as long as

Rδ
k ≥ 0.7 and the number of original duties for which we fixed the feasible completions

in this node is less than maxFix percent of the original duties (maxFix was set to 10 in

our experiments). This scheme is closely related to the α-fixing procedure proposed by

Holmberg and Yuan (2000).

1 stopF ix = false, LBF = −∞, UB∗ =∞, UBF = 0;

2 while stopFix = false do

3 stopColGen = false;

4 while stopColGen = false do

5 Compute the lower bound Θ∗n for the RMP with subgradient optimization;

6 Call GREEDY with at most maxMV multiplier vectors and update UB∗;

7 Solve pricing problems and add promising feasible completions;

8 Compute LNn if all pricing problems have been solved;

9 if any stopping criteria for column generation is met then

10 stopColGen = true, LBF = UBF + LBn;

11 if any stopping criteria for fixing is met then

12 stopF ix = true;

13 else

14 Fix the feasible completions for at most maxFix original duties and update

UBF ;

Algorithm 2: The column generation heuristic to explore a core problem.

3.5 Defining the core problems

3.5.1 Initial core problem

After initial experiments we came up with the following selection of the subset of original

duties ∆̄ for the initial core problem. This selection is a good compromise between

computation time and solution quality.

We build ∆̄ in four steps. In the first step, we add all tasks which are canceled or

modified (rerouted) to N1. Secondly, we build a set N2 where we add an unmodified

task j if it has the same pair of start and end stations as one of the tasks in N1 and
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if its departure time tdep
j lies in the interval [t0, t1 + 60 minutes], where t0 is the earliest

departure time of a task i ∈ N1 with sdep
i = sdep

j and sarr
i = sarr

j , t1 is the latest arrival

time of a task i′ ∈ N1 with sdep
i′ = sdep

j and sarr
i′ = sarr

j . In the third step we add a task j

to N3 if it is part of the same train as one of the tasks in N1 ∪N2. Finally, we define the

subset of original duties ∆̄ := ∆R∪{δ ∈ ∆A : δ covers at least one task in N1∪N2∪N3}.
Note that we include all reserve duties in the initial core problem.

3.5.2 Neighborhoods for uncovered tasks

Given our crew rescheduling problem, the largest improvement in the objective, and the

one we are mainly interested in, is covering tasks that have not been covered in the solution

of the initial core problem. Therefore, we are interested in neighborhood operators which,

given an uncovered task, define a neighborhood such that exploring the neighborhood

could lead to a crew schedule that covers more tasks.

In the first step we select a number of candidates. These duties can possibly cover

the uncovered task. Usually this would leave other tasks uncovered and in order to assign

them to other duties we select in step two for each candidate duty a number of similar

duties that offer possibilities to swap parts of the duties.

Station A

Station B

j ̂j− Time

Figure 3.2: Selecting replacement duties that cover tasks leaving from station A just

before and after task j.

The candidates in the first step are selected as follows (see Figure 3.2). Given the

departure time and station (A in the example) of the uncovered task j we look at task

j− that departs from the same station the closest before task j. Then we consider the

replacement duty σ that covers j− in the current solution and check heuristically, consid-

ering rolling stock and route knowledge, if σ could cover j. If yes, then we select σ as a

candidate and continue with the next task that departs from station A before j− until we

have selected r candidates. We repeat the procedure considering tasks that depart from

station A after task j.
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Furthermore, we select the replacement duty which covers task ̂, the first task that

leaves station B and goes back to station A such that a driver can transfer from j to

̂. Including this original duty ensures that it is possible to perform task j and then

deadhead back to station A.

In Figure 3.2, we have marked in gray the tasks covered by replacement duties that

have been selected. Note that, because of missing route knowledge, task j− is not marked.

In the second step we select for every candidate the s most similar duties that have

not been selected yet. We define similarity between duties in terms of the number of

stations that are visited around the same time. We also add a bonus if they share the

same current station and crew base. The idea behind this measure is that two duties can

possibly swap parts if they have a departure from the same station around the same time

and both reach another station later in their duty again around the same time. Given a

candidate σ, another duty τ and the set of tasks Nσ and Nτ covered by the duties, we

compute the similarity as

S(σ, τ) := B(σ, τ) +
∑
i∈Nσ

∑
j∈Nτ

γij

where

γij =

{
1 if sdep

i = sdep
j and |tdep

i − tdep
j | ≤ ω

0 otherwise

indicates that tasks i and j depart from the same station within at most ω minutes from

each other. The bonus function B(σ, τ) := Bb(σ, τ) +Bcs(σ, τ) sums up the bonus for the

same crew base Bb and same current station Bcs, respectively. For our experiments we

use

Bb(σ, τ) :=

{
0.6 if bσ = bτ

0 otherwise.

Bcs(σ, τ) is defined accordingly.

3.6 Computational experiments

We implemented our solution approach in C++ and compiled it with the Visual C++

8.0 compiler. We ran our experiments on an Intel Pentium D processor with 2 GB RAM

clocked at 3.4 GHz.

For the objective function we specified the following cost coefficients. The value of fi
depends on the type of the task. Canceling a task from a station A to another station B

would make the underlying rolling stock schedule infeasible, therefore we set fi = 20, 000
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for these tasks. Under the mild assumption that the rolling stock assigned to a task from

A to A can be moved to the shunting area and pulled out again, these tasks leave the

rolling stock schedule intact. Since this situation is preferred from the point of view of the

overall disruption management process, we set the corresponding fi to 3, 000. The cost of

each feasible completion of a duty is zero if the duty is unchanged or the sum of penalties

depending on the way the duty is changed. We used the following values for penalties:

costModifyDuty = 400 if a duty is changed, costOtherRole = 50 for every task that is not

assigned to its original duty, costNew = 1 for every transfer between two tasks that was

not used in the original plan by some duty and costTaxi = 1, 000 if the driver has to be

repositioned using a taxi. In the experiments we had no penalties for short connection

times and overtime.

3.6.1 Instances

As a starting point for our instances we remodeled five scenarios, spread over the country,

that happened in the past. All scenarios lasted about three hours. Therefore, we chose an

estimated duration of 3 hours for our remodeled instances. For every historical scenario,

we generated a second disruption with the same estimated duration but at a different time

of the day. We modified the timetable following the main ideas behind the emergency

scenarios. Because rescheduling of rolling stock is in itself a difficult optimization problem,

we considered a simplified rolling stock schedule, which can easily be adapted to the new

timetable. For the original duties we used a crew schedule that was operated by NS on a

workday somewhere in September 2007.

A general description of the 10 cases is given in Table 3.1. The disruptions around Ab-

coude, which is located between Utrecht and Amsterdam, and around ’s-Hertogenbosch,

which is located south of Utrecht, involve heavily used routes. More than 50 original du-

ties are affected by the disruptions in these instances. The involved routes in the instances

at Beilen and Lelystad are not so heavily used, but the route blockages disconnect some

ends of the railway network from the remaining part. The instances at Zoetermeer also

involve a heavily used route, but in these instances a reduced number of trains can be

operated on the involved route, because it is not completely blocked.

3.6.2 Results for initial core problems

In a first series of experiments, we applied our algorithm to the described scenarios but we

solved only the initial core problems. These core problems were constructed as described

in Section 3.5.1. In addition, we included a number of reserve duties. Recall that the

crew schedule of NS contains about 90 reserve duties on an average workday. At the

time a large disruption occurs and rescheduling takes place, not all reserve duties might
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Location ID Time Type Affected duties

Abcoude Ac A 11:00-14:00 two sided blockage 59

Abcoude Ac B 16:30-19:30 two sided blockage 53

Beilen Bl A 07:00-10:00 two sided blockage 15

Beilen Bl B 16:00-19:00 two sided blockage 15

’s-Hertogenbosch Ht A 08:00-11:00 two sided blockage 55

’s-Hertogenbosch Ht B 15:30-18:30 two sided blockage 51

Lelystad Lls A 04:00-07:00 two sided blockage 25

Lelystad Lls B 13:00-16:00 two sided blockage 22

Zoetermeer Ztm A 08:00-11:00 reduced number of trains 21

Zoetermeer Ztm B 11:30-14:30 reduced number of trains 25

Table 3.1: Summary of the different instances.

be available for rescheduling. One reason is that reserve duties are also used when a

train driver missed a connection because of a delay. Moreover, another disruption could

have happened earlier and reserve duties might have been used in order to recover from

this disruption. In order to take this into account somehow during our experiments, we

derived three sets of reserve duties R1–R3 from a given initial plan R0 in the following

way. In the set R1 (R2), every reserve duty from R0 had a probability of 50 % (25 %)

to be included in R1 (R2) as well. Based on drawing a single random number between 0

and 1 for every reserve duty in R0 we obtained the sets R1 and R2. Note here that the

drawing for R2 was done independently of the drawing for R1. This procedure resulted

in sets R1 with 46 reserve duties and R2 with 20 reserve duties. Finally, set R3 does not

contain any reserve duty at all.

In Tables 3.2–3.4 we report the results for the three sets of reserve duties R1–R3,

respectively. Here the columns have the following meanings. The first column is the Id

of the instance. |∆̄| is the number of original duties in the initial core problem (finished

reserve duties are excluded) and |N̄ | is the number of set covering constraints in (3.6).

Column LB reports the value of LBn when terminating the column generation. UB is

the value of the best feasible solution. GAP is the percentage gap between LB and UB.

Time is the computation time in seconds. In the last five columns, we give some insight

into the best feasible solution. A-A and A-B denote the number of tasks of the types

A-A and A-B that need to be canceled. Taxi is the number of additional taxi trips used.

MD is the number of active original duties that are feasible but modified in the solution.

UR is the number of reserve duties that cover tasks in the solution. Note that the total

number of original duties that are modified is the sum of MD, UR and the number of

affected duties (see Table 3.1).
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Id |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 163 602 63089 63857 1.2 201 1 0 1 79 8

Ac B 143 734 35795 36134 0.9 255 0 0 0 67 5

Bl A 80 234 10581 10581 0.0 26 0 0 1 17 2

Bl B 63 186 9532 9532 0.0 18 0 0 0 18 3

Ht A 133 614 37911 38094 0.5 193 0 0 5 59 1

Ht B 119 665 62900 62922 < 0.1 177 1 1 4 59 4

Lls A 81 239 17623 17646 0.1 33 0 0 3 30 5

Lls B 161 456 21796 21796 0.0 107 0 0 4 27 1

Ztm A 112 508 11840 11935 0.8 87 0 0 0 23 1

Ztm B 110 423 34736 34736 0.0 66 1 0 0 27 1

Table 3.2: Results for initial core problems with 46 reserve duties (R1).

Id |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 137 602 45280 46072 1.7 148 0 0 1 78 5

Ac B 124 734 36734 38267 4.2 230 0 0 0 66 3

Bl A 54 234 10583 10583 0.0 17 0 0 1 17 2

Bl B 44 186 10417 10487 0.7 18 0 0 0 19 3

Ht A 107 614 38680 39298 1.6 200 0 0 6 60 2

Ht B 97 665 67343 67426 0.1 137 1 2 5 57 2

Lls A 55 239 18996 19254 1.4 23 0 0 5 28 3

Lls B 133 456 22445 22445 0.0 102 0 0 5 27 1

Ztm A 86 508 11936 11936 0.0 49 0 0 0 23 1

Ztm B 84 423 34936 34936 0.0 49 1 0 0 26 0

Table 3.3: Results for initial core problems with 20 reserve duties (R2).

First of all, we observe that all computation times are less than 5 minutes. The compu-

tation time mainly depends on the size of the core problems in terms of the number of set

covering constraints. For example, for set R1, computation times range from 18 seconds

for Bl B to 255 seconds for Ac B.

Moreover, the number of canceled tasks is at most 3 for the experiments with reserve

duties and at most 4 for the experiments without reserve duties. The number of instances

where all tasks are covered in the solution, is equal to 7, 8, and 6 for sets R1, R2 and R3,

respectively. It is not surprising that without reserve duties (R3) the number of instances

where all tasks can be covered is less compared to the experiments with reserve duties

(R1 and R2). Interestingly, with R2 we can cover all tasks in more instances compared

to R1, while the absolute number of reserve duties is only 20 compared to 46 in R1. This

indicates that it is important where and when reserve duties are available for rescheduling.

Furthermore, we observe that at most 8 reserve duties are used.
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Id |∆̄| |N̄ | LB UB GAP (%) Time (s) A-B A-A Taxi MD UR

Ac A 117 602 71083 72399 1.9 142 1 1 1 82 -

Ac B 111 734 37100 38919 4.9 261 0 0 0 65 -

Bl A 34 234 11516 11590 0.6 20 0 0 3 15 -

Bl B 31 186 13105 15200 16.0 17 0 1 1 20 -

Ht A 87 614 38701 39799 2.8 206 0 0 6 58 -

Ht B 83 665 70323 70379 0.1 219 1 3 5 55 -

Lls A 35 239 20575 21698 5.5 20 0 0 8 25 -

Lls B 115 456 23112 23752 2.8 106 0 0 5 29 -

Ztm A 66 508 12290 12290 0.0 40 0 0 0 23 -

Ztm B 64 423 34936 34936 0.0 45 1 0 0 26 -

Table 3.4: Results for initial core problems without reserve duties (R3).

Furthermore, we see that the impact of crew rescheduling on the whole crew schedule

differs significantly. The impact is limited considering the experiments with reserve duties.

Without reserve duties more duties are modified for most of the instances. In some cases

the absence of reserve duties can be compensated by using more additional taxi trips

and/or modifying more duties.

3.6.3 Results with neighborhood exploration

We have seen that the solutions to the core problems are good in terms of the number of

canceled tasks especially when reserve duties are available. However, we would like to see

if some of the uncovered tasks can be covered when we explore a neighborhood as defined

in Section 3.5.2. In the following, we only consider the instances where cancellation of

tasks occurs in the solution of the initial core problem.

We present our results in Tables 3.5–3.8. In these tables the first column is the Id of

the instances. Column It is the number of the core problem exploration in the overall

algorithm (see Figure 3.1), where a 1 corresponds to the initial core problem and a number

greater than 1 corresponds to a neighborhood exploration. Fixed provides the total cost

of the fixed duties when the current core problem is solved. |∆̄| and |N̄ | are the number

of original duties and set covering constraints in the core problem. LB, UB, and GAP

give the values for LBn, the best feasible solution cost and the percentage gap. The next

four columns show the status of the overall algorithm. Sol, which is equal to Fixed + UB,

is the objective value of the new crew schedule. TT is the total computation time of the

algorithm. A-B and A-A are the number of canceled tasks of the corresponding types.

We first tried a relatively small neighborhood, where r and s were set to 3. When

considering R1 as the set of reserve duties we can improve the solution of the initial

core problems in 2 out of 3 cases and find solutions that cover all tasks (see Table 3.5).
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Exploring the neighborhoods of the uncovered tasks took between 12 and 35 seconds.

With R2 as the set of reserve duties we can improve the solution in 1 of the 2 cases (Table

3.6).

For the case Ht B with R1, we also tried to obtain a better solution by exploring a

larger neighborhood of the uncovered task. We tried the settings r = s = 6 and r = s = 9.

The first setting increased the size of the core problems to |∆̄| = 111 and |N̄ | = 767 in

iteration 2 and |∆̄| = 122 and |N̄ | = 829 in iteration 3. The total computation time was

432 seconds. For the second setting we observed |δ̄| = 188 and |N̄ | = 1535, and |δ̄| = 244

and |N̄ | = 1527 for the core problems in iterations 3 and 4 respectively. The computation

took 1258 seconds. However, we could not find better solutions in terms of the number of

canceled tasks. We obtained similar results for the same experiments with Ht B and R2.

Id It Fixed |∆̄| |N̄ | LB UB GAP (%) Sol TT (s) A-B A-A

Ac A 1 0 163 602 63089 63857 1.2 63857 201 1 0

Ac A 2 39791 74 241 4851 5621 15.9 45412 236 0 0

Ht B 1 0 119 665 62900 62922 < 0.1 62922 177 1 1

Ht B 2 33439 55 209 29483 29483 0.0 62922 189 1 1

Ht B 3 33842 60 284 29080 29080 0.0 62922 209 1 1

Ztm B 1 0 110 423 34736 34736 0.0 34736 66 1 0

Ztm B 2 13679 72 142 1558 1558 0.0 15237 83 0 0

Table 3.5: Results for neighborhood exploration with r = 3, s = 3 using 46 reserve duties

(R1).

Id It Fixed |∆̄| |N̄ | LB UB GAP (%) Sol TT (s) A-B A-A

Ht B 1 0 97 665 67343 67426 0.1 67426 137 1 2

Ht B 2 33892 36 218 33534 33534 0.0 67426 154 1 2

Ht B 3 34799 40 303 32627 32627 0.0 67426 173 1 2

Ht B 4 35401 36 239 32025 32025 0.0 67426 184 1 2

Ztm B 1 0 84 423 34936 34936 0.0 34936 49 1 0

Ztm B 2 14383 47 139 1056 1056 0.0 15439 61 0 0

Table 3.6: Results for neighborhood exploration with r = 3, s = 3 using 20 reserve duties

(R2).

In Table 3.7, we present the results of the neighborhood exploration with r = 4 and

s = 4 when no reserve duties are present (R3). For 3 out of the 4 considered instances

we can significantly improve on the solutions of the initial core problems. Moreover, for

Ztm B we were able to find a solution that covers all tasks.
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Id It Fixed |∆̄| |N̄ | LB UB GAP (%) Sol TT (s) A-B A-A

Ac A 1 0 117 602 71083 72399 1.9 72399 142 1 1

Ac A 2 39709 55 275 32087 32641 1.7 72350 175 1 1

Ac A 3 42919 52 347 11939 11939 0.0 54858 194 0 1

Bl B 1 0 31 186 13105 15200 16.0 15200 17 0 1

Bl B 2 6323 36 304 7402 8826 19.2 15149 38 0 1

Bl B 3 7379 36 307 6346 7770 22.4 15149 60 0 1

Bl B 4 6323 37 307 7402 8826 19.2 15149 83 0 1

Ht B 1 0 83 665 70323 70379 0.1 70379 219 1 3

Ht B 2 32941 39 389 37438 37438 0.0 70379 239 1 3

Ht B 3 28933 45 452 38397 38397 0.0 67330 280 1 2

Ht B 4 32892 39 387 34438 34438 0.0 67330 297 1 2

Ztm B 1 0 64 423 34936 34936 0.0 34936 45 1 0

Ztm B 2 12876 43 275 2563 2563 0.0 15439 62 0 0

Table 3.7: Results for neighborhood exploration with r = 4, s = 4 without reserve duties

(R3).

We run our algorithm again after increasing r and s to 6. With this setting, which

generates larger neighborhoods, we found better solutions for 4 of the 4 instances (see

Table 3.8). Moreover, we found solutions covering all tasks for 3 of the 4 instances.

Comparing the results with the two different choices of r and s we can see that we

can obtain better results by spending more time in exploring larger neighborhoods.

Id It Fixed |∆̄| |N̄ | LB UB GAP (%) Sol TT (s) A-B A-A

Ac A 1 0 117 602 71083 72399 1.9 72399 142 1 1

Ac A 2 33683 103 562 18398 19537 6.2 53220 288 0 0

Bl B 1 0 31 186 13105 15200 16.0 15200 17 0 1

Bl B 2 5318 67 525 8088 8088 0.0 13406 73 0 0

Ht B 1 0 83 665 70323 70379 0.1 70379 219 1 3

Ht B 2 26567 82 810 43812 43812 0.0 70379 335 1 3

Ht B 3 20906 88 798 46025 46025 0.0 66931 462 1 2

Ht B 4 24817 83 848 39267 39267 0.0 64084 553 1 1

Ztm B 1 0 64 423 34936 34936 0.0 34936 45 1 0

Ztm B 2 12876 84 612 2563 2563 0.0 15439 96 0 0

Table 3.8: Results for neighborhood exploration with r = 6, s = 6 without reserve duties

(R3).



48 Column Generation with Dynamic Duty Selection

3.7 Application: The Vleuten case

In March 2009 the crew rescheduling algorithm proposed in Section 3.3 was put to a test

(Kroon and Huisman (2009)). On Monday, March 23, 2009, two carriages of a freight

train derailed near station Vleuten (Vtn). Due to this accident, the railway infrastructure

of the route between Woerden (Wdn) and Utrecht (Ut) was damaged over 5 kilometers.

It took nearly a week before the repair works had been completed and the route could be

used again at full capacity.

Initially the route between Woerden and Utrecht was blocked completely. On Tuesday,

March 24, it was possible to run trains on one track. This situation lasted until the evening

of Sunday, March 29. For this time period an alternative timetable was operated for the

2000-line between The Hague (Gvc) and Utrecht. It was decided that the trains of the

2000-line from Utrecht towards The Hague should go over the planned route, but the

trains in the opposite direction should run on an alternative route via Breukelen (Bkl)

where they can turn towards Utrecht (Firgure 3.3). As a consequence of this rerouting,

the timetable of other trains had to be modified as well.

Ut

Gd

Gvc

Asd

Amr
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Figure 3.3: The routes for the 2000-line when only one track was open between Woerden

(Wd) and Utrecht (Ut) due to the damage caused by the derailing of a cargo train near

station Vleuten (Vtn).

On Monday and Tuesday the duties for the train drivers and for the conductors have

been rescheduled manually by the dispatchers. For Wednesday and Thursday the duties of

the drivers were rescheduled with the method described in Section 3.3. In total, on each

of the considered days, around 260 duties had become infeasible due to the timetable

modifications. The algorithm was able to find good feasible solution in about 1 hour

of computation time. However, the neighborhood exploration was not needed since all

tasks were covered after the initial core problem was solved. For the convenience of the

drivers it was decided to not allow any duties to end later than planned. The algorithm

of Section 3.3 was designed to take rolling stock and route knowledge into account at
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an individual level. However, at NS this information is not available in any electronic

format. Fortunately, the computed solutions contained only few conflicts with respect to

the rolling stock or route knowledge which could be resolved by hand relatively easily.

At that time, it was not possible to import the solution of the algorithm into the

computer system used at the Network Operations Control of NS. Therefore two dispatch-

ers manually typed in all new duties during the nights before the new duties should be

operated.

The duties for the conductors have still been rescheduled manually. Therefore, we are

able to compare the algorithmic approach with the current manual process. During the

night, four dispatchers managed to reschedule all infeasible conductor duties that started

before 13:00. The remaining infeasible duties had to be rescheduled during the operations.

This resulted in a lot of communication during the operations. Furthermore, many duties

for the conductors did finish later than the regular time.

All crew duties for the last three days (Friday until Sunday), when only one track was

available, had be rescheduled using the CREWS crew scheduling system (see Morgado

and Martins (1998)). However, the lead time of using the CREWS system was too long

to reschedule the duties on Wednesday and Thursday.

The Vleuten case is not an example of real-time crew rescheduling, but it is close

enough to draw some conclusions about algorithmic decision support for disruption man-

agement at NS. The case clearly revealed the advantages of automated decision support

for crew rescheduling: It leads to better solutions in less time. We therefore strongly rec-

ommend an integration of algorithmic decision support into the computer systems used

at Network Operations Control.

3.8 Summary and conclusion

We have proposed an algorithm to solve the OCRSP. Given a disruption and a real-life

crew schedule from NS, we have shown how to select a subset of the original duties in

the crew schedule such that we can find solutions of good quality within a short amount

of time. This was achieved by combining column generation and Lagrangian relaxation

into a heuristic algorithm. The proposed column fixing also enables us to obtain good

solutions for the larger instances.

Furthermore, we developed an extension, namely exploring neighborhoods of tasks

which could not be covered with the initial selection of duties. We have shown that with

this extension, it is possible to reduce the number of canceled tasks in many cases. This

is an important improvement compared to algorithms which rely on an a priori defined

core problem. In our experiments, considering two sets of reserve duties, we can cover all

tasks in 9 out of 10 instances. In the case where we do not consider any reserve duties,
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we can increase the number of instances where no tasks need to be canceled from 6 after

solving the initial core problem to 9 by our neighborhood exploration scheme.

We believe that the idea of neighborhood exploration can be used in other areas of

rescheduling as well. Moreover, our algorithm can easily be extended by new neighborhood

definitions. This could further improve the performance of the algorithm.



Chapter 4

Computational Evaluation of

Solution Approaches for Railway

Crew Rescheduling

4.1 Introduction

In this chapter we will compare the CGDDS solution approach for operational crew

rescheduling developed in Chapter 3 with two alternative solution approaches. This is

motivated by two main reasons.

First, it would be very interesting to compare the CGDDS approach to a manual

solution approach. Unfortunately a comparison is not so easy for several reasons. First of

all, the solutions obtained by the dispatchers do not satisfy all constraints that we take

into account. Although this situation is highly undesirable due to the negative impact on

the operations and on driver satisfaction, it is sometimes too hard for a dispatcher to find

a feasible solution at all. Second, the instances presented in Chapter 3.6 are instances

with one disruption. However, in practice there are usually several disruptions on a day.

The manual rescheduling of the driver duties for such severe disruptions as considered

in our experiments can keep dispatchers busy for several hours. This makes it unlikely

that no other disruption has occurred in the meantime. In addition, in the computer

system used by NS it is only possible to access the information on how the duties have

been performed. Since a duty may have been modified more than once, we cannot get the

dispatcher’s solution for the single disruption that we study in this thesis. To overcome

these problems we will present a new heuristic for railway crew rescheduling that tries to

mimic the manual solution approach of the dispatchers.

The second reason for considering alternatives to the CGDDS method is the following.

By considering core problems, the CGDDS approach explores only a part of the solution
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space. Naturally the question arises how good the solutions of the CGDDS approach are.

We are going to evaluate the solutions by comparing them to solutions and lower bounds

that we obtain from solving larger core problems.

We believe that the merits of the CGDDS approach are that it finds very good solutions

in acceptable computation time. We seek to confirm this by answering the following three

questions:

(i) Can an improvement heuristic that mimics the manual approach of the dispatchers

provide solutions of good quality in much shorter computation time?

(ii) How good are the solutions of the CGDDS algorithm compared to lower bounds

obtained by considering larger core problems?

(iii) How does dynamic constraint aggregation (DCA), a state-of-the-art column genera-

tion method presented in Elhallaoui et al. (2005, 2008), perform in terms of solution

quality and time?

In Elhallaoui et al. (2005, 2008) it was shown that the computation time needed to solve

linear relaxations of vehicle and crew scheduling problems can be reduced significantly

by using DCA. This motivates the following application of DCA as a substitution for the

CGDDS approach. The intuition is to aggregate as many tasks as possible according to

the still feasible original duties and to let DCA by disaggregation determine which parts of

the search space should be explored. So instead of working with small core problems, we

consider much more original duties and tasks. As we will show later on, such an approach

suffers from long computation times if a standard branch-and-price heuristic is used to

solve these problems.

This chapter is organized as follows. In Section 4.2 we present an original improvement

heuristic based on the manual approach of the dispatchers. In Section 4.3 we show how

crew rescheduling problems can be solved by DCA. We will discuss how we adapted the

pricing problems and how we defined the initial clusters for the initial aggregation of the

constraints. An extensive computational comparison is provided in Section 4.4. We finish

with some concluding remarks in Section 4.5. Note that we reuse the notation introduced

in Chapter 3.

4.2 A heuristic mimicking the manual approach

We will present a heuristic for crew rescheduling that uses the concept of shortest paths

with resource constraints and tries to mimic the way dispatchers manually reschedule

the crew duties. From interviews with dispatchers of NS we concluded that their manual
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rescheduling process roughly follows a two phase approach. In the first phase the dispatch-

ers try to construct a feasible crew schedule in a greedy way. In this phase the dispatchers

need to find a feasible completion for every infeasible original duty. When constructing

these feasible completions they seek to use parts of the infeasible duties to cover as many

tasks as possible. When they have found a feasible completion for every duty and there

are tasks left uncovered, they attempt to cover these by utilizing the reserve duties. At

the end of the first phase they have a feasible replacement duty for every original duty

and probably a number of uncovered tasks. In the second phase, the improvement phase,

the dispatchers seek to resolve the uncovered tasks one by one. When trying to assign a

task to a duty they try to avoid newly uncovered tasks if possible. If this is not possible,

a new feasible completion that covers the uncovered task under consideration would be

accepted under a certain condition. This condition is that they would accept to leave

another task uncovered, if the latter task starts later than the task in their focus. The

motivation behind this is to move the problems to a later point in time which gives the

dispatchers more time to resolve the new problems later on.

Example 4.1

An example of such a situation is shown in Figure 4.1. The dispatchers want to cover

task 21740/a which starts in Utrecht (Ut) at 13:17. Figure 4.1.a shows the original duty

“Nm 12”. This could be replaced by the feasible replacement duty shown in Figure 4.1.b

which covers task 21740/a instead of task 9842/a. Since the start time of task 9842/a is

13:36 the dispatchers would choose this option if they could not find a better one.
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Figure 4.1: An original duty that does not cover tasks 21740/a and a possible replacement

duty that covers task 21740/a instead of task 9842/a.

We will mimic the manual solution method of the dispatchers with a heuristic called

two phase repeated shortest path problem with resource constraints (2P-RSPPRC). The
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feasible completions that we will consider are computed as solutions to auxiliary shortest

path problems with resource constraints (SPPRC) on a weighted directed acyclic graph

similar to the ones used in the column generation pricing problems described in Sec-

tion 3.4.2. The length of a path will measure the attractiveness of a feasible completion

and is dependent on the phase and the uncovered task in the focus. Next to the task

arcs whose weights will be determined dynamically, only the taxi arcs will have non-zero

weights as specified in Section 3.4.2. The resource constraints guarantee feasibility of the

corresponding replacement duties with respect to the rules described in Section 2.5.1.

4.2.1 Phase 1: Repairing the infeasible duties

We formalize the idea of the first phase in the manual approach as follows (see Algo-

rithm 3). In Line 1 we construct auxiliary graphs for all infeasible duties ∆C and all idle

reserve duties ∆I . The set of tasks N̂ which is used for constructing the graphs is an

input to the algorithm. Via this mechanism we can control the size of the graphs. Let

N̂C be the tasks that had been assigned to the infeasible duties. In Line 2, we order the

infeasible original duties ∆C by increasing remaining duty time. The weights wi on the

task arcs are set in Line 3. After some initial experiments we defined

bonusTask(i, δ) =



19, 900 if i ∈ N̂C , s
arr
i 6= sdep

i and i was covered by δ′ 6= δ

2, 900 if i ∈ N̂C , s
arr
i = sdep

i and i was covered by δ′ 6= δ

20, 000 if i was covered by δ and sarr
i 6= sdep

i

3, 000 if i was covered by δ and sarr
i = sdep

i

0 otherwise (not covered by any δ′ ∈ ∆C)

The values in bonusTask(i, δ) are inspired by the values for not covering a task of type

A-A and A-B as specified in Section 3.6. We found that giving a bit more priority to tasks

that have been originally assigned to a duty is beneficial. We then solve the auxiliary

SPPRC for every original duty. We assign the feasible completion that is represented by

the solution to the SPPRC to the original duty (Line 5). In Line 6 we set the arc weights

for the task arcs corresponding to the tasks covered by the feasible completion to 0. In

Lines 7–9 we assign for every idle reserve duty the “best” feasible completion according

to the auxiliary SPPRC.

After Phase 1, a feasible completion has been assigned for every original duty. More-

over, we have a list of tasks Nu that are not covered by any of the chosen feasible com-

pletions. This new crew schedule with uncovered tasks is the input for the second phase

of the 2P-RSPPRC heuristic.
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1 Build the auxiliary graphs for duties δ ∈ ∆C ∪∆I based on the tasks in N̂ ;

2 Order the original duties δ ∈ ∆C by increasing remaining duty time;

3 Set wi = −bonusTask(i, δ) for all i ∈ N̂ ;

4 foreach δ ∈ ∆C do

5 Compute an optimal solution to the SPPRC. Let k∗(δ) be the corresponding

feasible completion;

6 Set wi = 0 for all i ∈ N̂ with aδik∗(δ) = 1;

7 foreach δ ∈ ∆I do

8 Compute an optimal solution to the SPPRC. Let k∗(δ) be the corresponding

feasible completion;

9 Set wi = 0 for all i ∈ N̂ with aδik∗(δ) = 1;

Algorithm 3: Phase 1 of the 2P-RSPPRC method

4.2.2 Phase 2: Improving the crew schedule

As mentioned earlier, in Phase 2 we try to improve the current solution to the OCRSP. As

in Phase 1, the SPPRC on auxiliary graphs will be the main tool. Considering all tasks at

the same time would make the auxiliary graphs too large, therefore we are a looking for

a good compromise between the quality of the solutions of the heuristic and the required

computational time. To this end, we consider a horizon, that is a subset of tasks and

original duties, that can be redefined dynamically during Phase 2. The definition of a

horizon given above is quite general, for our implementation we rely on the neighborhood

definition as presented in Section 3.5.2. A horizon is then built as the union of tasks and

duties of the neighborhoods of a list of uncovered tasks.

Algorithm 4 shows the details of the improvement phase. Let NT be a list of uncovered

tasks sorted by increasing departure times. In Line 2 we remove the first task from list

NT . In this iteration we will focus on this task u. The function updateHorizon() indicates

if a new horizon should be built or not. The definition of updateHorizon() determines

how often a new horizon is constructed. If needed, the new horizon H and the resulting

auxiliary graphs are constructed in Line 4–5. One extreme implementation of the functions

updateHorizon() and buildHorizon() would be that updateHorizon() returns true only for

the first u ∈ NT and defines a horizon based on the complete list L = NT . The other

extreme would be that updateHorizon() would always return true and to pass only task

u as argument to buildHorizon(). Next, the arc weights wi are updated in order to favor
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1 while size(NT ) > 0 do

2 u = pop(NT );

3 if updateHorizon(u) then

4 H = buildHorizon(L ⊆ NT );

5 Build the auxiliary graphs based on H;

6 Set wi = −bonus(i, u, δ) for all i ∈ NH ;

7 foreach δ ∈ ∆H do

8 Compute an optimal solution to the SPPRC. Let k∗(δ) be the corresponding

feasible completion;

9 Select q∗(δ) ∈ arg min{k∗(δ) : δ ∈ ∆H};
10 if u is still uncovered then

11 Add u to NU ;

12 Update and sort NT ;

Algorithm 4: Phase 2 of the 2P-RSPPRC method

feasible completions covering task u using the function bonus(i, u, δ) (Line 6). Here

bonus(i, u, δ) =



19, 990 if i ∈ NU and sarr
i 6= sdep

i

2, 990 if i ∈ NU and sarr
i = sdep

i

22, 300 if i = u and sarr
i 6= sdep

i

5, 300 if i = u and sarr
i = sdep

i

20, 000 if i is covered by δ and sarr
i 6= sdep

i

3, 000 if i is covered by δ and sarr
i = sdep

i

0 otherwise (i /∈ NU and not covered by δ)

The values in bonus(i, u, δ) have been chosen in order to obtain the desired behavior of

the algorithm. As starting point we took the penalty values for not covering a task of

type A-A and A-B as specified in Section 3.6. For task u we increase the value to 22, 300

and 5, 300 respectively. This means that it will be attractive to cover task u in exchange

for a task of the same type, even if this requires two additional taxi trips. Tasks i ∈ NU

are made less attractive than tasks covered by the original duty under consideration. In

Line 8, we solve the SPPRC on the auxiliary graph for the original duties in the horizon.

We guarantee to still cover all tasks starting before task u by choosing an appropriate

source node for every original duty. In Line 9 we modify the crew schedule by replacing

the current feasible completion for one original duty δ. In Line 11 we add task u to the list

of permanently uncovered tasks NU , if it is not covered. The temporary list of uncovered

tasks NT is updated and sorted in Line 12. Thereby we only consider tasks i /∈ NU .
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4.2.3 Computational results

We implemented the 2P-RSPPRC heuristic in C++ and compiled it with the Visual C++

8.0 compiler. We ran our experiments on an Intel Pentium D processor with 2 GB RAM

clocked at 3.4 GHz.

In Table 4.1 we present the results for the test instances considering 46 reserve duties.

The first column shows the name of the instance. Obj displays the objective value of

the solution at the end of the phase. A-B and A-A are the number of tasks of type A-B

and A-A respectively that are uncovered at the end of the phase. Column T reports

the computation time in seconds for the corresponding phase. For Phase 2 we tested

two settings for the horizon update strategy. For the first setting SET1 we considered

up to three tasks when selecting the tasks and original duties for building the auxiliary

graphs (|L| = min{|NT |, 3}). We set the parameters for constructing the neighborhoods

to rearlier = 2, rlater = 6 and s = 3. As can be seen from Table 4.1 the computation times

for phase 2 are too long for practical purpose with this setting. Therefore, we tested

a second setting SET2. Here we build a new horizon for every focus task u (|L| = 1).

Moreover, we set rearlier = 2, rlater = 6 and s = 2. Given this setting we tried three further

settings where respectively rearlier, rlater and s had been reduced by one as opposed to

setting SET2. For each of the new three settings we observed at least one instance with

more uncovered tasks of type A-B and therefore we decided to not report these results.

Phase 1 Phase 2

SET1 SET2

Id Obj A-B A-A T (s) Obj A-B A-A T (s) Obj A-B A-A T (s)

Ac A 332745 14 9 40 149651 5 7 935 207579 8 7 265

Ac B 166478 6 7 61 135824 5 3 313 141822 5 5 121

Bl A 27917 0 3 4 21070 0 1 32 21070 0 1 19

Bl B 13852 0 0 3 13852 0 0 0 13852 0 0 0

Ht A 159920 4 13 42 76704 1 5 1183 112253 2 10 263

Ht B 135856 3 11 44 68981 0 9 561 68974 0 9 93

Lls A 27811 0 0 5 27811 0 0 0 27811 0 0 0

Lls B 54309 1 2 27 54309 1 2 4 54309 1 2 5

Ztm A 16777 0 0 33 16777 0 0 0 16777 0 0 0

Ztm B 97052 4 0 17 37714 1 0 51 37260 1 0 38

Table 4.1: Results of the 2P-RSPPRC heuristic with 46 reserve duties.

Inspecting the results for Phase 1, we see that for three instances Bl B, Lls A, and

Ztm A all tasks are covered. The computation time for phase 1 is at most 61 seconds.

However, more than 10 tasks are uncovered for Ac A, Ac B, Ht A, and Ht B. Except

for instance Lls B the number of uncovered tasks could be reduced in phase 2 with both

settings SET1 and SET2. However, 5 or more tasks of type A-B remain uncovered for
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Ac A and Ac B. This indicates that these instances are too complicated to find good

solutions with a simple heuristic as 2P-RSPPRC.

In Table 4.2 we present the results for the case when no reserve duties are available.

The columns have the same meaning as in Table 4.1. First of all we observe that without

reserve duties, there is no instances without uncovered tasks after Phase 1. The computa-

tion time for Phase 1 ranges form 2 to 45 seconds. Now 30 or more tasks remain uncovered

for Ac A, Ac B, Ht A, and Ht B. Recall from Table 3.1 that in these instances more than

50 original duties have become infeasible. In Phase 2 the number of uncovered tasks could

be reduced for all instances but Lls B. However, there is no instance where all tasks are

covered after Phase 2. For most instances we find better results with setting SET1. An

exception is Ztm A where the solution found using setting SET2 is much better. The

computation time for this setting ranges from 2 to 4794 seconds. With setting SET2 the

computation time is typically much smaller. The longest computation time with this set-

ting is 305 seconds for Ac A. For both settings we observe that the 2P-RSPPRC heuristic

fails to produce good solutions if no reserve duties are available. This is especially true

for the difficult instances Ac A, Ac B, Ht A, and Ht B. In Section 4.5 we will draw our

final conclusions after comparing the 2P-RSPPRC heuristic with the CGDDS approach

and a heuristic branch-and-price approach (see Section 4.4).

Phase 1 Phase 2

SET1 SET2

Id Obj A-B A-A T (s) Obj A-B A-A T (s) Obj A-B A-A T (s)

Ac A 619612 28 15 36 331682 13 18 4794 423816 18 16 305

Ac B 410394 17 17 45 324883 13 14 2809 349864 14 16 246

Bl A 84551 3 6 3 83905 3 6 216 83905 3 6 39

Bl B 101492 4 5 2 81753 3 5 151 82498 3 5 30

Ht A 354796 14 16 33 205493 7 13 1891 263285 10 12 206

Ht B 360774 13 23 34 190018 5 19 1689 196628 5 21 250

Lls A 122146 5 3 3 63375 2 3 1665 103110 4 3 53

Lls B 43548 1 2 20 43548 1 2 2 43548 1 2 2

Ztm A 256296 12 4 23 122778 5 6 1426 96880 4 4 136

Ztm B 155887 7 3 12 26926 0 6 580 39410 1 4 62

Table 4.2: Results of the 2P-RSPPRC heuristic without reserve duties.

4.3 Dynamic constraint aggregation

Dynamic constraint aggregation (DCA) is an advanced column generation method for

large-scale vehicle and crew scheduling applications. The conceptual idea was presented

in the thesis of Villeneuve (1999). The first implementation was provided by Elhallaoui
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et al. (2005). For crew scheduling applications, DCA is motivated by the observation that

in optimal solutions duties are composed of several clusters of tasks, where a cluster cor-

responds to consecutive tasks on the same vehicle. For many applications of rescheduling

on the day of operations the new schedules should not deviate too much from the planned

schedules, like it is the case for the OCRSP we consider in this thesis. This means that

one expects to find that duties in a rescheduling solution should be composed of clusters

of tasks that also appeared in the planned duties.

The idea behind DCA is to not treat every task on its own by a set partitioning

constraint in the mathematical model, but to aggregate the tasks in one cluster and

represent them in the mathematical model by one aggregated constraint. The resulting

model is referred to as the aggregated master problem. During the algorithm only a subset

of the columns is considered in the aggregated restricted master problem (ARMP). Since

the number of constraints in the ARMP is much smaller, it can be solved quicker. The

aggregation is dynamically redefined during the solution procedure.

Elhallaoui et al. (2008) present an enhancement of the original DCA method called

multi-phase DCA method. In this method a multi-phase partial pricing strategy is used

to reduce overall computational times. The motivation behind the multi-phase partial

pricing is as follows. The redefinition of the aggregation should be based solely on columns

which are only slightly incompatible with the current aggregation in order to keep the

series of aggregations considered during the algorithm more similar. Given an aggregation,

the incompatibility score of a column is equal to the number of additional clusters that

are needed for the column to become compatible. In phase h only columns with an

incompatibility score less than h are considered, and hence only these need to be generated

in the pricing problems.

4.3.1 The mathematical model

In order to apply DCA we formulate the OCRSP as a set partitioning problem with side

constraints. We use the same notation as in Section 3.3 and replace the “≥” sign in

Formulation (3.1)–(3.4) with a “=” sign. We then obtain the same formulation that was

used in Rezanova and Ryan (2010) which we will refer to as OCRSP-SP.
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min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fizi (4.1)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi = 1 ∀i ∈ N (4.2)∑

k∈Kδ

xδk = 1 ∀δ ∈ ∆ (4.3)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ,∀i ∈ N (4.4)

Constraints (4.2) make sure that every task is either covered by exactly one feasi-

ble completion or is canceled. The assignment constraints (4.3) are the same as Con-

straints (3.3).

The optimal solution value of both formulations is exactly the same under the consid-

ered objective function. Every feasible solution of Formulation (3.1)–(3.4) can be trans-

formed into a solution with the same objective value that is feasible w.r.t. (4.2)–(4.4).

This can be seen as follows. Let us consider a solution of Formulation (3.1)–(3.4), where∑
δ∈∆

∑
k∈Kδ aδikx

δ
k + zi is > 1 for some j ∈ N . This means that 2 or more feasible com-

pletions with xδk = 1 cover task j. Let us refer to these feasible completions as X̂. In

order to obtain a solution to Formulation (4.2)–(4.4), we have to decide in which feasi-

ble completion the task should appear as driving task and in which it should appear as

deadheading task. Note that for every feasible completion k ∈ X̂ there exists a feasible

completion l where aδil = aδik∀i 6= j ∈ N . Moreover, cδl = cδk if task j was not a driving

task in the original duty δ, and cδl ≥ cδk if task j was a driving task in δ. Therefore, the

only interesting case for the decision about driving and deadheading is when task j was

a driving task in one of the original duties δ for a k ∈ X̂. In order to not change the

objective function we have to the decisions in this case as follows. Task j must be the

driving task in the feasible completion of the original duty δ in which it was a driving

task and a deadheading task in the other feasible completions.

4.3.2 Outline of the DCA method

In Algorithm 5 we show the pseudo-code of the multi-phase DCA method to solve a

linear relaxation of e.g. the OCRSP-SP. An initial aggregation for the problem needs to

be provided as input (see Line 1). Next, the phase h is set to 0 in Line 2. Then DCA is

performed considering only columns that have an incompatibility score less or equal to h

(Lines 5–13). After solving the ARMP (Line 6), a disaggregated dual vector is computed

in Line 7 by solving an auxiliary shortest path problem (see Elhallaoui et al. (2005) for

details). The pricing problems return negative reduced cost columns that are at most

h incompatible with the current aggregation, if any exist (Line 8). If no such columns
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exist, the algorithm moves on to the next phase in Line 13. If such negative reduced cost

columns have been found, in Line 11 the aggregation may be updated and columns are

added to the ARMP. The decision about a partition update depends on the reduced cost

of the negative reduced cost columns that are returned by the pricing problems. Let c̄

be the smallest reduced cost of a negative reduced cost column that is compatible with

the current partition and let c̃ be the smallest reduced cost of a negative reduced cost

column that is not compatible with the current partition. In the case that compatible as

well as incompatible columns with negative reduced cost have been found, the partition

is updated if c̄/c̃ ≤ thresholdPartitionUpdate. Moreover, the partition is not updated if

all negative reduced cost columns are compatible and the partition is always updated if

all negative reduced cost columns are incompatible. After testing some values between 0

and 1 we decided to set thresholdPartitionUpdate = 0.67 for our experiments.

1 Determine an initial aggregation;

2 Set h = 0;

3 while stopMDCA = false do

4 stopColGen = false;

5 while stopColGen = false do

6 Solve the ARMP to obtain a primal and a dual solution;

7 Compute a disaggregated dual vector;

8 Solve the pricing problems with the disaggregated dual vector;

9 if ∃ negative reduced cost columns with an incompatibility score ≤ h then

10 Update the aggregation and the ARMP if necessary;

11 Add columns to the ARMP;

12 else

13 stopColGen = true;

14 if h < maxPhase then

15 Set h = h+ 1 and move to next phase;

16 else

17 stopMDCA = true;

Algorithm 5: The multi-phase dynamic constraint aggregation (DCA) method

4.3.3 The initial clusters

An initial aggregation needs to be specified as input for the DCA method. Recall that

one motivation behind using DCA is that we expect that many clusters of tasks present in

the planned duties should also turn up in an optimal solution. This is especially true for

original duties which are still feasible, since given our objective function we try to avoid
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changing them. Therefore, we construct one or two clusters from a still feasible original

duty. Due to the available DCA implementation, we cannot have a meal break within a

cluster. So if necessary, we construct one cluster including all tasks before and one cluster

including all tasks after the planned meal break.

For original duties that are not feasible anymore, we cluster the tasks as follows. We

check for every driving task ti, or its rerouted substitute, if it is still possible to perform

the next planned driving task tj, if the meal break was not planned between the two tasks,

and if there is no rolling stock change between the two tasks. If these three conditions

are satisfied, then we add tj to the cluster of ti.

In Figure 4.2 we show the four clusters, c1, c2, c3 and c4, we constructed from the tasks

that had been assigned to the original duties “Ehv 122” and “Mt 107”.

c1 c2

“Ehv 122” /d /e /f /g 857/a MB /b /c /d 5264/a 5265/a

842 859

Ehv Ht Ut Asd Amr AsdAsd Ut Ht Ehv Ehv Ehv

“Mt 107”

c3 c4

/a /a /a /a /a /b /c /d /e /f MB /b /c /d /e /f /g858 6949

6964 20855 20868 868 879

Mt Std Hrl Std HrlStdRmEhvHtUt Asd Ut HtEhvRmStd Mt

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Time of rescheduling

task deadheading MB meal break

canceled task Taxi deadheading using a taxi

Figure 4.2: The initial clusters c1, c2, c3 and c4 are generated from the affected original

duty “Ehv 122” and the not affected original duty “Mt 107” in case Ht 2.

We also tried two other ways of generating the initial clusters, but we obtained the

better results for the initial clusters as described above. The first alternative way generates

less initial clusters. For original duties that are feasible we generate the initial clusters

as described above. For the infeasible original duties we do not consider rolling stock

changes. In the second alternative which generates a larger number of initial clusters

we applied the rules that we described above for infeasible original duties, to all original

duties.

Treatment of the assignment constraints

So far we have only discussed how to cluster the set partitioning constraints that corre-

spond to tasks. However, constraints (4.3) in Formulation (4.1)–(4.4) are also set parti-
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tioning constraints and can also be part of clusters in the aggregated model. Assuming

that many duties that are still feasible will not be changed, it seems promising to add the

duty constraints to one of the clusters that have been constructed from the original duty.

One could choose between two options, either add the duty constraint for duty δ to the

cluster of the task the driver has to perform next, or add the duty constraint to the clus-

ter of the last task the driver has to perform. We have chosen the second option for the

following reason. It seems more likely that, if a duty will be modified, this modification

will take place relatively soon after the time of rescheduling, because that is where the

conflicts in the planned crew schedule are likely to be. Moreover, given that it is desirable

to return to the planned duty, it is likely that in a duty, even if it is modified, the last

task does not change. This means that we hope that the initial cluster does not have

to be broken between the constraint for the last task and the duty constraint during the

DCA method. We did a number of experiments with the duty constraints added to the

initial clusters. In most cases this resulted in longer computation times for solving the

LP-relaxation and therefore we decided not to use this option in our final experiments.

4.3.4 The pricing problems

A connection graph for the pricing problems is built for every original duty. A few

adjustments compared to the graphs described in Section 3.4.2 have been made in order to

be able to use the standard resource constraint shortest path solver available in GENCOL.

GENCOL is a column generation library developed at the GERAD (Group for Research

in Decision Analysis). The main features are discussed in Desaulniers et al. (1998). In

order to model the meal break rule, we use two resources break and timespan. For every

node in the graph we associated resource windows with these resources. The resource

windows are the same for every node, namely [0 1] for break and [0 330] for timespan.

The consumption for the resource break is 1 for break arcs and 0 for all other arc types.

For the resource timespan the consumption of an arc rij is equal to the duration of the

related activity, or −330 for arcs corresponding to meal breaks. The resource extension

function for the resource break simply adds the consumption of an arc rij to the total

consumption of the partial path Ri. The resource extension function for the resource

timespan is given by Rj = max{0, Ri + rij}. In Figure 4.3 we show a part of the graph

used in the pricing problem for driver “Gn 7”. Note that the feasible completions shown

in Figure 2.6 correspond to paths in Figure 4.3.

The weight of arc (i, j) consists of a penalty as described in Section 3.4.2, from which

the dual value of an associated constraint is subtracted. Constraints (4.2) are associated

with task arcs and constraints (3.3) are associated either with all arcs leaving the source,

or with all arcs entering the sink.
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The current DCA implementation in GENCOL does not support arcs parallel to arcs

that correspond to constraints in a cluster, like the task arcs. Therefore, we introduced

dummy task departure and arrival nodes and used them as tail, respectively head nodes

for the deadhead arcs.
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Figure 4.3: A part of the pricing problem graph with resource consumptions for driver

“Gn 7”.

4.3.5 Computational results

We will compare the DCA heuristic to a branch-and-price heuristic (HBNP) also using

version 4.5.1 of the GENCOL column generation library and CPLEX 10.1 for solving the

RMPs and ARMPs. In order to study the performance of the DCA heuristic we are going

to create larger core problems for the subset of the set of 10 disruptions where HBNP
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does not find a solution covering all tasks in the solution to the initial core problems

as defined in Section 3.5.1. For the initial core problems the computation times are so

small that we did not expect large improvements from using DCA. This was confirmed

by computational experiments.

Recall that an initial core problem is given by a subset of original duties ∆̄ and tasks

N̄ . Let T̄ = [t0, t1 + 60 minutes] be the interval based on the rerouted and canceled tasks

due to the disruption. Furthermore, let ~T (δ) be the remaining time duty δ is available

after the time of rescheduling. The larger core problems, we will refer to them as medium

and large, are made by adding original duties and tasks to the initial core problems by

the following rules.

• Add original duty δ′ if its crew base bδ′ is the same as for any δ ∈ ∆̄ and T̄ is inside
~T (δ′).

• Add original duty δ′ if its crew base bδ′ is the same as for any δ ∈ ∆̄ and the time
~T (δ′) and T̂ overlap ≥ 0.5 · ~T (δ′).

Note that by this definition the original duties and tasks in an initial core problem are a

subset of the duties and tasks of a medium core problem which are a subset of the duties

and tasks of a large core problem. We tested on an Intel Quad core machine with 4 GB

RAM clocked at 2.83 GHz.

All tables in this section will have the same columns whose meanings are as follows.

The name of the instance is given in the first column. The first number in an instance

name is the number of original duties, and the second number is the number of set

partitioning constraints for the tasks. Column LP shows the value of the LP-relaxation.

IP is the value of the best feasible solution. The percentage gap is given in column GAP.

Nodes is the number of nodes that have been explored in the branch-and-bound tree. TR

shows the computation time in seconds needed to solve the root node. TT shows the

total computation time in seconds. A-B and A-A are the number of tasks of type A-B

and A-A respectively that are not covered by any feasible completion.

In Table 4.3 we present the results for the 10 disruptions using HBNP. If tasks could

not be covered in the solution we also solved the medium and large core problems. First

of all we observe that the LP-relaxation of the initial core problems could be solved in less

than 100 seconds for all disruptions. The number of nodes in the branch-and-bound tree

that have been solved ranges from 1 for Bl A, Bl B, Lls B, and Ztm B to 33 for Ac A. The

gap between the LP-Relaxation and the integer solutions is at most 2.5% for all instances

and all core problems. Furthermore, we observe a rapid increase in computation time, for

the LP-relaxation as well as the total computation time, for the medium and large core

problems. For example for Ht B and Ztm B the number of set covering constraints in the

large core problems is less than twice the number in the medium core problems while the

time needed to solve the LP-relaxation increases by a factor of more than 10.
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Instance LP IP GAP (%) Nodes TR (s) TT (s) A-B A-A

Ac A 163 602 63107.8 63808 1.1 33 26 121 1 0

Ac A 233 1074 42426.3 42712 0.7 21 196 730 0 0

Ac A 318 1567 41441.7 41908 1.1 21 824 2969 0 0

Ac B 143 734 35814.7 36339 1.5 21 92 328 0 0

Bl A 80 234 10581.0 10581 0.0 1 2 2 0 0

Bl B 63 186 9532.0 9532 0.0 1 1 1 0 0

Ht A 133 614 37916.7 38136 0.6 15 47 124 0 0

Ht B 119 665 62906.0 62922 0.0 2 96 103 1 1

Ht B 192 1243 40076.0 40126 0.1 14 815 1035 0 1

Ht B 289 2060 38699.0 39336 1.6 15 8195 13170 0 1

Lls A 81 239 17623.0 17651 0.2 3 2 3 0 0

Lls B 161 456 21796.0 21796 0.0 1 10 10 0 0

Ztm A 112 508 11846.7 12139 2.5 4 20 28 0 0

Ztm B 110 423 34736.0 34736 0.0 1 16 16 1 0

Ztm B 178 853 14485.5 14537 0.4 2 171 188 0 0

Ztm B 309 1577 11687.5 11739 0.4 2 2137 2249 0 0

Table 4.3: Results for heuristic branch-and-price (HBNP) with 46 reserve duties.

Instance LP IP GAP (%) Nodes TR (s) TT (s) A-B A-A

Ac A 233 1074 42426.3 42859 1.0 14 429 1363 0 0

Ac A 318 1567 41441.7 42463 2.5 31 1084 8910 0 0

Ht B 192 1243 40076.0 40178 0.3 4 579 1227 0 1

Ht B 289 2060 38699.0 38980 0.7 17 2642 10957 0 1

Ztm B 178 853 14485.5 14536 0.3 2 215 268 0 0

Ztm B 309 1577 11687.5 11739 0.4 2 1211 1569 0 0

Table 4.4: Results for heuristic dynamic constraint aggregation (DCA) with 46 reserve

duties.

The results for the medium and large core problems for Ac A, Ht B, and Ztm B with

DCA are shown in Table 4.4. For the medium core problems we observe that the time

for solving the LP-relaxation is once shorter (Ht B) and twice longer (Ac A and Ztm B)

as with HBNP. For the large core problems DCA solves the LP-relaxation in less time

for Ht B and Ztm B. Remarkable is the improvement for Ht B where the LP-relaxation

is solved in 2642 seconds with DCA as opposed to 8195 seconds with HBNP. Moreover,

we see that the total solution time is only reduced from 13170 seconds without DCA to

10957 seconds with DCA while about the same number of nodes have been explored. A

similar observation can be made for Ztm B.
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Instance LP IP GAP (%) Nodes TR (s) TT (s) A-B A-A

Ac A 117 602 71206.2 76152 6.9 41 23 125 1 2

Ac A 187 1074 48019.1 50493 5.2 53 229 1805 0 1

Ac A 227 1567 43753.0 45280 3.5 33 936 4652 0 0

Ac B 111 734 37305.6 38410 3.0 35 100 465 0 0

Bl A 34 234 11515.5 11590 0.6 2 2 2 0 0

Bl B 31 186 13114.5 14543 10.9 7 1 3 0 1

Bl B 120 933 10682.7 10849 1.6 6 590 739 0 0

Bl B 178 1420 10682.7 10849 1.6 8 2172 3337 0 0

Ht A 87 614 38934.8 39998 2.7 26 41 156 0 0

Ht B 83 665 70337.7 70376 0.1 7 84 137 1 3

Ht B 156 1243 43548.2 43584 0.1 4 601 790 0 2

Ht B 253 2060 42356.0 43291 2.2 20 7136 14508 0 2

Lls A 35 239 20574.5 20850 1.3 2 2 3 0 0

Lls B 115 456 23126.3 23955 3.6 4 10 19 0 0

Ztm A 66 508 12290.0 12290 0.0 1 17 17 0 0

Ztm B 64 423 34936.0 34936 0.0 1 16 16 1 0

Ztm B 132 853 14763.5 15038 1.9 7 229 309 0 0

Ztm B 263 1577 11687.5 11738 0.4 2 2080 2200 0 0

Table 4.5: Results for heuristic branch-and-price (HBNP) without reserve duties.

We also considered the 10 disruptions in the case that no reserve duties would be

available. The results for HBNP are shown in Table 4.5. The solution times for the

LP-relaxations are at most 100 seconds for the initial core problems. The percentage gap

of the integer solutions is, with the exception of Ztm A, higher than in the case with

46 reserve duties. Next to Ac A, Ht B, and Ztm B also for Bl B not all tasks are covered

in the solution found for the initial core problem. Comparing the increase in problem

size and solution time between the initial, the medium, and the large core problems, we

observe that the increase in computation time is more than linear.

In Table 4.6 we report the results for solving the medium and larger core problems

with DCA. As for the case with reserve duties, DCA needs more time to solve the LP-

relaxation of Ac A. For the large core problem for Bl B, HBNP and DCA perform roughly

the same in all aspects. For Ht B and Ztm B, DCA produces similar or better feasible

solutions in less time. While the improvement is only small for the medium core problems

it is remarkable for the large core problems. Especially the LP-relaxation is solved much

faster with DCA, 2883 and 1098 seconds as opposed to 7136 and 2080 seconds for Ht B

and Ztm B respectively. However, the reduction in the total computation times for these

instances is less impressive.
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Instance LP IP GAP (%) Nodes TR (s) TT (s) A-B A-A

Ac A 187 1074 48019.1 48783 1.6 28 350 1857 0 1

Ac A 227 1567 43753.0 44435 1.6 37 998 10059 0 0

Bl B 120 933 10682.7 10946 2.5 4 345 461 0 0

Bl B 178 1420 10682.7 10849 1.6 8 2090 3234 0 0

Ht B 156 1243 43548.2 43584 0.1 4 433 644 0 2

Ht B 253 2060 42356.0 42630 0.6 11 2883 7693 0 2

Ztm B 132 853 14763.5 14837 0.5 6 169 290 0 0

Ztm B 263 1577 11687.5 11788 0.9 4 1098 1519 0 0

Table 4.6: Results for heuristic dynamic constraint aggregation (DCA) without reserve

duties.

General observations

We can state some general observations about our experiments with DCA and we will

try to relate our observations to results stated earlier in the literature. During the solu-

tion process of the LP-relaxation the initial partition is almost completely disaggregated.

Moreover, the number of fractional variables in the solution of the LP-relaxation is about

the same compared to HBNP. In Elhallaoui et al. (2008) the authors report that for si-

multaneous bus and driver scheduling problems the number of fractional variables was

reduced significantly. A similar observation was found for bidline scheduling for airlines

by Boubaker et al. (2010).

While the LP-Relaxation could be solved much faster witch DCA as compared to

HBNP, this improvement was partly lost when exploring the nodes in the branch-and-

bound tree. When we look at the average time spent per node except the root node (TT-

TR/(Nodes−1)), we see that this time is higher for all but one instance for DCA. The

only exception is the large core problem for Bl B without reserve duties (Bl B 178 1420).

An intuitive explanation is that in a node other than the root node, it is faster to just

work with the RMP instead of starting with an aggregated partition in the ARMP which

is completely disaggregated in the column generation process anyway. Given the current

implementation of DCA we would have probably obtained better results by using DCA

only for the root node and using standard column generation without aggregation in all

other nodes.

4.4 Comparison

Now we are going to compare the tested methods 2P-RSPPRC, HBNP/DCA, and CGDDS.

Therefore we present in Table 4.7 for each instance with 46 reserve duties one result per
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method from Table 4.1 for 2P-RSPPRC, from Tables 4.3 and 4.4 for HBNP/DCA, and

from Tables 3.2 and 3.5 for CGDDS respectively. For the 2P-RSPPRC heuristic and for

HBNP/DCA this is the result with the minimum weighted number of uncovered tasks,

where the weights are chosen according to the penalty cost associated with not covering

a task (20,000 for type A-B and 3,000 for type A-A). If this number is the same for two

results, we pick the solution that has been obtained in less computation time. For exam-

ple, for Ht B we present the result that has been obtained using the medium size core

problem and HBNP. In the same way we present the results for the instances without

reserve duties in Table 4.8. The corresponding source tables are Tables 4.1, 4.5, 4.6, 3.4,

3.7, and 3.8.

The columns in Tables 4.7 have the following meaning. The first column Id is the

code of the instance. Then for each of the three methods we present four columns namely

Obj, A-B, A-A, and T. Obj is the value of the objective function of the solution. A-B and

A-A show the number of tasks of types A-B and A-A that are uncovered in the solution.

Finally, column T displays the computation time in seconds.

Comparing the results presented in Table 4.7 we observe that HBNP/DCA as well as

CGDDS find a solution without uncovered tasks for 9 out of 10 instances with 46 reserve

duties. The 2P-RSPPRC heuristic finds such a solution only for 3 out of 10 instances.

Even though all tasks are covered, the solutions produced by 2P-RSPPRC have much

higher objective values. To a large extent this can be explained by the fact that more re-

serve duties are used in these solutions. Interesting is that for instance Ht B HBNP/DCA

finds a solution where all tasks of type A-B are covered. This solution was found in

1035 seconds when solving the medium size core problem. CGDDS does not find a solu-

tion where all A-B tasks are covered. The 2P-RSPPRC heuristic is not competitive with

the column generation based methods HBNP/DCA and CGDDS since it only finds good

solutions for the problems with the lowest number of infeasible original duties.

We present the results for the 10 instances without reserve duties in Table 4.8. The

columns show the same information as in Table 4.7. Again the solutions of HBNP/DCA

cover all tasks in all instances except Ht B. However, for Ac A such a solution was only

found when solving the large core problem and with HBNP this took 4652 seconds. Using

CGDDS we find solutions covering all tasks for 9 out of 10 instances. The 2P-RSPPRC

heuristic performs badly, for none of the 10 instances it could find a solution covering all

tasks.

4.5 Conclusion

In this chapter we have presented the 2P-RSPPRC heuristic mimicking the manual

rescheduling process of crew dispatchers. Moreover, we have investigated the effect of
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2P-RSPPRC HBNP/DCA CGDDS

Id Obj A-B A-A T (s) Obj A-B A-A T (s) Obj A-B A-A T (s)

Ac A 149651 5 7 975 42712 0 0 730 45412 0 0 236

Ac B 135824 5 3 374 36339 0 0 328 36134 0 0 255

Bl A 21070 0 1 23 10581 0 0 2 10581 0 0 26

Bl B 13852 0 0 3 9532 0 0 1 9532 0 0 18

Ht A 76704 1 5 1225 38136 0 0 124 38094 0 0 193

Ht B 68981 0 9 137 40126 0 1 1035 62922 1 1 209

Lls A 27811 0 0 5 17651 0 0 3 17646 0 0 33

Lls B 54309 1 2 31 21796 0 0 10 21796 0 0 107

Ztm A 16777 0 0 33 12139 0 0 28 11935 0 0 87

Ztm B 37714 1 0 55 14537 0 0 188 15237 0 0 83

Table 4.7: Comparison of results with minimum number of uncovered tasks obtained with

2P-RSPPRC, HBNP/DCA, and CGDDS with 46 reserve duties.

2P-RSPPRC HBNP/DCA CGDDS

Id Obj A-B A-A T (s) Obj A-B A-A T (s) Obj A-B A-A T (s)

Ac A 331682 13 18 4830 45280 0 0 4652 53220 0 0 288

Ac B 324883 13 14 2854 38410 0 0 465 38919 0 0 261

Bl A 83905 3 6 42 11590 0 0 2 11590 0 0 20

Bl B 82498 3 5 32 10849 0 0 461 13406 0 0 73

Ht A 205493 7 13 1924 39998 0 0 156 39799 0 0 206

Ht B 190018 5 19 1723 43584 0 2 664 64084 1 1 553

Lls A 63375 2 3 1668 20850 0 0 3 21698 0 0 20

Lls B 43548 1 2 22 23955 0 0 19 23752 0 0 106

Ztm A 96880 4 4 159 12290 0 0 17 12290 0 0 40

Ztm B 26926 0 6 592 14837 0 0 290 15439 0 0 62

Table 4.8: Comparison of results with minimum number of uncovered tasks obtained with

2P-RSPPRC, HBNP/DCA, and CGDDS without reserve duties.

considering more duties and tasks in so called medium and large core problems and com-

pared the outcomes to the outcomes of the CGDDS method. Furthermore, we have

compared HBNP and DCA for solving the medium and large core problems.

We can summarize the evaluation of the different solution approaches for railway crew

rescheduling as follows. First of all, the 2P-RSPPRC heuristic is not competitive with the

other approaches, since for most instances it fails to produce good solutions. Secondly, we

have seen that for 5 out of 7 large core problems the computation time of DCA is smaller

compared to HBNP while the solutions have approximately the same quality. Finally,

for some difficult instances, considering larger core problems enables significantly better

solutions compared to the CGDDS method. However, the computation time needed to

find these solutions with HBNP and DCA is currently too high for practical purposes.
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With additional research into different neighborhood definitions for CGDDS we could try

to close the gap between the solutions currently found with CGDDS and the solutions

found when considering larger core problems. From the evaluation of the different solution

approaches we conclude that CGDDS is the best method available to solve practical

rescheduling instances as considered in this thesis. It consistently finds solutions of good

quality within a reasonable amount of computation time.





Chapter 5

Railway Crew Rescheduling with

Retiming

5.1 Introduction

Passenger railway operators face unforeseen events such as infrastructure malfunctions,

accidents or rolling stock breakdowns, that make it impossible to operate the timetable

as planned, every day. As described in Chapter 2, the disruption management process

consists of the accomplishment of three interconnected tasks: (1) timetable adjustment,

(2) rolling stock rescheduling, and (3) crew rescheduling. If during the rolling stock or

crew rescheduling steps no rolling stock or crew for a task of the adjusted timetable can

be found, then another iteration through the steps is necessary. In that case, a different

timetable, where some trains run on different times or are canceled, is needed.

An infeasibility of the crew rescheduling step suggests to use a further adjusted

timetable where some additional trains are canceled. If this is compatible with the rolling

stock schedule, then this is a solution. However, in this chapter we show that sometimes

no additional trains need to be canceled if the departures of some trains are delayed by

just a couple of minutes, which is called retiming. It is quite clear that up to 1,000 pas-

sengers waiting for a train on a busy station during the peak hours will prefer a somewhat

delayed train over a canceled one.

In this chapter, which is based on Veelenturf et al. (2009), we look at an extension

of the crew rescheduling problem, where some timetabling decisions are integrated into

crew rescheduling. More precisely, the departure of trains may be delayed. This gives

more flexibility to the third step in the disruption management process and may avoid

undesired iterating. Moreover, this new approach is able to provide high quality solutions

from a service level point of view.
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The first contribution of this chapter is a new formulation for crew rescheduling with

retiming, where retiming options are modeled as discrete choices. Moreover, we show

how to adapt the solution approach presented in Chapter 3 in order to keep the increase

in computation time for the extended model moderate. We evaluate our approach using

real life data from NS. Finally, we show that retiming allows us to find better solutions

compared to crew rescheduling without retiming.

The remainder of this chapter is organized as follows. A problem description is pro-

vided in Section 5.2. The existing literature is reviewed in Section 5.3. In Section 5.4

we present the mathematical formulation. Our solution approach is discussed in Sec-

tion 5.5. Computational results are presented in Section 5.6. In Section 5.7 we draw some

conclusions and give some recommendations for further research.

5.2 Problem description

We first introduce some railway terminology which is necessary to clearly describe the

problem.

Recall from Section 2.5.1 that the operational crew rescheduling problem (OCRSP)

takes an adjusted timetable and modified rolling stock schedule as input and tries to find

a replacement duty for every original duty, such that as many tasks as possible of the

adjusted timetable are covered.

If in a solution to the OCRSP a task cannot be covered by any crew member, it means

that no compatible crew schedule for the adjusted timetable has been found. The railway

operator has to come up with another adjusted timetable, for which it is possible to find

a compatible crew schedule.

The idea of allowing retiming is to evaluate not just one fixed timetable but a number

of similar timetables at once. By delaying the departure of some tasks more connections

for drivers will become possible and hence more feasible completions may exist. Therefore,

it may be possible to find a better crew schedule. Compared to classical crew rescheduling,

the objective of the extension with retiming also aims at keeping the amount of delay as

small as possible.

Example 5.1

In Figure 5.1.a we show the original duty Ah 114 from crew base Arnhem in case the

two southbound routes from ’s-Hertogenbosch to Breda and Eindhoven are blocked from

15:30 to 18:30. The duty has started with driving task 3043/e (the fifth task of train 3043)

from Arnhem (Ah) to Nijmegen (Nm). At 15:30, when the disruption starts, the driver

has completed his next two tasks and is performing task 3653/b. The meal break was

planned in Roosendaal, thereafter the duty was supposed to end with driving train 3666

from Roosendaal to Arnhem, 3666/a–3666/d. However, due to the route blockage, task
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a) /e /a /a /b /c /d MB /a /b /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Bd Rsd RsdBd Ht Nm Ah

b) /e /a /a /b 16054/a 861/e MB /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Ut Ht Ht Nm Ah

c) /e /a /a /b 4456/a MB 4463/a /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Nm Nm Ht Ht Nm Ah

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Time of rescheduling

task deadheading MB meal break retimed task

Figure 5.1: The infeasible original duty and two possible replacement duties for duty

“Ah 114” in Example 5.1.

3653/c is canceled. Therefore, original duty Ah 114 has become infeasible. A replacement

duty is shown in Figure 5.1.b. Note that because the rescheduling takes place at 15:30,

the first four tasks of the duty cannot be changed. After those 4 tasks, the driver arrives

in ’s-Hertogenbosch at 15:48. If the next task has to be performed on different rolling

stock, a minimal transfer time of 10 minutes must be respected. So the replacement

duty is allowed to perform task 16054/a to Utrecht at 16:02, which is operated with

different rolling stock unit than task 3653/b. From Utrecht the driver could go back to

’s-Hertogenbosch by driving task 861/e. After that the duty could end by performing

tasks 3666/c and 3666/d just as in the original duty.

The motivation for allowing retiming is to make replacement duties possible that are

not possible in a fixed timetable. For example, the planned departure time of task 4456/a

is 15:56 and the task is operated by a different rolling stock than task 3653/b, which

means that due the minimum transfer time a transfer between task 3653/b and task

4456/a is only allowed if the latter task is delayed by at least 2 minutes. In Figure 5.1.c

we show a replacement duty, not feasible without retiming, where tasks 4456/a is delayed

by 2 minutes.

Modeling flexibility of departure times in a railway timetable is far from trivial due to

a large number of interdependencies. Throughout this chapter we will assume that:
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Figure 5.2: An example of a delayed task between ’s-Hertogenbosch (Ht) and Nijmegen

(Nm).

(i) A delayed departure of a task by χ minutes leads to a delayed arrival of the task by

χ minutes.

(ii) A delayed task does not affect other tasks using different rolling stock.

The first assumption is not always true in practice. On the one hand, the planned

running time for a task may include some buffer time that could be utilized to (partly)

absorb delays. On the other hand, a task that is running later than planned could

experience an additional delay due to conflicts with other trains. For example, it might

be possible that a delayed train has to wait at a signal in a station area. Conversely, a

delayed task may affect other trains. A faster train may, for example get stuck behind a

slower delayed train. Figure 5.2 shows part of the 2007 timetable for the route between

’s-Hertogenbosch and Nijmegen. Two lines use this route, the 3600 intercity line from

Roosendaal to Arnhem and the 4400 regional line from ’s-Hertogenbosch to Nijmegen. If

the departure of the regional train 4456 is delayed by e.g. 9 minutes, it still departs before

the intercity train 3656. As indicated in the figure the faster intercity train 3656 catches up

with the delayed regional train 4456. This causes a conflict in the timetable. If overtaking

on the last part of the route is not possible, as it is in this situation, the intercity train

will be stuck behind the regional train and experience a delay. This example shows that

assumption (ii) does not always hold. However, at this point in time it seems reasonable

since the objective of this chapter is to analyze the potential retiming in crew rescheduling

might offer. In practice there are also cases, especially when the delay is small, where

assumptions (i) and (ii) hold, e.g. if train 4456 would be delayed by 2 minutes.
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5.3 Literature review

While Walker et al. (2005) was the first paper looking at railway crew rescheduling, in the

domain of airlines, crew rescheduling received the first attention much earlier in Johnson

et al. (1994). Note that crew rescheduling is also know as crew recovery. For a recent

review of literature on airline crew rescheduling we refer the interested reader to Clausen

et al. (2010). Stojković and Soumis (2001) and Abdelghany et al. (2004) are the first

papers that extend crew rescheduling by the possibility of retiming flights.

In Stojković and Soumis (2001) some flights may be delayed within specified time win-

dows while new duties for pilots are generated simultaneously. The problem is formulated

as a multi-commodity network flow problem with time windows and flight precedence

constraints. The purpose of the flight precedence constraints is to ensure that minimum

transfer times in the underlying aircraft rotations are not violated and to keep important

passenger connections. The problem is separable per pilot and is solved with a branch-

and-price algorithm. The decisions about the departure times of the flights are taken in

the master problem. Therefore, it is not possible to take the meal break rule as presented

in Section 2.5.1 into account in a straightforward manner.

The model of Stojković and Soumis (2001) is extended to the multi-crew case in

Stojković and Soumis (2005). In the multi-crew case every flight has to be covered by

exactly ν crew members. This is achieved by deriving ν tasks per flight which need to

be covered exactly once. Again the departure time of some flights may be chosen within

a time window. Same departure time constraints constraints are added to the model to

make sure that the same departure time is chosen for all tasks selected for a flight. Two

options are presented in order to deal with flights that cannot be covered ν times. In one

option covering less than ν tasks is accepted, while in the second option either all ν tasks

or none of the tasks derived for a flight are covered. As in Stojković and Soumis (2001) the

problem is solved with a branch-and-price algorithm using specialized branching decisions.

Abdelghany et al. (2004) present a rolling approach for multi-crew rescheduling with

retiming of flights. The approach tries to resolve as many conflicts as possible in crew du-

ties during irregular operations. In a preprocessing step, flights from duties with conflicts

and flights from selected candidate crews are divided into sets of resource independent

flights, each leading to a recovery stage. Flights are resource independent if they cannot

appear in a resource schedule together. In the rolling approach the recovery stages are

tackled in increasing order of time. For each recovery stage an assignment problem with

additional continuous variables for the departure times is solved with a Mixed Integer

Programming solver. In the model, every flight has three crew positions. Additional con-

straints enforce that neither duty limits nor transfer times are violated. The model allows

to assign less than three crew members to a flight, which means that the flight is still

under-staffed in the final solution. In general, it seems possible to apply this approach
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also in a railway setting as considered in this paper. However, when decisions are taken in

the recovery stages, the effect of these decisions for the assignment of flights in the later

stages is not considered. This could lead to suboptimal solutions.

Abdelghany et al. (2008) present an integrated approach to recover the flight schedule,

aircraft and crew at the same time. The overall approach follows Abdelghany et al. (2004),

but the Mixed Integer Program for the recovery stages is extended to deal with different

resources, namely aircraft, pilots and flight attendants. Either the required number of

resource units per type has to be assigned to a flight, or no resource units at all. The

latter means that the flight is canceled. Moreover, qualification constraints are added.

For example, the pilot must be qualified for the assigned aircraft type.

Crew scheduling with flight retiming in the planning phase is discussed by Klabjan

et al. (2002). Mercier and Soumis (2007) introduce an integrated aircraft routing, crew

scheduling and flight retiming model.

For a literature review of crew rescheduling without retiming we refer to Section 3.2.

5.4 Mathematical formulation

In this section, we formulate the operational crew rescheduling problem with retiming as

an integer linear program. Therefore, we first introduce some notation. We use copies

of tasks to represent the retiming possibilities of the tasks, as proposed by Mercier and

Soumis (2007). The copies differ from each other in their departure and arrival times.

Using copies of tasks limits the retiming possibilities, since the departure time cannot be

chosen continuously and the retiming possibilities of a task must be determined before-

hand.

We denote the set of tasks by N , indexed by i. Let sdep
i (sarr

i ) denote the departure

(arrival) station of task i ∈ N . The planned departure and arrival time are given by tdep
i

and tarr
i , respectively. The minimum required dwell time after task i is wi. Moreover, for

every task i ∈ N a penalty fi is defined for not covering task i. Furthermore, we derive a

number of copies e ∈ Ei for every task i ∈ N . Ei contains at least the copy representing

the planned departure time of task i. Denote by N c ⊆ N the tasks i for which |Ei| ≥ 2.

E is the union of all sets Ei. With i(e) we refer to the task copy e is derived from. With

every copy e ∈ E we associate the delay de compared to the planned departure time tdep
i(e),

as well as a cost parameter ge representing the penalty for the delay. The sets Êe and

Ěe contain all copies of the same task (e′ ∈ Ei(e)) for which the delay de′ is respectively

larger or smaller than the delay de.

A rolling stock composition may propagate a delay from one task to another. In the

following we describe how this is taken into account. If two tasks i and j are operated

directly after each other on the same rolling stock composition, then task j is denoted by
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r(i). If task i is the last task on a rolling stock composition, then r(i) is defined to be 0. If

r(i) 6= 0, then a minimum turnaround time ui between tasks i and r(i) is to be respected.

Thus the selection of the copy for task r(i) that is used in a duty depends on the selection

of the copy for task i and vice versa. Note that the turnaround time is 0 if the rolling

stock composition is continuing in the same direction after task i. Let hi = max(wi, ui)

be the minimum time that is needed after the arrival of task i before the rolling stock

composition is available for task r(i). Then for each copy e ∈ Ei we define the set Le as

the set of copies of task r(i) that can be selected for task r(i) if copy e is selected for task

i. More precisely, an additional constraint on Le ensures that it only contains copies of

r(i) which are not in a set Le′ of a copy e′ of the same task i(e) with less delay. So every

copy of r(i) is in exactly one set Le of a copy e ∈ Ei. This means that:

Le = {f ∈ Er(i)\
⋃
e′∈Ěe

Le′| (tdep
r(i)+df )−(tarr

i +de) ≥ hi,∀e′ ∈ Êe (tdep
r(i)+df )−(tarr

i +de′) < hi}

(5.1)

Thus the set Le contains all copies of task r(i) which cannot be selected for task r(i) if a

copy of task i with more delay than copy e is selected for task i. Note that it is possible

that Le = ∅. Moreover, let Be be the set of copies of the same task, but with a smaller

delay. Formally,

Be = {e′ ∈ Ei(e) | de′ ≤ de} (5.2)

We introduce a binary decision variable zi for every task i ∈ N . If task i is canceled, zi is

set to 1, otherwise zi is set to 0. Furthermore, ve is a binary decision variable with ve = 1

if copy e is selected for task i(e) and 0 otherwise. Now we can introduce the following

constraints to model the delay propagation:

zi +
∑
e′∈Be

ve′ −
∑
e′∈Le

ve′ ≥ 0 ∀i ∈ N c : r(i) 6= 0,∀e ∈ Ei (5.3)

This ensures that a copy in Le can only be used for r(i) if task i is canceled or if one of

the copies e′ ∈ Be is selected for task i. If a copy with more delay than copy e is selected

for task i, a copy in Le may not be used. The following example in Table 5.1 illustrates

the definition of Le (see (5.1)). Consider train 3552 from Eindhoven (Ehv) to Hoofddorp

(Hfdo) via ’s-Hertogenbosch (Ht) and Utrecht (Ut). Thus there are three consecutive tasks

assigned to the same rolling stock composition, hence ul = um = 0. Assume we derive two

copies for the first two tasks with 0 and 3 minutes delay respectively. Detailed information

about the copies is shown in Table 5.1. Let us assume that hl = hm = 2 minutes. Then

according to (5.1): Ld = {e}, Ld′ = {e′}, Le = ∅ and Le′ = {f}. The last set results from

the fact that the planned dwell time of train 3552 in Utrecht is 6 minutes, so even if this
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Task Copy Delay (min) Origin Destination Departure Arrival

l d 0 Ehv Ht 14:47 15:06

l d′ 3 Ehv Ht 14:50 15:09

m e 0 Ht Ut 15:08 15:37

m e′ 3 Ht Ut 15:11 15:40

n f 0 Ut Hfdo 15:43 16:27

Table 5.1: Example of copies for train 3552 from Eindhoven (Ehv) to Hoofddorp (Hfdo)

train arrives with a delay of 3 minutes in Utrecht, the next task can still depart at the

planned time. This is an example where a delay can be absorbed due to margins in the

timetable. Then Constraints (5.3) will become:

zl + vd − ve ≥ 0 (5.4)

zl + vd + vd′ − ve′ ≥ 0 (5.5)

zm + ve + ve′ − vf ≥ 0 (5.6)

Furthermore, ∆ = ∆A ∪ ∆R is the set of unfinished original duties, where ∆A is the

set of active duties and ∆R is the set of stand-by duties. Let Kδ be the set of all feasible

completions for duty δ ∈ ∆. With every feasible completion k ∈ Kδ we associate cost cδk
and binary parameters aδik and bδek. Here aδik is equal to 1 if feasible completion k for duty

δ is qualified to drive task i and 0 otherwise. Next, bδek is equal to 1 if feasible completion

k for duty δ uses copy e and 0 otherwise. Note that bδek is 1 if feasible completion k uses

copy e for deadheading.

Let xδk be binary variables indicating if feasible completion k is chosen (xδk = 1), or not

(xδk = 0). Furthermore, recall that for all i ∈ N the binary decision variable zi indicates

whether task i is canceled or not, and that for all e ∈ E the binary decision variable ve
indicates whether copy e is selected for task i(e). Now we can formulate the operational

crew rescheduling problem with retiming (OCRSPT) as

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fizi +
∑
e∈E

geve (5.7)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ N (5.8)∑

k∈Kδ

xδk = 1 ∀δ ∈ ∆ (5.9)

|∆|ve −
∑
δ∈∆

∑
k∈K

bδekx
δ
k ≥ 0 ∀e ∈ E (5.10)
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∑
e∈Ei

ve + zi = 1 ∀i ∈ N (5.11)

zi +
∑
e′∈Be

ve′ −
∑
e′∈Le

ve′ ≥ 0 ∀i ∈ N c : r(i) 6= 0,∀e ∈ Ei

(5.12)

xδk ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ (5.13)

ve ∈ {0, 1} ∀e ∈ E (5.14)

zi ∈ {0, 1} ∀i ∈ N (5.15)

We refer to Model (5.7)–(5.15) as OCRSPRT1. In the objective function (5.7) the

deviation from the planned crew schedule, the penalties for canceled tasks, and the penal-

ties for delays are minimized. Constraints (5.8) ensure that every task is either assigned

to one or more qualified drivers, or is canceled. By Constraints (5.9) exactly one feasible

completion must be selected for every original duty. Constraints (5.10) make sure that

the binary variable ve is set to 1 if copy e is used in any selected feasible completion.

That only one copy per task may be used is modeled by Constraints (5.11). Moreover,

these constraints guarantee that deadheading is not possible on tasks which have been

canceled.

Constraints (5.12) are the same as Constraints (5.3), and model the dependency be-

tween the selected copies of consecutive tasks on the same rolling stock composition: if

copy f is used for task r(i), then task i is either canceled, or an appropriate copy from the

set Ei is selected for this task. Here we assume that stand-by rolling stock may be used

if necessary. That is, if a task has been canceled, then the next task on the rolling stock

composition is served by stand-by rolling stock and may therefore depart at every possible

departure time. Obviously, Constraints (5.12) are only required for tasks with multiple

copies. Some of the Constraints (5.12) are redundant if Le = ∅, but also if Le 6= ∅ they

can be redundant by Constraints (5.11), (5.14), and (5.15). This is true even in the linear

relaxation of OCRSPRT1. Note that in the example discussed above only Equation (5.4)

is needed, since Equations (5.5) and (5.6) are redundant.

An alternative formulation OCRSPRT2 can be obtained by replacing Constraints (5.10)

in OCRSPRT1 by

ve −
∑
k∈Kδ

bδekx
δ
k ≥ 0 ∀δ ∈ ∆,∀e ∈ E (5.16)

Proposition 5.2. (5.16) implies (5.10).

Proof. If ve −
∑

k∈Kδ bδekx
δ
k ≥ 0 ∀δ ∈ ∆, then∑

δ∈∆

(
ve −

∑
k∈Kδ

bδekx
δ
k

)
≥ 0⇒ |∆|ve −

∑
δ∈∆

∑
k∈Kδ

bδekx
δ
k ≥ 0



82 Railway Crew Rescheduling with Retiming

Proposition 5.3. The reverse implication of Proposition 5.2 is not true.

Proof. It suffices to give an example. Consider ∆ = {1, 2, 3}, E = {1, 2, 3} and
∑

k∈K b
δ
1kx

δ
k =

0.5 for δ ∈ {1, 2} and
∑

k∈K b
δ
1kx

δ
k = 0.0 for δ = 3. Then with v1 = 1/3 Constraint (5.10)

would hold, but Constraint (5.16) would be violated for δ = 1 and δ = 2.

Denote by LP1 the linear relaxation of model OCRSPRT1 and by LP2 the linear

relaxation of model OCRSPRT2.

Proposition 5.4. LP2 ≥ LP1

Proof. The proof follows directly from Propositions 5.2 and 5.3.

Proposition 5.4 states that using Constraints (5.16) results in a tighter LP relaxation.

However, |E| constraints of type (5.10) are replaced by |E||∆| constraints of type (5.16).

Thus the number of constraints of type (5.16) is much larger than that of type (5.10).

After several experiments with the solution approach described in Section 5.5, we

discovered that the approach of model OCRSPRT2 resulted in less uncovered tasks and

less retimed tasks than the approach of model OCRSPRT1. In principle the models have

the same integer solutions, but since we use an heuristic approach, we do not always

find an optimal solution. We also noticed that the problem is solved slower if we use

model OCRSPRT2 instead of model OCRSPRT1. However, we will accept the increase in

computation time to receive better results. So, in the remainder of this chapter we only

consider model OCRSPRT2.

5.5 Solution approach

The crew rescheduling problems arising at NS are of large scale containing about 1,000

duties for drivers covering in total more than 10,000 tasks. Our aim is to provide solutions

of good quality within a couple of minutes of computation time. Therefore, we will not

consider all original duties and all tasks, but we will extract core problems containing only

a subset of the duties and tasks. Moreover, we will use a Lagrangian heuristic embedded

in a column generation scheme very similar to the one proposed in Section 3.3. In this

chapter we will investigate two approaches, which use the same heuristic to explore the

core problems, but differ in the way the core problems are defined.

Our first approach is outlined in Figure 5.3. We first define an initial core problem

where retiming is not allowed. A solution for this core problem is computed using the

column generation based heuristic. If the computed solution covers all tasks we stop, oth-

erwise we iterate over the uncovered tasks and define one new core problem per uncovered
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Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

Explore the core problem
using the CG heuristic

Update the list of
uncovered tasks

List empty? STOP

Define the core problem
Select tasks which
may be retimed

Remove a task
from the list

YES

NO

Figure 5.3: Iterative neighborhood exploration with retiming (INER)

task. We use a neighborhood definition to select the tasks for which we allow retiming

and for constructing the core problems. The core problems are explored using the column

generation (CG) heuristic and the list of uncovered tasks is updated. We will refer to this

approach as iterative neighborhood exploration with retiming (INER). The difference to

the approach presented in Section 3.3 is that in INER retiming of some tasks is allowed

in the neighborhood exploration phase.

Our second method, outlined in Figure 5.4, does not use an iterative neighborhood

exploration. If the solution of the initial core problem contains some uncovered tasks, a

second core problem is constructed and solved. This second core problem is an extension

of the initial core problem, which is obtained by adding retiming possibilities. In the

remainder of this chapter we refer to this approach as extended core problem with retiming

(ECPR).

In both approaches INER and ECPR we relax the initial core problems by using only

Constraints (5.8), (5.9), (5.13) and (5.15). Note that in this model it can happen that

feasible completions are chosen that contain deadheading on tasks which are canceled.

However, in the next core problem which is considered in both approaches, these dead-

headings are not allowed anymore and a different solution will be computed. The reason

we decided to use the relaxed model in the initial core problem is that the computation

time for using OCRSPRT2 is too long, whereas the relaxed model can be solved within

acceptable time.
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Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

List empty? STOP

Create the extended
core problem by adding

retiming possibilities

Explore the extended
core problem using
the CG heuristic

YES

NO

Figure 5.4: Extended core problem with retiming (ECPR)

5.5.1 Initial core problems and neighborhoods for uncovered

tasks

The initial core problems in INER and ECPR are constructed in the same way as in

Section 3.5.1. The intention is to select the duties that are affected by the timetable

adjustments and to add some duties which contain some tasks close in space and time to

the modified tasks.

Given an uncovered task, we define a neighborhood which will be extended by retiming

possibilities in a subsequent step. We use the neighborhood definition of Section 3.5.2.

5.5.2 Core problems with retiming possibilities

The primary goal of retiming is to enable solutions where less tasks need to be canceled.

In order to limit the computational effort we allow retiming only for a subset of the

tasks. If we have an uncovered task which starts, for example, at ’s-Hertogenbosch, this

indicates that there is a shortage of crew in ’s-Hertogenbosch at the start time of the

task. By delaying some tasks starting at ’s-Hertogenbosch, we can possibly prevent the

shortage. Therefore, we propose the following procedure to determine this subset. Let

Nu be the uncovered tasks after solving the initial core problem. Then, for an uncovered

task i ∈ Nu we construct a set N c
i with tasks that may be retimed as N1

i ∪ N2
i , where

N1
i = {j ∈ N | sdep

j = sdep
i and tdep

j ∈ [tdep
i − p, tdep

i + p]} and N2
i is recursively defined as

the set of all tasks which are linked to tasks in N1
i or N2

i .

For INER N c = N c
i for the uncovered task i currently under consideration. For

the extended core problem in the ECPR approach the tasks that may be retimed are

N c = ∪i∈NuN c
i .
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Let N̈ contain all tasks covered by an original duty in the neighborhood of the uncov-

ered task under consideration when using INER . For the ECPR approach N̈ is the set of

tasks of the initial core problem. The core problems are then defined by a subset of the

original duties ∆̄ and a subset of the tasks N̂ . Here ∆̄ = {δ ∈ ∆ | δ is using a task i ∈
N̈ ∪N c} and N̂ is the set of all tasks used by at least one original duty δ ∈ ∆̄. Note that

due to overcovering and deadheading it can happen that for a task j ∈ N̂ not all duties δ

using task j are in ∆̄. By definition of ∆̄ retiming is not allowed for these tasks. Denote

by N̄ = {i ∈ N̂ | δ ∈ ∆̄ ∀δ ∈ ∆ using task i}.
Given ∆̄ and N̄ we define Ē = ∪i∈N̄Ei. Moreover, we denote by K̄δ the set of feasible

completions for duty δ which only use tasks i ∈ N̂ . The mathematical model for a core

problem is obtained by replacing N with N̄ , ∆ with ∆̄, E with Ē and K with K̄ in

Model (5.7)–(5.15), respectively.

5.5.3 Exploring the core problems

For computing near optimal solutions and lower bounds for the core problems we adapted

the column generation based heuristic presented in Section 3.4.3. In the remainder of

this section we discuss how we apply Lagrangian relaxation in combination with column

generation, how we generate feasible solutions, and how we modify the pricing problems.

Combining column generation and Lagrangian relaxation

A lower bound for a given core problem can be obtained by Lagrangian relaxation. In

this section we will present the details for model OCRSPRT2. We relax Constraints (5.8),

(5.16) and (5.12) of the core problems in a Lagrangian fashion using non-negative multi-

plier vectors λ, µ and η, respectively.

For simplicity we introduce γe =
∑
{d∈Ē | e∈L̄d} ηd −

∑
{d∈Ē | e∈B̄d} ηd. Then, the

Lagrangian subproblem is:

Θ(λ, µ, η) = min
∑
i∈N̄

λi +
∑
δ∈∆

∑
k∈K̄δ

(cδk +
∑
e∈Ē

µδeb
δ
ek −

∑
i∈N̄

λia
δ
ik)x

δ
k

+
∑
i∈N̄

(fi − λi −
∑
e∈Ēi

ηe)zi +
∑
i∈N̄

∑
e∈Ēi

(ge + γe −
∑
δ∈∆̄

µδe)ve (5.17)

s.t. (5.9), (5.11), (5.13), (5.14) and (5.15)

For given vectors λ, η and µ, Θ(λ, η, µ) can be calculated with a simple procedure.

First, we determine the values for all xδk variables. To ensure that Constraints (5.9)

are not violated, for every duty δ ∈ ∆̄ we set xδk equal to 1 for exactly one k ∈
arg min

{
c̄δk(λ, η, µ)

∣∣ k ∈ K̄δ
}

. Here c̄δk(λ, η, µ) = (cδk +
∑

e∈Ē µ
δ
eb
δ
ek −

∑
i∈N̄ λia

δ
ik) is the

Lagrangian reduced cost of feasible completion k. The values of the zi and ve variables
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can be determined independently from the xδk variables. The algorithm in Figure 6 de-

termines for every task i ∈ N̄ the values for the variables zi and ve (∀e ∈ Ēi) such that

Constraints (5.11) are not violated.

1 For all e ∈ Ēi determine ḡe = (ge + γe −
∑

δ∈∆̄ µ
δ
e);

2 Select e∗ ∈ arg min
{
ḡe
∣∣e ∈ Ēi};

3 if ḡe∗ ≤ fi − λi −
∑

e∈Ēi ηe then

4 Set zi = 0, ve∗ = 1 and for all e ∈ Ēi \ {e∗}, set ve = 0

5 else

6 Set zi = 1 and for all e ∈ Ēi, set ve = 0

Algorithm 6: Algorithm to determine zi and ve

The Lagrangian dual problem is to find the best Lagrangian lower bound Θ∗:

Θ∗ = max Θ(λ, η, µ), λ ≥ 0, η ≥ 0 and µ ≥ 0 (5.18)

Since the number of feasible completions can be enormous for some original duties, we

combine Lagrangian relaxation with column generation. Instead of considering all feasible

completions we consider only a subset in a restricted master problem (RMP). Denote by

K̄δ
n the feasible completions present in the nth RMP. A lower bound Θ∗n for the nth RMP

is obtained by subgradient optimization (see e.g. Fisher (1981); Beasley (1993)).

Let λn, ηn and µn be the vectors of the Lagrangian multipliers corresponding to Θ∗n.

In the pricing problems of our column generation algorithm we check, per original duty,

if feasible completions exist that are not in the RMP, but have lower Lagrangian reduced

cost than the feasible completions in the RMP. We will refer to them as promising feasible

completions. The pricing problems are formulated as shortest path problem with resource

constraints (see Section A.1.3). If promising feasible completions exist we add them to

the RMP. Let pδn = min{c̄δk(λ, η, µ) | k ∈ K̄δ} be the solution value of the pricing problem

for duty δ and let rδn = min{c̄δk(λ, η, µ) | k ∈ K̄δ
n} be the smallest Lagrangian reduced

cost of a feasible completion for duty δ in the n-th RMP. After solving the pricing

problems for all duties δ ∈ ∆̄ we can compute a lower bound for the core problem as

LBn = Θ∗n +
∑

δ∈∆̄(pδn − rδn).

Feasible solutions

Next to a good lower bound, we are especially interested in near optimal feasible solutions.

Based on Lagrangian multiplier vectors λ, η and µ we try to generate feasible solutions

with a Lagrangian heuristic called GREEDY shown in Figure 7.

In procedure GREEDY, we select for every duty the best feasible completion. If it

is the first time that a certain task appears in a selected feasible completion, the copy
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which is used for that task, will be the only copy that is allowed to be used in all duties.

So after a certain copy for a task has been selected, all feasible completions which use

another copy of the same task will be ignored. Moreover, we ignore feasible completions

which use copies, which would violate the minimum idle time constraints (5.12). Since

every set K̄δ
n contains the artificial completion without any copies, it is ensured that for

every duty at least one feasible completion is left to select.

If, after the feasible completions of the duties have been selected, still some tasks are

uncovered, we check if the idle stand-by duties can cover those tasks. A stand-by duty is

idle if the selected feasible completion does not cover any tasks.

GREEDY does not always find a feasible solution, however in most cases it will. Only

in the extraordinary case that a crew member is assigned to be a passenger on a train

which is not covered by a driver, the solution is infeasible. This condition is checked in

Line 18.

1 Order the original duties δ ∈ ∆̄ by increasing reduced cost of the xδk variables that

were set to 1 in the Lagrangian subproblem solution;

2 Set zi = 1 for all i ∈ N̄ and set ve = 0 for all e ∈ Ē;

3 Set λ̂ = λ, η̂ = η and µ̂ = µ;

4 foreach δ ∈ ∆̄ do

5 Choose k∗(δ) ∈ arg min{c̄δk(λ̂, η̂, µ̂) | k ∈ K̄δ
n} and set the corresponding

xδk∗(δ) = 1;

6 Set λ̂i = 0 and zi = 0 for all i ∈ N̄ with aδik∗(δ) = 1;

7 foreach e ∈ Ē with bδek∗(δ) = 1 do

8 Define E∗: the set of copies which, by using copy e, are not allowed to be

used;

9 Define K∗: the set of completions which use at least one copy d ∈ E∗;
10 Ignore ∀δ ∈ ∆̄ the completions k ∈ K∗ out of K̄δ

n;

11 Set ve = 1 and η̂e = 0;

12 foreach i ∈ N̄ do

13 Set λ̂i = fi, if zi = 1;

14 Construct the set of idle stand-by duties ∆̄I = {δ ∈ ∆̄R | aδik∗(δ) = 0 ∀i ∈ N̄};
15 foreach δ ∈ ∆̄I do

16 Set xδk∗(δ) = 0;

17 Repeat lines 5 until 11;

18 Check if
∑

e∈Ēi

∑
δ∈∆̄

∑
k∈Kδ bδekx

δ
k = 0 for all i ∈

{
i ∈ N̄ | zi = 1

}
. If this condition

holds, a feasible solution is found.

Algorithm 7: Procedure GREEDY to construct feasible solutions
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Location ID Time Type

Abcoude Ac:1 11:00-14:00 two sided blockage, some trains are rerouted

’s-Hertogenbosch Ht:1 15:30-18:30 two sided blockage

Zoetermeer Ztm:1 08:00-11:00 reduced number of trains

Table 5.2: Information about the considered disruptions.

Solving the pricing problems

For every duty in a core problem, we construct a directed acyclic graph that contains all

possible feasible completions. The nodes represent arrivals or departures of copies derived

from the tasks. An arc goes from an arrival node to a departure node if it is possible to use

the corresponding copies after each other in a feasible completion. Besides the cost, every

arc has two additional parameters: A time consumption and a boolean value indicating

if the arc can represent a meal break. The problem of finding the path corresponding to

the feasible completion with the smallest Lagrangian reduced cost is models as a shortest

path problem with resource constraints (see Section A.1.3). For that purpose, we have

adapted the generic dynamic programming algorithm presented in Irnich and Desaulniers

(2005).

5.6 Computational results

We will evaluate our two new approaches with retiming INER and ECPR on three dis-

ruption scenarios, Ac:1, Ht:1, and Ztm:1. These scenarios are based on past real life

disruptions. Some information about the scenarios is presented in Table 3.1. Further-

more, we used a crew schedule from NS that was planned for some workday in September

2007. In order to evaluate the benefits of retiming, we compare our new methods with the

method proposed in Section 3.3. We will refer to the latter as Column Generation with

Dynamic Duty Selection (CGDDS). Moreover, we will investigate the effect of considering

stand-by duties. For that reason, we determine two cases. In the first case we do not use

any stand-by duty and in the second case we use a set of 46 stand-by duties.

All approaches have been implemented in C++. The tests have been performed under

Windows XP on a quad core 2.99 GHz CPU machine with 3.25 GB RAM memory.

However, only a single core was used in the tests.
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5.6.1 Parameter settings

First of all, we have some settings which are required to determine the core problems. In

the definition of N1 we set p = 30 minutes. For every task in N̄ c we derive four copies

with delays de equal to 0,1, 3 and 5 minutes.

In the column generation based heuristic, we use the following settings. For partial

pricing we set maxPP = 0.3. For calling GREEDY we set maxMV = 100. In the root

node of our depth-first search maxItCG = ∞, in all other nodes we use maxItCG = 10.

Furthermore, maxFix was set to 0.05.

5.6.2 Cost parameters for the objective function

We use the following settings to account for the different aspects in the objective function.

First, the cost of changing a duty is set to 400. The cost for sending home a stranded

driver by taxi is 3, 000. Using a task in a feasible completion costs 0 if the corresponding

original duty was already covering that task, and 50 otherwise. Moreover, the cost of a

transfer is 0 if the transfer was already in any original duty, and 1 otherwise. The usage

of new repositioning tasks costs 1,000. The penalty for retiming a task is 200 per minute

of delay.

The penalties fi for canceling task i depend on the characteristic of the task. We say

a task is of type A-B if sdep
i 6= sarr

i and of type A-A if sdep
i = sarr

i . We set fi = 20, 000

if task i is of type A-B and fi = 3, 000 otherwise. This is motivated by the overall

disruption management process. If only tasks of type A-A are canceled, the crew schedule

is compatible with the underlying rolling stock schedule under the assumption that the

rolling stock assigned to the canceled A-A tasks can remain idle at the platform or can

be shunted to a nearby shunt yard and pulled out again for its next trip.

5.6.3 Numerical results

For the numerical results we use some abbreviations in Tables 5.3 and 5.4: “It” is the

iteration number of the general solution approach as given in Figures 5.3 and 5.4. The

costs in the columns “LB” and “UB” respectively are the lower bound on the optimal

solution and the cost of the best found solution of the core problem. “Gap” represents the

relative difference between the best solution and the lower bound of the core problem. The

column “Sol” represents the cost of the total solution: the cost of the core problem (“UB”)

plus the rescheduling cost of the other duties that were selected in previous iterations,

and that are needed to complete the solution. The total computation time in seconds

including the current iteration is given in the column “TT”. The columns “A-B” and

“A-A” represent the number of uncovered tasks for the respective types. The last two

columns give information about the used retimed copies. The column “DT” displays the
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number of delayed tasks and the column “TD” represents the total number of delayed

minutes.

With INER and ECPR we use formulation OCRSPRT2. We compare the results

with the CGDDS method. Since the rescheduling model without retiming is used in the

initial core problem of all three approaches, the results of the first iteration are the same.

Therefore, we report this result only once for the method CGDDS in Tables 5.3 and 5.4.

A remark must be made that we were not able to use the ECPR approach with p = 30

in the definition of N1 since it ran out of memory. For Ac:1 (∗) we had to set p = 5 and

for Ztm:1 (†) we had to set p = 20.

In Table 5.3 we show the results of the three approaches in case we use the 46 stand-by

duties and in Table 5.4 we show the results without using stand-by duties. By using stand-

by duties we notice that the ECPR method has in all cases the best solution. However,

the computation times of this approach are more than three times longer compared to

the other two approaches. In terms of uncovered tasks the INER approach performs the

same as ECPR, except for case Ht:1 where in the solution of INER an additional task is

delayed. By delaying at most 3 tasks, both retiming approaches have in cases Ht:1 and

Ztm:1 less uncovered tasks than the CGDDS approach. In case Ac:1, retiming did not

result in better crew schedules. However, a remark must be made that the solution of the

method CGDDS for Ac:1 is a crew schedule which is not compatible with the adjusted

timetable since it has one driver deadheading on a canceled task.

The uncovered task in Ac:1 is rerouted due to the disruption and takes half an hour

longer. The crew member which was originally assigned to this task does not have the

knowledge of the new route and is therefore not allowed to drive this train. This task has

to be performed exactly at the moment of rescheduling. Therefore, it is not possible to

cover the task without retiming it. Because of the minimum transfer time of 10 minutes,

the task must be retimed with at least 10 minutes. The retiming approaches INER and

ECPR only use a maximum retiming possibility of 5 minutes and were therefore not able

to cover the task. In additional tests in which INER and ECPR also constructed retimed

copies of 10 minutes delay, it was still not possible to cover all tasks.

If we do not use any stand-by duties (see Table 5.4), ECPR resulted twice in the best

solution and INER found once the best solution. In terms of uncovered tasks and delayed

minutes, the methods performed equally well. Except for case Ac:1, retiming of at most 2

tasks results in less uncovered tasks. Again the computation time of ECPR is by far the

largest and INER has a computation time which is at most 2 minutes longer compared

to CGDDS.

We notice that the solutions in which stand-by duties are used have lower costs, but if

we only consider the number of uncovered tasks and the number of delayed tasks, it was

not necessary to use the stand-by duties. Moreover, for Ht:1, the use of stand-by duties

has increased the number of delayed tasks.
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5.7 Conclusions and future research

We presented two approaches to solve railway crew rescheduling with retiming. We have

compared our new approaches with an approach that does not allow retiming. In 4 out

of the 6 cases (Ht:1 and Ztm:1, both with and without stand-by drivers), the new ap-

proaches found solutions with less canceled tasks. Moreover, the observed delay that was

introduced into the timetable is very small, which makes it likely that those solutions can

be implemented in practice. The computation times of the iterative neighborhood explo-

ration with retiming (INER) approach are within a range that should make it applicable

within a decision support system for disruption management.

In this chapter we have limited ourselves to consider only train drivers. However, in

a disrupted situation conductors need to be rescheduled as well. This could be done as

in Stojković and Soumis (2005) and Abdelghany et al. (2008) by using multiple tasks per

trip that represent roles in the optimization model.

In future work conflicts between trains due to retiming decisions should be taken into

account as well. We believe that the presented model and solution approaches could be

extended into that direction without sacrificing computation time too much.

Disruption management takes place in a highly uncertain environment. Therefore it

can only be estimated how long it will take e.g. until a broken switch has been repaired.

This means that, at the point in time when the first rescheduling decisions must be made,

it is not certain for how long the timetable will be adjusted during the rest of the day.

Therefore the rescheduling process of the timetable, the rolling stock and the crew duties

may have to be carried out several times, possibly with a rolling horizon, if the duration

of the disruption turns out to be different than the initial estimate. New models and

algorithms that take the uncertainty in the duration of the disruption into account are

subject for further research.





Chapter 6

Railway Crew Rescheduling under

Uncertainty

6.1 Introduction

Effective disruption management is a key to a good operational performance for passenger

railway companies. Within the disruption management process (see Chapter 2 for a

detailed discussion), the ability to reschedule crew is crucial. In this thesis we proposed

a new approach for the operational crew rescheduling problem. However, this approach

assumes that an accurate estimate about the duration of the disruption is available at the

time the rescheduling is done. The same holds for the approach of Rezanova and Ryan

(2010) and models developed for crew rescheduling in the airline industry (see Clausen

et al. (2010) for a recent literature review). However, this assumption is not realistic.

Example 6.1

Let us go back to Example 2.1 taking place in the north of the Netherlands. Due to a

broken power supply, no train traffic is possible between Hoogeveen (Hgv) and Beilen (Bl)

from 7:10 on. It is estimated that the repair works will last between 3 and 4 hours. The

timetable will be updated according to a pattern described by an emergency scenario. In

this case, the trains of the train lines 500, 700, and 9100, operated between Zwolle (Zl)

and Groningen (Gn), will be turned at intermediate stations. In Figure 6.1 we show how

the timetable between Zwolle and Groningen would be updated. Since the repair works

will take at least 3 hours the turning pattern will be applied for sure for three southbound

and three northbound trains of each of the three involved train lines. For the trains in

the fourth hour after the start of the disruption, it is uncertain if the trains will take their

normal routes (dashed lines in Figure 6.1) or if they will be turned as well (dotted lines

in Figure 6.1).
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Figure 6.1: Time space diagram showing how the timetable between Groningen (Gn) and

Zwolle (Zl) would be updated, if the route between Beilen (Bl) and Hoogeveen (Hgv) is

blocked.

Current crew rescheduling approaches would deal with this situation as follows. At

time point t1 the duration of the disruption is estimated and the modified timetable cor-

responding to this estimate is used as input for the crew rescheduling problem. Actually,

in practice this estimate is not an estimate in a probabilistic sense, instead often the most

optimistic case is assumed. Given our example this means, that it is estimated that the

blockage will be over by 10:10. Therefore, the modified timetable that is given as input to

the crew rescheduling assumes that the trains 727, 736, 529, 538, 9129 and 9138 can run

between Beilen and Hoogeveen as planned and therefore the corresponding tasks 727/c,

736/a, 529/e, 538/a, 9129/a, 9138/a will be considered in the OCRSP. Recall from Sec-

tion 2.5.1, that 727/c refers to the third task of train 727. However, it might happen that

at time point t2, 9:40 in the example, new information becomes available saying the route

will be blocked until 11:10. This means that the timetable has to be updated again and

that the trains 727, 736, 529, 538, 9129 and 9138 must also be turned at intermediate

stations. At t2 the crew schedule would be rescheduled again given the new information,

meaning the rerouted tasks 727/c r, 736/a r, 529/e r, 538/a r, 9129/a r, 9138/a r would be

considered in the OCRSP.

If at t1 the uncertainty about the duration of the disruption, and therefore the uncer-

tainty about the timetable that will be operated, is not taken into account, we will refer

to the above approach as the expected scenario approach. In order to take the uncertainty
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into account at time t1, we develop in this chapter a quasi robust optimization approach,

which uses ideas from robust optimization.

6.2 Problem description

Most symbols used in this chapter will have the same meaning as in Chapters 3–5. How-

ever, in order to present a convenient notation, the meaning of some symbols has been

changed.

We consider crew rescheduling under uncertainty as a two-stage problem. In Stage 1 at

t1 an estimate of the duration h1 of the disruption is known. In the case of a malfunctioning

switch for example, this estimate could be based on the initial judgment of a repair crew.

Based on the estimated duration, the original timetable T0 will be adjusted according to

the unavailable infrastructure. The result is an adjusted timetable T1. Then the crews are

rescheduled according to this adjusted timetable. Later, at time t2 it becomes clear when

the infrastructure can definitely be used again. Often this is later than the expected time

t1 + h1. Usually this means that timetable T1 cannot be operated and instead another

adjusted timetable T2 will be operated. This could mean that in Stage 2 at time t2 the

drivers need to be rescheduled again according to T2.

We assume that the timetable that will be operated in the end is one of a small

number of possibilities. We refer to these possibilities as scenarios S, indexed by s, where

s̄ corresponds to the scenario which would be used for the rescheduling in Stage 1 at t1
in an expected scenario approach. Moreover, let Ns be the tasks in scenario s ∈ S. The

crew rescheduling problem under uncertainty can be stated as follows. Given a scenario

s̄, and a set of alternative scenarios S \ s̄, find a new crew schedule valid for s̄ such that

the sum of the cost of this schedule and the expected cost for the additional rescheduling

in the second stage at t2 is minimized. Note that this implies that a probability p(s) is

given for all scenarios s ∈ S. In this chapter we will assume that t2 is the same for all

scenarios.

Given that the timetable modifications will follow some structured emergency scenar-

ios, we can assume the following relationship between all scenarios. Given one reference

scenario, in our case the optimistic scenario s̄, all other possible scenarios can be obtained

by removing or rerouting tasks of the reference scenario s̄. We will refer to the tasks

that are rerouted or canceled in scenarios s ∈ S \ s̄ with respect to scenario s̄ as critical

tasks. If a critical task i is rerouted in a scenario s 6= s̄ we refer to the associated rerouted

alternative as i(s) ∈ Ns. Formally stated, a task i(s) is rerouted with respect to task

i ∈ N if tdep
i(s) 6= tdep

i , or tarr
i(s) 6= tarr

i , or sarr
i(s) 6= sarr

i , or task i(s) takes a different route in the

railway network. Let D(Ns) be the set of critical tasks that are rerouted or canceled in
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Ns. Furthermore, we assume that the scenarios S are ordered such that D(Nr) ⊂ D(Ns)

if r < s ∀ r, s ∈ S. By definition D(Ns̄) = ∅. Moreover, let s be the last s ∈ S.

For application in practice it would be necessary that dispatchers can specify the set

of possible scenarios. We think that experienced dispatchers are able to indicate a best

and a worst case scenario. However, we are not sure if dispatchers are able to specify all

possible scenarios and can estimate the required probabilities in a practical setting. This

should be kept in mind when considering mathematical models and solution approaches

for railway crew rescheduling under uncertainty.

6.2.1 Optimization under uncertainty

In many optimization problems one has to deal with some kind of uncertainty. Famous

examples are e.g. the weather conditions in the farmer’s problem, the sales numbers in the

newsvendor (newsboy) problem (see e.g. Birge and Louveaux (1997) for both problems),

and the return of a capital investment in the portfolio selection problems (see Markowitz

(1952) for a classical reference). We will briefly review three concepts that have been

developed in order to deal with uncertainty.

Two-stage stochastic programming with recourse minimizes the sum of the cost for the

first stage solution plus the expected cost for the recovery in the second stage. An assump-

tion in stochastic programming is that the probability for each of the considered scenarios

is known. For more information on stochastic programming we refer the interested reader

to Birge and Louveaux (1997) and Kall and Wallace (1994). Crew rescheduling under un-

certainty fits well into the framework of stochastic programming with recourse. However,

there are two concerns about the applicability of stochastic programming. First, we are

not sure if dispatchers are able to specify the possible scenarios the required probabili-

ties in the disrupted situation. Second, two-stage stochastic programming problems with

integer first and second stage decision variables are in general very difficult to solve (see

Klein Haneveld and Van der Vlerk (1999)).

Robust optimization tries to find the best solution that, without any modifications or

recovery actions, stays feasible under all specified scenarios. For a two-stage problem such

as crew rescheduling under uncertainty this would mean that when the realized scenario

gets known at time t2 it is not allowed to reschedule again. Therefore robust optimization

would compute the best feasible crew schedule for the timetable corresponding to the

longest duration of the disruption. This crew schedule will not be changed at time t2
which in turn means that the timetable corresponding to the longest duration will be

operated in any case. This would be unacceptable from a passenger point of view. Thus

it is obvious that robust optimization is of no use for crew rescheduling under uncertainty.

Recoverable robustness was introduced by Liebchen et al. (2007) and Liebchen et al.

(2009). The aim of the notion of recoverable robustness is to overcome some shortcomings
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of “classic ” robust optimization by considering recovery actions. The building blocks in

concept of recoverable robustness are: (1) an original optimization problem, (2) a set of

scenarios representing the imperfection of the information in the original optimization

problem, and (3) (limited) recovery possibilities. The limited recovery possibilities are

specified via admissible recovery algorithms. Given an original optimization problem, a

set of possible scenarios and admissible recovery algorithms. A solution X to the original

optimization problem is called recovery-robust if a feasible solution can be recovered from

X with one of the admissible algorithms in all specified scenarios. Liebchen et al. (2009)

present e.g. how an upper bound on the recovery cost can be integrated within this con-

cept. Moreover, they show that some classes of recoverable robust optimization problems

can be solved by linear programming. However, the concept of recoverable robustness has

not been applied in a situation comparable to crew rescheduling under uncertainty yet.

6.2.2 Related work

The consideration of uncertainty during resource rescheduling was suggested in Rosen-

berger et al. (2003) as a subject for future research. However, till today there are hardly

any papers on this topic in the scientific literature. Nielsen (2008) presents a rolling

horizon approach to rolling stock rescheduling that is designed to take updates of the

timetable into account. For rolling stock rescheduling this approach seems to be promis-

ing and is practical because the simpler structure of rolling stock duties enables the author

to derive desired situations at the end of each horizon. Because the crew duties in the

crew schedule of NS cover relatively large distances it seems difficult to apply a rolling

horizon approach in our case.

Within crew scheduling, robustness has so far only been considered in the planning

phase. Robust crew scheduling aims at making the crew schedule more robust against

uncertainties in the operation. Two aspects of robustness can and should be considered:

The first aspect, sometimes referred to as stability, is the ability of a crew schedule to

absorb or to limit the propagation of delays without recovery actions being taken. The

second aspect, called recoverability, takes common recovery actions into account when

constructing a crew schedule. There have not been notable publications on robust crew

scheduling for passenger railways yet. For research on the similar airline problem we refer

to Ehrgott and Ryan (2002), Schaefer et al. (2005), Yen and Birge (2006), Shebalov and

Klabjan (2006), and Weide et al. (2010).

6.3 Quasi robust optimization approaches

In Section 6.2.1 we have reviewed three concepts for optimization under uncertainty:

Robust optimization, two-stage stochastic programming, and recoverable robustness. The
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first two do not seem to be appropriate for crew crew rescheduling under uncertainty.

Robust optimization is too conservative, two-stage stochastic programming needs a lot

of information and is computationally very difficult. This motivates investigating a quasi

robust optimization approach which offers two advantages. First of all, less information

needs to be provided by the dispatchers, since only an optimistic (best case) scenario s̄

and a worst case scenario s need to be specified. The second advantage is that we believe

that the quasi robust optimization approach can be solved with less computational effort,

which is very important given the practical disruption management setting.

The idea behind quasi robust optimization approaches is to use feasible completions

that are, in some sense, robust against all scenarios and in this way minimize the cost

for rescheduling in the second stage at time t2 if a scenario other than s̄ occurs. An-

other argument in favor of this approach is that, as we will show, it requires only small

modifications in the solution method presented in Chapter 3.

6.3.1 Mathematical model

Let us first give an informal definition of quasi robust feasible completions. A feasible

completion is called quasi robust if all tasks that are used by this feasible completion in

scenario s̄ can also be used in every other scenario. A task is used by a feasible completion

if the driver is driving this task or if the driver is deadheading on this task. If a feasible

completion k, valid for scenario s ∈ S is using task i ∈ Ns, then bδik = 1, otherwise bδik = 0.

Moreover, aδik = 1 if the driver associated with a feasible completion is allowed to drive

task i, otherwise aδik = 0.

Definiton 6.2. A feasible completion γ in the second stage OCRSP, in the case scenario s

occurs, is a recovery alternative for a feasible completion k from the first stage OCRSP

if bδiγ = 1 for all i ∈ Ns̄ with i(s) ∈ Ns and bδik = 1.

Definiton 6.3. A feasible completion k is called quasi robust if there exists a recovery

alternative γ for all s ∈ S.

Note that by Definition (6.3) every feasible completion that does not use any critical

task is quasi robust. Another observation concerns critical tasks i that are canceled in

scenario s and are of type A-A, meaning that the departure station sdep
i is the same as

the arrival station sarr
i . A feasible completion containing only critical tasks of type A-A

is quasi robust, since we can just leave out these tasks in the recovery alternative. Note

that this holds because we have no limitations on the length of a transfer. Given the

route blockage between Hoogeveen and Beilen and the possible scenarios as presented in

Example 6.1 let us give an example of the concept of quasi robust feasible completions.

Example 6.4

Figure 6.2.a shows the planned duty from crew base Groningen (Gn). Due to the route
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blockage the task 724/a from Groningen to Zwolle (Zl) is rerouted and returns to Gronin-

gen. Therefore, the driver cannot follow his planned duty. A feasible completion of the

duty under the optimistic scenario s̄, is shown in Figure 6.2.b. The optimistic scenario s̄

assumes that the route blockage lasts until 10:10. Since this completion does not cover

any of the critical tasks it is a quasi robust completion. The completion in Figure 6.2.c is a

non-robust one. It covers the critical task 736/a from Groningen to Zwolle. If scenario s,

meaning the route will be blocked until 11:10, occurs, this task is rerouted (736/a r) and

ends in Groningen and the driver will not be able to get to Zwolle in time to deadhead

on task 538/b from Zl to Amersfoort (Amf). Figure 6.2.d shows a quasi robust feasible

completion covering this critical task. Its recovery alternative that is valid in s is shown

in Figure 6.2.e.

a) 724/a 724/b /b 5830/a MB 5841/a 743/b 9145/a

Gn Zl Amf Amf Asd Asd Amf Zl Gn

b)
724/a r Taxi 530/b MB 732/c 743/a 743/b 9145/a

Gn ZlGn AmfAmf Hfdo Amf Zl Gn

c) 724/a r 728/a r 732/a r 736/a MB 538/b /c /c /d

2845

747/b 9149/a

Gn Gn Gn Gn Zl Zl Amf Ut Amf Zl Gn

d) 724/a r 728/a r 732/a r 736/a MB 542/b 747/b 747/c

Gn Gn Gn Gn Zl Zl Amf Amf Zl Gn

e) 724/a r 728/a r 732/a r 736/a r MB 9142/a 542/b 747/b 747/c

Gn Gn Gn Gn Gn Gn Zl Amf Amf Zl Gn

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Time of rescheduling

task deadheading MB meal break

modified or rerouted task Taxi deadheading using a taxi

Figure 6.2: Examples of feasible completions for an affected original duty from crew base

Groningen (Gn).

Based on the definition of quasi robust feasible completions we derive the quasi ro-

bust operational crew scheduling problem (QROCRSP). Denoting the set of quasi robust

feasible completions for original duty δ by Rδ ⊆ Kδ we can state the strong QROCRSP

as:
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min
∑
δ∈∆

∑
k∈Rδ

cδkx
δ
k +

∑
i∈Ns̄

fizi (6.1)

s.t.
∑
δ∈∆

∑
k∈Rδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ Ns̄ (6.2)∑

k∈Rδ
xδk = 1 ∀δ ∈ ∆ (6.3)

xδk, zi ∈ {0, 1} ∀δ ∈ ∆, ∀k ∈ Rδ,∀i ∈ Ns̄ (6.4)

The quasi robust optimization problem given by Formulation (6.1)–(6.4) is almost

the same as the classical operational crew rescheduling problem OCRSP given by For-

mulation (3.1)–(3.4). The only difference is that we only consider quasi robust feasible

completions Rδ.

We can derive a variant by requiring the use of quasi robust feasible completions only

for the infeasible original duties ∆C . The resulting weak QROCRSP can be derived from

Formulation (6.1)–(6.4) by replacing the sets Rδ with Kδ, where

Kδ =

{
Rδ if δ ∈ ∆̄C

Kδ otherwise.

Solving the strong QROCRSP in the first stage at time t1, gives the guarantee that

a recovery alternative exists for each original duty. If at time t2 it becomes certain that

the timetable will be operated according to scenario s ∈ S we know that a crew schedule

constructed from the recovery alternatives covers all tasks i ∈ Ns. Therefore, every

solution X to the strong QROCRSP is recovery-robust (see e.g. Liebchen et al. (2007))

against the scenarios in S given a recovery algorithm that finds the recovery alternative

for the feasible completions in X in the second stage OCRSP at time t2.

6.3.2 Solution approach

We will solve the quasi robust crew rescheduling problem with an adapted version of the

column generation based heuristic proposed in Chapter 3. Because for some or all original

duties we consider only quasi robust feasible completions, we are interested in modifying

the pricing problems such that only quasi robust feasible completions are generated.

The column generation pricing problem

Recall from Section 3.4.2 that we have modeled the pricing problems for every original

duty δ as a shortest path problem with resource constraints (SPPRC) on a directed acyclic
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graph. While computing a feasible completion we need to be able to check if it is quasi

robust. In other words we must be sure that a recovery alternative for k exists for all

scenarios s ∈ S.

By construction of the pricing problem graphs, any feasible completion corresponds to

a path in a pricing problem graph. Let narr
i (ndep

i ) be the arrival (departure) node of task

i. A task j is said to be used directly after task i in a feasible completion if narr
i is directly

followed by ndep
j in the corresponding path. We denote all predecessor (successor) nodes

of node n by pred(n) (suc(n)).

We have to modify the pricing problems in order to guarantee the existence of a

recovery alternative. This will be done by (i) modifying the graphs and (ii) considering

additional resources in the SPPRC. The latter is necessary in order to account for the

meal break rule. Therefore we use five additional arc properties as shown in Table 6.1

next to the cost. These arc properties are used to define the resource extension functions

(REFs) for the two resources tcp and tcpa which measure for every subpath the time spent

in the current part (before or after the meal break) of the associated duty. In Table 6.2

we present the corresponding REFs and resource windows. Before the preprocessing we

set tca = tc, mba = mb, and taba = 0 on all arcs.

Property Description

tc The time consumption in minutes.

tca The time consumption in minutes in the recovery alternative.

mb Indicates if the arc corresponds to a meal break.

mba Indicates if the arc corresponds to a meal break in the recovery alternative.

taba Time in minutes after the meal break in the recovery alternative.

Table 6.1: Information about the arc properties used in the SPPRC.

Resource Resource extension function (REF) Resource window

tcp f tcp
ij (Ti) =

{
0 , if tmb

ij = 1

T tcp
i + ttcij , otherwise

[0, 330]

tcpa f tcpa
ij (Ti) =

{
ttabaij , if tmba

ij = 1

T tcpa
i + ttcaij , otherwise

[0, 330]

Table 6.2: Information about the resources and the corresponding REFs used in the

SPPRC.

For every critical task, except those of type A-A mentioned above, starting with the

one with the earliest departure time, we solve an auxiliary shortest path problem and
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then modify the pricing problem graphs according to the outcomes. For the auxiliary

problem, we start for every original duty with an auxiliary graph that is identical to the

graph that would be used in the pricing problem in the OCRSP. Then we remove the

arcs corresponding to using a critical task i that is canceled in s. For a critical task i that

will be rerouted in some scenarios s ∈ S we replace the arcs representing using this task

by the arcs representing using the rerouted alternative. Moreover, we apply this also to

critical tasks which start before the end time of critical task i.

After these graph modifications we can easily determine for every predecessor node

h of ndep
i all successor nodes of narr

i that can be reached from h. However, we are not

interested in reachability alone, but we are also interested in information about how a

successor node can be reached. To be more precise, we would like to find the path from

h to a successor node j ∈ suc(narr
i ) with the smallest time after a possible meal break.

This information is represented by the tcp resource. Hence, we solve an auxiliary shortest

path problem where we only use the resource tcp and the corresponding REF. In the label

setting algorithm in every node we only keep one label with the minimum value of tcp.

Then we modify the pricing problem graph as follows. We remove the arcs corre-

sponding to the use of task i and replace them for every predecessor h by a copy for

every successor of narr
i that can be reached from h. We copy the original transfer arcs

and set the resource consumptions for tca = 0 and the property mba = 0. On the arcs

corresponding to task i we set tca, mba, and taba according to the resource consumption

of the path found when solving the auxiliary problem.

Example 6.5

In Figure 6.3 we show an example of a part of a pricing problem graph before (Figure 6.3a)

and after (Figure 6.3b) the preprocessing, where i is a critical task that will be canceled

in scenario s. The departure node ndep
i of task i has two predecessors, pred(ndep

i ) =

{narr
h , narr

g } and narr
i has three successors, suc(narr

i ) = {ndep
j , ndep

k , ndep
l }. From narr

h only

ndep
k can be reached via task m in the auxiliary problem when the tasks corresponding

to task i have been removed. For this relation we introduce new nodes ndep
i′ and narr

i′ and

the necessary arcs. From narr
g , ndep

k and ndep
l are reachable in the auxiliary problem. Note

that ndep
j cannot be reached from any predecessor of ndep

i .

It becomes clear from above example that the number of nodes and arcs in the pricing

problem graphs can increase significantly if many successors of the arrival node of a

critical task can be reached from many predecessors of the departure node of the critical

task. This has consequences for applying the concept of quasi robustness on instances of

practical relevance. This will be shown in Section 6.4.
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Figure 6.3: A part of a pricing problem graph before and after the preprocessing for

critical task i that will be canceled in scenario s.
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6.4 Numerical results

In this section we will test two variants of a quasi robust optimization approach for crew

rescheduling under uncertainty on instances of practical relevance using crew schedules

from NS. The two variants are the weak (WQR) and the strong (SQR) quasi robust

optimization approach based on the weak QROCRSP and the strong QROCRSP mod-

els presented in Section 6.3. We will compare these new approaches with the expected

scenario (ES) approach.

The quasi robust optimization approaches have been implemented in C++ and com-

piled with the Visual C++ 9.0 compiler. We used a Intel Pentium D processor with 2

GB RAM clocked at 3.4 GHz for the test runs. The parameters for the objective func-

tion is the first stage as well as in the second stage problem are the same as specified in

Section 3.6.

Based on instances for the OCRSP we have constructed five instances for crew reschedul-

ing under uncertainty. Each of the five instances has two scenarios, namely s̄ and s. Note

that for the quasi robust optimization approach the number of scenarios does not matter.

What matters, however, is the number of critical tasks. In Tabel 6.3 we present some

information about the five instances. For every instance we present the expected (opti-

mistic) length of the disruption and the time the disruption lasts longer in scenario s.

Moreover, we show the resulting number of critical tasks.

expected considered Critical tasks

Instance duration extension Canceled in s Rerouted in s Total

Ac C 2:00 0:30 4 4 8

Bl A 3:00 1:00 0 6 6

Bl B 3:00 1:00 1 4 5

Ht A 3:00 0:30 8 2 10

Ztm A 3:00 1:00 16 6 22

Table 6.3: Information about the disruptions and the considered uncertainty.

In the first stage problem we considered initial core problems as described in Sec-

tion 3.3. In order to account for the uncertainty we constructed the initial core problems

based on the expected duration plus the possible extension. In Table 6.4 we present

the computation times and the number of arcs in the pricing problem graphs for the ES,

WQR, and SQR approach. All tasks are covered in the solutions of the first stage problem

by all approaches for all instances. The number of arcs that lie on a path from the source

to the sink node in the pricing problem graphs are shown in column Arcs. All other arcs

are removed in a preprocessing step before we start the column generation procedure. As

expected the number of arcs is much higher for the quasi robust optimization approaches.
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For the instances Ac C, Ht A, and Ztm A the number of arcs in the SQR approach is

more than 10 times the number of arcs in the ES approach. For the instances Bl A and

Bl B the increase in the number of arcs is less but still above a factor of five.

ES WQR SQR

Instance Time (s) Arcs Time (s) Arcs Time (s) Arcs

Ac C 264.6 625,259 433.9 2,238,209 727.5 6,444,493

Bl A 38.6 39,727 36.3 125,364 34.7 300,843

Bl B 25.8 41,796 24.6 57,841 24.8 233,296

Ht A 397.8 526,928 1,097.1 4,401,100 1,911.2 9,266,084

Ztm A 155.7 519,163 703.1 5,605,934 1,364.1 18,752,666

Table 6.4: Computation time and number of arcs in the pricing problems for the ex-

pected scenario (ES), weak quasi robust (WQR), and strong quasi robust (SQR) solution

approach in the first stage.

Interestingly, the computation time is about the same for the three approaches for

the instances Bl A and Bl B. For the other instances the computation time for the WQR

and SQR approach is considerably longer than for the ES approach. For the ES approach

we observe the longest computation time of around 400 seconds for instance Ht A. For

the WQR approach the longest computation time is approx. 1,100 seconds for instance

Ht A. For the same instance we also observed the longest computation time for the SQR

approach, of just less than 2,000 seconds. The computation time for the SQR approach

is at most 5 times longer compared to the ES approach.

We also solved the second stage problems using the results of the first stage problems

as input. All second stage problems have been solved with the algorithm presented in

Chapter 3. Note that we do not require the use of the recovery alternatives. We show

the solution values of the first and second stage problems in Table 6.5. For the three

solution approaches we report three numbers. Columns C(s̄) display the solution value

of the first stage problem obtained by the approach. The solution value of the first stage

problem plus the solution value of the second stage problem if scenario s occurred is

shown in columns C(s). The column Diff states C(s)− C(s̄) which is the solution value

of the second stage problem under the realization of scenario s. Note that by definition of

the first stage problem, the solution value of the second stage problem under scenario s̄

is 0. First of all, we notice that the effort for the rescheduling in the second stage if

scenario s occurs is the smallest for the SQR approach except for Ztm A. This illustrates

that the concept of quasi robustness succeeds in keeping the cost for the rescheduling

in the second stage small. On the other hand, the cost of the first stage solution is the

highest for all instances. Moreover, the sum of the two, which is equal to E(s) is also

higher compared to the ES and WQR approach, with the exception of Ac C and the ES
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approach. We therefore conclude that under the considered objective function the SQR

approach is inferior to the ES and WQR approach.

ES WQR SQR

Instance C(s̄) C(s) Diff C(s̄) C(s) Diff C(s̄) C(s) Diff

Ac C 27,760 37,837 10,077 29,064 35,788 6,724 32,436 36,451 4,015

Bl A 10,586 14,248 3,662 10,989 14,599 3,610 14,058 16,917 2,859

Bl B 9,439 15,159 5,720 9,789 13,748 3,959 12,899 16,458 3,559

Ht A 38,050 49,243 11,193 38,300 47,483 9,183 41,758 49,587 7,829

Ztm A 11,596 17,618 6,022 11,842 17,311 5,469 16,917 22,436 5,519

Table 6.5: Comparison of the expected scenario (ES), weak quasi robust (WQR), and

strong quasi robust (SQR) solution approach.

We will now focus on the comparison of the ES and the WQR approach. Comparing

the columns Diff we see that the WQR approach performs better in the second stage if

scenario s occurs. The absolute difference is the largest for Ac C. Furthermore, the values

C(s) are smaller for WQR for all instances except Bl A. This means that for the WQR

approach the improvements in the second stage problem under scenario s are lager than

the difference in the solution values of the first stage problem in 4 out of 5 instances.

Next we are going to extend our comparison of the ES and WQR approach by using

probabilities for the possible scenarios. Let p(s̄) (p(s)) be the probability for scenario s̄

(s). In this analysis we will assume that s̄ and s are the only possible scenarios and

hence p(s̄) = 1 − p(s). Now we can compute the expected values for an approach as

EV = p(s̄)C(s̄) + p(s)C(s). We will refer to these expected values as EV(ES) for the

ES approach and EV(WQR) for the WQR approach. For Bl A EV(ES) < EV(WQR)

for 0 ≤ p(s) ≤ 1. For the other four instances we have that EV(WQR) < EV(ES)

for p(s) = 1. Moreover, we can compute a threshold value q(s) such that EV(ES) ≥
EV(WQR) if p(s) ≥ q(s) (see Table 6.6). The threshold of the probability for scenario s

such that using the WQR approach pays off ranges from 19.9% for Bl A to 44.5% for

Ztm A.

6.5 Concluding remarks and future work

In this chapter we discussed how the uncertainty about the length of a disruption can be

considered as a two stage optimization problem. We explained why it is difficult to apply

known concepts for optimization under uncertainty. In order to overcome the shortcom-

ings of classical robust optimization, we presented the novel concept of quasi robustness

for crew rescheduling under uncertainty. Based on the concept of quasi robustness we
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Instance q(s)

Ac C 0.240

Bl A –

Bl B 0.199

Ht A 0.416

Ztm A 0.445

Table 6.6: Thresholds q(s) such that the quasi robust approach outperforms the expected

scenario approach for p(s) ≥ q(s).

developed two new optimization models, namely the strong quasi robust and the weak

quasi robust operational crew rescheduling problem. These models differ from “classic”

models for crew rescheduling in the set of feasible solutions. Furthermore, we have shown

that near optimal solutions to these models can be obtained by column generation based

algorithms that have been developed for crew rescheduling, when the column generation

pricing problem is modified. This is one advantage of the quasi robust approaches, they

do not require new special purpose algorithms but only small modifications to existing

algorithms. Another advantage is that no probabilities for the possible scenarios are used

within the quasi robust approaches. This is an interesting feature to apply this concept in

practice since it is doubtful if these probabilities would be available in a real-time setting.

In the numerical study we have compared the two quasi robust approaches with an

expected scenario (ES) approach that ignores the uncertainty in the length of the disrup-

tion. We have shown that the strong quasi robust (SQR) approach is inferior in terms

of solution quality and computation time. The weak quasi robust approach (WQR) pro-

duces better results for 4 out of the 5 considered instances. However, the computation

time was up to 4.5 times longer compared to the ES approach. This bottleneck should be

addressed in future research. One should exploit that the restricted master problem as

well as the pricing problem are separable per original and parallelize the implementation.

We think that this will reduce the computation times in way the WQR approach will

be applicable in practice. Another possibility for further research is to design an itera-

tive algorithm that starts computing the solution of the ES approach and then produces

different, hopefully more robust, solutions by using the concept of quasi robustness.





Chapter 7

Summary and Concluding Remarks

In this thesis we discussed several facets of the operational (railway) crew rescheduling

problem. Nowadays, this problem is still one of the bottlenecks in the disruption man-

agement process of passenger railway operators. Although models and algorithms for the

counterpart in the airline world have been available for more than ten years, dispatchers

of European passenger railway operators do not have automated decision support tools

for this problem yet.

In Chapter 2 we considered the role of crew rescheduling in the disruption management

process of passenger railway operators. We illustrated the interaction with the other two

main steps in disruption management, namely timetable adjustment and rolling stock

rescheduling. Moreover, we discussed the information flow between the different actors

in the disruption management process. Furthermore, we reviewed the scientific literature

on railway disruption management and concluded that there is a need for optimization

models and fast algorithms especially for rescheduling the two main resources rolling stock

and crew.

We presented a novel algorithm for crew rescheduling in Chapter 3. As many ap-

proaches that have been proposed in the literature for airline crew rescheduling, also our

algorithm considers only a part of the given crew schedule, referred to as a core problem,

in order to be able to compute solutions within a couple of minutes. The selection of

the initial core problems has proved to lead to very good results. In some cases however,

some tasks remain uncovered in the solution of the initial core problem. In this case the

algorithm defines new core problems representing a neighborhood of the uncovered tasks.

Such a neighborhood exploration scheme has not yet been used in the context of crew

rescheduling. Because the core problems are selected based on duties, we refer to this

algorithm as column generation with dynamic duty selection (CGDDS). We show that

for some instances we can improve the solution of the initial core problem via the neigh-

borhood exploration within little additional computation time. Near optimal solutions

for the core problems are computed with an algorithm that combines column generation



112 Summary and Concluding Remarks

and Lagrangian relaxation techniques. In addition, we reported on a real-life application.

In March 2009, our algorithm was used to compute new schedules for the train drivers

when some important route of the Dutch railway network was available only at limited

capacity after the derailment of a cargo train.

A computational comparison of three methods for crew rescheduling has been con-

ducted in Chapter 4. We compared our CGDDS algorithm with a new 2 Phase Repeated

Shortest Path with Resource Constraints heuristic (2P-RSPPRC), a heuristic that mim-

ics manual dispatching, and a heuristic based on dynamic constraint aggregation (DCA).

DCA is an advanced column generation method where set partitioning constraints of the

restricted master problem are dynamically grouped and regrouped into clusters. In the

numerical study we showed that the 2P-RSPPRC heuristic is inferior since it fails to find

good solutions for most of the instances. Moreover, it turned out that for some instances

DCA outperforms a classic column generation method in terms of computation time for

some instances, while it is the other way around for other instances. We concluded that

DCA in its current form is not yet understood well enough. More research is necessary

to refine the method in order to consistently perform better than classic column genera-

tion. Finally, we have shown that for some instances significantly better solutions than

the one found by our CGDDS method exist. This motivates further research into the

neighborhood exploration scheme of our CGDDS method. However, the main conclusion

of Chapter 4 is that our CGDDS method is best suited for railway crew rescheduling

among the compared methods because it finds good solutions within a short amount of

computation time.

In Chapter 5 we extended the crew rescheduling problems by the possibility to delay

the departure of some trains. This extension can be seen as a partial integration of

timetabling and crew rescheduling. We presented a mathematical model for railway crew

rescheduling with retiming and showed how the CGDDS method can be adapted in order

to solve this new model. In the computational results we showed that by allowing retiming

we can reduce the number of uncovered tasks in the crew rescheduling solutions. This

is a very interesting improvement from the point of view of the surrounding disruption

management process, because it could save some iterations of the timetable adjustment,

rolling stock rescheduling and crew rescheduling loop.

Finally, in Chapter 6 we evaluated what happens if a disruption lasts longer than

expected. Therefore, we described a new problem namely crew rescheduling under uncer-

tainty. This is a two stage problem where in the first stage a number of possible scenarios

is known and a crew schedule for the most optimistic scenario must be computed. In the

second stage when it has become clear which scenario occurred, additional actions have to

be taken. These additional actions are, in fact, another rescheduling based on the earlier

computed crew schedule. We presented the notion of quasi robust feasible completions

and based on that notion we presented two optimization models that take the uncertainty
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about the length of the disruption into account. Furthermore, we showed that by modify-

ing the column generation pricing problems we can use the CGDDS algorithm presented

in Chapter 3 to obtain near optimal solutions for these quasi robust optimization models.

In the numerical study we showed that it is often advantageous to use one the quasi ro-

bust optimization approaches instead of not considering the uncertainty in the first stage

optimization problem.

Within the next year, the presented research should lead to the availability of algorith-

mic decision support tools for the dispatchers at Netherlands Railways (NS). We suggest

to integrate the CGDDS algorithm we presented in Chapter 3 into the current computer

systems for dispatching in the control centers. Already the available implementation is

powerful enough to deal with practical instances under the constraint of the available

computation time. That there is a lot of room for improvement e.g. by exploring a par-

allel implementation is a plus. Moreover, it is possible to extend the CGDDS algorithm

in subsequent steps to consider the uncertainty in a more sophisticated way. Anyway,

we recommend NS to make the basic version available in a decision support tool as soon

as possible because this will already result in a better operational performance with less

delays and less canceled trains.





Appendix A

Selected Topics in Combinatorial

Optimization

A.1 Selected combinatorial optimization problems

In this section we will discuss some well-known combinatorial optimization problems which

play an important role in this thesis. In combinatorial optimization problems one aims

to minimize or maximize an objective function over a countable set of feasible solutions.

The set of feasible solutions can usually be described mathematically using constraints

and decision variables of which some or all have to take discrete values.

If the objective function as well as the constraints are linear, a combinatorial opti-

mization problem can be modeled as a mixed integer program (MIP), or integer program

(IP) in the case that all decision variables have to take discrete values. For the theory

behind and general solution approaches for MIPs we refer the interested reader to the

excellent books of Schrijver (1986) and Nemhauser and Wolsey (1988).

A.1.1 Set partitioning/covering problem

The minimization version of the set partitioning problem can be stated as follows: Given

a finite set S and a finite family F of subsets of S, with cost cf associated with each

f ∈ F , find a minimum cost subset F ′ such that F ′ is a partition of S.

This problem can be formulated as an integer program (IP). To this aim, we associate

a binary decision variable xf with every subset in the family F . This variables is set to 1

if f is part of F ′ and 0 otherwise. Moreover, let aif = 1 if subset f ∈ F contains element
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i ∈ S and aif = 0 otherwise. Now the set partitioning problem reads:

min
∑
f∈F

cfxf (A.1)

s.t.
∑
f∈F

aifxf = 1 ∀i ∈ S (A.2)

xf ∈ {0, 1} ∀f ∈ F (A.3)

It can be shown that the decision version of the set partitioning problem is NP-

complete if there are at least three elements in each subset (see Garey and Johnson

(1979)).

The set covering problem is a relaxation of the set partitioning problem, its IP formu-

lation can be obtained by replacing the “=” sign in Constraint (A.2) with a “≥” sign. It

is obvious that every feasible solution to a set partitioning problem is also a feasible solu-

tion to the corresponding set covering problem. The decision version of the set covering

problem has been shown to be NP-complete by Karp (1972).

Crew scheduling problems that arise in airline, bus, and railway companies are often

modeled as set partitioning or set covering problems. The flight legs, respectively the

trips that need to be assigned to pilots or drivers form the set S. The family F consists

of all duties that are legal with respect to union and company regulations. Typically, the

number of duties is not polynomially in the size of flight legs/trips that need to be covered.

The huge number of variables motivates the use of column generation (see Section A.2.1)

based solution techniques for these problems.

A.1.2 Multicommodity flow problem

In many applications one likes to route different commodities k ∈ K through a shared

network in the most efficient way. These problems can be formulated as multicommodity

flow problems. We will state a basic version of the multicommodity flow problem (see

Ahuja et al. (1993)). Let G = (N,A) be a directed network with N as the set of nodes

and A as the set of arcs. For every arc (i, j) ∈ A we have cost cij per unit of flow on that

arc. Moreover, we have an upper bound uij on the total flow on each arc (i, j) ∈ A. With

every node i ∈ N we associate an integer bi. The value of bi characterizes the nodes. If

bi > 0, node i is a supply node, if bi < 0, node i is a demand node. Nodes with bi = 0 are

called transshipment nodes. Finally, let the decision variables xkij specify the amount of
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flow of commodity k on arc (i, j). An linear programming (LP) formulation is as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (A.4)

s.t.
∑

{j:(i,j)}∈A

xij −
∑

{j:(j,i)}∈A

xji = bki ∀i ∈ N, ∀k ∈ K (A.5)

∑
k∈K

xij ≤ uij ∀(i, j) ∈ A (A.6)

xij ≥ 0 ∀(i, j) ∈ A (A.7)

Constraints (A.5) are referred to as flow or mass conservation constraints. That the

joint flow of all commodities on an arc may not exceed its capacity is ensured by Con-

straints (A.6). Many practical applications require integer flows which can be obtained by

modifying Constraints (A.7) accordingly. It is important to note that the decision version

of the multicommodity integral flow problem is NP-complete (see Garey and Johnson

(1979)) if there are two or more commodities.

A.1.3 Shortest path problem with resource constraints

In the classical shortest path problem one is interested in finding the shortest path from a

source node s to a sink node t in an underlying directed graph G = (N,A). The shortest

path problem with resource constraints is an extension of this classical problem where one

requires every feasible path to satisfy additional constraints. We will stick closely to the

notation used in Irnich and Desaulniers (2005). These additional constraints are defined

in terms of resource windows [ari , b
r
i ] for all nodes i ∈ N and all resources r ∈ R. Next

to the cost cij, with every arc (i, j) ∈ N we associate a (minimal) resource consumption

trij for every resource r ∈ R. The change of the accumulated resource consumption for a

given resource along an arc is specified by a so-called resource extension function f rij(Ti)

that depends on the resource vector Ti which corresponds to the resource consumption

accumulated along a path from s to i. Simple variants of resource extension functions are

of the form f rij(Ti) = T ri + trij. However, more general definitions of resource extension

functions allow for example interdependencies of resources.

In general, shortest path problems with resource constraints are NP-hard. Garey and

Johnson (1979) have shown that the decision version of the weight-constrained shortest

path problem is NP-complete. This problem is a special case of a shortest path problem

with resource constraints.

Shortest path problems with resource constraints can be solved by dynamic program-

ming algorithms. If the underlying graph is acyclic, as it is in all problems considered in

this thesis, we can order the nodes by reachability and use this order to obtain a label

setting type of dynamic programming algorithm.
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A.2 Selected solution techniques

A.2.1 Column Generation

The idea of column generation is to solve linear programs with a huge number of variables

by iteratively considering two problems, a restricted master problem (RMP) and a pricing

problem. The column generation algorithm stops if it can establish that the solution to

RMP is also an optimal solution if all variables would be considered. We will illustrate this

concept using an example. Let P be a linear program with a huge number of variables J .

min
∑
j∈J

cjxj (A.8)

s.t.
∑
j∈J

aijxj = bi ∀i ∈M (A.9)

xj ≥ 0 ∀j ∈ J (A.10)

In order to solve P by column generation, we start with an initial RMP that contains only

a subset of the variables J ′ ⊆ J and the corresponding columns in the constraint matrix

A given by its entries aij ∀i ∈M, j ∈ J . We solve the RMP to obtain a (primal and) dual

solution. Denote by ui the value of the dual variables associated with Constraints (A.9)

in the dual solution. It follows from the well known rules for the simplex algorithm (see

e.g. Chvátal (1983)) that the solution to the RMP is also an optimal solution for P if

all variables j ∈ J have non-negative reduced cost. The reduced cost of a variable j is

defined as cj −
∑

i∈M aijui. The pricing problem

min
j∈J
{cj −

∑
i∈M

aijui}

checks if there exist variables j ∈ J with negative reduced cost. If so, one or more of these

variables and the corresponding columns of the constraint matrix are added to the RMP.

The idea of column generation (also known as Dantzig-Wolfe decomposition algorithm)

was first presented in Ford and Fulkerson (1958) to solve a multicommodity flow problem

by solving its extensive formulation via column generation. The idea was generalized by

Dantzig and Wolfe (1960). Extensive formulations can be derived from compact formu-

lations by using the Minkowski-Weyl theorem (see Nemhauser and Wolsey (1988)) that

states that every non-empty convex polyhedron can be represented by a convex combi-

nation of its extreme points and a weighted combination of its extreme rays. The term

extensive refers to the fact that the number of variables is huge compared to the amount

of input data. In contrast to that, the number variables is polynomial in the compact for-

mulation as presented in Section A.1.2. In the context of network flow problems, compact

formulations are also known as arc based formulations whereas one refers to the extensive

formulations as path based formulations.
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Column generation has proven to lead to successful exact algorithms for integer pro-

gramming problems if it is embedded in a branch-and-bound tree. The resulting algo-

rithms are called branch-and-price algorithms (see Barnhart et al. (1998)). Desrochers

and Soumis (1989) present the first branch-and-price algorithm for a crew scheduling

problem. The theory behind column generation is discussed in Lübbecke and Desrosiers

(2005). Many practical aspects can be found in Desaulniers et al. (2005). Desaulniers

et al. (1998) provides many hints on implementation issues based on hands-on experience.

A.2.2 Lagrangian relaxation

Lagrangian relaxation is a technique to obtain bounds on the optimal solution value

of constraint optimization problems. Without loss of generality we may assume that

the optimization problem at hand is a minimization problem. In this case, Lagrangian

relaxation can be used to compute lower bounds. The idea behind Lagrangian relaxation

is to remove some constraints from an optimization problem and penalize their violation in

the objective function. Let us give an example considering a general integer programming

problem (P) with two sets of constraints (M1 and M2) given by Formulation (A.11)–

(A.14).

min
∑
j∈J

cjxj (A.11)

s.t.
∑
j∈J

aijxj = bi ∀i ∈M1 (A.12)∑
j∈J

dkjxj = ek ∀k ∈M2 (A.13)

xj ≥ 0 and integer ∀j ∈ J (A.14)

A Lagrangian relaxation of problem P could for example be obtained by relaxing

constraints M1. Then, we introduce a Lagrangian multiplier λi for every constraint i in

M1. Let us denote by λ the vector of these multipliers. Given any choice for λ, the

Lagrangian subproblem reads as follows:

Φ(λ) = min
∑
j∈J

cjxj +
∑
i∈M1

λi(bi −
∑
j∈J

aijxj) (A.15)

s.t.
∑
j∈J

dkjxj = ek ∀k ∈M2 (A.16)

xj ≥ 0 and integer ∀j ∈ J (A.17)

The value of Φ(λ) is a lower bound on the optimal solution value Z(P ) of problem P

for every λ. This can be argued as follows. Any feasible solution to the original problem P
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is also a feasible solution to the Lagrangian subproblem. This holds also for any optimal

solution to P . Moreover, the objective value of a feasible solution for problem P in the

Lagrangian subproblem is
∑

j∈J cjxj, since bi −
∑

j∈J aijxj = 0 ∀ i ∈ M1. Therefore,

Φ(λ) must be smaller or equal than Z(P ) for every λ. In the case of inequalities in

Constraints (A.12), the Lagrangian multipliers must be restricted in sign in the Lagrangian

subproblem. That is λi ≥ 0 ∀ i ∈ M1 for “≥” inequalities and λi ≤ 0 ∀ i ∈ M1 for “≤”

inequalities.

As we have just argued, Φ(λ) gives a lower bound for every choice of λ. Naturally we

are interested in the “best” bound. This can be found by maximizing the Lagrangian func-

tion Φ(λ). This optimization problem Z(LR) = maxλ Φ(λ) is the so-called Lagrangian

dual problem. The Lagrangian function Φ(λ) is a piecewise linear concave function. On its

breakpoints, where the Lagrangian subproblem has multiple optimal solutions, it is only

subdifferentiable. A very popular approach to solve maxλ Φ(λ) is subgradient optimiza-

tion. In the context of Lagrangian relaxation it was introduced by Held and Karp (1971).

Several modifications to the original algorithm have been suggested. In our implementa-

tion we use a modified search direction as proposed by Camerini et al. (1975) and some

of the modifications suggested in Beasley (1993). Bundle methods (Hiriart-Urruty and

Lemaréchal (1993)) offer an alternative to subgradient optimization that have stronger

convergence properties, but their iterations are computationally more expensive.

Let us now investigate the relation between the bound from the linear programming

relaxation (LP-relaxation) Z(LP ) of P and the bound from Lagrangian relaxation Z(LR)

which was first stated by Geoffrion (1974). For a compact representation we use matrices

and column vectors.

Z(LR) = max
λ
{min

x
cTx+ (b− Ax)Tλ

s.t. Dx = e, x ≥ 0 and integral}
(A.18)

≥max
λ
{min

x
cTx+ (b− Ax)Tλ

s.t. Dx = e, x ≥ 0}
(A.19)

= max
λ
{min

x
(c− ATλ)Tx+ bTλ

s.t. Dx = e, x ≥ 0}
(A.20)

= max
λ

max
µ
{ bTλ+ eTµ

s.t. DTµ ≤ c− ATλ}
(A.21)

= max
λ,µ

bTλ+ eTµ

s.t. ATλ+DTµ ≤ c
(A.22)
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= min cTx

s.t. Ax = b, Dx = e, x ≥ 0
(A.23)

=Z(LP ) (A.24)

In (A.18) we state the Lagrangian dual problem. We drop the requirement on the x

variables to be integer, hence the “≥” relation, and obtain the optimization problem in

(A.19). Note that the minimization problem in (A.19) is a linear programming problem.

Rewriting its objective function leads to (A.20). Constructing the dual of the minimization

problem gives (A.21). (A.22) is obtained by rearranging some terms. Applying linear

programming duality leads to (A.23) which we recognize as the LP-relaxation of our

original problem P . We therefore conclude the well known result Z(LR) ≥ Z(LP ).

Moreover, this inequality is an equality if the solution values of the minimization problems

in (A.18) and (A.19) are the same. In this case the Lagrangian subproblem is said to have

the integrality property since one can solve it by solving its LP-relaxation. We suggest

the surveys of Fisher (1981) and Beasley (1993) as sources of additional information.

Lagrangian heuristics

Another reason for the popularity of Lagrangian relaxation is the fact that for most

types of problems it is relatively easy to derive a heuristic that produces “good” feasible

solutions for the original problem P based on Lagrangian multipliers. Most Lagrangian

heuristics are based on one of two general ideas. Either a Lagrangian heuristic tries to

construct a feasible solution based on an optimal solution to a Lagrangian subproblem,

or they build feasible solutions from scratch guided by the Lagrangian multipliers.

Combining column generation and Lagrangian relaxation

In this section we will discuss the relation between Lagrangian relaxation and column

generation. Moreover, we show how both techniques can be combined.

There exists a strong relation between Lagrangian relaxation and Dantzig-Wolfe de-

composition. Assume that we have obtained an extensive formulation E as result of a

Dantzig-Wolfe reformulation applied to a compact formulation C of a problem P . Fur-

thermore, denote by LP (E) the value of the LP-relaxation of E. One possible Lagrangian

relaxation of C can be obtained by relaxing the set of constraints which are the linking

constraints in the extensive formulation E. Let LR(C) be the value of the corresponding

Lagrangian dual problem LDPC. It is well known that the Lagrangian dual problem

LDPC and the LP-relaxation of the extensive formulation are dual to one another (see

e.g. Geoffrion (1974) or Fisher (1981)). Moreover, the Lagrangian subproblem and the

pricing problem of the column generation procedure to solve the LP-relaxation of E have

the same constraints and differ only by a constant term in the objective function. Hence,
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solutions of the Lagrangian subproblem can also be added to the restricted master prob-

lem of the column generation procedure. Barahona and Jensen (1998) and Degraeve and

Jans (2007) present hybrid solution methods that dynamically switch between solving the

Lagrangian dual problem of the Lagrangian relaxation applied to the compact formulation

and solving the LP-relaxation of the extended formulation by column generation. The

outline of such a hybrid method as well as a general discussion can be found in Huisman

et al. (2005a).

Another possibility to combine Lagrangian relaxation and column generation is to

apply Lagrangian relaxation to the restricted master problem in order to obtain an ap-

proximate dual solution. Note that for the column generation algorithm only a dual

solution to the restricted master problem is necessary. Algorithms based on this combi-

nation of Lagrangian relaxation and column generation have been presented for several

crew scheduling applications. We refer to Borndörfer et al. (2003), Huisman et al. (2005c),

and Steinzen et al. (2010) for crew scheduling at bus companies, Abbink et al. (2005) for

crew scheduling at railways, and Barahona and Anbil (2000) and Subramanian and Sherali

(2008) for airline crew scheduling.
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A. Schöbel. Integer programming approaches for solving the delay management problem.
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Montreal, Quebec, Canada, 1999.

C.G. Walker, J.N. Snowdon, and D.M. Ryan. Simultaneous disruption recovery of a

train timetable and crew roster in real time. Computers & Operations Research, 32:

2077–2094, 2005.

O. Weide, D.M. Ryan, and M. Ehrgott. An iterative approach to robust and integrated

aircraft routing and crew scheduling. Computers & Operations Research, 37:833–844,

2010.

J.W. Yen and J.R. Birge. A Stochastic Programming Approach to the Airline Crew

Scheduling Problem. Transportation Science, 40(6):3–14, 2006.

G. Yu and X. Qi. Disruption Management: Framework, Models and Applications. World

Scientific Publishing Company, 2004.
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Nederlandse samenvatting

(Summary in Dutch)

Op een gemiddelde werkdag vervoert de Nederlandse Spoorwegen (NS) ongeveer 1,2

miljoen reizigers. Om de gepubliceerde dienstregeling uit te voeren maakt NS een gede-

tailleerde materieel- en personeelsplanning. Iedere dag kunnen er echter onverwachte

gebeurtenissen plaatsvinden die de dienstregeling verstoren. Hierbij kan men bijvoor-

beeld denken aan storingen aan de infrastructuur, defect materieel of extreme weersom-

standigheden. In deze situaties is vaak een deel van de infrastructuur voor een bepaalde

tijd niet of slechts beperkt beschikbaar. Dit resulteert in grote aanpassingen aan de dienst-

regeling waaronder het opheffen van treinen. Als deze veranderingen in de dienstregeling

leiden tot conflicten in de materieel- en personeelsplanning moet men deze plannen her-

stellen oftewel bijsturen. Het is belangrijk voor een spoorvervoerder om dit te doen

zodanig dat er niet nog extra treinen uitvallen. Op dit moment gebeurt deze bijsturing

nog steeds handmatig door bijstuurders. Het belangrijkste doel van dit proefschrift is om

de fundering te leggen voor het ontwikkelen van een beslissingsondersteunend systeem

voor de bijsturing van rijdend personeel bij verstoringen.

In hoofdstuk 2 van dit proefschrift beschrijven we het bijsturingsproces. Vanwege de

complexiteit en de verschillende verantwoordelijkheden tussen infrastructuurbeheerder en

vervoerders wordt dit proces in drie stappen verdeeld. In de eerste stap wordt de dienst-

regeling aangepast zodanig dat de nieuwe dienstregeling kan worden uitgevoerd onder de

gewijzigde omstandigheden. Deze dienstregelingswijzigingen volgen meestal uit van te

voren vastgestelde versperringsmaatregelen. Het aanpassen van de dienstregeling is de

verantwoordelijkheid van de infrastructuurbeheerder (ProRail in Nederland). De tweede

stap in het bijsturingsproces is het bijsturen van het materieelplan. Alhoewel we graag op-

merken dat een betere materieelbijsturing mogelijk moet zijn met behulp van wiskundige

modellen, valt dat buiten de scope van dit proefschrift. De derde stap is de bijsturing van

het rijdend personeel (machinisten en conducteurs). Voor dit probleem, formeel in het

Engels aangeduid als het “operational crew rescheduling problem” ofwel OCRSP, wordt

als input gebruik gemaakt van de gewijzigde dienstregeling en materieelomlopen. Het

doel van het OCRSP is om alle conflicten in de personeelsdiensten op te lossen en de
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diensten zodanig te wijzigen dat zo veel mogelijk treinen van personeel worden voorzien.

Hierbij dient rekening te worden gehouden met een groot aantal arbeidsregels.

In hoofdstuk 3 wordt een nieuwe oplossingsmethode gepresenteerd om het OCRSP op

te lossen. Gegeven het operationele karakter van het probleem, moet zo’n oplossingsmeth-

ode binnen enkele minuten rekentijd een goede oplossing vinden. Onze oplossingsmethode,

genaamd CGDDS, start met het beschouwen van een initieel kernprobleem dat alleen een

deel van de originele diensten bevat. We hebben voor deze benadering gekozen, omdat

veel diensten niet zullen veranderen als gevolg van de verstoring. Bijvoorbeeld omdat

ze geografisch verder van de verstoring vandaan zitten. Het initiële kernprobleem wordt

vervolgens opgelost met een methode gebaseerd op kolomgeneratie. Kolomgeneratie is

een geavanceerde wiskundige techniek die ontwikkeld is om wiskundige problemen met

enorme aantallen beslissingsvariabelen efficiënt op te lossen. Personeelsplannings- en bij-

sturingsproblemen hebben een enorm aantal beslissingsvariabelen, omdat iedere mogelijke

dienst gerepresenteerd wordt door een beslissingsvariabele, en het aantal mogelijke dien-

sten loopt bij grote bedrijven als NS al snel in de vele miljoenen. Het oplossen van het

initiële kernprobleem geeft vaak al een goede oplossing maar soms zijn enkele treinen nog

niet van een personeelslid voorzien. Daarom controleren we of alle treinen in het bijges-

tuurde personeelsplan zitten. Voor iedere trein waarbij dit niet het geval is, maken we

een nieuwe kernprobleem met de bedoeling om deze specifieke trein wel in te plannen.

We doen dit door voor dit nieuwe kernprobleem diensten te selecteren die in de “buurt”

liggen van de trein die we beschouwen. In dit hoofdstuk tonen we ook aan dat we met

de CGDDS methode snel goede oplossingen vinden voor verschillende data instanties van

NS. Hiervoor hebben we gebruik gemaakt van 10 instanties die allemaal gebaseerd zijn op

verstoringen die in het verleden hebben plaatsgevonden. In deze instanties waren er tussen

de 15 en 59 diensten met conflicten. De grootste rekentijd lag op ongeveer 4 minuten.

Deze rekentijd was nodig voor een versperring tussen Utrecht en Amsterdam met een

duur van 3 uur. Na enkele iteraties konden in 9 instanties alle treinen ingepland worden

als er gebruik werd gemaakt van de reservediensten in het plan. Zonder reservediensten

lukte dat in 7 van de 10 instanties. In 2 andere gevallen was er 1, in het slechtste geval

waren er 3 treinen die niet konden worden ingepland.

Om de kwaliteit van de methode te evalueren hebben we in hoofdstuk 4 de CGDDS

methode vergeleken met twee andere methoden. De eerste methode is een 2-fase heu-

ristische benadering (2P-RSPPRC) die het handmatige bijsturingsproces probeert na te

bootsen. De tweede methode is een heuristiek die gebruik maakt van dynamische ag-

gregatie van restricties (DCA). Dit is een geavanceerde methode die gebruik maakt van

kolomgeneratie, maar waarbij de restricties in het wiskundig model geclusterd worden

met als doel het reduceren van de rekentijd. Een vergelijking tussen de drie oploss-

ingsmethoden laat zien dat de 2P-RSPPRC heuristiek alleen in staat is goede oplossingen

te genereren voor heel makkelijke instanties. Bovendien bleek dat de DCA methode niet



Nederlandse samenvatting 133

altijd beter presteert dan de klassieke kolomgeneratie methode. Concluderend kunnen we

stellen dat onze CGDDS methode het best presteert kijkend naar zowel de kwaliteit van

de oplossing als de rekentijd.

In hoofdstuk 5 bekijken we een uitbreiding van het OCRSP waarbij we kleine vertragin-

gen van enkele minuten bij het vertrek van enkele treinen toestaan. Deze uitbreiding is

gebaseerd op de observatie dat kleine wijzigingen in de dienstregelingen soms leiden tot

betere oplossingen voor het bijsturen van rijdend personeel. Dit kan o.a. afgeleid worden

uit het volgende voorbeeld met twee treinen. De eerste trein heeft als eindpunt het be-

ginpunt van de tweede trein. Gegeven de geplande aankomst- en vertrektijden van deze

treinen is het een machinist niet toegestaan om beide treinen te rijden, omdat anders

de regel m.b.t. de minimale overgangstijd wordt geschonden. Als de tweede trein echter

enkele - zeg 3 - minuten later vertrekt, wordt deze regel niet meer geschonden en kan

één machinist beide treinen rijden. Dit betekent dat we een dienst kunnen construeren

die niet toegestaan zou zijn als we de dienstregeling niet zouden wijzigingen. Door de

verzameling van toegelaten diensten te vergroten, zijn er meer toegelaten oplossingen mo-

gelijk. Hierdoor is het mogelijk om betere oplossingen te vinden vergeleken met de situatie

waarbij de dienstregeling niet mag worden gewijzigd. Natuurlijk heeft het vertragen van

treinen ook een ongewenst effect voor de passagiers. Daarom beboeten we in de doel-

stellingsfunctie het vertragen van treinen zodanig dat we dit alleen doen als we significant

betere oplossingen vinden voor het personeelsbijsturingsprobleem, d.w.z. als we door het

vertragen van enkele treinen andere treinen niet hoeven uit te vallen. Het uitgebreide

OCRSP model waarbij het toegestaan is om te schuiven met de vertrektijden van enkele

treinen heeft veel meer restricties dan het basismodel. Deze extra restricties zijn nodig

om de propagatie van de vertragingen door te berekenen en om te garanderen dat alle

diensten die in de oplossing worden gekozen ook passen bij de gekozen vertragingen. In

dit hoofdstuk laten we zien hoe de CGDDS methode kan worden aangepast zodanig dat

we ook dit uitgebreide model kunnen oplossen. De rekenexperimenten laten zien dat we

door het toestaan van kleine vertragingen in 4 van de 6 cases betere oplossingen kunnen

krijgen, d.w.z. dat er minder treinen uitvallen. Bovendien blijkt de toename in de reken-

tijd beperkt te zijn wat het mogelijk maakt om deze uitbreiding ook in de praktijk toe te

passen.

In de eerste hoofdstukken van het proefschrift is nog verondersteld dat de duur van de

verstoringen bekend is. In hoofdstuk 6 laten we deze veronderstelling los. De onzekerheid

in de duur van de verstoring kan in het OCRSP worden gezien als onzekerheid hoe de

gewijzigde dienstregeling er uit gaat zien. Er is echter maar een beperkt aantal moge-

lijke dienstregelingen. Het personeelsbijsturingsprobleem onder onzekerheid kan daarom

worden gezien als een 2-fase optimalisatieprobleem. In de eerste fase wordt het OCRSP

opgelost zodanig dat een personeelsplan wordt berekend voor het meest optimistische sce-

nario voor de duur van de verstoring. In de tweede fase is het bekend welke dienstregeling
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uiteindelijk wordt gereden en is het eventueel nodig om het OCRSP opnieuw op te lossen.

In deze tweede fase is de oplossing van de eerste fase input. Dit hoofdstuk heeft twee

doelen. Ten eerste analyseren we wat er gebeurt als we in de eerste fase geen rekening

houden met de onzekerheid in de duur van de verstoring. Vanzelfsprekend zijn er dan wel

correcties nodig indien de daadwerkelijke duur van de verstoring afwijkt van de geschatte

duur. Deze aanpak zouden we een näıeve aanpak kunnen noemen. Ten tweede beschouwen

we twee quasi robuuste oplossingsmethoden die al rekening houden met de onzekerheid

in de eerste fase. Het concept van quasi robuustheid is een nieuw concept dat probeert

de tekortkomingen van bekende concepten voor het optimaliseren onder onzekerheid zoals

robuuste optimalisatie en stochastisch programmeren teniet te doen. Het hoofdidee achter

onze quasi robuuste optimaliseringsaanpak is om de mogelijke beslissingen te beperken tot

diegene die garanderen dat alle treinen onafhankelijk van welke dienstregeling uiteindelijk

gereden wordt, van personeel zijn voorzien. We tonen in dit hoofdstuk aan dat een quasi

robuuste model benadert kan worden met een op kolomgeneratie gebaseerde heuristiek.

Bovendien laten we zien dat een van de twee quasi robuuste oplossingsmethoden in 4 van

de 5 gevallen beter presteert dan de näıeve aanpak. We concluderen dan ook dat het

nuttig is om rekening te houden met de onzekerheid in de verstoring bij het oplossen van

het OCRSP. Echter de quasi robuuste oplossingsmethoden vragen veel meer rekentijd en

zijn nu nog niet snel genoeg voor de praktijk.

Tenslotte eindigen we in hoofdstuk 7 met het opsommen van de belangrijkste resul-

taten uit dit proefschrift. Bovendien geven we als advies aan de Nederlandse Spoorwegen

om zo snel mogelijk een beslissingsondersteunend systeem voor de bijsturing van rijdend

personeel te introduceren gebaseerd op de methoden uit dit proefschrift. Naar onze over-

tuiging zal dit leiden tot betere operationele prestaties van NS: namelijk minder vertraagde

en minder uitgevallen treinen!
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l)RAILWAY CREW RESCHEDULING
NOVEL APPROACHES AND EXTENSIONS 

Passenger railway operators meticulously plan how to use the rolling stock and the
crew in order to operate the published timetable. However, unexpected events such as
infrastructure malfunctions, or weather conditions disturb the operation every day. As a
consequence, significant changes, such as cancellation of trains, to the timetable must be
made. If these timetable changes make the planned rolling stock and crew schedule
infeasible, one speaks of a disruption. It is very important that these schedules are fixed
such that no additional cancellations of trains are necessary. Nowadays this rescheduling is
still done manually by the dispatchers in the control centers.

In this thesis we use Operations Research techniques to develop solution approaches
for crew rescheduling during disruptions. This enables us to solve the basic operational
crew rescheduling problem in a short amount of computation time. Moreover, we studied
an extension to the basic problem where the departure times of some trains may be
delayed by some minutes. We show that this can lead to significantly better solutions for
some real-life instances. Furthermore, we presented two new quasi robust optimization
approaches that deal with the uncertainty in the length of the disruption. The
computational study reveals that one of these approaches outperforms a naive approach
in many cases. We believe that the methods developed in this thesis provided the
foundation for a decision support system for railway crew rescheduling.
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