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Abstract

Since disruptions in railway networks are inevitable, railway operators and infrastructure
managers need reliable measures and tools for disruption management. Current literature
on railway disruption management focuses most of the time on rescheduling one resource
(timetable, rolling stock or crew) at the time. In this research, we describe the application
of an iterative framework in which all these three resources are considered. The frame-
work applies existing models and algorithms for rescheduling the individual resources. We
extensively test our framework on instances from Netherlands Railways and show that
schedules which are feasible for all three resources can be obtained within short compu-
tation times. This case study shows that the framework and the existing rescheduling
approaches can be of great value in practice.

Keywords: Railway Operations, Disruption Management, Algorithmic Framework

1 Introduction

Railway transportation plays an important role in the lifes of many people. They travel by
train to their work or school, or for leisure purposes. One of the most important criteria for
passenger satisfaction is the reliability of the journeys. However, disruptions like accidents,
malfunctioning infrastructure or rolling stock, or crew unavailability are inevitable in a railway
system. As a consequence, passengers face cancelled, delayed or overcrowded train services.
It is very important for railway operators to reduce the nuisance caused by these disruptions
for the passengers as much as possible.

1The research leading to this paper has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) in the ON-TIME project under Grant Agreement SCP1-GA-2011-285243.
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As stated in the overview paper by Cacchiani et al. (2014): “the development of algorith-
mic real-time railway rescheduling methods is currently still mainly an academic field, where
the research is still far ahead of what has been implemented in practice.” The models and
algorithms from literature mainly deal with rescheduling either the timetable, or the rolling
stock, or the crew. It is currently unknown whether it is possible to combine the algorithms
for individual resources and come up with an overall feasible solution that is satisfactory for
the passengers. A solution is overall feasible if the three resource schedules are feasible in
themselves and are mutually compatible. The latter means that both rolling stock and crew
are available for each trip in the timetable. This might be one of the reasons why the models
from literature have not been implemented in practice yet.

In this paper, we make a first step in bridging this gap between theory and practice, by
introducing an iterative framework for timetable, rolling stock, and crew rescheduling. We
show that a satisfactory, overall feasible solution can usually be found in only a few iterations.
This suggests that the approaches for rescheduling individual resources can be combined and
applied in practice during a disruption.

In the iterative framework, we use earlier published models and algorithms on (macro-
scopically) adjusting the timetable, rescheduling the rolling stock, and rescheduling crew
schedules. The framework first computes a new timetable. Then, it reschedules the rolling
stock, covering as many trips in the timetable as possible. Trips that cannot be covered by
rolling stock are then cancelled in the timetable. Finally, the crew duties are rescheduled.
Again, the objective is to cover as many trips from the timetable as possible. If some trips
cannot be covered by crew, these trips are cancelled, and another iteration of the framework
is necessary. Otherwise, if all trips are covered by crew, the algorithm terminates. We em-
phasize that our framework is very generic: Instead of the particular models and algorithms
we use, other methods can be used in the framework as well, as long as they solve a similar
problem.

We demonstrate the effectiveness of the iterative approach on real-world instances from
Netherlands Railways (Nederlandse Spoorwegen, or NS). We consider 976 instances in total.
In half of them, one of the tracks between two stations is blocked for a certain period of time.
Then, only limited train traffic is possible between these stations. In the other half, all tracks
between two stations are blocked and no train traffic is possible at all. The most important
objective is to minimize the total duration of the cancelled train services.

The contribution of this paper is threefold. Firstly, we introduce an iterative framework
to reschedule the timetable, rolling stock, and crew. This all-in-one framework leads to an
overall feasible solution for all resources. Secondly, we show that the algorithm converges to
a satisfactory solution for all considered real-world instances in a few iterations. This shows
that the proposed iterative approach is sufficient and suggests that an integrated approach is
not required to obtain satisfactory solutions that are overall feasible. Thirdly, we show that
the framework and the underlying algorithms that we use are able to solve practical problems
and can be of great benefit to railway operators. In this way, we hope to reduce the earlier
mentioned gap between theory and practice.

The remainder of the paper is structured as follows. Section 2 reviews the relevant liter-
ature. Section 3 contains a description of the iterative framework. This section includes a
short description of the algorithms we use to reschedule the individual resources. In Section 4,
we present results on 976 disruptions on the railway network in the Netherlands. Finally, we
finish the paper with some concluding remarks in Section 5.
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2 Literature review

A disruption usually causes the timetable, the rolling stock schedule, and the crew schedule
to be infeasible. The timetable and rolling stock schedule may contain trips that make use of
infrastructure that is temporarily unavailable. These trips cannot be operated, which might
prevent some crew members to perform all tasks in their duties. As a result, the resource
schedules need to be adjusted. In current practice, this is mostly done manually. First,
often with the help of contingency plans, the timetable is rescheduled. Then, with the new
timetable as input, the rolling stock and crew tasks are rescheduled manually, one by one.
This is a time consuming process, so decision support tools are most welcome.

Most of the scientific literature on railway disruption management focuses on rescheduling
only one of the three resources. In this section, we will briefly review the literature on
rescheduling the timetable, the rolling stock, and the crew. Fore a more in depth review we
refer to Cacchiani et al. (2014).

The literature on timetable rescheduling can be classified in two parts: macroscopic and
microscopic timetable rescheduling. Macroscopic approaches to timetabling model the infras-
tructure on a high level of abstraction and usually deal with larger disruptions. For example,
certain tracks might be unavailable for a couple of hours. Amongst others, Louwerse and
Huisman (2014), and Veelenturf et al. (2016a) have recently developed a macroscopic model
for timetable rescheduling and have performed tests on the Dutch railway network. Zhan
et al. (2015) developed a different macroscopic model and tested it on the Chinese railway
network.

In contrast, microscopic models consider the railway infrastructure with a high level of
detail. By doing so, the propagation of delays can be modelled with high accuracy. These
models are usually applied to resolve smaller disturbances, e.g., few delays of up to half an
hour. We refer to D’Ariano et al. (2007) and Corman et al. (2011) for examples of microscopic
approaches to timetable rescheduling tested on the Dutch railway system and to Lamorgese
and Mannino (2015) for microscopic rescheduling cases tested and implemented on the Italian
and Norwegian railway network, respectively.

There are multiple papers with a focus on rescheduling the rolling stock. For instance,
Nielsen et al. (2012) adjusted the Composition Model from Fioole et al. (2006) and applied
it in a disruption management setting. In this model, the rolling stock rescheduling problem
is formulated as a multi-commodity flow model. Here, the nodes correspond to stations and
the arcs represent the trips between stations, or waiting inside stations. Furthermore, there
is also a transition graph describing the feasible transitions of compositions in the stations.
In the transition graph we have nodes representing trips for which rolling stock is required
and arcs representing possible changes in the rolling stock composition between these trips.
Haahr et al. (2014) developed a unit based model for a similar problem, where a specific path
is created for each rolling stock unit separately. The model is then solved by means of column
generation. The performance of these models is compared in Haahr et al. (2016) on both the
Dutch and the Danish railway network.

The third resource is the crew. Multiple researchers have investigated crew rescheduling.
Rezanova and Ryan (2009) model crew rescheduling as a Set Partitioning Problem and solve
it by column generation. In a similar fashion, Potthoff et al. (2010) solve a Set Covering
Problem by column generation and Lagrangian relaxation. This latter approach is extended
by Veelenturf et al. (2012) with the possibility of retiming some of the tasks. Using a com-
pletely different method, Abbink et al. (2009) solve the crew rescheduling problem by means
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of an agent based system. Here, agents correspond to crew members and can swap parts of
their duties.

All these papers show that models and algorithms can be used as decision support tools
for rescheduling one resource individually. However, it has never been tested whether these
individual rescheduling algorithms can be combined and lead to a solution that is overall
feasible. If, for instance, no train driver can be found for a particular trip, it means that this
specific trip cannot be executed. As a result, the timetable and rolling stock schedule become
infeasible, and need to be rescheduled again. In the next section we propose an iterative
framework that copes with these interactions.

There are few papers that investigate the integration of all or at least two of the reschedul-
ing steps. However, these papers focus mainly on small or less complex railway networks. Ex-
amples are Walker et al. (2005), who integrate timetable and crew rescheduling, and Cadarso
et al. (2013) and Cadarso et al. (2015), who integrate timetable and rolling stock rescheduling.
Cadarso et al. (2013) also explicitly consider the effect of the rescheduling measures on the
passenger demand and on the required seat capacity.

3 Framework

In this section, the iterative framework for real-time railway rescheduling is introduced. Fur-
thermore, we describe the interactions between the different modules in the framework and we
discuss the modules individually. Note that the modules that we use have been developed with
a sequential approach in mind. Our framework performs this sequential approach iteratively.
As a consequence, the models and algorithms do not need to be adjusted or reconfigured, but
can be used without any modifications.

3.1 Framework

The real-time railway rescheduling framework can be used for disruptions which lead to a
temporary blockage of one or more tracks. In this paper, we assume that the duration of the
disruption is known and fixed. The process can, however, be repeated as soon as there is new
information available about the duration. In other words, the process can be embedded in a
rolling horizon algorithm to handle the uncertainty regarding disruptions. A similar approach
has been suggested by Nielsen et al. (2012) for rolling stock rescheduling. Alternatively, the
uncertainty about the duration can be incorporated in the individual modules comprising the
framework. As an example, Veelenturf et al. (2016b) develop a quasi-robust crew rescheduling
algorithm that takes into account the uncertainty about the duration of the disruption.

Due to the blockage of (some of) the tracks, the timetable becomes infeasible and needs
to be rescheduled. Furthermore, the crew and rolling stock schedules need to be adjusted as
well. A schematic overview of the framework can be found in Figure 1.
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Figure 1: Overview of the iterative framework.

The framework starts by rescheduling the timetable macroscopically (TTR). The timetable
should be adjusted by means of delaying or cancelling train services. The objective when
rescheduling the timetable is to find a balance between cancelling as little train services as
possible and minimizing the delay introduced in the timetable. Output of this module is a
disposition timetable that is feasible with respect to the reduced infrastructure capacity.

The new disposition timetable is given as input to the module responsible for reschedul-
ing the rolling stock (RSR). Cancelled train services can result in the original rolling stock
circulation being infeasible. The goal when rescheduling the rolling stock is to assign a rolling
stock composition (a set of combined rolling stock units) to as many trips in the disposition
timetable as possible. Here, a trip is a part of a train service between two stations where the
rolling stock composition can be changed.

It might be impossible to cover all trips from the disposition timetable with rolling stock.
In that case, the timetable should be rescheduled a second time, preferably in such a way
that rolling stock is available for all trips in the new timetable. One obvious solution is to
cancel all trips in the timetable without a rolling stock composition assigned to it, but one
could also consider more elaborate approaches. This process is repeated until a timetable is
obtained for which rolling stock can be assigned to all trips.

Due to cancelled or delayed train services, the original crew schedule might be infeasible
as well. The third module of the framework is responsible for rescheduling the crew (CR).
This is done by appointing a new duty to every crew member. A duty is a list of tasks to be
performed by a single crew member. A task corresponds to performing work (e.g., as a driver
or as a conductor) on a certain trip. The most important constraints in the crew rescheduling
part are the crew regulation rules (e.g., the presence of a meal break and a maximal working
duration).

There might be tasks that cannot be assigned to any crew member. As a consequence,
the corresponding trip cannot be performed. In that case, the timetable should be adapted in
such a way that all trips can be covered with crew. After such an adjustment of the timetable,
also the rolling stock might have to be rescheduled again. To prevent several iterations in the
loop being necessary, the objective of the crew rescheduling approach is to assign crew to as
many tasks as possible.
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Algorithm 1 Iterative framework

1: Input: Characteristics of the disruption
2: Reschedule the macroscopic timetable (TTR).
3: Use output of TTR to reschedule the rolling stock (RSR).
4: if Not all trips are covered by rolling stock then
5: Timetable needs adjustments; go back to Line 2.
6: end if
7: Use output of TTR and RSR to reschedule the crew (CR).
8: if Not all trips are covered by crew then
9: Timetable needs adjustments; go back to Line 2.

10: else
11: Overall feasible schedule found.
12: end if

A summary of the iterative framework is shown in Algorithm 1. It needs a timetable, a
rolling stock and a crew rescheduling approach. In Sections 3.3-3.5 we briefly describe the
timetable, rolling stock and crew rescheduling algorithms we apply in this research. However,
note that one can replace the particular approach we have chosen for a resource by any other
rescheduling algorithm for that resource.

As is common in practice, we reschedule first the rolling stock and then the crew. One
reason is that drivers cannot run all rolling stock types and that the number of conductors
required for a trip can depend on the length of the rolling stock composition. However, if
these dependencies are discarded, it might be possible to reschedule the crew first, and then
the rolling stock. In that case, Lines 3-5 and Lines 7-9 are interchanged in the algorithm
above. We also test this variant of the framework. The results are presented in Section 4.3.2.

3.2 Interactions

There are several interactions between the different modules comprising the iterative frame-
work. These interactions, indicated by arrows in Figure 1, are discussed in this section in
more detail.

First, at the time a disruption occurs, all modules require information on the current state
of the railway system. This includes all events that have taken place up to this time. These
events can no longer be changed. For the rolling stock and crew rescheduling modules, this
information furthermore includes the original rolling stock and crew schedule. The rolling
stock rescheduling module requires the passenger demand for each trip, such that enough
capacity can be provided.

The timetable rescheduling module requires more information on the current state. First,
it requires the timetable as it has ran up to the current time, in order to determine the location
of all trains. Second, it needs the time the disruption takes place (the current time), because
trains that have already departed cannot be cancelled any more. The timetable rescheduling
approach we use also requires the duration of the disruption as input. Finally, the location
of the blockage and the specific tracks that are blocked are required as input.

Another interaction is the exchange of information between the timetable reschedul-
ing module and the rolling stock and crew rescheduling modules. The rolling stock and
crew rescheduling modules need to know the newly constructed disposition timetable. This
timetable describes for all non-cancelled train services all departure and arrival times at the
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stations. The interaction back from the rolling stock and crew rescheduling module to the
timetable rescheduling module consists of the trips for which no rolling stock or crew can be
found.

The last interaction is an information stream between the rolling stock and the crew
rescheduling modules. The rolling stock schedule influences the transfer time for crew mem-
bers. For example, if the next trip of a crew member uses the same rolling stock, then the
crew does not have to walk to another train and no buffer time is needed. Furthermore, not
every crew member is allowed to run all types of rolling stock. We decided to make this
interaction one-way: When rescheduling the rolling stock, we do not keep track of which crew
member is assigned to the trip. Therefore, the crew rescheduling module should take into
account which type of rolling stock is assigned to a certain trip.

3.3 Timetable Rescheduling

We use two different approaches for rescheduling the timetable in the iterative framework.
The first time the timetable is rescheduled, we use a sophisticated approach, which is based on
Veelenturf et al. (2016a). This approach considers the reduced infrastructure capacity caused
by the disruption. Thereafter, if the timetable must be adjusted because of a lack of rolling
stock or crew, we use a greedy approach. This combination of the sophisticated and greedy
approach ensures that the number of iterations is finite. Furthermore, it reduces computation
time. We now first explain the sophisticated approach and then the greedy approach.

Sophisticated approach

If the timetable is rescheduled for the first time, we use the approach suggested by Veelenturf
et al. (2016a). Here, the macroscopic timetabling problem is modelled using an event activity
network. The events in this network represent the departures and arrivals of train services
and the activities represent the minimal times (e.g. running, dwell and headway times) which
should be scheduled between two events. The infrastructure capacity is modelled as the
number of available tracks, which means that the precise locations of switches and signals are
neglected. An important feature of this model is that it also takes the rolling stock capacity
into account by keeping track of the number of rolling stock compositions entering and leaving
a station. For each train service, it checks whether a rolling stock composition is available. If
no rolling stock composition is available, that particular train service is cancelled. Detailed
information about rolling stock types and coupling and uncoupling options are not considered.
This means that the rolling stock capacity is measured on the level of compositions instead
of on the level of units. This leads to a high probability that a feasible rolling stock schedule
can be found for the disposition timetable, in which all trips are covered by rolling stock.

The model is formulated as a MIP and then solved using a general purpose solver (e.g.,
Cplex). The aim of the approach is to cancel and delay as few train services as possible
by considering the reduced capacity and by deciding which train services should be delayed
and/or cancelled. The order of train services on tracks can be switched and rolling stock
turnings can be adapted.

Greedy approach

The greedy approach, which is used in case the rolling stock or crew rescheduling module was
unable to cover all trips with rolling stock or crew, respectively, is quite basic. It cancels all
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trips that are not covered by rolling stock or crew. If the rolling stock module was unable
to cover certain trips, all other trips are included in a feasible rolling stock circulation. If
we cancel the tasks that could not be covered, then, by construction, we obtain a timetable
that is feasibly covered by rolling stock. Similarly, if the timetable algorithm was executed
because some trips could not be covered by the crew, and these trips are cancelled, we obtain
a timetable in which all tasks are covered by crew. If, thereafter, the rolling stock module is
able to cover all remaining trips, we can skip the subsequent crew rescheduling approach and
we are done. In this way, we might possibly save one step in the next iteration.

Our choice for the greedy approach also implies that the iterative algorithm always ter-
minates. In every iteration, except for the first one, it holds that another iteration is only
performed if at least one trip is not covered by rolling stock in the rolling stock rescheduling
step and, after cancelling this trip with the greedy approach, another trip is not covered by
crew in the crew rescheduling step. Otherwise, the framework terminates with a globally fea-
sible solution. So, in every iteration, at least two trips are cancelled. As a consequence, after
#trips

2 iterations all trips are cancelled, and this is a feasible solution as well. In this situation,
every rolling stock unit ends up at its location when the disruption starts. We assume that
all units can be moved to their desired location during the night. Similarly, all crew members
have to be sent to their depot by a taxi. Our models assume that these solutions are feasi-
ble, even though they carry high penalty costs. However, in most cases a feasible solution is
obtained already after a few iterations, as will be shown in our computational results.

3.4 Rolling Stock Rescheduling

The rolling stock rescheduling module implements the approach of Nielsen et al. (2012). The
rolling stock rescheduling problem is formulated as a multi-commodity flow model. The aim
is to appoint rolling stock compositions to trips and make sure that there is enough capacity
for all passenger demand. The objective is to minimize the number of non-covered trips
and the deviation from the original plan. Decision variables in the model indicate which
composition is assigned to each trip. Furthermore, the model contains decision variables to
indicate the rolling stock composition changes taking place between two consecutive trips.
Not all composition changes are allowed. For example, for a composition consisting of three
different units, it is impossible to uncouple only the middle unit from the composition. The
model is solved using a general purpose solver (e.g., Cplex).

The number of available rolling stock units is given as input to the module. In order
to get some flexibility, the number of rolling stock units which need to be parked at each
station during the night is not fixed. However, it is heavily penalized if at a station less units
are available at the end of the day in the new schedule. Such end-of-day unbalances require
additional deadheading trips during the night. Similarly, additional shunting movements are
penalized. Every new shunting movement must be communicated to local shunting crew and
must then be scheduled in between other shunting work. We want to minimize the additional
work for local shunting crew, and therefore penalize any new shunting movements.

3.5 Crew Rescheduling

The approach of Veelenturf et al. (2012) is used for rescheduling the crew. This approach is
based on Potthoff et al. (2010) and combines column generation with Lagrangian relaxation.
It assigns new duties to crew members such that as many tasks as possible are covered by
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the duties of the crew members. Furthermore, this approach allows to delay certain tasks by
a few minutes in order to reduce the number of non-covered tasks. However, in this paper we
do not use the possibility to delay certain tasks.

The crew rescheduling problem is formulated as a Set Covering Problem. Here, the duty
of each crew member must be replaced by a new duty. The model contains decision variables
that indicate which replacement duty is assigned to each crew member. Because the original
duties can be replaced by many new duties, column generation is applied to generate promising
replacement duties. Besides the main objective of covering as many tasks as possible, another
objective is to have that the new duties deviate as little as possible from the original duties.
Every deviation in the duties should be communicated to the crew members. This takes time
and could lead to errors in practice.

In order to speed up the solution process, only a subset of the crew members is considered.
In particular, the crew members whose duty became infeasible due to the disruption and the
crew members in the neighbourhood of the disruption are included in the problem. The duties
of the other crew members are fixed. In an iterative way, other neighbourhoods are explored
as long as non-covered tasks are left.

4 Computational Experiments

In this section, we describe the computational experiments that we have executed to assess the
performance of the iterative framework. We first describe the cases that we have considered
and then discuss the results we have obtained. The iterative framework has been implemented
in Java using Eclipse Kepler. All computational tests are performed on a desktop with an
Intel Quad Core i7 processor and 4GB of RAM. We used Cplex 12.6 as solver for the MIP
models.

4.1 Case description

We have used the Dutch railway system to test our iterative framework. We have obtained
the timetable, rolling stock data, and the crew schedule for a specific day in June 2012 from
Netherlands Railways.

In Figure 2, a picture of the Dutch railway network is shown. The solid lines represent
the railway network that is operated by Netherlands Railways. The dotted lines are operated
by other railway operators. In general, the timetable is half-hourly periodic, with some
exceptions in the rural areas. This means that the majority of long distance and regional
train services run once every thirty minutes. On some parts of the network, two different
train services share a part of their route between two stations. It follows that a train service
is operated every 15 minutes between these stations.

For the timetabling stage, we use only part of the railway network and require that all
train services run as planned outside this region. This approach is in line with current practice
and follows the literature on this topic, see, e.g., Veelenturf et al. (2016a) and Louwerse and
Huisman (2014). The region that we consider in the timetabling phase is depicted by the
circle in the figure and in more detail in Figure 3. In the latter figure also the number of
tracks within a station and the number of tracks between stations are displayed. In this
region, 116 train departures from stations depicted in Figure 3 are scheduled per hour in the
timetable.
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Figure 2: Map of the railway network in the Netherlands (2012).
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Figure 3: Graph of the railway network taken into account when rescheduling the timetable.
Rectangles are the nodes and correspond to stations or important junctions. For each station,
the number of tracks within the station is specified. Numbers at the edges indicate how many
tracks connect two stations. The dashed edges represent the locations of the disruptions.
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We consider disruptions at two different locations: either between ’s-Hertogenbosch (Ht)
and Nijmegen (Nm) (indicated by the star in Figure 2) or between ’s-Hertogenbosch and
Utrecht (Ut) (indicated by the triangle). The dashed edges in Figure 3 also indicate the
locations of the two disruptions. On both locations, there is a double track between the
stations. We consider both a complete and a partial blockage. In a complete blockage, both
tracks are blocked and it is impossible to operate any train services between these stations.
In a partial blockage, only one of the tracks is blocked, which allows train services to cross
the disrupted region.

In the railway network considered when rescheduling the timetable, there are in total
15 nodes (stations or important junctions), with the number of tracks in the nodes varying
from 1 until 14. Only stations or junctions are considered where ordering decisions between
trains are necessary. With ordering decisions between trains we mean the decision which
train utilizes the specific track before the other. As a consequence, the considered stations
and junctions are the ones to influence the macroscopic routing options of the train services.
There are in total 5 stations (Ut, Gdm, Ht, Ehv and Nm) that have a shunting yard. We
assume that all shunting yards have a sufficient number of tracks to store rolling stock units.

To analyse how the performance of our approach depends on the characteristics of the
disruption, we consider different start times and different durations of the disruption. The
start time of the duration varies between 7:00 AM and 5:00 PM in steps of ten minutes,
giving us 61 different start times. The duration of the disruption is either 60, 80, 100, or 120
minutes. Recall that we assume that the duration of the disruption is known directly at the
start of the disruption.

For the rolling stock and crew rescheduling phase, we consider the complete railway net-
work. We no longer focus on a specific part of the network alone. Furthermore, for the rolling
stock rescheduling phase, note that in the Netherlands we distinguish between long distance
train services and regional train services. A regional train service is scheduled to stop at every
station, while a long distance train service only dwells at the larger stations. The rolling stock
units available for long distance train services are different from those available for regional
train services. For example, rolling stock units for regional train services accelerate faster.
In our experiments, it is not allowed to use rolling stock meant for long distance train ser-
vices for a regional train service or vice versa. This allows us to decompose the rolling stock
rescheduling problem into two independent problems: one rolling stock rescheduling problem
for the long distance train services and one for the regional train services.

In the crew rescheduling step we assume that drivers and conductors work in pairs and
that one of each is required per train service. As a consequence, by rescheduling the drivers
we have immediately rescheduled the conductors.

4.2 Implementation

The models discussed in Sections 3.3-3.5 require certain settings and input data. In this
section, we discuss the details of the actual implementation of the iterative framework. The
main objective in our experiments is to minimize the total duration of cancelled train services.
Therefore, in each of the three approaches, this will be the individual main objective. For
the rolling stock and crew rescheduling this is done indirectly by focusing on covering as
many trips as possible with rolling stock and crew. If no rolling stock or crew is assigned
to a certain trip, this trip will be cancelled by the timetable rescheduling. The penalties for
not assigning rolling stock or crew to a certain trip depend on the duration of the trip. The
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values of the other penalties and parameters are set at the values proposed in the original
publications on these algorithms. Note that the algorithms have been developed and tested
in close collaboration with NS.

4.2.1 Settings timetable rescheduling

The first time the timetable is rescheduled, we apply the approach developed by Veelenturf
et al. (2016a). Each next iteration, the timetable rescheduling module is called because either
the rolling stock or the crew rescheduling was not able to cover all trips. For these cases we
implemented the greedy timetable rescheduling approach which cancels all trips for which no
rolling stock or crew was found.

The timetable rescheduling approach of Veelenturf et al. (2016a) requires the original
scheduled timetable as input. Every scheduled trip is represented by a corresponding depar-
ture and arrival event. Such an event contains the time when it takes place, the corresponding
station where it takes place, and the scheduled track on which it takes place.

Next to the timetable, a description of the railway network is necessary. Furthermore,
the model requires parameters specifying the regulations between train services. Within the
stations a headway time of 2 minutes is considered in between two consecutive train services
assigned to the same track. This headway time of 2 minutes also applies to two consecutive
train services running in the same direction assigned to the same track in between stations.
The headway time of train services using a single track in opposite directions is 0 minutes.

Detailed settings for the rolling stock part of the timetable rescheduling module are nec-
essary as input as well. When a train service ends, the rolling stock of that train service may
be used by a starting train service at the same location. This is called a turning pattern. The
minimum time between these two train services is set to 1 minute. If a rolling stock turning is
chosen with a turn around time longer than 10 minutes and there is a shunting yard available,
the rolling stock is shunted away. In such a situation, 5 minutes after the train service has
ended, the rolling stock is shunted away, and 5 minutes before the new train service starts,
the rolling stock is considered to be back at a station track.

In the objective function, a single cancelled minute is penalized by 50,000 since minimizing
cancellations is the main objective. For each minute of arrival delay, a penalty of 1 applies.
Furthermore, an event may be delayed by at most 8 minutes. Recall that a train service is
operated every 15 minutes on some parts of the network. The maximum delay is set at half of
this value. In case of a larger delay, the passengers can as well wait for the next train. Note
that we only take direct train delays into account. Longer passenger delays, due to missed
connections for example, are not considered.

Another penalty is set upon deviating from a preferred turning pattern. For example,
turning patterns of the same series are preferred. A list of preferred turning patterns is given
as input and using a different turning pattern is penalized by 10.

Finally, the model requires as input a duration that specifies from what time onwards
the timetable should be equal to the original timetable. We set this duration to 60 minutes.
This means that from 60 minutes after the disruption has ended onwards, all trains must be
operated as planned again.

All penalty values for the sophisticated timetable rescheduling approach are summarized
in Table 1.
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Description Penalty

Cancelled minute 50,000
One minute arrival delay 1
Turning pattern deviation 10

Table 1: Penalties timetable rescheduling approach.

4.2.2 Settings Rolling Stock Rescheduling

The rolling stock rescheduling module based on Nielsen et al. (2012) uses many settings. In
our experiments, there are four different rolling stock types available. There are two types for
the long distance train services, namely one with 3 carriages and one with 4 carriages, and
two types for the regional train services, also consisting of 3 and 4 carriages. Rolling stock
units can be coupled to each other to form a rolling stock composition. In this way more
capacity can be appointed to a trip. Only units of the same type are allowed to be coupled
into a composition. The maximum length of a composition is 15 carriages.

At the start of the day, each station with a shunting yard contains a starting inventory of
rolling stock units. This starting inventory denotes the number of available rolling stock units
per rolling stock type at that station. Next to the starting inventory, the desired end-of-day
inventory is needed per station. This is the amount of rolling stock units of a certain type
that preferably is present at the end of the planning period at the corresponding station. We
set a penalty of 100 per unit deviation from the desired end-of-day inventory.

Furthermore, an original rolling stock circulation is required for both the long distance
and the regional train services. This original circulation contains a list of trips, where a
trip is defined as a part of the train service between two stations where the composition
may be changed. Every trip has the following characteristics: departure station, arrival
station, departure time, arrival time, successor of the trip (turning pattern), and the originally
appointed composition. The last information which the model requires is the start time of
the disruption.

The largest penalty is set upon not covering a trip. A trip is not covered in the rolling
stock rescheduling phase if no composition can be appointed to the trip. The penalty for
not covering a trip equals 100,000 plus 1,000 times the duration of the trip in minutes. In
this way we minimize the number of cancelled train services, and if we have to cancel a train
service, then we prefer to cancel the train service with the shortest duration.

Next, we want to minimize the differences between the rescheduled rolling stock circulation
and the original rolling stock circulation. First of all, the deviation in the number of carriages
between the two circulations is penalized. A penalty of 1,000 is given per additional carriage
on a trip and a penalty of 10,000 is given for every missing carriage on a trip in the rescheduled
rolling stock circulation in comparison with the original rolling stock circulation. The penalty
for missing a carriage is larger than the penalty for an additional carriage, because one missing
carriage means a capacity reduction of approximately 100 seats for passengers on that trip. By
doing so, we implicitly assume that the passenger demand used for the original circulation is
still accurate. Another option would be to incorporate how passengers react when a disruption
occurs. This issue is discussed, for example, by van der Hurk (2015). In that case, one can
penalize seat capacity shortages directly when rescheduling the rolling stock circulations.

The final penalty is set upon deviating from the original shunting plan. If an originally
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planned shunting movement (either coupling or uncoupling) is cancelled, then there is a
penalty of 100 for not performing that shunting movement. A penalty of 1000 is set upon
newly added shunting movements. For these shunting movements, new shunting crew must be
arranged, which could be a lot of work, so the penalty is larger than the penalty for cancelling
a shunting movement.

All penalties used in the rolling stock rescheduling approach are summarized in Table 2.

Description Penalty

Cancelled trip 100,000 + 1,000 · duration of the trip
End-of-day balance deviation 100

Positive carriage deviation 1,000
Negative carriage deviation 10,000

Cancelled shunting movement 100
New shunting movement 1,000

Table 2: Penalties rolling stock rescheduling approach.

In order to be able to solve the rolling stock rescheduling problem in short time, we use a
rolling horizon. Note that all trips before the start of the disruption are fixed, so our complete
planning horizon is from the start of the disruption (ts) up to the end of the day (t∞). Solving
the rolling stock rescheduling problem with the complete planning horizon can take long, so
we split it by means of a dynamic planning horizon. The first part is from the start of the
disruption up to time ts + t∞−ts

2 = ts+t∞

2 , this is exactly halfway the complete planning
horizon. The second part is from ts+t∞

2 up to the end of the complete planning horizon. The
solution of the first part is given as input to the second part, such that a feasible rolling stock
circulation is found for the complete planning horizon.

Furthermore, we use a fixed computation time limit of 5 minutes per horizon. The optimal
rolling stock circulation, with respect to our penalties, is found relatively fast. However,
proving that this solution is optimal might take time. That is why we use a computation
time limit of 5 minutes per horizon. In this time limit the optimal solution is almost always
found, but not yet proven to be optimal.

4.2.3 Settings Crew Rescheduling

The crew rescheduling approach of Veelenturf et al. (2012) uses penalties for not covering a
task and for deviations in comparison to the original schedule. In the schedule, we distinguish
between three types of tasks: tasks corresponding to operating a train service with a different
start and end location, tasks corresponding to operating a train service with the same start
and end location (operating the same rolling stock back and forth), and tasks which do not
have to do anything with operating train services (e.g., training tasks). Since the aim is to
operate as many train services as possible, the first two types of tasks get heavily penalized
if they are not covered, while the third one is penalized less.

The penalty for not covering a task which is not related to operating train services, called
local task, equals 250. For not covering a task related to operating train services, we test two
settings. In the first setting, all tasks are treated equally and the penalty for not covering
a task is equal to 20,000 plus 100 times the duration of the task. In the second setting
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we make a distinction between tasks in which the start and end location are the same (so
called AA-tasks) and tasks in which the end location is different from the start location
(so called AB-tasks). It can be argued that the rolling stock schedule remains feasible if
an AA-task is cancelled. However, if an AB-task is cancelled, rolling stock rescheduling is
definitely necessary. Therefore, in the second setting, we prefer not covering an AA-task over
not covering an AB-task. For not covering an AA-task the penalty will be 3,000 plus 100
times the duration of the task. For not covering an AB-task the penalty remains 20,000 plus
100 times the duration of the task. It is expected that this second option leads to more
cancellations in the crew rescheduling step but to less cancellations in the subsequent rolling
stock rescheduling step.

The fixed costs for changing a duty equals 400 and for each new task in a duty a penalty
of 50 applies. Each new transfer between tasks which was not present in any duty in the
original crew schedule is penalized by 1. If the driver is directly sent home by a taxi (since
no replacement duty is available which complies with the rules), a penalty of 3,000 is used.

The new duties may not take longer than the original duties and at maximum 5.5 hours
may pass without a break of at least 30 minutes. The transfer time in between tasks on
different rolling stock compositions equals 10 minutes.

The penalty values used for crew rescheduling are different from the ones used for reschedul-
ing the rolling stock. The penalty values are all commonly used in literature. All three
modules have the same overall objective: cancelling as little train services as possible.

The penalties used in the crew rescheduling approach are summarized in Table 3.

Description Penalty

Cancelled task setting 1 20,000 + 100 · duration of the trip
Cancelled AA task setting 2 3,000 + 100 · duration of the trip
Cancelled AB task setting 2 20,000 + 100 · duration of the trip

Cancelled local task 250
Change duty 400

New task in duty 50
New transfer in duty 1

Send driver home by taxi 3,000

Table 3: Penalties crew rescheduling approach.

The approach of Veelenturf et al. (2012) also has an option to slightly delay tasks to have
less tasks which cannot be covered. In our experiments we did not allow these delays, since
then the crew rescheduling is interfering with the timetable rescheduling.

4.3 Experiments

In this section, we present the results for complete and partial blockages on various settings
of the framework. First, we test the general framework and discuss the associated results.
Thereafter, the differences are presented between the general framework and the variant where
the order of the rolling stock and crew rescheduling step are switched. Then, we test whether
having a lower penalty for not covering AA-tasks leads to less cancelled trips overall. We end
this section with a discussion of some practical issues.
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4.3.1 Results of the general framework

First, the results of the general framework are presented. Table 4 gives an overview of
the number of cancelled train services and the average total duration of the cancelled train
services. These numbers include the train services that inevitably need to be cancelled because
they are scheduled on the blocked tracks. Recall that for each location, duration, and type
of disruption, we have 61 possible start times of the disruption. Each number in the table
represents an average over these 61 instances. That leads to a total of 976 instances to test
the framework upon, because there are two locations where a disruption occurs, four different
durations, two different types (complete and partial), and 61 different start times.

Cancelled trips Cancelled minutes
Type Duration (min) TTR RSR CR TTR RSR CR

60 14.33 0.20 0.75 284.46 5.08 19.30
Ht-Ut 80 19.64 0.15 1.23 413.39 2.72 34.05

Complete 100 25.36 0.13 1.72 526.71 2.28 47.38
120 31.00 0.16 1.97 638.54 3.05 53.64

60 5.33 0.03 0.89 88.51 0.56 21.39
Ht-Ut 80 9.67 0.16 1.41 136.80 2.80 36.56
Partial 100 9.34 0.05 0.77 167.95 0.69 22.26

120 12.00 0.41 1.54 209.36 11.92 38.89

60 8.00 0.03 0.84 124.80 0.43 27.44
Ht-O 80 11.69 0.39 0.98 214.98 12.90 36.85

Complete 100 13.00 0.13 1.39 226.15 2.20 48.66
120 16.00 0.08 1.62 249.61 1.21 50.57

60 4.00 0.02 0.61 59.51 0.21 18.54
Ht-O 80 5.69 0.28 0.74 106.31 9.87 23.43

Partial 100 6.66 0.00 0.93 120.71 0.00 32.15
120 8.00 0.00 0.85 141.61 0.00 29.00

All cases 12.48 0.14 1.14 231.84 3.50 33.76

Table 4: Results of the General Framework. The first column denotes the location and the
type of disruption and the second column the duration of the disruption. The third, fourth and
fifth column denote the average number of cancelled train services in timetable, rolling stock,
and crew rescheduling. The sixth, seventh, and eighth column show the average total duration
of all the cancelled trips in timetable, rolling stock, and crew rescheduling in minutes.

First consider the number of cancelled train services. As expected, most of the train
services are cancelled in the timetabling phase. Remember that in case of a complete blockage,
all tracks are blocked. As a result, the module cancels most of the train services operated
on those tracks. If these train services would not be cancelled, they would queue up in the
railway system, causing knock-on effects over the whole country. As a result, we observe
more cancellations for complete blockages than in case of partial blockages. Furthermore, as
expected, the number of cancelled train services when rescheduling the timetable increases if
the duration of the disruption increases. This holds for both complete and partial blockages.

Secondly, we observe that train services are cancelled in the rolling stock phase only rarely.
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This can be attributed to the timetabling algorithm, which increases the probability that a
feasible rolling stock schedule exists that does not need to cancel any additional train services.
Consequently, almost no train services are cancelled in the first iteration of the rolling stock
rescheduling module.

This does not hold for the crew rescheduling stage. On average 1 to 2 train services are
cancelled in that stage. In case of a complete blockage, the average number of tasks for
which no crew can be found is increasing in the duration of the disruption. We do not see
this pattern for the partial blockages. One explanation could be that the longer tracks are
completely blocked, the more difficult it becomes to get the crew members home on time. In
case of partial blockages, it is easier to get crew members home since still some train services
are operated. However, this does not mean that we can conclude that partial blockages lead
to less or more cancelled train services due to lack of crew in general. On the one hand, partial
blockages cause less gaps in duties by cancelled train services due to timetable rescheduling,
but on the other hand due to the lack of gaps there is less buffer to adapt duties.

The numbers of cancelled minutes of train services follow a similar pattern as the number
of cancelled train services for both complete and partial blockages.

Next, we consider the iterative behaviour of the framework. In Table 5, we indicate the
amount of instances that turn out to be feasible after executing each module for all iterations.
As can be seen, for both the complete and partial blockages, at least 40% of the instances
are solved in one iteration and 99% in two iterations. Furthermore, among the instances
which stop in the second iteration, most have already been stopped after the rolling stock
rescheduling step. In other words, for more than 90% of the instances the crew rescheduling
step is performed only once. All instances are solved in at most three rolling stock and three
crew rescheduling steps, thus after three iterations.

Complete blockages

Iteration Cumulatively stopped after RSR Cumulatively stopped after CR
1 - 193 (40%)
2 450 (92%) 482 (99%)
3 488 (100%)

Partial blockages

Iteration Cumulatively stopped after RSR Cumulatively stopped after CR
1 - 228 (47%)
2 475 (97%) 485 (99%)
3 486 (99%) 488 (100%)

Table 5: Iterative behaviour of the general framework. The first column denotes the iteration.
The second column gives the number of instances for which a feasible overall solution is found
after rescheduling the rolling stock. The third column gives the number of instances for which
a feasible overall solution is found after rescheduling the crew.

The computation times are presented in Figures 4 and 5. In both figures, the left side
gives an overview of the average computation time for each of the modules in the iterative
framework. The computation time of a single instance of, for example, the crew rescheduling
module is the total time it takes to reschedule the crew (so all iterations combined). On
the right side a histogram of the total computation time is shown. It gives an overview of
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the percentage of instances that are solved within 0-3, 3-5, 5-7, 7-9, and 9-11 minutes. Note
that the regional and long distance rolling stock rescheduling step can be solved in parallel.
However, we have solved them sequentially. As a consequence, the total time it takes to solve
an instance is the sum of the computation times for timetable rescheduling (TTR), rolling
stock rescheduling for regional (RSR R) and long distance train services (RSR L), and crew
rescheduling (CR). For both complete and partial disruptions more than 80% of the cases are
solved within 5 minutes and less than 6% of the runs take more than 7 minutes. Note that the
total computation time averaged over all instances is almost similar for complete and partial
blockages: 3.8 and 3.9 minutes, respectively.
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Figure 4: Computation times for complete blockages in the general framework. Here R
abbreviates the regional train services and L the long distance train services.
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Figure 5: Computation times for partial blockages in the general framework. Here R abbre-
viates the regional train services and L the long distance train services.

Figure 6 shows the average computation time per step in the framework for complete (left)
and partial (right) blockages. As explained above, at most three iterations are needed within
the framework. This explains why the rolling stock and crew rescheduling phases appear
three times in the figure. Note that the sophisticated approach for timetabling is only applied
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in the first iteration. The computation time for this approach is reported in the figure. In
the second and third iteration, the greedy approach for timetabling is applied. The greedy
approach cancels the trips without rolling stock or crew. This can be done instantaneously.
Thus, the computation times for the greedy approach are all 0 and are not reported in the
figure. There is no third iteration necessary for crew rescheduling for any of the instances
during a complete blockage, so we have left that one out of the figure. Also, there was no
third iteration required for any of the Ht-O instances with partial blockages and not for any
of the regional train instances with a complete blockage between Ht-O.

Note that for the second and third iterations, the average computation time is computed
over the instances for which a second or third iteration was required, respectively. It can
be seen that in case of a complete blockage, the timetable rescheduling step takes a couple
of seconds, while in case of a partial blockage, it takes about half a minute. The average
computation time spent in crew rescheduling is less than half a minute and is in case of a
partial blockage lower than in case of a complete blockage. Rescheduling the rolling stock
takes most of the time: The average time required is a couple of minutes and again less for
instances with partial blockages than for instances with complete blockages.

Summarizing, the total average computation time is the same for partial and complete
blockages. However, the division of the computation time over the rescheduling steps differs.
Partial blockages require more time for the timetable rescheduling, but that is compensated
by requiring less time for rescheduling the rolling stock and crew.
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Figure 6: Computation times for each of the steps in the general framework. Here R abbre-
viates the regional train services and L the long distance train services. R1 abbreviates then
the first iteration for the regional train services, etc.

4.3.2 Crew First Variant

As discussed in Section 3, the order of the rescheduling modules can be changed in the
iterative framework. In this section, we consider the variant where we reschedule the crew
before rescheduling the rolling stock in each iteration. In practice, this is not always possible.
First, buffer time between two train services is not required if the train services are operated
with the same rolling stock. Thus, the minimal buffer times depend on the rolling stock
circulation. Secondly, drivers have a license to operate a subset of all rolling stock types.
Again, the rolling stock type for all trips is only known after rescheduling the rolling stock.
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However, in this section, we assume that the crew schedule can be generated independently
of the rolling stock schedule. In this case we are able to reschedule the crew before the rolling
stock. This special variant of our framework will be referred to as the Crew First Variant.
The Crew First Variant is interesting, because some rolling stock constraints are taken into
account in the timetable rescheduling step of Veelenturf et al. (2016a). Consequently, less
iterations might be required to find an overall feasible solution. Therefore, we have tested
this setting. The results are presented in Tables 6 and 7 and Figures 7 and 8.

Cancelled trips Cancelled minutes
Type Duration (min) TTR RSR CR TTR RSR CR

60 14.33 0.20 0.79 284.46 5.08 19.77
Ht-Ut 80 19.64 0.10 1.23 413.39 1.69 34.05

Complete 100 25.36 0.13 1.72 526.71 2.28 47.38
120 31.00 0.12 1.97 638.54 2.02 53.64

60 5.33 0.03 0.89 88.51 0.56 21.39
Ht-Ut 80 9.67 0.16 1.41 136.80 2.80 36.56
Partial 100 9.34 0.05 0.77 167.95 0.69 22.26

120 12.0 0.33 1.71 209.36 9.00 43.02

60 8.00 0.03 0.84 124.80 0.43 27.44
Ht-O 80 11.69 0.39 1.00 214.98 12.89 37.25

Complete 100 13.00 0.05 1.39 226.15 0.74 48.66
120 16.00 0.08 1.62 249.61 1.21 50.57

60 4.00 0.02 0.61 59.51 0.21 18.54
Ht-O 80 5.69 0.26 0.79 106.31 9.31 24.85

Partial 100 6.66 0.00 0.93 120.71 0.00 32.15
120 8.00 0.00 0.85 141.61 0.00 29.00

All cases 12.48 0.12 1.16 231.84 3.06 34.16

Table 6: Results of the Crew First Variant. See Table 4 for the description of the columns.

In Table 6 the number of cancelled train services and the average duration of the can-
celled train services are presented. There is not much difference in terms of the number of
cancellations and the duration of the cancelled train services in comparison with the general
framework. However, if we look at the number of iterations in Table 7, we see that at most two
rolling stock iterations are necessary now. Furthermore, the percentage of instances solved
in one iteration is very large (about 90%). In the general framework, about 50 to 60 percent
of the instances needed at least two rolling stock rescheduling steps (see Table 5). With the
Crew First Variant, only one percent of the instances need a second rolling stock rescheduling
step. As the rolling stock rescheduling step is the most time consuming step, this leads to a
decrease in the average computation time, as can be seen in Figures 7 and 8. Here, both the
computation times of the General Framework and of the Crew First Variant are displayed.
We note that the average computation time equals 2.8 and 3.2 minutes, respectively, for the
instances with complete and partial blockages in the Crew First Variant. This is about one
minute (about 25%) faster than in the general framework. The distribution of the computa-
tion times per step in the Crew First Variant is the same as in the general framework (see
Figure 6), therefore we do not show such a figure again.
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Complete blockages

Iteration Cumulatively stopped after CR Cumulatively stopped after RSR
1 - 428 (88%)
2 481 (99%) 488 (100%)

Partial blockages

Iteration Cumulatively stopped after CR Cumulatively stopped after RSR
1 - 451 (92%)
2 483 (99%) 486 (99%)
3 488 (100%)

Table 7: Iterative behaviour of the Crew First Variant. See Table 5 for a description of the
columns.
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Figure 7: Computation times for complete blockages in the Crew First Variant. Here R
abbreviates the regional train services and L the long distance train services.
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Figure 8: Computation times for partial blockages in the Crew First Variant. Here R abbre-
viates the regional train services and L the long distance train services.

4.3.3 Different Costs Variant

In the previous section, we demonstrated that computation times could be reduced by chang-
ing the order of the rolling stock and crew rescheduling steps. This might not be applicable
in reality because it depends on assumptions which do not always hold in practice.

Another idea to save time for the rolling stock rescheduling phase is to consider rolling
stock properties already in the crew rescheduling module. If a crew task with a different start
and end location (AB-task) is cancelled, it causes a gap and leads to an infeasibility in a
rolling stock duty. However, if a crew task with the same start and end location (AA-task)
is cancelled, it is assumed that the gap in the rolling stock duty does not make the duty
infeasible. During the crew rescheduling phase we could aim to prefer cancellations of AA-
tasks over cancellations of AB-tasks, by having different penalties for not covering these tasks
(as discussed in Section 4.2.3). This could result in less cancellations in the next rolling stock
rescheduling step. We refer to this as the Different Costs Variant. In the Different Costs
Variant, we first reschedule the rolling stock, and then the crew in each iteration. Hence, the
costs are changed compared to the base case discussed in Section 4.3.1.
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Cancelled trips Cancelled minutes
Type Duration (min) TTR RSR CR TTR RSR CR

60 14.32 0.21 0.74 284.46 5.36 20.97
Ht-Ut 80 19.64 0.16 1.21 413.39 3.00 35.26

Complete 100 25.36 0.13 1.70 526.71 2.30 52.71
120 31.00 0.20 1.97 638.54 3.62 56.84

60 5.33 0.03 0.87 88.51 0.56 29.18
Ht-Ut 80 9.67 0.16 1.36 136.80 2.80 42.82
Partial 100 9.34 0.07 0.77 167.95 0.97 25.51

120 12.00 0.41 1.61 209.36 11.92 49.66

60 8.00 0.02 0.89 124.80 0.21 32.66
Ht-O 80 11.69 0.39 1.02 214.98 12.90 40.12

Complete 100 13.00 0.13 1.48 226.15 2.20 56.67
120 16.00 0.07 1.69 249.61 0.95 57.97

60 4.00 0.02 0.62 59.51 0.21 19.84
Ht-O 80 5.69 0.28 0.80 106.31 9.87 30.79

Partial 100 6.66 0.00 1.05 120.71 0.00 41.46
120 8.00 0.00 0.97 141.61 0.00 39.90

All cases 12.48 0.14 1.17 231.48 3.55 39.52

Table 8: Results of the Different Costs Variant. See Table 4 for a description of the columns.

In Table 8, the results of the Different Costs Variant are presented. As expected, the
number of cancelled train services and corresponding minutes in the crew rescheduling step
have increased in comparison to the general framework. This is due to the fact that it is now
cheaper to cancel AA-tasks. The percentage of cancelled AA-tasks with respect to all tasks
cancelled due to lack of crew has increased from 28% to 38%. However, this has not led to a
decrease in the number of cancelled tasks due to lack of rolling stock. Instead, it has led to
a very slight increase in the duration of the cancelled trips due to lack of rolling stock. Most
likely this is caused by the fact that in total more crew tasks are cancelled.

In terms of computation times, there are no significant differences as can be seen in
Figure 9 and Figure 10.
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Figure 9: Computation times for complete blockages in the Different Costs Variant. Here R
abbreviates the regional train services and L the long distance train services.
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Figure 10: Computation times for partial blockages in the Different Costs Variant. Here R
abbreviates the regional train services and L the long distance train services.

4.4 Practical considerations

Within Netherlands Railways, there is a lot of know-how about rescheduling during disrup-
tions. These experiences in rescheduling result in several interesting findings, which we like
to investigate now we have the relevant data.

4.4.1 Influence of start time disruption on crew rescheduling

One of these interesting findings arising from practice is that if a disruption occurs between
12:00 and 14:00, many more train services get cancelled due to lack of crew than at any
other time during the day. We decided to check whether this is true. Figure 11 shows the
distribution of the number of cancelled train services due to lack of crew. In this figure, the
start time of the disruption is plotted on the horizontal axis. On the vertical axis, we show the
number of tasks that cannot be covered by crew. As can be seen, both for complete and partial
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blockages, the peak is between 11:00 and 14:00. So the start time of the disruption indeed has
a large influence on the number of train services being cancelled by crew rescheduling. This
is probably due to the fact that there are many duties that end around 14:00 at Netherlands
Railways, which makes it difficult to get the involved crew members back on time at their
end location. This finding could help with allocating and scheduling the reserve crew.
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Figure 11: Spread of cancelled train services due to lack of crew members

4.4.2 Redundant iterative steps removed

A second finding is that if in the crew rescheduling step only AA-tasks get cancelled, we no
longer have to reschedule the rolling stock again. The start and end location of an AA-task
is the same, so cancelling an AA-task can probably be solved in the rolling stock circulation
fairly easily. As a consequence, the rolling stock circulation should remain feasible. Recall
that this was the reason to consider different cost penalties for AA-tasks and AB-tasks in
Section 4.3.3. Our results demonstrate that this is indeed the case. If only AA-tasks get
cancelled in the crew rescheduling module, then the next rolling stock rescheduling step is
redundant.

By not performing the redundant rolling stock step, we can save one iteration. As a result,
in total we are able to save 42 iterations in case of a complete blockage, and 30 iterations
in case of a partial blockage in the General Framework. No iterations can be saved by not
performing a redundant rolling stock rescheduling step in the Crew First Variant, because
there were no redundant rolling stock rescheduling steps. For the Different Costs Variant, we
are able to save in total 61 iterations in case of a complete blockage and 74 in case of partial
partial blockages. Observe that we can indeed save more iterations in the Different Costs
Variant.

Table 9 shows the average computation time required to solve the instances with and
without the redundant rolling stock rescheduling step. As can be seen, on average around
10 seconds of computation time is saved for the instances with a full blockage and around
5 seconds for the partial blockages for both the General Framework and the Different Costs
Variant.
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Type Module General Crew First Different Costs

Complete RSR L 290.59 207.87 285.48
No redundant RSR R 96.42 74.47 95.90

Total 448.41 344.71 442.16

Complete RSR L 296.84 207.87 294.66
Redundant RSR R 101.08 74.47 103.86

Total 459.32 344.71 459.30

Partial RSR L 250.52 192.69 241.93
No redundant RSR R 96.40 75.27 92.21

Total 460.06 383.06 443.21

Partial RSR L 251.68 192.69 243.82
Redundant RSR R 100.50 75.27 102.61

Total 465.32 383.06 455.49

Table 9: Average computation times: the first column denotes whether instances with a com-
plete or partial blockage are solved and whether the redundant rolling stock step is performed or
not. The second column denotes for which part of the framework we present the results (RSR
L, RSR R, or the total framework). The third, fourth, and fifth column denote the average
computation time required to solve the instances for different variants of the framework.

Figures 12, 13, and 14 present the computation time distribution for the General Frame-
work, the Crew First Variant and the Different Costs Variant, respectively. Every figure
presents both the distribution when redundant steps are performed and when not. For both
the General Framework and the Different Costs Variant, around 5%-10% more instances can
now be solved within 0-3 minutes.
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Figure 12: Total computation time distribution for the General Framework
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Figure 13: Total computation time distribution for the Crew First Variant.
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Figure 14: Total computation time distribution for the Different Costs Variant.

4.4.3 Evaluation of contingency plans

We have described our iterative framework as a tool for real-time rescheduling. However, it
can also be applied in a different setting. NS and Prorail are currently implementing the
framework to test the quality of their contingency plans. These contingency plans describe
what to do in case of a disruption, such as a blockage of one or more tracks. If a track
is blocked, the contingency plan prescribes which train services to cancel in the timetable,
and how to adjust the turnings in the rolling stock circulation. After manually inserting the
timetable from the contingency plan as a disposition timetable, the rolling stock and crew are
rescheduled by the framework. This allows to investigate whether a feasible rolling stock and
crew schedule exist for the given contingency plan, given a certain start time and duration of
the disruption.

If a satisfactory solution exists (i.e. all tasks from the disposition timetable in the con-
tingency plan can be covered by rolling stock and crew) for a certain given percentage of
possible start times and durations, the contingency plan is accepted. However, if this thresh-
old percentage is not reached, the contingency planner has a detailed look at the cause of
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these issues. For instance, it is possible that several tasks cannot be covered by rolling stock,
because the total travel and turn around time in the contingency plan is larger than in the
original timetable. In such a case, the contingency plan needs to be adjusted. In another
situation, where, e.g., for a certain instance one task cannot be covered by a driver, it could
be possible to cover this task by allowing a small violation of a labour rule. In such a case,
the contingency plan will be accepted.

5 Conclusion

Most studies on disruption management in passenger railways focus on the rescheduling of one
resource (timetable, crew or rolling stock) schedule at the time, see Cacchiani et al. (2014).
However, it had not been investigated yet whether these approaches can be combined to find
an overall feasible solution. Therefore, we presented an iterative framework considering all
the resource schedules in this paper.

This framework has been tested with existing models on a large number of disruption
scenarios of Netherlands Railways. The experiments demonstrate that with this framework
a railway operator is able to find a new timetable, rolling stock, and crew schedule in short
time in case of track blockages. Furthermore, few trips tend to get cancelled in the rolling
stock rescheduling and the crew rescheduling modules.

Our computational experiments show that the framework does not need many iterations
between the different modules. The General Framework and the Different Costs Variant solves
40 (47)% of the full (partial) blockage instances after one iteration and already 99 (99)% after
two iterations. This indicates that the chosen models perform well on an individual basis and
do not come up with solutions which make it hard to reschedule the other resources.

The Crew First Variant performs even better by solving 88 (92)% of the full (partial)
blockage instances after one iteration. However, this variant might not always be applicable
in practice, because there can be crew specific rules depending on the rolling stock circulation.

Our framework is able to find a new feasible timetable, rolling stock circulation, and crew
schedule after the occurrence of a disruption. The potential of this framework is significant.
Railway operators can use it for real-time railway disruption management in practice. It
provides a feasible schedule based on infrastructure, rolling stock, and crew constraints. The
fact that this framework uses individual rescheduling modules for each resource allows railway
operators to use their own preferred approaches for the rescheduling modules.

The interchangeability of the rescheduling modules makes the framework also useful for
researchers. They can test whether their suggested approaches for rescheduling one resource
also performs well on a global scale where the other resources are considered as well.

We see several interesting directions for future research. Firstly, it would be interesting
to compare our results to those obtained with a microscopic approach as a timetabling mod-
ule. By using a microscopic representation of the infrastructure, the running and headway
times can be computed more accurately. Our framework allows to replace the macroscopic
timetabling module by a microscopic one, or by a model that incorporates both microscopic
and macroscopic aspects. Secondly, it would be interesting to improve the feedback loop from
the rolling stock and crew rescheduling modules to the timetabling module. By adjusting the
solution of the timetabling module instead of cancelling the trips that cannot be covered by
rolling stock or crew, solutions might be obtained that are overall of better quality. Finally,
our further research will also focus on modelling passenger behaviour in a more realistic way
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than in the current paper.
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