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Abstract

Disruptions of a railway system are responsible for longer travel times and
much discomfort for the passengers. Since disruptions are inevitable, the
railway system should be prepared to deal with them effectively. This pa-
per explains that, in case of a disruption, rescheduling the timetable, the
rolling stock circulation, and the crew duties is so complex that solving
them manually is too time consuming in a time critical situation where
every minute counts. Therefore, algorithmic support is badly needed. To
that end, we describe models and algorithms for real-time rolling stock
rescheduling and real-time crew rescheduling that are currently being de-
veloped and that are to be used as the kernel of decision support tools for
disruption management. Furthermore, this paper argues that a stronger
passenger orientation, facilitated by powerful algorithmic support, will al-
low to mitigate the adverse effects of the disruptions for the passengers.
The latter will contribute to an increased service quality provided by the
railway system. This will be instrumental in increasing the market share
of the public transport system in the mobility market.

1 Introduction

Increasing the market share of public transport is considered as one of the solu-
tions for the mobility problems in the Netherlands. Moreover, public transport
is seen as a green mode of transportation. Thus for achieving sustainable mobil-
ity, travellers will have to be seduced to use the public transport system instead
of their own cars. In order to make the public transport system more attractive,
an increase in its service quality is needed. This is especially true for railway
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systems. Indeed, one of the weak points of railway systems is that disruptions
seem to be more or less inevitable, leading to much discomfort.

In the Netherlands, relatively large disruptions occur on average about three
times per day, each time leading to a temporary and local unavailability of the
railway system. A disruption and the involved uncertainty often lead to much
more discomfort for the passengers than the few minutes of delay with which
they are confronted regularly, see Brons (2006). In a disrupted situation, also
the lack or incorrectness of travel information may lead to a lot of discomfort.
For many people these issues are disqualifiers to use public transport.

In case of a disrupted situation, the disruption management process should
quickly provide a modified timetable, rolling stock circulation, and duties for
the crews, so that as much as possible of the service for the passengers can be
upheld. However, one of the bottle-necks in the current disruption management
process is that it is carried out completely manually, and that a large number
of parties are involved, see Jespersen-Groth et al. (2007). This leads to slow
response times and to solutions that are far from optimal. For example, several
trains may be canceled since no appropriate drivers could be found.

Faster response times and better solutions can be expected by the application
of algorithmic support. That is, the modified timetable, rolling stock circula-
tion, and duties for the crews are generated automatically based on appropriate
mathematical models and on algorithms for solving these models.

In March 2009 the advantages of using algorithmic support for rescheduling
the crew duties of Netherlands Railways (in Dutch: Nederlandse Spoorwegen,
NS) in case of a disruption were clearly demonstrated by the application of
an automated crew rescheduling tool after a freight train derailed near station
Vleuten. This derailment damaged the railway infrastructure over 5 kilometers,
which required the timetable, the rolling stock circulation, and the crew duties
to be rescheduled during nearly 7 days. A comparison between the automated
rescheduling process for the driver duties with the manual rescheduling process
for the conductor duties revealed the advantages of the automated rescheduling
process: it lead to better solutions in less time.

Algorithmic support will be needed especially if the plans underlying the
railway system are tight. That is, there is just a small amount of slack in the
system. This will be the case if the utilization of the railway infrastructure
is increased in the near future by higher frequencies and traffic volumes. For
example, there are plans to introduce a system with 6 intercity trains and 6
regional trains per direction and per hour on several Dutch corridors.

Conversely, the application of algorithmic support will also allow to increase
the efficiency of the railway system. This is relevant since the railway world is
becoming more and more competitive. In particular, currently several buffers
(e.g. in the form of relatively large numbers of stand-by crew members) are
present in the system as a safety net in case of disruptions. However, part of
these buffers will become redundant at the moment that effective algorithmic
support is applied, thereby increasing the system’s efficiency.

A scientific challenge that needs to be solved for the application of algorith-
mic support for disruption management is the development of the appropriate
models and sufficiently powerful algorithms for quickly solving these models.
Indeed, in order to be effective in real-time, the computation times of these
algorithms need to be short: an algorithm that needs hours to compute a de-
cision that is required more or less instantaneously is useless. Also dealing in
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Figure 1: A high level view of disruption management, see Kohl et al. (2007)

an adequate way with the uncertainty and volatility that are inherent to the
disruption management process is still a scientific challenge.

This paper describes the challenges and the potential benefits of the appli-
cation of algorithmic support for the quality of the railway system. Section 2
starts with a general description of disruption management. Section 3 describes
how the timetable is modified in case of a disruption. Then Section 4 gives
a description of models and algorithms for rolling stock rescheduling that are
currently developed. Section 5 proceeds with models and algorithms for crew
rescheduling. This section also describes the Vleuten case mentioned above.
Passenger oriented disruption management is described in Section 6. Section 7
presents final remarks and subjects for further research.

2 Railway disruption management

Figure 1 from Kohl et al. (2007) gives a high level view of disruption man-
agement. Disruption management is an ongoing process that focuses both on
the question whether a situation is disrupted or not and on the measures to
correct a disrupted situation. For evaluating whether a situation is disrupted,
and for reacting effectively in case of a disruption it is essential to have real-
time information on the positions of train units and crews. Furthermore, for
upholding as much as possible service for the passengers, it is necessary to have
real-time information on the locations and destinations of the passengers. Mod-
ern information technology allows this kind of information to be more and more
available, although real-time passenger information is still scarce.

A disruption of the railway system is often caused by a blockade of part of
the railway infrastructure. Such a blockade may be complete or partial. In the
first case no railway traffic is possible at all on the blocked infrastructure, e.g.
due to malfunctioning power supply. If only part of the available parallel tracks
is blocked, as in the case of a broken-down train unit, then some railway traffic
remains possible, but usually a number of trains have to be canceled.

The modifications in the timetable usually make the rolling stock circulation
and the crew duties infeasible as well. Indeed, if some trains are canceled,
then certain train units and crews cannot follow their planned duties. Thus
rescheduling the rolling stock circulation and the crew duties is required. The
railway operators are responsible for carrying out this rescheduling process.

A complicating issue in a disrupted situation is the fact that the duration
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of the disruption is usually not known exactly. As time proceeds, the initial
estimate of the duration of the disruption may turn out to be incorrect. As a
consequence, the rescheduling process must be carried out several times then.
Furthermore, all process times (running times, dwell times, etc.) are stochastic.
Thus future arrival and departure times of trains are not known with certainty,
but can only be estimated. d‘Ariano et al. (2007) describe models that can be
used to deal with uncertain process times.

An important difference between scheduling in the planning process and
rescheduling in the real-time operations is the dynamic environment in which
the rescheduling process has to take place. That is, while the rescheduling
process is carried out, the status of the railway system is changing at the same
time. Thus apart from the fact that the rescheduled plans are needed as soon as
possible, this is another reason for the need for short rescheduling times. Since
the rescheduling problems that have to be solved are large and complex, the
realization of sufficiently short computation times of the rescheduling algorithms
is still a large scientific challenge.

A further difference between planning and operations is the fact that in
the operations the existing plans have to be taken into account. This holds in
particular when rescheduling the crew duties: the end times of the rescheduled
duties should not differ too much from the end times of the original duties.
Similarly, the shunting processes related to the rolling stock circulation must
not be changed too much, since the feasibility of modified shunting processes
is hard to check. For further differences between planning and operations, see
Grötschel et al. (2001) and Séguin et al. (1997).

Note that disruption management is different from online scheduling, where
events occur completely unexpectedly. Conversely, in the real-time operations
permanently monitoring the railway processes provides a lot of information
about upcoming events. Each event has at least an expected event time. Based
on this information, one may forecast whether there will be conflicts in the near
future due to the timetable, the rolling stock circulation, or the crew duties.

3 Timetable rescheduling

In case of a disruption of the railway system, usually a number of trains cannot
be operated. Thus the timetable is modified by canceling a number of trips. In
the Netherlands, these modifications are usually based on a disruption scenario.
The disruption scenarios have been prepared by the traffic control organization
of the infrastructure manager in cooperation with the railway operators. They
describe e.g. which trips in the timetable have to be canceled, which trips have to
be rerouted, and in which stations short returns of trains have to be introduced.

The selection of the disruption scenario to be used in case of an actual
disruption may require a lot of -time consuming- communication between the
infrastructure manager and the railway operators. Moreover, although there
may be several hundreds of disruption scenarios, there is usually no scenario
that fits exactly with the disrupted situation. Therefore, some fine-tuning of
the selected scenario will be needed. For automatically solving this kind of
problems, algorithmic support has not been developed yet.

Figure 3 shows how the timetable of the 3000 intercity line of NS may be
modified if temporarily no railway traffic is possible between Amsterdam and
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Figure 2: The 3000 line runs twice per hour in each direction between Den
Helder (Hdr) and Nijmegen (Nm)

Utrecht due to malfunctioning railway infrastructure. The 3000 line provides
twice per hour an intercity connection from Den Helder (Hdr) to Nijmegen
(Nm) and vice versa, via Alkmaar (Amr), Amsterdam (Asd), Utrecht (Ut), and
Arnhem (Ah), see also Figure 2. The timetable of the 3000 line is cyclic with a
cycle length of 30 minutes.

The disruption between Amsterdam and Utrecht starts at 8:40 am, and
has an estimated duration of 2.5 hours. A usual scenario for modifying the
timetable is to cancel the disrupted trips between Amsterdam and Utrecht, and
to introduce short returns of the trains in Amsterdam and Utrecht. That is, a
train arriving in Amsterdam from Alkmaar returns in the timetable of the 3000
line to Alkmaar. Similarly, a train arriving in Utrecht from Arnhem returns to
Arnhem. Note that this requires that the routes of these trains in Amsterdam
and Utrecht must be modified.

As can be seen in Figure 3, only the first disrupted trains in Amsterdam and
Utrecht are put aside at the shunt yards there. After the end of the disruption,
these trains are put into operation again. These trains belong to the grey area
between the regular undisrupted situation and the “regular” disrupted situation.

As was mentioned earlier, the initial estimate of the duration of the disrup-
tion often turns out to be wrong. If this is indeed the case, then the timetable,
the rolling stock circulation, and the crew duties must be rescheduled again at
the moment that the difference becomes clear.

Due to the described disruption scenario, the services on the 3000 line outside
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Figure 3: A disruption of the railway traffic between Amsterdam (Asd) and
Utrecht (Ut) starting at 8:40 am with an estimated duration of 2.5 hours

the disrupted area remain as much as possible the same as usual. In order to
compensate for the canceled trains between Amsterdam and Utrecht, buses
may be operated on the disrupted route. Note that also several other train lines
operate on the indicated infrastructure. However, in order to keep the figure
simple, these have not been shown.

4 Rolling stock rescheduling

4.1 Introduction

The rolling stock circulation strongly influences the service of the railway system,
and rolling stock costs are a large part of the operational costs of a railway
operator. Rolling stock planning aims at allocating an appropriate amount of
rolling stock to each train in the given timetable. A rolling stock circulation
can be expressed in terms of the rolling stock compositions of the trains, but it
can also be expressed in terms of the rolling stock duties. Here a rolling stock
duty is a sequence of tasks to be carried out by a single train unit on a single
day. A task for a train unit is a trip in a train from one station to another at a
certain time instant in combination with a position in the train.

Relevant papers on rolling stock scheduling and rescheduling are Caprara
et al. (2007), Alfieri et al. (2006), Fioole et al. (2006), Peeters and Kroon (2008),
Jespersen-Groth et al. (2006), Budai et al. (2007), Cacchiani et al. (2009), and
Nielsen et al. (2009). In Section 4.2 we provide some details of the latter paper.

Figure 3 illustrates the need for rescheduling the rolling stock circulation
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in case of a disruption. Indeed, since the compositions of the trains depend
on the expected numbers of passengers -which strongly vary over the day and
per direction- it is highly improbable that, after a short return of a train in
Amsterdam or in Utrecht, its actual composition is exactly the same as its
planned one. This difference will propagate to other trains and will lead to
mismatches between demand for and supply of seats later on. Furthermore, it
will lead to off-balances by the end of the day, i.e. train units ending at the
wrong locations. Thus the rolling stock circulation must be rescheduled.

4.2 A multi-commodity flow model

This section describes a model and an algorithm for rescheduling the rolling
stock circulation in case of a disruption of the real-time operations. This de-
scription is based on Nielsen et al. (2009). The model is a multi-commodity
flow model, but it has several additional features.

4.2.1 Problem description

Nielsen et al. (2009) describe a model and an algorithm for the real-time Rolling
Rolling Stock Rescheduling Problem (RSRP). Here the timetable and the avail-
able rolling stock may change several times in case of a disruption. Real-time
RSRP is the problem of updating the current assignment of train units to trips in
the timetable whenever the timetable or the rolling stock availability is changed.
Formally, an instance of real-time RSRP contains the following elements:

• The original timetable T0.

• The original rolling stock M0.

• The original rolling stock circulation C0.

• A finite list of changes to the timetable and the rolling stock availability,

< t1, T1,M1 >,< t2, T2,M2 >, . . . , < tn, Tn,Mn > .

Here an element in the list is a triple consisting of a time instant ti, an
updated timetable Ti, and an updated rolling stock availability Mi. The time
instants are assumed to be distinct and sorted such that t1 < t2 < . . . < tn.
Each element in the list represents a time instant where a new situation appears,
which renders the current rolling stock circulation infeasible. At any point in
time t, the changes in the timetable and the rolling stock availability that will
appear after time t are not known yet.

The problem is then to reschedule at time ti the rolling stock circulation
Ci−1 to serve timetable Ti with rolling stock Mi. The resulting rolling stock
circulation is called Ci. At time ti the rolling stock assigned to trips in Ti
departing before time ti is fixed. The objective of real-time RSRP measures
several aspects of the intermediate and the final rolling stock circulations. These
aspects are described in Section 4.2.2.

Note that the foregoing implies a “Wait-and-See” approach to the rolling
stock rescheduling problem, see Wets (2002). That is, one waits until there
is a certain need to update the rolling stock circulation, since the existing
rolling stock circulation has become infeasible. Otherwise, when rescheduling
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the rolling stock circulation, one might anticipate already on future changes in
the timetable or the rolling stock availability. Also in practice it is quite usual
to apply a “Wait-and-See” approach.

4.2.2 Objective function

The first objective in real-time RSRP is the feasibility of the new circulation
where the limitations on the lengths of the trains are the most challenging
ones. In addition, there are several other objectives to be taken into account
in the rescheduling process. The following lists several perspectives of real-time
rescheduling and the objectives associated with them.

• The service perspective. The inconvenience for the passengers should
be minimized, which means that canceling trips due to lack of rolling stock
(in addition to the trips that are directly canceled due to the disruption)
should be minimized. Similarly, assigning too little capacity related to the
expected number of passengers should be avoided. A complicating issue
here is that in a disrupted situation it is hard to forecast the passenger
behavior and hence the passenger demand.

• The process perspective. Deviations from the original rolling stock
circulation should be communicated to the involved parties. In particular,
the feasibility of the modifications of the shunting plans may be hard to
check in detail at short notice. Therefore the number of such modifications
should be minimized.

• The robustness perspective. The propagation of the effects of the
disruption should be kept local. In particular, the number of off-balances
by the end of the day should be minimized, since otherwise the effects of
the disruption propagate to the next day.

• The efficiency perspective. The number of carriage kilometers driven
is closely related to the operational costs of the rolling stock circulation.
Unnecessary carriage kilometers should be avoided. Similarly, deadhead-
ing trips for solving rolling stock off-balances should be avoided as well.

4.2.3 Solution method

Nielsen et al. (2009) use a model for rolling stock rescheduling that is deduced
from the models of Alfieri et al. (2006) and Fioole et al. (2006). The latter
models are multi-commodity flow models which also consider the order of the
train units in the trains. The concept of a transition graph is used to deal
with this aspect. This concept is based on the assumption that for each trip
a successor trip is known. The transition graph describes for each allowed
combination of a trip and a train composition the feasible train compositions
on the successor trip. Then the problem is an integer multi-commodity flow
problem, where at the same time for each train a feasible path in the associated
transition graph is to be found, and the objective function is optimized.

Nielsen et al. (2009) adapt this planning model to the rescheduling context by
adding a number of features. First of all, the original rolling stock circulation
has to be taken into account. The original timetable is T0 and the original
rolling stock M0 is assigned to the timetable as described by the original rolling
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stock circulation C0. The train compositions prior to the start of the disruption
are fixed. The model is also extended with the possibility to assign an empty
composition to a trip, i.e. the trip is canceled.

The model of Nielsen et al. (2009) is applied on a rolling horizon in order
to speed up the solution process. That is, rescheduling the rolling stock is only
carried out for a fixed time period ahead. This is done whenever the rescheduling
horizon has elapsed or at the moment that new information has become available
about updates of the timetable or the rolling stock availability. In order to
guide the rolling stock inventories such that the off-balances by the end of the
day will be low, the model aims at minimizing the off-balances by the end of
each planning horizon. The therefore required intermediate target inventories
are deduced from the inventories in the original rolling stock circulation. The
weights of the intermediate off-balances increase as time proceeds.

To analyze the rolling horizon solution heuristic, Nielsen et al. (2009) tested
it on a set of instances of NS involving a disruption on the so-called Noord-
Oost lines. These form the most challenging cases for rolling stock scheduling
at NS. The disruption in the described instances occurs between Utrecht and
Amersfoort, implying that no trains can run between these two stations then.
The actual length of the disruption is not known initially, but only an estimated
length is available. In these experiments it turned out that the rescheduling
method is able to quickly reschedule the rolling stock circulation.

5 Crew rescheduling

5.1 Introduction

Each train needs a train driver and one or more conductors. For both types of
crew members, a task is related to a trip on a train between two stations where
the crew possibly can be changed. A crew duty is the set of tasks to be carried
out by a single crew member on a single day. Thus there are duties for drivers
and duties for conductors. Initially, the duties are anonymous, i.e. they have
not been assigned to real crew members yet. This assignment of duties to crew
members is specified by the crew rosters.

Crew scheduling is the problem of a priori generating the crew duties. In
real-time crew rescheduling the duties obviously have been assigned to real crew
members already. Thus one must take into account the existing duties as well
as the individual competencies of the assigned crew members then.

Since crew scheduling is a complex and yet generic problem, a lot of research
on models and solution techniques for solving this problem in off-line planning
processes has been carried out. Abbink et al. (2005), Fores et al. (2001), Kohl
(2003), and Kroon and Fischetti (2001) describe a number of successful appli-
cations of these models within railway companies.

Research on models and solution techniques for crew rescheduling in railway
systems is still scarce, see Huisman (2007), Rezanova and Ryan (2009), Walker
et al. (2005), Abbink et al. (2009) and Potthoff et al. (2008). In Section 5.2 we
present some details of the latter paper. Crew rescheduling for airline systems
has received more attention, see Song et al. (1998), Stoiković et al. (1998),
Lettovský et al. (2000), Yu et al. (2003), Clausen et al. (2005), Medard and
Sawhney (2006), Nissen and Haase (2006), and Kohl et al. (2007).

9



Figure 3 shows the need for rescheduling the duties in case of the earlier
mentioned disruption between Amsterdam and Utrecht. In this example, it is
usual that there are planned duties for drivers covering the three tasks Amr-
Asd, Asd-Ut, and Ut-Ah on one of the disrupted trains. Since the trip Asd-Ut
in such a duty is canceled, the involved driver will not be able to carry out
the task Ut-Ah in his duty. So this task must be assigned to another driver.
Conversely, it is usual that the driver follows the train in the short return in
Amsterdam. Thereby he is moving into another direction than prescribed in his
duty. Thus this duty must be rescheduled to get this driver in time back in his
home depot, while at the same time carrying out as much as possible tasks.

Although the crew rescheduling process is mainly an internal process, it is
one of the recognized bottle-necks in the disruption management process, since
it is impossible to manually reschedule tens of duties in just a couple of minutes.
One of the reasons is that for rescheduling the timetable and the rolling stock
circulation dispatchers heavily use the fact that (the basic structures of) these
plans are cyclic. Unfortunately, the crew schedule is by definition non-cyclic, for
instance because a crew member needs to reach his home depot after a certain
amount of time. Moreover, crew rescheduling has to take into account many
complex labor constraints. And finally, an important feature is that crews can
refuse certain changes in their duties. Currently this happens in practice mainly
because crew members are not informed about their completely rescheduled
duties, but only about their next tasks. Therefore, they do not know if they
will arrive in their home depot at a reasonable time.

As a consequence, manually rescheduling one disrupted duty usually requires
5 to 10 minutes. Given the fact that it is not unusual that 50 to 100 duties are
hindered by a disruption, it requires a lot of time to reschedule all the crew du-
ties. This may have a very negative impact on the quality of the railway system.
Especially in this process, advanced algorithmic support is badly needed: a train
that cannot be provided with an appropriate crew will have to be canceled with
all the negative consequences for the passengers.

5.2 A Set Covering based model

This section describes a model and an algorithm for rescheduling crew duties in
case of a disruption of the real-time operations of NS. This description is based
on Potthoff et al. (2008). The model is a set covering model, but it has some
additional features which allow it to deal with the existing duties.

5.2.1 Model description

It is assumed that the disruption takes place at a certain location, starts at time
t0, and lasts until t1. The duties that are unfinished at time t0 are represented
by the set ∆. In addition, N is the set of tasks which have not started at the
time of rescheduling, and Kδ is the set of all feasible completions for original
duty δ ∈ ∆. A feasible completion is a sequence of tasks after time t0 by which
the tasks in the original duty are replaced such that the duty still fulfills all
constraints at the duty level and ends in the right crew depot at an appropriate
time. For every duty δ ∈ ∆ and every feasible completion k ∈ Kδ we have:

• cδk: the cost of feasible completion k for original duty δ. The cost of a
feasible completion is zero if the duty is not modified. Otherwise, the cost
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is the sum of the cost for changing a duty, the cost for taxis, and the
penalties for short connection times and overtime.

• aδik: a binary parameter indicating if task i is covered by feasible comple-
tion k for original duty δ or not.

Finally, we define fi as the cost of canceling task i. Potthoff et al. (2008) now
formulate the crew rescheduling problem using binary variables xδk correspond-
ing to the feasible completions of duty δ. That is, xδk is 1 if and only if feasible
completion k ∈ Kδ is used to complete duty δ ∈ ∆. Furthermore, binary
variables yi indicate if task i is canceled (1) or not (0).

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fiyi (1)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + yi ≥ 1 ∀i ∈ N (2)

∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (3)

xδk, yi ∈ {0, 1} ∀δ ∈ ∆,∀k ∈ Kδ,∀i ∈ N. (4)

The objective function (1) takes into account several aspects, such as the
number of uncovered tasks, the number of modified duties, the number of used
stand-by duties, and the differences between the durations of the original duties
and the rescheduled duties. Constraints (2) guarantee that every task is either
covered by a feasible completion or is canceled. Moreover, constraints (3) ensure
that every original duty is assigned to exactly one feasible completion.

5.2.2 Solution method

The crew rescheduling method in Potthoff et al. (2008) uses an algorithm that
is based on large neighborhood search in combination with a column generation
heuristic. It can be summarized as follows:

• Step 1. Define an initial core problem based on a set of duties to be
rescheduled. The set of tasks that is considered is the set consisting of the
directly disrupted tasks and some other tasks either on the same route or
around the same time on adjacent routes.

• Step 2. Compute an initial solution using a Column Generation heuris-
tic. This heuristic is very similar to the method described by Huisman
(2007). It uses Lagrangian dual values to construct new columns by solv-
ing resource-constrained shortest path problems. Constructive heuristics
are used for generating feasible solutions from these columns.

• Step 3. Check whether there are still uncovered tasks. If all tasks have
been covered, then stop.

• Step 4. Define a neighborhood by extending the set of duties to be
rescheduled. The additional duties are selected based on the fact (i) that
they cover tasks in the neighborhood of an uncovered task, and (ii) that
the involved drivers are able to carry out these uncovered tasks. Finally,
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Figure 4: The disruption took place near station Vleuten (Vtn) between Utrecht
(Ut) and Woerden(Wdn). The trains of the 2000 line from The Hague (Gvc) to
Utrecht made a detour via Breukelen (Bkl).

also a number of additional duties are selected based on their similarity
to the duties selected according to (i) and (ii).

• Step 5. Explore the neighborhood by a Column Generation heuristic.
Here the same comments apply as in Step 2.

• Step 6. Goto Step 3.

Computational results based on realistic instances of NS are reported in Pot-
thoff et al. (2008). These results show that the described rescheduling method
usually finds acceptable solutions in a short computation time on a regular pc.
Especially in the case that a number of stand-by crews are available, usually no
trains have to be canceled due to lack of a driver or conductor.

5.3 Practical application

The method described in Section 5.2 was applied by NS for rescheduling the
duties of the drivers during a major disruption. As was mentioned in Section 1,
a freight train derailed near station Vleuten (Vtn) on Monday, March 23, 2009.
Due to this accident, the railway infrastructure was damaged over 5 kilometers,
which blocked the route between Utrecht (Ut) and Woerden (Wdn) for nearly
a week, see Figures 4 and 2. Initially, this route was blocked completely.

On Tuesday, March 24, one track could be opened again, so that limited
railway traffic was possible. Therefore, it was decided that the 2000 line (The
Hague (Gvc) - Utrecht) would be operated again on Wednesday. However,
in one direction (The Hague - Utrecht) it would use another route, namely via
Breukelen (Bkl), where it could turn in the direction of Utrecht. This alternative
route was selected to have only trains in the direction Utrecht - The Hague on
the disrupted route. As a consequence, the timetable of other trains had to be
modified as well. This situation lasted until the evening of Sunday, March 29.

On Monday and Tuesday of this week, the crew duties were rescheduled
completely manually. However, the driver duties for Wednesday and Thursday
were rescheduled by the method of Potthoff et al. (2008). In fact, only the first
three steps had to be carried out: all trips were covered then. In total, on each
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day 260 driver duties were directly affected by the disruption and had to be
rescheduled. The algorithm found a good feasible solution in about 1 hour of
computation time.

Unfortunately, the output of the algorithm could not be imported directly
into the computer system of the Operations Control Centers of NS. Thus two
dispatchers typed in all Wednesday’s duties during the night before. The same
happened during the next night for the Thursday’s duties.

The duties for the conductors were still modified manually by the dispatch-
ers. Therefore, we could make a comparison between the algorithmic approach
and the current manual process. During the night, four dispatchers could
reschedule the tasks in the conductor duties that started until 13:00 on the
next day. The remaining part of the conductor duties had to be rescheduled
during the day, resulting in many duties that did not finish at the regular time
and in a lot of communication during the day.

For the driver duties, this was not necessary. Although the solution approach
might have taken into account individual route and rolling stock knowledge
of the drivers, this information was not available at NS in electronic format.
Therefore, there were still some conflicts in the driver duties with the actual
route and rolling stock knowledge. Fortunately, these problems could be solved
relatively easily during the day.

For the last three days of the disruption (Friday until Sunday), the CREWS
planning system was used to reschedule all the crew duties. This system contains
the algorithm described in Huisman (2007) to reschedule the crew duties during
planned track maintenance. Of course, such an algorithm also works for an
unplanned disruption which is known some time in advance. The CREWS
system could not be used for rescheduling the crew duties during the first days
of the disruption, since the application of this system has a relatively long lead
time. In particular, the process of rescheduling the crew duties for Friday with
the CREWS system started on Wednesday already.

Although this Vleuten case does not yet provide an example of algorith-
mic support for real-time disruption management, this case is quite close to
it. Anyway, it clearly demonstrates the advantages of algorithmic support for
rescheduling the crew duties in the operations: it leads to better solutions in
less time. Especially the latter aspect will be crucial and decisive when the
algorithmic support is applied in a real-time environment.

6 Passenger oriented disruption management

The current disruption management process is mainly based on a standard set
of disruption scenarios, which focus on isolating the disruption and on “keeping
the system running”. Service for the passengers is not considered as input, but
is just a result of the taken decisions.

However, as can be seen from the Vleuten case described in the previous
section, sometimes more attractive alternatives for the passengers exist. Ex-
amples of such alternatives are: temporarily operating another timetable (e.g.
rerouted trains, or shuttle trains), and more or longer trains outside the dis-
rupted area in order to facilitate the rerouting of passengers. Moreover, along
the alternative routes transfers from one train to another with short transfer
times should be facilitated. This may require trains to wait somewhat longer
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for each other than in the normal situation. Obviously, the passengers should
be informed permanently in an adequate way about their alternative routes.
Thus the railway network should be so flexible that its capacity can be adapted
quickly to the modified situation during a disruption.

Although the methods in Sections 4 and 5 are initially developed to support
the current disruption management process, they will be especially helpful when
NS wants to offer alternative timetables in a disrupted situation. For instance,
in the Vleuten case it would have been possible to assign more rolling stock
to the trains that were still in operation during the disruption. Some of these
trains had much more passengers than regularly, while on the other hand rolling
stock was not needed for the trains that could not be operated.

Louwerse (2009) shows that by reassigning the rolling stock to the different
trains in the morning peak the number of passengers not having a seat could
almost be halved. Since longer trains require more conductors, such a reassign-
ment would not only result in more changes in the rolling stock plan, but also
in additional changes in the conductors’ duties.

To summarize, a much better service to the passengers can be provided
during disruptions, but this results in even more complex rescheduling prob-
lems than the current ones. Since it is currently already extremely difficult for
dispatchers to reschedule the rolling stock and crew duties in case of a severe
disruption, algorithmic support is obviously necessary if NS wants to focus on
passenger oriented disruption management.

7 Conclusions and further research

In this paper we argued that the application of algorithmic support will be
crucial in increasing the service level of the railway system for the passengers,
which is required to increase its market share in the mobility market.

First, it will help to determine appropriate measures for adapting the timetable.
Moreover, it will help to provide an appropriate capacity per train during and
after the disruption, and to rebalance the rolling stock by the end of the day.
Second, it will help to reduce the number of canceled trains due to missing crew.
This is currently one of the bottle-necks in the disruption management process.
The advantages of the application of algorithmic support for this purpose was
clearly demonstrated by the Vleuten case described in Section 5.3. Further
research into the direction of passenger oriented disruption management will
increase the flexibility of the railway system, so that it will be able to adapt
itself to the modified situation in case of a disruption.

Next, the application of algorithmic support will also help to increase the
efficiency of the railway system. In particular, currently several buffers (e.g. in
the form of relatively large numbers of stand-by crew members) are present in
the system as a safeguard for disruptions. However, part of these buffers will
become redundant at the moment that effective algorithmic support is applied,
thereby increasing the system’s efficiency.

Algorithmic support for rescheduling rolling stock and crews are currently
being developed within NS. The status quo is that the available models and
algorithms provide promising results in a laboratory environment: in relatively
short computation times appropriate solutions can be generated for the rolling
stock circulation and the crew duties. These results were discussed with and
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approved by the dispatchers in practice.
A further scientific challenge is to solve these resource rescheduling problems

in a dynamic and uncertain environment, where the status quo of the system
may be changing during the computation time of the algorithms. This also re-
quires an appropriate model for forecasting the status of the system during the
computation time. Another challenge is to solve the resource rescheduling prob-
lems in an integrated way. For example, preferably the rescheduling problems
for the rolling stock and the drivers are solved together. Otherwise one may
end up with a solution where one trip must be canceled due to missing rolling
stock, and another trip must be canceled due to a missing driver. This solution
is obviously infeasible in practice. Also the extension of the models towards
passenger oriented disruption management requires a lot of further research.
A final challenge is to test the algorithmic support methods also in a real-life
environment. This is not only a challenge from an algorithmic point of view,
but also from an information systems point of view.

The potential benefits of algorithmic support in the disruption management
process are currently recognized by the board of NS through the successes of the
application of such tools in the off-line planning processes. In 2008 the latter lead
to winning the INFORMS Edelman Award for the application of algorithmic
support for the development of the 2007 timetable of NS, see Kroon et al.
(2009). Now there is a certain eagerness to apply such tools in the disruption
management process as well. As a consequence, this is the right time for research
in this area, and for getting the results implemented in practice.
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