7,573 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Aged lipid-laden microglia display impaired responses to stroke

    Full text link
    Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice. Cerebral ischemia/reperfusion induced innate immune responses in microglia highlighted by type I interferon and metabolic changes involving lipid droplet biogenesis. Old microglia accumulated lipids under steady state and displayed exacerbated innate immune responses to stroke. Microglia repopulation in old mice reduced lipid-laden microglia, and the cells exhibited reduced inflammatory responses to ischemia. Moreover, old mice with renewed microglia showed improved motor function 2 weeks after stroke. We conclude that lipid deposits in aged microglia impair the cellular responses to ischemia and worsen functional recovery in old mice.© 2022 The Authors. Published under the terms of the CC BY 4.0 license

    Is attention all you need in medical image analysis? A review

    Full text link
    Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. The main disadvantage of typical CNN models is that they ignore global pixel relationships within images, which limits their generalisation ability to understand out-of-distribution data with different 'global' information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments (Transf/Attention) which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced a comprehensive analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated

    InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation

    Full text link
    This paper introduces InternVid, a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations for multimodal understanding and generation. The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words. Our core contribution is to develop a scalable approach to autonomously build a high-quality video-text dataset with large language models (LLM), thereby showcasing its efficacy in learning video-language representation at scale. Specifically, we utilize a multi-scale approach to generate video-related descriptions. Furthermore, we introduce ViCLIP, a video-text representation learning model based on ViT-L. Learned on InternVid via contrastive learning, this model demonstrates leading zero-shot action recognition and competitive video retrieval performance. Beyond basic video understanding tasks like recognition and retrieval, our dataset and model have broad applications. They are particularly beneficial for generating interleaved video-text data for learning a video-centric dialogue system, advancing video-to-text and text-to-video generation research. These proposed resources provide a tool for researchers and practitioners interested in multimodal video understanding and generation.Comment: Data and Code: https://github.com/OpenGVLab/InternVideo/tree/main/Data/InternVi

    Fairness Testing: A Comprehensive Survey and Analysis of Trends

    Full text link
    Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and concern among software engineers. To tackle this issue, extensive research has been dedicated to conducting fairness testing of ML software, and this paper offers a comprehensive survey of existing studies in this field. We collect 100 papers and organize them based on the testing workflow (i.e., how to test) and testing components (i.e., what to test). Furthermore, we analyze the research focus, trends, and promising directions in the realm of fairness testing. We also identify widely-adopted datasets and open-source tools for fairness testing

    Integrating materials supply in strategic mine planning of underground coal mines

    Get PDF
    In July 2005 the Australian Coal Industry’s Research Program (ACARP) commissioned Gary Gibson to identify constraints that would prevent development production rates from achieving full capacity. A “TOP 5” constraint was “The logistics of supply transport distribution and handling of roof support consumables is an issue at older extensive mines immediately while the achievement of higher development rates will compound this issue at most mines.” Then in 2020, Walker, Harvey, Baafi, Kiridena, and Porter were commissioned by ACARP to investigate Australian best practice and progress made since Gibson’s 2005 report. This report was titled: - “Benchmarking study in underground coal mining logistics.” It found that even though logistics continue to be recognised as a critical constraint across many operations particularly at a tactical / day to day level, no strategic thought had been given to logistics in underground coal mines, rather it was always assumed that logistics could keep up with any future planned design and productivity. This subsequently meant that without estimating the impact of any logistical constraint in a life of mine plan, the risk of overvaluing a mining operation is high. This thesis attempts to rectify this shortfall and has developed a system to strategically identify logistics bottlenecks and the impacts that mine planning parameters might have on these at any point in time throughout a life of mine plan. By identifying any logistics constraints as early as possible, the best opportunity to rectify the problem at the least expense is realised. At the very worst if a logistics constraint was unsolvable then it could be understood, planned for, and reflected in the mine’s ongoing financial valuations. The system developed in this thesis, using a suite of unique algorithms, is designed to “bolt onto” existing mine plans in the XPAC mine scheduling software package, and identify at a strategic level the number of material delivery loads required to maintain planned productivity for a mining operation. Once an event was identified the system then drills down using FlexSim discrete event simulation to a tactical level to confirm the predicted impact and understand if a solution can be transferred back as a long-term solution. Most importantly the system developed in this thesis was designed to communicate to multiple non-technical stakeholders through simple graphical outputs if there is a risk to planned production levels due to a logistics constraint

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Augmented Behavioral Annotation Tools, with Application to Multimodal Datasets and Models: A Systematic Review

    Get PDF
    Annotation tools are an essential component in the creation of datasets for machine learning purposes. Annotation tools have evolved greatly since the turn of the century, and now commonly include collaborative features to divide labor efficiently, as well as automation employed to amplify human efforts. Recent developments in machine learning models, such as Transformers, allow for training upon very large and sophisticated multimodal datasets and enable generalization across domains of knowledge. These models also herald an increasing emphasis on prompt engineering to provide qualitative fine-tuning upon the model itself, adding a novel emerging layer of direct machine learning annotation. These capabilities enable machine intelligence to recognize, predict, and emulate human behavior with much greater accuracy and nuance, a noted shortfall of which have contributed to algorithmic injustice in previous techniques. However, the scale and complexity of training data required for multimodal models presents engineering challenges. Best practices for conducting annotation for large multimodal models in the most safe and ethical, yet efficient, manner have not been established. This paper presents a systematic literature review of crowd and machine learning augmented behavioral annotation methods to distill practices that may have value in multimodal implementations, cross-correlated across disciplines. Research questions were defined to provide an overview of the evolution of augmented behavioral annotation tools in the past, in relation to the present state of the art. (Contains five figures and four tables)
    • …
    corecore