5 research outputs found

    Bringing Runtime Verification Home

    Get PDF
    International audienceWe use runtime verification (RV) to check various specifications in a smart apartment. The specifications can be broken down into three types: be-havioral correctness of the apartment sensors, detection of specific user activities (known as activities of daily living), and composition of specifications of the previous types. The context of the smart apartment provides us with a complex system with a large number of components with two different hierarchies to group specifications and sensors: geographically within the same room, floor or globally in the apartment, and logically following the different types of specifications. We leverage a recent approach to decentralized RV of decentralized specifications, where monitors have their own specifications and communicate together to verify more general specifications. This allows us to re-use specifications , and combine them to: (1) scale beyond existing centralized RV techniques, and (2) greatly reduce computation and communication costs. Sensors and actuators are used to create "smart" environments which track the data across sensors and human-machine interaction. One particular area of interest consists of homes (or apartments) equipped with a myriad of sensors and actuators, called smart homes [11]. Smart homes are capable of providing added services to users. These services rely on detecting the user behavior and the context of such activities [7], typically detecting activities of daily living (ADL) [29,9] from sensor information. Detecting ADL allows to optimize resource consumption (such as electricity [1]), improve the quality of life for the elderly [27] and users suffering from mild impairment [30]. Relying on information from multiple sources and observing behavior is not just constrained to activities. It is also used with techniques that verify the correct behavior of systems. Runtime Verification (RV) [20,5,3,4] is a lightweight formal method which consists in verifying that a run of a system is correct wrt a specification. The specification formalizes the behavior of the system typically in logics (such as variants of Linear Temporal Logic, LTL) or finite-state machines. Based on the provided specification , monitors are automatically synthesized to run alongside the system and verify whether or not the system execution complies with the specification. RV techniques have been used for instance in the context of automotive [10] and medical [26] systems. In both cases, RV is used to verify communication patterns between components and their adherence to the architecture and their formal specifications

    Non-intrusive load monitoring techniques for activity of daily living recognition

    Get PDF
    Esta tesis nace con la motivación de afrontar dos grandes problemas de nuestra era: la falta de recursos energéticos y el envejecimiento de la población. Respecto al primer problema, nace en la primera década de este siglo el concepto de Smart Grids con el objetivo de alcanzar la eficiencia energética. Numerosos países comienzan a realizar despliegues masivos de contadores inteligentes ("Smart Meters"), lo que despierta el interés de investigadores que comienzan a desarrollar nuevas técnicas para predecir la demanda. Así, los sistemas NILM (Non-Intrusive Load Monitoring) tratan de predecir el consumo individual de los dispositivos conectados a partir de un único sensor: el contador inteligente. Por otra parte, los grandes avances en la medicina moderna han permitido que nuestra esperanza de vida aumente considerablemente. No obstante, esta longevidad, junto con la baja fertilidad en los países desarrollados, tiene un efecto secundario: el envejecimiento de la población. Unos de los grandes avances es la incorporación de la tecnología en la vida cotidiana, lo que ayuda a los más mayores a llevar una vida independiente. El despliegue de una red de sensores dentro de la vivienda permite su monitorización y asistencia en las tareas cotidianas. Sin embargo, son intrusivos, no escalables y, en algunas ocasiones, de alto coste, por lo que no están preparados para hacer frente al incremento de la demanda de esta comunidad. Esta tesis doctoral nace de la motivación de afrontar estos problemas y tiene dos objetivos principales: lograr un modelo de monitorización sostenible para personas mayores y, a su vez, dar un valor añadido a los sistemas NILM que despierte el interés del usuario final. Con este objetivo, se presentan nuevas técnicas de monitorización basadas en NILM, aunando lo mejor de ambos campos. Esto supone un ahorro considerable de recursos en la monitorización, ya que únicamente se necesita un sensor: el contador inteligente; lo cual da escalabilidad a estos sistemas. Las contribuciones de esta tesis se dividen en dos bloques principales. En el primero se proponen nuevas técnicas NILM optimizadas para la detección de la actividad humana. Así, se desarrolla una propuesta basada en detección de eventos (conexiones de dispositivos) en tiempo real y su clasificación a un dispositivo. Con el objetivo de que pueda integrarse en contadores inteligentes. Cabe destacar que el clasificador se basa en modelos generalizados de dispositivos y no necesita conocimiento específico de la vivienda. El segundo bloque presenta tres nuevas técnicas de monitorización de personas mayores basadas en NILM. El objetivo es proporcionar una monitorización básica pero eficiente y altamente escalable, ahorrando en recursos. Los procesos Cox, log Gaussian Cox Processes (LGCP), monitorizan un único dispositivo si la rutina está estrechamente ligada a este. Así, se propone un sistema de alarmas si se detectan cambios en el comportamiento. LGCP tiene la ventaja de poder modelar periodicidades e incertidumbres propias del comportamiento humano. Cuando la rutina no depende de un único dispositivo, se proponen dos técnicas: una basada en gaussianas mixtas, Gaussian Mixture Models (GMM); y la otra basada en la Teoría de la Evidencia de Dempster-Shafer (DST). Ambas monitorizan y detectan deterioros en la actividad, causados por enfermedades como la demencia y el alzhéimer. Únicamente DST usa incertidumbres que simulan mejor el comportamiento humano y, por tanto, permite alarmas en caso de un repentino desvío. Finalmente, todas las propuestas han sido validadas mediante la evaluación de métricas y la obtención de resultados experimentales. Para ello, se han usado medidas de escenarios reales que han sido recopiladas en bases de datos. Los resultados obtenidos han sido satisfactorios, demostrando que este tipo de monitorización es posible y muy beneficioso para nuestra sociedad. Además, se ha dado a lugar nuevas propuestas que serán desarrolladas en el futuro. Códigos UNESCO: 120320 - sistemas de control medico, 332201 – distribución de la energía, 120701 – análisis de actividades, 120304 – inteligencia artificial, 120807 – plausibilidad, 221402 – patrones
    corecore