10,931 research outputs found

    Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection

    Get PDF
    This paper describes a 1-out-of-N oblivious transfer (OT) extension protocol with active security, which achieves very low overhead compared with the passively secure protocol of Kolesnikov and Kumaresan (Crypto 2011). Our protocol obtains active security using a consistency check which requires only simple computation and has a communication overhead that is independent of the total number of OTs to be produced. We prove its security in both the random oracle model and the standard model, assuming a variant of correlation robustness. We describe an implementation, which demonstrates our protocol only incurs an overhead of around 5–30% on top of the passively secure protocol. Random 1-out-of-N OT is a key building block in recent, very efficient, passively secure private set intersection (PSI) protocols. Our random OT extension protocol has the interesting feature that it even works when N is exponentially large in the security parameter, provided that the sender only needs to obtain polynomially many outputs. We show that this can be directly applied to improve the performance of PSI, allowing the core private equality test and private set inclusion subprotocols to be carried out using just a single OT each. This leads to a reduction in communication of up to 3 times for the main component of PSI

    Fast Actively Secure OT Extension for Short Secrets

    Get PDF
    Oblivious Transfer (OT) is one of the most fundamental cryptographic primitives with wide-spread application in general secure multi-party computation (MPC) as well as in a number of tailored and special-purpose problems of interest such as private set intersection (PSI), private information retrieval (PIR), contract signing to name a few. Often the instantiations of OT require prohibitive communication and computation complexity. OT extension protocols are introduced to compute a very large number of OTs referred as extended OTs at the cost of a small number of OTs referred as seed OTs. We present a fast OT extension protocol for small secrets in active setting. Our protocol when used to produce 11-out-of-nn OTs outperforms all the known actively secure OT extensions. Our protocol is built on the semi-honest secure extension protocol of Kolesnikov and Kumaresan of CRYPTO\u2713 (referred as KK13 protocol henceforth) which is the best known OT extension for short secrets. At the heart of our protocol lies an efficient consistency checking mechanism that relies on the linearity of Walsh-Hadamard (WH) codes. Asymptotically, our protocol adds a communication overhead of O(ÎŒlog⁥Îș)O(\mu \log{\kappa}) bits over KK13 protocol irrespective of the number of extended OTs, where Îș\kappa and ÎŒ\mu refer to computational and statistical security parameter respectively. Concretely, our protocol when used to generate a large enough number of OTs adds only 0.011−0.028%0.011-0.028\% communication overhead and 4−6%4-6\% runtime overhead both in LAN and WAN over KK13 extension. The runtime overheads drop below 2%2\% when in addition the number of inputs of the sender in the extended OTs is large enough. As an application of our proposed extension protocol, we show that it can be used to obtain the most efficient PSI protocol secure against a malicious receiver and a semi-honest sender

    Combining Private Set-Intersection with Secure Two-Party Computation

    Get PDF
    Private Set-Intersection (PSI) is one of the most popular and practically relevant secure two-party computation (2PC) tasks. Therefore, designing special-purpose PSI protocols (which are more efficient than generic 2PC solutions) is a very active line of research. In particular, a recent line of work has proposed PSI protocols based on oblivious transfer (OT) which, thanks to recent advances in OT-extension techniques, is nowadays a very cheap cryptographic building block. Unfortunately, these protocols cannot be plugged into larger 2PC applications since in these protocols one party (by design) learns the output of the intersection. Therefore, it is not possible to perform secure post-processing of the output of the PSI protocol. In this paper we propose a novel and efficient OT-based PSI protocol that produces an encrypted output that can therefore be later used as an input to other 2PC protocols. In particular, the protocol can be used in combination with all common approaches to 2PC including garbled circuits, secret sharing and homomorphic encryption. Thus, our protocol can be combined with the right 2PC techniques to achieve more efficient protocols for computations of the form z=f(X∩Y)z=f(X\cap Y) for arbitrary functions ff

    Actively Secure OT-Extension from <i>q</i>-ary Linear Codes

    Get PDF

    Private set intersection: A systematic literature review

    Get PDF
    Secure Multi-party Computation (SMPC) is a family of protocols which allow some parties to compute a function on their private inputs, obtaining the output at the end and nothing more. In this work, we focus on a particular SMPC problem named Private Set Intersection (PSI). The challenge in PSI is how two or more parties can compute the intersection of their private input sets, while the elements that are not in the intersection remain private. This problem has attracted the attention of many researchers because of its wide variety of applications, contributing to the proliferation of many different approaches. Despite that, current PSI protocols still require heavy cryptographic assumptions that may be unrealistic in some scenarios. In this paper, we perform a Systematic Literature Review of PSI solutions, with the objective of analyzing the main scenarios where PSI has been studied and giving the reader a general taxonomy of the problem together with a general understanding of the most common tools used to solve it. We also analyze the performance using different metrics, trying to determine if PSI is mature enough to be used in realistic scenarios, identifying the pros and cons of each protocol and the remaining open problems.This work has been partially supported by the projects: BIGPrivDATA (UMA20-FEDERJA-082) from the FEDER Andalucía 2014– 2020 Program and SecTwin 5.0 funded by the Ministry of Science and Innovation, Spain, and the European Union (Next Generation EU) (TED2021-129830B-I00). The first author has been funded by the Spanish Ministry of Education under the National F.P.U. Program (FPU19/01118). Funding for open access charge: Universidad de Málaga/CBU

    Implementation of a Secure Multiparty Computation Protocol

    Get PDF
    Secure multiparty computation (SMC) allows a set of parties to jointly compute a function on private inputs such that, they learn only the output of the function, and the correctness of the output is guaranteed even when a subset of the parties is controlled by an adversary. SMC allows data to be kept in an uncompromisable form and still be useful, and it also gives new meaning to data ownership, allowing data to be shared in a useful way while retaining its privacy. Thus, applications of SMC hold promise for addressing some of the security issues information-driven societies struggle with. In this thesis, we implement two SMC protocols. Our primary objective is to gain a solid understanding of the basic concepts related to SMC. We present a brief survey of the field, with focus on SMC based on secret sharing. In addition to the protocol im- plementations, we implement circuit randomization, a common technique for efficiency improvement. The implemented protocols are run on a simulator to securely evaluate some simple arithmetic functions, and the round complexities of the implemented protocols are compared. Finally, we attempt to extend the implementation to support more general computations

    Quantum Codes and Multiparty Computation:A Coding Theoretic Approach

    Get PDF

    Secure Computation Protocols for Privacy-Preserving Machine Learning

    Get PDF
    Machine Learning (ML) profitiert erheblich von der VerfĂŒgbarkeit großer Mengen an Trainingsdaten, sowohl im Bezug auf die Anzahl an Datenpunkten, als auch auf die Anzahl an Features pro Datenpunkt. Es ist allerdings oft weder möglich, noch gewollt, mehr Daten unter zentraler Kontrolle zu aggregieren. Multi-Party-Computation (MPC)-Protokolle stellen eine Lösung dieses Dilemmas in Aussicht, indem sie es mehreren Parteien erlauben, ML-Modelle auf der Gesamtheit ihrer Daten zu trainieren, ohne die Eingabedaten preiszugeben. Generische MPC-AnsĂ€tze bringen allerdings erheblichen Mehraufwand in der Kommunikations- und LaufzeitkomplexitĂ€t mit sich, wodurch sie sich nur beschrĂ€nkt fĂŒr den Einsatz in der Praxis eignen. Das Ziel dieser Arbeit ist es, PrivatsphĂ€reerhaltendes Machine Learning mittels MPC praxistauglich zu machen. Zuerst fokussieren wir uns auf zwei Anwendungen, lineare Regression und Klassifikation von Dokumenten. Hier zeigen wir, dass sich der Kommunikations- und Rechenaufwand erheblich reduzieren lĂ€sst, indem die aufwĂ€ndigsten Teile der Berechnung durch Sub-Protokolle ersetzt werden, welche auf die Zusammensetzung der Parteien, die Verteilung der Daten, und die Zahlendarstellung zugeschnitten sind. Insbesondere das Ausnutzen dĂŒnnbesetzter DatenreprĂ€sentationen kann die Effizienz der Protokolle deutlich verbessern. Diese Beobachtung verallgemeinern wir anschließend durch die Entwicklung einer Datenstruktur fĂŒr solch dĂŒnnbesetzte Daten, sowie dazugehöriger Zugriffsprotokolle. Aufbauend auf dieser Datenstruktur implementieren wir verschiedene Operationen der Linearen Algebra, welche in einer Vielzahl von Anwendungen genutzt werden. Insgesamt zeigt die vorliegende Arbeit, dass MPC ein vielversprechendes Werkzeug auf dem Weg zu PrivatsphĂ€re-erhaltendem Machine Learning ist, und die von uns entwickelten Protokolle stellen einen wesentlichen Schritt in diese Richtung dar.Machine learning (ML) greatly benefits from the availability of large amounts of training data, both in terms of the number of samples, and the number of features per sample. However, aggregating more data under centralized control is not always possible, nor desirable, due to security and privacy concerns, regulation, or competition. Secure multi-party computation (MPC) protocols promise a solution to this dilemma, allowing multiple parties to train ML models on their joint datasets while provably preserving the confidentiality of the inputs. However, generic approaches to MPC result in large computation and communication overheads, which limits the applicability in practice. The goal of this thesis is to make privacy-preserving machine learning with secure computation practical. First, we focus on two high-level applications, linear regression and document classification. We show that communication and computation overhead can be greatly reduced by identifying the costliest parts of the computation, and replacing them with sub-protocols that are tailored to the number and arrangement of parties, the data distribution, and the number representation used. One of our main findings is that exploiting sparsity in the data representation enables considerable efficiency improvements. We go on to generalize this observation, and implement a low-level data structure for sparse data, with corresponding secure access protocols. On top of this data structure, we develop several linear algebra algorithms that can be used in a wide range of applications. Finally, we turn to improving a cryptographic primitive named vector-OLE, for which we propose a novel protocol that helps speed up a wide range of secure computation tasks, within private machine learning and beyond. Overall, our work shows that MPC indeed offers a promising avenue towards practical privacy-preserving machine learning, and the protocols we developed constitute a substantial step in that direction
    • 

    corecore