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Abstracts

Dansk

I denne afhandling anvendes resultater og teknikker fra klassisk kodningsteori
som grundlag for kryptografiske protokoller samt til konstruktion af fejlkor-
rigerende kvantekoder. De grundlæggende definitioner og resultater inden-
for disse emner præsenteres i første del af afhandlingen, som også giver et
overblik over den anden del. Denne anden del, som udgør størstedelen af
afhandlingen indeholder fem videnskabelige artikler.

Artiklerne A og B har fokus på kryptografiske anvendelser. I Artikel A for-
bedres to eksisterende protokoller til pålidelig beskedoverførsel, så der enten
kan sendes flere informationssymboler per overførsel eller så protokollen
fungerer over et mindre legeme. Artikel B omhandler OT-udvidelse, som kan
bruges til at opbygge større kryptografiske protokoller. Det vises her, hvor-
dan brugen af ikke-binære koder leder til et kompromis mellem antallet af
grund-OT’s og antallet af bits, der skal sendes, sammenlignet med binære
koder.

Artikel C berører både anvendelser indenfor kryptografi og kvantekoder.
Mere specifikt gives to nye konstruktioner af indlejrede, forbedrede Hermite-
koder. Disse indlejrede koder anvendes så til konstruktion af såvel secret
sharing schemes som asymmetriske kvantekoder via CSS-konstruktionen.

Artiklerne D og E tager afsæt i Artikel C og omhandler kvantekoder
fra Steane-udvidelse. Denne udvidelse gør det i nogle tilfælde muligt at
hæve dimensionen af en kvantekode uden at sænke mindsteafstanden. De
resulterende kvantekoder er symmetriske. I Artikel D benyttes teknikken på
forbedrede Hermite-koder, mens den i Artikel E benyttes på kode defineret
fra kartesiske produkter af punktmængder.

English

This thesis treats the application of results and techniques from classical
coding theory to protocols in cryptography and construction of quantum
error-correcting codes. The basic definitions and results from these topics
are presented in the first part of the thesis, which also gives an overview on
the second part. This second part, in which the majority of the thesis is found,
contains five scientific papers.

Papers A and B both focus on cryptographic applications. In Paper A, two
existing protocols for reliable message transmission are improved in such a
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way that it is either possible to increase the number of information symbols
per transmission, or decrease the required field size for the protocol to work.
Paper B treats OT-extension, which can be used to build larger cryptographic
protocols. Here, it is shown how the use of non-binary codes leads to a trade-
off between the number of base-OT’s and the number of transmitted bits
when compared to binary codes.

Paper C contains applications to both cryptography and quantum codes.
More specifically, two new constructions of nested, improved Hermitian
codes are given. These nested codes are then used to construct secret sharing
schemes as well as asymmetric quantum codes from the CSS-construction.

Papers D and E take Paper C as their starting point and treat quantum
codes from Steane-enlargement. In some cases, this enlargement makes it
possible to increase the dimension of a quantum code without decreasing the
minimal distance. The resulting quantum codes are symmetric. In Paper D,
the technique is applied to improved Hermitian codes, while it is applied to
codes from Cartesian product point sets in Paper E.
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Part I

Background
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Introduction

An ever-increasing part of modern life is digital. Paying for goods or services
often happen without exchanging physical currency, but instead via a credit
card or a payment app, causing a change in those bytes on the bank’s server
that represent our balance. Or the payment may even be made with one
of the many purely digital cryptocurrencies, whose value is not backed by a
government. In Denmark, medical records are stored in digital form and can
– at least partially – be accessed online. In some countries, casting a vote in
an election is handled electronically.

With such sensitive information being handled by computers and sent
across networks, we must use cryptographic techniques to ensure that our
data is secured against the prying eyes of anyone but the intended recipient.
Additionally, we should be able to trust the data we receive even if errors
happen during transmission, be it caused by bad luck or by the deliberate
tampering of an adversary. The techniques that we use to enable such security
generally rely on the assumption that some problems are computationally
intractable. For instance, the security of the widely used RSA cryptosystem
relies on the assumption that no classical computer can feasibly factor a
sufficiently large integer [RSA78]. Similarly, some versions of the Diffie-
Hellman key exchange rely on the assumption that computing the so-called
discrete log in a group is infeasible [DH76].

Using such security assumptions, we can build cryptographic protocols
to solve a number of different problems. In this thesis, one of the topics
of interest are protocols that enable what is known as secure multiparty
computation. Here, a number of participants each have an input to a publicly
known function, and they wish to compute the function value with the given
inputs. They wish to do this, however, without revealing their individual
inputs to the other participants. As an example, a user of a messaging app will
find it convenient to know which of his friends, colleagues, and acquaintances
use the same app. Of course, he could simply reveal all of his contacts to
the app provider, but this leaks more information than necessary. Using
multiparty computation, it is possible for the user and the app provider
to learn only the intersection between the user’s contact list and the app
provider’s user database. This example is what is known as private set
intersection. The protocols considered in thesis are not aimed at such specific
problems. Instead, they serve as subprotocols that can be used to build larger
protocols for solving those problems.
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Introduction

In recent years, there has been an increasing interest in quantum
computation, and the computational power provided by such systems. For
instance the factoring and discrete log problems mentioned above are
considered intractable by a classical computer, but a quantum computers will
– at least in theory – be able to solve them in polynomial time [Sho94; Sim94].
One major obstacle to the development of large-scale quantum computers
is that the quantum bits that make up such a system are highly susceptible
to errors. Thus, the output of a quantum computation can only be useful
if we have some form of error-correction on the quantum bits themselves.
Such error-correction can be provided by quantum error-correcting codes.
While these codes are different from those studied in classical coding theory,
there are a number of results – such as the CSS-construction – which allow
the construction of quantum codes given classical linear codes with specific
properties. This gives coding theorists an opportunity to exploit knowledge
of good classical codes to construct quantum error correcting codes.

This thesis takes its starting point in classical coding theory and then ap-
plies this in to the two problems mentioned above: multiparty computation
and quantum error-correcting codes. More concretely, the thesis contains a
paper where decoding of linear codes is used to provide reliable communica-
tion between two parties, even in the presence of an adversary. In a separate
paper, linear codes are used for so-called extension of oblivious transfer. Both
of these are related to multiparty computation. For instance, the latter can be
used to solve the private set intersection problem mentioned earlier, see e.g.
[OOS17]. The final three papers in the thesis describe various constructions of
quantum codes. Hermitian codes are a well-known class of algebraic geomet-
ric codes that are generally agreed to have relatively good parameters. Two
papers use these to construct quantum error-correcting codes via the CSS-
construction and Steane-enlargement, respectively. The third paper applies
the Steane-enlargement technique to a different family of codes, namely the
codes from Cartesian product point sets.

4



Preliminaries

This chapter reiterates the mathematical framework that will be used promi-
nently in Part II of the thesis. Concretely, the treated subjects are (a) classical
error-correcting codes, (b) proving the security of a protocol in multiparty
computation, and (c) the fundamentals of quantum error-correcting codes. A
reader familiar with these topics may want to read the chapter cursorily.

1 Error-correcting codes

In this section, the basic coding theoretic notation used in this work is
introduced. Some of these definitions will reappear in the papers included
in Part II. In particular, the exposition below bears resemblance to the
introduction of Paper B since that paper was written for cryptographers rather
than coding theorists. A more detailed treatment of coding theory can be
found in one of the many textbooks on the subject, e.g.. [HP03; JH04].

A linear code C is a linear subspace of Fn
q . The vectors in Fn

q are traditionally
called words, and those that are also in C are called codewords. When
working with error-correction, we typically assume that the codewords are
subjected to a type of error where some symbol in the codeword is altered to
a different symbol. We refer to such an error as a bit flip since it corresponds
exactly to flipping a bit in the binary case. Crucially, when receiving a word
with one or more bit-flip errors, we do not know the positions where they
happened. Depending on the concrete problem, we may sometimes consider
erasures, which are errors where the error positions are known, but the
error values themselves are not. For instance, such errors are considered
in Papers A and B.

For each word x ∈ Fn
q , we use the Hamming weight wH(x) = | suppx |

to denote the number of non-zero entries in x. This weight induces the
Hamming distance dH(x,y) = wH(x−y), which turns Fn

q into a metric space. In
the context of error-correction, an especially important property of the code
C is its minimal distance

d(C) = min
x,y∈C
x̸=y

dH(x,y)

since this represents the minimal number of errors that can take one
codeword to another. Rather than considering the distance between each
pair of codewords, the linearity of C implies that d(C) =minc∈C\{0} wH(c).

5



2. Multiparty computation

If the linear code C ⊆ Fn
q has dimension k as an Fq-vector space and

minimal distance d(C) = d , we commonly refer to C as an [n, k, d]q-code, or
alternatively an [n, k]q-code if the minimal distance is unknown.

In Papers C, D and E, the concepts of nested codes and their relative
distance are essential. Two codes C1,C2 are called a nested pair of codes if
C2 ⊊ C1. Their relative distance is then defined as

d(C1,C2) =min{wH(c) | c ∈ C1\C2}.

For arbitrary codes, it is generally difficult to determine the relative distance,
and resorting to the bound d(C1,C2)≥ d(C1) is commonplace. For some codes
– such as those codes considered in Papers C, D, and E – it is, however, possible
to determine the relative distances exactly.

2 Multiparty computation

In Paper B, we use a simulation strategy to prove that a cryptographic protocol
is secure. For readers who are not familiar with this kind of proof, the current
section gives a brief introduction to the fundamental idea. A more in-depth
exposition can for instance be found in [CDN15] or [CF01], on both of which
the following is based.

Model assumptions
A multiparty computation protocol consists of a number of participants
interacting with each other by following a set of predefined instructions.
Each participant has a secret input, and the purpose of the protocol is to
compute the output of a function when using the given inputs, but doing so
without revealing the individual inputs. Some participants may, however,
attempt to gain information about the input of another participant. We
model this behaviour by introducing an adversary which controls a number
of participants in the protocol. The participants under adversarial control are
called corrupt, and the remaining participants are called honest.

The adversary may be either passive or active. The former means that the
corrupt participants follow the protocol, but collude and pool their knowledge
to gain as much information as possible about the inputs of the honest
participants. The latter means that in addition to the pooling of information,
the corrupt participants may also deviate from the protocol in an attempt to
extract more information. Thus, an active adversary is more powerful than
a passive, and protocols designed to protect against active adversaries are
typically more complex.

Defining security
In order to prove that a cryptographic protocol is secure, we commonly
consider a ‘game’ where an entity called the environment provides the

6



I. Background

inputs of the participants and receives their final outputs. In addition,
the environment will interact with the adversary, which is able to corrupt
participants. In this game, the environment must try to distinguish between
the execution of the protocol in question and an execution in the ideal world.
Here, ideal world refers to a setting where a magical black box provides
the exact functionality that we are looking for. This black box is commonly
called the ideal functionality. But since the protocol has several additional
steps compared to the ideal functionality, we allow ourselves to introduce
a simulator in the ideal world. This simulator acts as an intermediate link
between the environment and the ideal functionality, and its purpose is
to emulate the steps and messages that would be found in the real-world
execution of the protocol.

In essence, the environment is placed in one of two different scenarios
with equal probability: either (a) the environment is interacting directly with
the adversary, and the honest participants act as specified by the protocol,
or (b) the environment is interacting with the simulator, which in turn
interacts with the ideal functionality via the corrupted participants. For an
illustration, see Figure 1. If the environment can successfully distinguish these
two scenarios, it wins the game. The protocol is considered secure if the
probability that the environment wins is sufficiently small.

Initially, it might not be clear why this should provide evidence that the
protocol is in fact secure. Scenario (a) above is the protocol execution as it
would be if we rolled it out in the real world. In scenario (b), however, we
consider a theoretical execution where the desired operation is performed
by the ideal functionality – which is secure by definition – and the simulator
merely emulates the steps of the protocol. If the environment cannot

A

E

S A

FIDEAL

E

Figure 1. A simple illustration of the two scenarios of the game in the case where the
adversary A controls a single participant as indicated by the dashed line. On
the left, the environment E interacts with the adversary as in scenario (a). On
the right, the environment interacts with the ideal functionality FIDEAL via a
simulator S that emulates A. This is scenario (b).
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2. Multiparty computation

distinguish these two scenarios, the information obtained during protocol
execution might as well have been the random information produced by the
simulator. For a precise treatment, see [CF01] or [CDN15; Ch. 4].

As mentioned previously, we call the protocol secure if the environment
wins the game with ‘sufficiently small’ probability, but as of yet it is unclear
exactly what ‘sufficiently small’ means. In order to quantify this, we will use the
concept of distinguishing advantage. That is, we measure how much better
the environment can distinguish the two scenarios compared to guessing
uniformly at random. More precisely, let b ∈ {0, 1} be a bit denoting which
of the scenarios (a) and (b) the environment is placed in, and let X0 and X1 be
random variables describing the information the environment sees during
the game in each of the two scenarios. Further, assume that the environment
uses some (possibly probabilistic) distinguishing algorithm D. With these
notations in place and following [CDN15; pp. 18–19], the probability that the
environment wins is given by

Pr[D(X b) = b] =
1
2

Pr[D(X b) = b | b = 0] +
1
2

Pr[D(X b) = b | b = 1]

=
1
2

�

Pr[D(X0) = 0] + Pr[D(X1) = 1]
�

(2.1)

by the law of total probability. Since the distinguisher D will always return
either 0 or 1, we must have Pr[D(X1) = 1] = 1 − Pr[D(X1) = 0], and
therefore (2.1) can be rewritten as

Pr[D(X b) = b] =
1
2
+

1
2

�

Pr[D(X0) = 0]− Pr[D(X1) = 0]
�

. (2.2)

To go from the probability in (2.2) to the advantage, let Dunif return 0 or 1
uniformly at random. The probability that this simple distinguisher produces
the right guess is Pr[Dunif(X b) = b] = 1

2 , meaning that the increased probability
of usingD compared toDunif is the second term in (2.2). This leads to the formal
definition of advantage as given in [CDN15; Def. 2.3], where we consider the
absolute value1 and scale it to be a value in [0, 1].

Definition 2.1:
Let X0 and X1 be random variables, and letD be a distinguisher. The advantage
of D distinguishing X0 and X1 is defined as

Adv(D) =
|︁

|︁Pr[D(X0) = 0]− Pr[D(X1) = 0]
|︁

|︁.

Since we now have a way to measure how well the environment can
distinguish the two scenarios of the cryptographic game, we can also give
a precise definition of a probability being ‘sufficiently small’, or rather it being

1If Pr[D(X0) = 0]−Pr[D(X1) = 0]< 0, the distinguisher D is worse than random guessing, i.e.
Dunif. But the distinguisher D′(X b) = 1−D(X b), which flips the output of D, outperforms Dunif by
the same amount.
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I. Background

negligible in some security parameter. We use the same definition as [CDN15;
Def. 2.6].

Definition 2.2:
Consider a map f : N → R. If for any c ∈ N there exists nc ∈ N such that
f (n)≤ n−c whenever n≥ nc , then f is called negligible in n.

In practice, we rarely use this definition directly. Instead, it is commonly
shown that f (n) ≤ k−n for some k > 1. This implies negligibility in n as
limn→∞ nc/kn = 0 for any c ∈ N.

Definition 2.3 (Statistical indistinguishability):
Let X0 and X1 be random variables whose distributions depend on a
parameter κ ∈ N, and let D be a distinguisher. If Adv(D) is negligible in κ,
then X0 and X1 are said to be statistically indistinguishable by D.

In the definition, we think of κ as a security parameter that we can use to
adjust the security level of a cryptographic protocol.

Definition 2.3 only considers a single distinguisher, but it can easily be
extended to a set of distinguishers. In particular, we often look at the set of
distinguishers running in polynomial time since it is in many cases reasonable
to assume that the environment is computationally bounded.

Definition 2.4 (Computational indistinguishability):
Let X0 and X1 be random variables whose distributions depend on a
parameter κ ∈ N. If X0 and X1 are statistically indistinguishable by every
distinguisher running in polynomial time, then X0 and X1 are said to be
computationally indistinguishable.

Remark:
It is possible to present Definitions 2.3 and 2.4 in a more general way by
using the concept of statistical distance. This generalization is not necessary
to understand Paper B, so it is omitted here. Further details may be found
in [CDN15; Ch. 2].

Recall that in the cryptographic game, the two variables X0 and X1 represent
the information seen by the environment in each of the scenarios (a) and
(b). Having established Definitions 2.3 and 2.4, we say that the protocol
is statistically secure if X0 and X1 are statistically indistinguishable by all
distinguishers. Similarly, we say that the protocol is computationally secure
if X0 and X1 are computationally indistinguishable.

9



3. From classical to quantum computers

3 From classical to quantum computers

This section covers the basics of quantum error correcting codes from a
mathematical point of view. Therefore, it is not meant as a precise physical
description of quantum mechanics and quantum systems. Instead it is
meant as a concise description of the mathematical framework necessary
to understand asymmetric, non-binary quantum codes. Such a description
may be difficult to find elsewhere in the literature. The exposition is based
on [AK01; Aly08; Got97; KKKS06; NC10]. Parts of the introduction below bear
a similarity to the introductions of Papers D and E, where symmetric and
asymmetric quantum codes are also defined.

As described in Section 1, codewords of classical information are subject
to a single type of error – namely the bit flip. When moving to quantum
information, we still need to correct for bit flips as before, but a new type
of error emerges as well. This new type of error is the so-called phase shift,
where the relative phase between the quantum bits is changed.

Because of this, there are two types of minimal distance for a quantum
code: one for bit flips and one for phase shifts. For reasons that will become
apparent later, these distances are denoted dx and dz , respectively. These
two distances has led to two different approaches when describing quantum
codes. One approach is not to differentiate between the two types of errors
and simply associate the quantum code with a single minimal distance
d = min{dx , dz}, ignoring the higher of the two distances. Alternatively, if
the two error types are assumed to happen with different probabilities as
suggested in [AKS06], both distances are seen as part of the code parameters.
Quantum codes of the latter type are called asymmetric, and codes of the
former symmetric. Inspired by the [n, k, d]q notation for classical codes, the
parameters of an asymmetric quantum code are presented as [[n, k, dz/dx]]q ,
and those of a symmetric code as [[n, k, d]]q . As in the classical case, n and
k are called the length and dimension, respectively. However, when we say
that a quantum code has length n and dimension k, this actually means that
it is a qk-dimensional subspace of Cqn

.
One very common way to construct quantum error-correcting codes

is by using the so-called CSS-construction named after Calderbank, Shor,
and Steane [CS96; Ste96]. The original construction uses only binary, dual-
containing codes, but it has later been generalized to arbitrary finite fields and
to nested codes. The theorem below echoes the version found in [SKR09].

Theorem 3.1 (CSS-construction):
Given Fq-linear codes C2 ⊊ C1 of length n and codimension ℓ, the CSS-
construction ensures the existence of an asymmetric quantum code with
parameters

[[n,ℓ, dz/dx]]q

where dz = d(C1,C2) and dx = d(C⊥2 ,C⊥1 ).

10



I. Background

This is, in principle, all that is needed to start searching for parameters
of asymmetric quantum codes over arbitrary finite fields. Theorem 3.1
does not, however, give any insight into the underlying construction. The
following sections aim to give at least some intuition about the quantum codes
produced by the CSS-construction.

Notation

In quantum mechanics, vectors are usually represented in ket-notation,
meaning that a vector v in matrix notation is instead denoted |v〉. This is
paired with the bra-notation 〈v| which denotes the linear map in the dual
space such that 〈v|u〉 gives the inner product between |v〉 and |u〉. In this
thesis, the vectors |v〉will always be elements of Cqn

, and in this case 〈v| has
matrix representation |v〉†, where † denotes conjugate transposition. For more
details, see [NC10; Ch. 2].

A single-qubit system

As a very simple example, we may consider a quantum system consisting
of a single quantum bit or qubit. The physical implementation of such a
qubit could for instance be the phase of a photon or an electron orbiting
a single atom [NC10]. The state of a system like this can be represented by a
vector in C2. It is common practice to fix an orthonormal basis of C2 and
label its two vectors as |0〉 and |1〉, which correspond, in a certain sense,
to the bits 0 and 1 in the classical case. In contrast to the classical setting,
however, the qubit is not restricted to be in either state |0〉 or |1〉. Instead, it
can also be a linear combination α|0〉+β |1〉 of the two, where α,β ∈ C satisfy
|α|2+|β |2 = 1. This corresponds to the qubit being in a superposition between
the two basis states, which can be interpreted in the following way: If measure
this superposition in the computational basis {|0〉, |1〉}, it will collapse to one
of the two basis states. The probability of it collapsing to |0〉 is |α|2, and the
probability of it collapsing to |1〉 is |β |2.

The bit flip and phase shift errors for the single-qubit system can be
described as operators X and Z , respectively, defined by

X :
|0〉 ↦→ |1〉
|1〉 ↦→ |0〉 and Z :

|0〉 ↦→ |0〉
|1〉 ↦→ −|1〉 .

That these operators are called X and Z is the reason why the two distances
of a quantum code are denoted dx and dz .

The phase shift error Z changes the relative phase of the two basis states.
It is also possible to change the global phase of a quantum state |ϕ〉 by taking
it to eiθ |ϕ〉 for some θ ∈ R. The difference between these two types of phases
is that a change in relative phase may alter the results of a measurement,
whereas a change in global phase cannot; see for instance [NC10; p. 93].

11
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Non-binary alphabets
In the theoretical framework, nothing prevents us from generalizing the
quantum systems under consideration to q-ary alphabets. Instead of labelling
the basis vectors as |0〉 and |1〉 as before, we consider an orthonormal basis
{|u〉}u∈Fq

⊆ Cq . Of course, the errors that we aim to correct must reflect the
larger alphabet size. Following [KKKS06], for every v ∈ Fq the error operators
are now

X (v): |u〉 ↦→ |u+ v〉 and Z(v): |u〉 ↦→ωtr(uv)|u〉

where ω ∈ C is a fixed p’th root of unity, and tr: Fq → Fp is the field trace

tr(a) =
∑︁r−1

i=0 aqi
with q = pr . If q = 2, it may be noted that X (1) and Z(1) give

the same operators as X and Z mentioned in the previous section. From the
definitions, simple calculations lead to the following result.

Proposition 3.2:
For any v, v′ ∈ Fq , we have the following:

(i) X (0) = Z(0) = I

(ii) X (v)X (v′) = X (v + v′) and Z(v)Z(v′) = Z(v + v′)

(iii) X (v)−1 = X (v)p−1 and Z(v)−1 = Z(v)p−1

(iv) X (v) and Z(v) are unitary 2

Multiple-qubit systems
In order to take systems of single qubits and combine them into a single
system of multiple qubits, the postulates of quantum mechanics specify that
the state of the full system is described by the tensor product of the individual
qubit states [NC10; p. 94]. That is, if a system has n qubits each in states
|ϕ1〉, |ϕ2〉, and |ϕn〉, respectively, then the state of the combined system is
|ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕn〉.

In terms of the errors operators, we use a similar approach and describe
the errors that act on the full system by the tensor product of single-qubit
errors [KKKS06]. Thus, for any v ∈ Fn

q we let X (v) = X (v1)⊗ X (v2)⊗ · · · ⊗ X (vn).
This notation means that X (v) applied to the state |ϕ〉= |ϕ1〉⊗ |ϕ2〉⊗ · · · ⊗ |ϕn〉
results in the state

X (v)|ϕ〉= X (v1)|ϕ1〉 ⊗ X (v2)|ϕ2〉 ⊗ · · · ⊗ X (vn)|ϕn〉. (2.3)

That is, the operator X (v) is acting in a component-wise fashion. The phase-
shift error Z(v) is defined analogously. Note that these operators have similar
properties to the ones presented in Proposition 3.2, albeit in a componentwise
fashion. For instance, we have X (v)X (v′) = X (v + v′) for any v,v′ ∈ Fn

q .
Additionally, the properties of the tensor product imply that X (v) and Z(v)
are also unitary.

2An operator U is called unitary if it satisfies U† = U−1.
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Now, define the multiplicative group

Gn = {ωcX (a)Z(b) | a,b ∈ Fn
q , c ∈ Fp}

as in [KKKS06]. Later, it shall be important to know whether two elements of
this group commute or not. In order to determine a condition for this, note
that

Z(b)X (a) =ωtr(b·a)X (a)Z(b),

and therefore

X (a)Z(b)X (a′)Z(b′) =ωtr(b·a′)X (a+ a′)Z(b+ b′). (2.4)

From this observation, we obtain the following result, which can also be found
in [KKKS06; Lem. 5].

Proposition 3.3:
Let E = ωcX (a)Z(b) and E′ = ωc′X (a′)Z(b′) be elements of Gn. Then E and E′

commute if and only if tr(b · a′ − b′ · a) = 0.

Proof:
From (2.4), we have the two equalities

EE′ =ωtr(b·a′)X (a+ a′)Z(b+ b′)

E′E =ωtr(b′·a)X (a+ a′)Z(b+ b′),

and from the linearity of tr we therefore have

EE′ =ωtr(b·a′−b′·a)E′E. (2.5)

Thus, EE′ = E′E if and only if ωtr(b·a′−b′·a) = 1. Since ω is a p’th root of unity,
this happens if and only if tr(b · a′ − b′ · a)≡ 0 (mod p). Because tr maps to Fp ,
this is equivalent to tr(b · a′ − b′ · a) = 0.

Errors as an additive group
For an elementωcX (a)Z(b) of Gn, the overall factorωc corresponds to a global
phase, which – as mentioned previously – does not change measurement
results. Hence, we may ignore this factor, and as described in [KKKS06]
each element ωcX (a)Z(b) of Gn can then be identified with a vector (a|b) ∈
F2n

q . By Proposition 3.3, two elements E, E′ ∈ Gn commute if and only if

tr(b · a′ − b′ · a) = 0. Because of this, we define the symplectic inner product
〈(a|b), (a′|b′)〉s = tr(b ·a′−b′ ·a). Two errors in Gn then commute, if and only if
the corresponding vectors inF2n

q are orthogonal with respect to the symplectic
inner product.

In addition, the observation in (2.4) implies that apart from a factor of
ω, a product of two operators in Gn corresponds exactly to the sum of the
associated elements in F2n

q . More precisely, we have the following result.
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Proposition 3.4:
The quotient group Gn/〈ωI〉 is isomorphic to the additive group F2n

q .

Proof:
The mapping ψ: Gn → F2n

q given by ψ
�

ωkX (a)Z(b)
�

= (a|b) is a group
homomorphism by (2.4). Moreover, it is surjective and kerψ = 〈ωI〉. Thus,
Gn/〈ωI〉 ≃ F2n

q by the Isomorphism Theorem.

For an element (a|b) ∈ F2n
q , we define x- and z-weights as wx(a|b) = wH(a) and

wz(a|b) = wH(b), where wH denotes the usual Hamming weight. Additionally,
we denote by ws the symplectic weight given by ws(a|b) = | suppa ∪ suppb |.
Comparing this with (2.3), the x- and z-weights correspond exactly to the
number of qubits affected by a bit-flip and a phase-flip, respectively, when
a quantum state is subjected to the error X (a)Z(b). Similarly, the symplectic
weight is the number of qubits affected by some error regardless of error type.

Stabilizer codes
Let S be an abelian subgroup of Gn, and further assume thatωk I /∈ S for every
k ∈ Z∗p . Since the operators in S are unitary, the Spectral Theorem implies that
they are diagonalizable, see e.g. [Lan02; p. 583]. Because they all commute,
they are also simultaneously diagonalizable [HJ13; Thm. 1.3.21]. As done in
[AK01; KKKS06], we therefore define the vector space

Q =
⋂︂

E∈S

�

v ∈ Cqn
| Ev= v
	

.

In other words, Q is the joint 1-eigenspaces of the operators in S. We call Q
the quantum code stabilized by S, and we call S a stabilizer. The following
proposition, whose binary equivalent can be found in [NC10; p. 455], explains
why we require S to be abelian andωk I /∈ S.

Proposition 3.5:
Let S be a subgroup of Gn, and assume that S is non-abelian or ωk I ∈ S for
some k ∈ Z∗p . Then the quantum code Q stabilized by S contains only the zero
vector.

Proof:
Assume first that S is non-abelian. This means that there exist E, E′ ∈ S such
that EE′ =ωc E′E for some non-zero c by (2.5). Thus, for any |ϕ〉 ∈Q we have

〈ϕ|ϕ〉= 〈ϕ|EE′|ϕ〉=ωc〈ϕ|E′E|ϕ〉=ωc〈ϕ|ϕ〉,

implying that |ϕ〉 is the zero vector. Similarly,ωk I ∈ S leads toωk|ϕ〉= |ϕ〉 for
all |ϕ〉 ∈Q, giving the same conclusion.
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Consider a stabilizer S, and let S = 〈E1, E2, . . . , Eℓ〉 be a minimal generating set.
It may be shown that any such set has the same number of generators; see, for
instance, [DF04; Sec. 6.1 Ex. 26(c)]. By using the structure from Proposition 3.4,
we obtain the following characterization of the minimal generating sets,
which is similar to the one found in [NC10; Prop. 10.3].

Lemma 3.6:
Let S ⊆ Gn be an abelian subgroup satisfying ωk I /∈ S for every k ∈ Z∗p ,
and let E = {E1, E2, . . . , Eℓ} be a generating set for S. Additionally, let ψ be
the isomorphism from the proof of Proposition 3.4. Then E is a minimal
generating set for S if and only if {ψ(E) | E ∈ E} is linearly independent in
F2n

q as an Fp-vector space.

Proof:
Denote by vi = ψ(Ei) the images of the generators. Aiming to show the
contrapositive, assume that there exist coefficients ci ∈ Fp , not all zero, such

that
∑︁ℓ

i=1 civi = 0. By Proposition 3.4, this happens if and only if

ℓ
∏︂

i=1

Eci
i =ω

k I (2.6)

for some k ∈ Zp . By the assumptions on S, however, we must have k = 0. Thus,
Proposition 3.2 implies that (2.6) is equivalent to

E j =
∏︂

i ̸= j

E
−ci c

−1
j mod p

i

for some index j with c j ̸= 0, meaning that E is not minimal.

To determine the dimension of a stabilizer code, we will rely on the following
lemmata from [NC10; Prop. 10.4] and [Pre99; p. 36], respectively. The proofs
can be found in Appendix A on page 20.

Lemma 3.7:
Let S be a stabilizer, and let {E1, E2, . . . , Eℓ} be a minimal generating set for S.
Further, assume that ωk I /∈ S for every k ∈ Z∗p . For any i ∈ {1, 2, . . . ,ℓ} and any
c ∈ Zp , there exists an F ∈ Gn, such that Ei F = ωc F Ei , and E j F = F E j for all
j ̸= i.

Lemma 3.8:
Let F be a unitary operator such that EF =ωF E. Then for any k ∈ Zp , we have
E|ϕ〉=ωk|ϕ〉 if and only if E(F |ϕ〉) =ωk+1F |ϕ〉.

Having stated these lemmata, we can determine the dimensions of stabilizer
codes. The proof below follows the strategy from [Pre99].

15



3. From classical to quantum computers

Proposition 3.9:
Let Q be a quantum stabilizer code of length n. If its stabilizer S is generated
by ℓ generators, then Q has dimension qn/pℓ.

Proof:
Let S be a stabilizer, and let {E1, E2, . . . , Eℓ} be a minimal generating set for
S. Considering the first generator E1, Lemma 3.7 implies the existence of a
unitary operator F ∈ Gn satisfying E1F =ωF E1. Lemma 3.8 then shows that F
sends each 1-eigenstate of E1 to a distinctω-eigenstate, eachω-eigenstate to a
distinctω2-eigenstate, and so forth. From this it follows that each eigenspace
has the same dimension, namely one p’th of the dimension of the full space.
In particular, the 1-eigenspace of E1 has dimension qn/p.

Consider now the operator E2. Again, Lemma 3.7 implies the existence of
an operator F , such that E1F = F E1, but E2F =ωF E2. Then for any 1-eigenstate
|ϕ〉 of E1, it follows that F |ϕ〉 is also a 1-eigenstate of E1. Simultaneously,
Lemma 3.8 implies that within the 1-eigenspace of E1, the operator F
permutes the eigenspaces of E2. This leads us to the conclusion that the
p different eigenspaces of E2 have the same dimension when intersected
with the 1-eigenspace of E1. Thus, the joint 1-eigenspace of E1 and E2 has
dimension qn/p2. Continuing in this fashion, we see that the quantum code
Q stabilized by S has dimension qn/pℓ.

Detectable and correctable errors
When analysing a quantum stabilizer code and the errors it offers protection
against, it turns out that those operators that commute with all elements of
the stabilizer S play a vital role [AK01; Got97; KKKS06]. That is, we need to
consider the centralizer

Z(S) = {F ∈ Gn | ∀E ∈ S : F E = EF}

of S. But in the literature, the normalizer

N(S) = {F ∈ Gn | ∀E ∈ S : F EF † ∈ S}

is more commonly used since N(S) = Z(S) in the case of a stabilizer group
[Got97; p. 19]. For a proof of this, see Proposition A.1 on page 20. Additionally,
we note that S ⊆ N(S).

If a quantum state |ϕ〉 is subjected to an error F , we will attempt to
recover it by performing a set of measurements dictated by the stabilizer.
More precisely, we will measure the eigenvalues of F |ϕ〉 for each generator
E1, E2, . . . , Eℓ of the stabilizer, which yields an error syndrome s1s2 · · · sℓ, where
each si ∈ {1,ω, . . . ,ωp−1}. This leads to a strategy similar to the one used in
classical coding theory, where we choose our correction depending on the
resulting syndrome [Got97; Sec. 3.2][NC10; p. 466].

Let us now consider a situation where two errors F1, F2 ∈ Gn have the same
syndrome for any word. That is, for each i, we have both Ei F1 =ωki F1Ei and
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Ei F2 = ωki F2Ei , meaning in particular that F †
1 = ω

−ki E†
i F †

1 Ei . Therefore, the
operator F †

1 F2 satisfies Ei(F
†
1 F2) = (F

†
1 F2)Ei for every i. Thus, F1 and F2 have the

same syndrome, if and only if F †
1 F2 ∈ N(S).

All is not lost, however, if F1 and F2 have the same syndrome. In the case
where F †

1 F2 is not only in N(S), but also in S, we have that F †
1 F2|ϕ〉= |ϕ〉, leading

to F2|ϕ〉 = F1|ϕ〉 for every |ϕ〉 ∈ Q. Thus, F1 and F2 affect the coded states in
the same way in this case, meaning that it not even necessary to distinguish
between them – correcting either of the two errors will recover the original
quantum state |ϕ〉. These observations lead to the following theorem [Got97;
NC10].3

Theorem 3.10:
Let Q be a quantum code stabilized by S. A set of errors E ⊆ Gn is correctable

by Q if F †
1 F2 /∈ N(S) \ S for all F1, F2 ∈ E .

If we merely want to determine if an error F ∈ Gn\S has happened, it is enough
to ensure that F does not have a zero syndrome – which is the syndrome of
any operator in S. In particular, we can use the same arguments as above,
letting F1 = I and F2 = F , to conclude that the quantum code Q can detect any
error F /∈ N(S) \ S. Thus, the minimal distances dx and dz of the code can be
determined by finding the operators in N(S) \ S that have the lowest x- and
z-weights, respectively.

The CSS-construction
We can now tie all of this together to describe the underlying construction
in Theorem 3.1. Consider two linear codes C2 ⊊ C1 ⊆ Fn

q with dimensions k2

and k1, respectively. Further, let ℓ = k1 − k2 denote their codimension. We
will use these codes to construct an Fp-subspace of F2n

q , and then exploit the

connection between Gn and F2n
q to construct quantum error correcting codes.

Define the Fq-vector space

Γ =
�

(a|b) | a ∈ C⊥1 ,b ∈ C2

	

⊆ F2n
q .

If we let B⊥1 and B2 denote bases for C⊥1 and C2, respectively, then it is clear
that

BΓ =
�

(a|0) | a ∈ B⊥1
	

∪
�

(0|b) | b ∈ B2

	

,

is a basis for Γ . Subsequently, Γ has dimension n − k1 + k2 = n − ℓ. We will
construct a stabilizer based on BΓ , but whereas Γ is an Fq-vector space, the
stabilizer S can only be given the structure of an Fp-vector space. Therefore,
we first expand the elements of BΓ in a basis of Fq over Fp . Thus, let q = pr ,
and fix an α ∈ Fq such that Fq = spanFp

{1,α, . . . ,αr−1}. Define the map

3A general condition for quantum errors to be correctable is given in [KL97].
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γ: F2n
q → P(F2n

q ) given by v ↦→ {v,αv, . . . ,αp−1v}. The following lemma lists
two properties of γ.

Lemma 3.11:
The map γ: F2n

q → P(F2n
q ) has the following properties.

(i) A set V ⊆ F2n
q is linearly independent over Fq if and only if

⋃︁

v∈V γ(v) is
linearly independent over Fp

(ii) Any vector v′ ∈ γ(v) satisfies wH(v′) = wH(v)

We will use the image of BΓ under γ to form the generators for a stabilizer
code. Abusing notation, let

γ(BΓ ) =
⋃︂

v∈BΓ

γ(v),

and let S be the subgroup of Gn generated by E = {X (a)Z(b) | (a|b) ∈ γ(BΓ )}.
Of course, we must check that S does in fact possess the properties required
for a stabilizer. The following proposition guarantees that this is indeed the
case.

Proposition 3.12:
The subgroup S ⊆ Gn generated by the operators E = {X (a)Z(b) | (a|b) ∈
γ(BΓ )} is abelian, and ωk I /∈ S for every k ∈ Z∗p . Furthermore, E is a minimal
generating set.

Proof:
Observe first that for any two vectors (a|b), (a′|b′) ∈ Γ , we have

〈(a|b), (a′|b′)〉s = tr(b · a′ − b′ · a) = tr(0− 0) = 0 (2.7)

since b,b′ ∈ C2 and a,a′ ∈ C⊥1 ⊊ C⊥2 . In particular, this also holds true for
(0|b), (a′|0) ∈ Γ , and combining this with (2.4), we see that S can in fact be
described as

S = {X (a)Z(b) | (a|b) ∈ Γ }.

Thus, ωk I /∈ S for any k ∈ Zp , and (2.7) combined with Proposition 3.3 imply
that S is abelian.

That E is a minimal generating set, follows from the fact that BΓ is a basis
combined with Lemmata 3.6 and 3.11.

We can now restate Theorem 3.1 in the language of quantum stabilizer codes.

Proposition 3.13:
Let C2 ⊊ C1 ⊆ Fn

q be nested codes of codimension ℓ, and let S be defined as
in Proposition 3.12. Then the corresponding stabilizer quantum code Q has
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parameters
[[n,ℓ, dz/dx]]q

where dz = d(C1,C2) and dx = d(C⊥2 ,C⊥1 ).

Before giving the proof, recall that the notation [[n,ℓ]]q means that the
quantum code Q is a qℓ-dimensional subspace of Cqn

.

Proof:
From Proposition 3.12 it is already known, that S is a valid stabilizer, so Q is
indeed defined. To find its dimension, we only need to determine the number
of elements in E by Propositions 3.9 and 3.12. Each of the n− ℓ vectors in BΓ
gives rise to a set of r vectors when applying γ. These vectors are all distinct,
so Proposition 3.9 gives

dimQ =
qn

pr(n−ℓ) =
qn

qn−ℓ = qℓ

as claimed.
To determine the minimal distance, we must consider the elements in

N(S). In order for an error E to commute with all elements of S, it must be
the case that the corresponding vector (a|b) is symplectically orthogonal to
all vectors in Γ . Thus, E ∈ N(S) if and only if a ∈ C⊥2 and b ∈ C1. We now use
that it is possible to correct bit-flips and phase-shifts independently when
working with CSS-codes, see e.g. [CS96] or [NC10]. For the x-weight, we thus
consider some E ∈ N(S) corresponding to (a|0)with a ∈ C⊥2 . But as described
in Theorem 3.10, we need not correct errors in S; i.e. we can disregard the
vectors with a ∈ C⊥1 . Thus, we conclude that wx(E)≥ d(C⊥2 ,C⊥1 ). The z-weight
is analogous.

Steane-enlargement
In Papers D and E, we use a different technique based on the CSS-
construction. This other construction – called Steane-enlargement – stems
from [Ste99], and the central idea is to add additional generators to the
stabilizer from the CSS-construction. These additional generators are chosen
in such a way that we can still bound the minimal distance. In this way, the
dimension of the quantum code is increased – justifying why the technique
is called enlargement – while the decrease in minimal distance can be
controlled. In certain cases, it is even possible to increase the dimension
without sacrificing minimal distance.

One requirement of this technique, however, is that the nested codes
C2 ⊊ C1 ⊆ Fn

q used must satisfy C2 = C⊥1 . In other words, the technique relies
on dual-containing codes. Like the CSS-construction, Steane’s original paper
considered only binary codes, but the technique has later been generalized
to finite fields of any size [Ham08; LLX10].
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Appendix A Additional results

This appendix contains a selection of additional results and proofs that were
omitted in the previous sections.

We first show that the centralizer and normalizer coincide for stabilizers.
The binary case is, for instance, described in [Got97; p. 19].

Proposition A.1:
Let S be a subgroup of Gn. Ifωk I /∈ S for every k ∈ Z∗p , then N(S) = Z(S).

Proof:
From the definitions of the centralizer and normalizer, it follows immediately
that Z(S) ⊆ N(S). Thus, let F ∈ N(S), meaning that for every E ∈ S we have
F EF † = E′ for some E′ ∈ S. Equation (2.5) then ensures the existence of
some c ∈ Zp such that F E = E′F = ωc F E′. Since F is invertible, this implies
ωc I = E(E′)† ∈ S. By assumption, this can only happen if c = 0, meaning E = E′

and F ∈ Z(S).

Proof (Lemma 3.7):
The proof is essentially the same as the binary case given in [NC10;
p. 458]. Consider the matrix G whose rows are given by the vectors in
F2n

q corresponding to E1, E2, . . . , Eℓ. By Lemma 3.6, these rows are linearly

independent, so G has full rank. Thus, some (a|b) ∈ F2n
q provides a solution to

the matrix system

G
�

0 I
I 0

��

aT

bT

�

=ωcei ,

where ei denotes the i’th canonical basis (column) vector. The operator
X (a)Z(b) ∈ Gn has the desired properties.

Proof (Lemma 3.8):
We adapt the arguments from [Pre99; p. 36] to the non-binary case. If
E|ϕ〉 = ωk|ϕ〉, it follows easily that E(F |ϕ〉) = ωF(E|ϕ〉) = ωk+1F |ϕ〉. On the
other hand, if E(F |ϕ〉) = ωk+1F |ϕ〉, then ωF(E|ϕ〉) = ωF(ωk|ϕ〉). The results
now follows from F being unitary and therefore invertible.
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Overview of Part II

Part II of this thesis comprises five scientific papers. Papers A and B treat
problems related to multiparty computation, Paper C applies to both secret
sharing and quantum error-correcting codes, and Papers D and E treat the
construction of quantum error-correcting codes. The papers are kept as
close to the published versions as possible, but in some cases, the layout
and notation has been adjusted for consistency.

• Paper A [Chr19]: This work treats the relatively unknown problem of
reliable message transmission (RMT), whose solution can be used as a
subprotocol in a larger multiparty computation protocol. The literature
already contained RMT-protocols that were asymptotically optimal, but
since the focus was proving the existence of such protocols, they were
relatively unoptimized. Thus, the aim of Paper A was to utilize more
of the error-correcting capabilities of the underlying codes in order to
provide more efficient protocols. Specifically, the improved protocols
allow more information symbols per transmission or smaller field sizes.

• Paper B [CCG18]: The origin of this work is the observation that many
protocols for extension of oblivious transfer (OT) are based on linear
codes in some way, and that better code parameters lead to more
efficient OT-extension. The papers describing these protocols restricted
themselves to binary codes, but it is generally easier to construct good
codes over larger fields. This led us to show that the same OT-extension
techniques generalize to the q-ary case, and it turns out that using larger
field sizes leads to a trade-off between the number of base OT’s and the
communication complexity.

• Paper C [CG18]: Having seen that the construction of secret sharing
schemes from [Che+07; KUM12] and the CSS-construction of quantum
codes both rely on nested codes and knowledge of their codimension
and relative distances, this paper set out to explore these applications
in the case of the Hermitian function field. By using a Feng-Rao type
construction [FR95], where the relative distances are known, we gave a
number of quantum codes whose parameters were better than other
known constructions.

In addition, this paper served as a starting point for Paper D.
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• Paper D [CG20a]: With the Hermitian function field giving rise to good
quantum codes via the CSS construction in Paper C, it is natural to
ask if the same is true when applying Steane-enlargement. This paper
answers that question in the affirmative if symmetric quantum codes
with a relatively small minimal distance are desired.

• Paper E [CG20b]: After working on Steane-enlargement of Hermitian
codes in Paper D, Olav Geil and I realized that certain codes from
Cartesian product point sets are particularly easy to apply Steane-
enlargement to. More precisely, for sufficiently small distances we can
often guarantee that the dimension can be increased without sacrificing
minimal distance merely by knowing the sizes of the sets in the Cartesian
products.
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II. Papers

Abstract

In this paper, we consider one-round protocols for reliable message
transmission (RMT) when t out of n= 2t+1 available channels are controlled
by an adversary. We show impossibility of constructing such a protocol that
achieves a transmission rate of less than Θ(n) for constant-size messages and
arbitrary reliability parameter. In addition, we show how to improve two
existing protocols for RMT to allow for either larger messages or reduced field
sizes.

1 Introduction

The concept of secure message transmission was first introduced in
[DDWY93], and the term comprises a model where a sender and a receiver
are connected via n channels. Up to t of these channels are controlled by
a computationally unbounded active adversary who can read and alter the
symbols sent across these t channels. More specifically, we consider the set-
ting where n = 2t + 1. In keeping with cryptographic tradition, we will call
the sender ‘Alice’, the receiver ‘Bob’, and the adversary ‘Eve’. The challenge is
to devise a strategy that allows Alice and Bob to communicate securely and
reliably in a limited number of transmission rounds. We focus on one-round
protocols.

In the original setting of [DDWY93], the protocols are required to be
perfectly secure, meaning that no matter what Eve might attempt, she will
gain no information about the message. They are also required to be perfectly
reliable such that Bob will always recover the correct message. Later, [FW00]
relaxed these conditions to allow some small failure probabilities for both
security and reliability. Taking this idea even further, [PCRS10] considers
protocols where the security of the message delivery is not required, but
only reliable transmission is of interest. They call this unconditionally reliable
message transmission, but we will omit ‘unconditionally’ and write RMT
instead.

To asses the efficiency of a message transmission-protocol, it is common
to use the transmission rate defined as the total number of transmitted bits
divided by the bit-length of the message. Hence, a low transmission rate is
preferable. As shown in [PCRS10; Theorem 3], we cannot do better than Ω(1)
for RMT, and this bound is tight. In Section 3, however, we show that this
transmission rate is not achievable for messages of a constant size.

Related work
RMT has also been studied in [PCRS10; STW12]. The protocol in [STW12]
is based on list-decoding of folded Reed-Solomon codes, but although it
attains the optimal transmission rate, the computational cost for the receiver
to recover the message is exponential in the number of channels. The work
[PCRS10] contains bounds and constructions for both the secure and the
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reliable-only settings. In addition, they achieve this while tolerating a mixed
adversary, giving more fine-grained control of the adversarial assumptions.

Although this paper is only concerned with RMT, we also direct the reader
to related works on secure message transmission; that is, protocols that
also offer privacy. This additional guarantee comes at a cost. As shown by
[DDWY93], perfect security for n = 2t + 1 requires at least two rounds, and
a single-round protocol can only offer security in the case n ≥ 3t + 1. In
the former setting, Agarwal et al. [ACH06] gave a perfectly secure two-round
protocol that achieves optimal performance asymptotically, albeit at a high
computational cost. A computationally efficient protocol was subsequently
achieved by Kurosawa and Suzuki [KS09] using the concept of pseudobases.
This idea was also taken up by [SZ16], who obtained further improvements,
reducing the minimally required message size from O(n2 log n) to O(n log n).

The setting where privacy is perfect, but reliability is not, was initially
handled by [FW00] under the assumption that channels support multicast.
The proposed solution, however, was inefficient for certain values of t and n.
This was rectified in [WD01], where an efficient protocol for these values was
given.

2 Preliminaries

Model assumptions
We assume that Alice and Bob are connected via n= 2t + 1 simple channels,
meaning that the channels allow both Alice and Bob to transmit data, but no
additional functionality is assumed. Before the protocol begins, Eve chooses
t of these to be under her control. In other words, the adversary in our model
is static and active.

For simple channels, [FW00] showed that 2t ≥ n leads to a probability of
failure of at least 1/4. Hence, the setting where n = 2t + 1 has the maximal
number of corruptions that we can hope to overcome. Since a majority of the
channels are honest – i.e. not controlled by the adversary – a naive solution
to the RMT-problem is to broadcast the message across all n channels. This
leads to a transmission rate of n, but gives perfect reliability. Thus, this is the
benchmark performance.

Universal hash families
The methods we present rely on the concept of ϵ-almost universal hash
families as introduced by [Sti94].

Definition 2.1:
Let H be a family of hash functions from M to A, and let ϵ ∈ R+. Then H is
called ϵ-almost universal if for any m ̸= m′ ∈M,

Pr
h←H
[h(m) = h(m′)]≤ ϵ.
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In particular, we use a hash family based on polynomial evaluation similar to
the one used in [BPRW16], but generalized to evaluate in several points.

Definition 2.2:
Let F be a finite field, and K ⊆ F. For every pair of positive integers η ≤ a,
define the map PEvalη : Fa ×Kη→ Fη by

PEvalη(m,k) = ( fm(k1), fm(k2), . . . , fm(kη)),

where fm(x) =
∑︁a

i=1 mi x
i . We use the notation PEvalηk (m) = PEvalη(m,k).

It may be shown that the family HηPEval =
�

PEvalηk : Fa → Fη
	

k∈Kη of hashes is
(a/|K|)η-almost universal.

3 Constant-size messages

One could hope that the overall optimal transmission rate Θ(1) is achievable
for constant-size messages. As we show in Proposition 3.2, however, this is
not possible for arbitrary reliability parameters. The proof of the proposition
relies on the following result from [FW00; Theorem 5.1].

Theorem 3.1:
Assume that n ≤ 2t , and denote by M the message space. Then any reliable
message transmission protocol fails with probability at least 1

2 (1− 1/|M|).

Proposition 3.2:
Let n = 2t + 1, and consider the RMT-problem for a message of size Θ(1)
bits. Then it is impossible to construct a protocol attaining a transmission
rate lower than Θ(n) for arbitrary reliability parameters.

Proof:
Assume for contradiction that P is such a protocol. We show the existence
of an adversarial strategy such that P will fail with a probability greater than a
constant.

Note that if all n available channels are used, at least n bits will be
transmitted during the protocol. Hence, P can use at most n − 1 channels.
Let X ∈ {1,2, . . . , n} be a random variable describing the unused channel.
No assumptions are made about the probability distribution of X ; it simply
depends on P . Consider an adversarial strategy where the corrupt channels
are chosen uniformly at random. Equivalently, we can assume that the
honest channels are given by the set {I1, I2, . . . , It+1}, where each I j is chosen
uniformly at random in {1, 2, . . . , n} under the condition that I j ̸= I j′ for j ̸= j′.
It may be shown that in fact Pr[I j = a] = 1/(2t + 1) for any j ∈ {1,2, . . . , t + 1}
and a ∈ {1, 2, . . . , n}.
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Denote by E the event that Alice leaves out one of the honest channels
when following P ; that is, X = I j for some j ∈ {1,2, . . . , t + 1}. Since Alice
does not know the outcomes of I1, I2, . . . , It+1, it follows that X is independent
from these variables. Using this fact and the fact that the events X = I1, X =
I2, . . . , X = It+1 are disjoint, we obtain that

Pr[E] = Pr[X = I1 ∨ · · · ∨ X = It+1] =
t+1
∑︂

j=1

Pr[X = I j]

=
t+1
∑︂

j=1

n
∑︂

k=1

Pr[X = k]Pr[I j = k] =
t+1
∑︂

j=1

1
2t + 1

n
∑︂

k=1

Pr[X = k] =
t + 1

2t + 1
.

If E occurs, it follows from Theorem 3.1 that the probability of protocol failure
is at least 1

2 (1−1/|M|), whereM is the message space. Otherwise, the protocol
P gives a contradiction to Theorem 3.1 since for n = 2t , we could introduce
a ‘dummy channel’, discard it, and then mimic protocol P to obtain a lower
probability of failure.

By applying the law of total probability, we obtain

Pr[P fails] = Pr[P fails | E]Pr[E] + Pr[P fails | Ē]Pr[Ē]
≥ Pr[P fails | E]Pr[E]

≥
1
2

�

1−
1
|M|

�

t + 1
2t + 1

>
1
4

�

1−
1
|M|

�

.

In conclusion, it is not possible to obtain arbitrarily levels of reliability with a
transmission rate of less than Θ(n) for constant size messages.

It is worth pointing out that this result is true for any RMT-protocol; not only
one-round ones.

4 A method based on list-decoding

As part of a protocol for robust secret sharing, [BPRW16] introduced the notion
of a ‘robust distributed storage’. Their method for achieving this can easily be
converted to a one-round protocol for RMT. In brief, the idea is to encode
the message using a list-decodable code – e.g. a Reed-Solomon code – and
transmit each position of the resulting codeword across the corresponding
channel. In addition, each channel will deliver a key/tag-pair from an ϵ-
almost universal hash family. The receiver can then use these tags to recover
the intended message from the list of potential messages returned by the
list-decoding algorithm.

However, since the original authors only need the asymptotical perform-
ance, they base their method on the list-decoding algorithm of Sudan [Sud97],
and use messages of size at most ⌊n/8⌋+1. This may be increased to ⌊n/5⌋+1
with no penalty in reliability by applying the Guruswami-Sudan algorithm
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[GS98] instead. This protocol has optimal transmission rate when the mes-
sage has size Θ(n).

5 A method based on erasure decoding

In the following, we will describe the one-round RMT-protocol given in
[PCRS10] in the language of Reed-Solomon codes and hash families. In
this representation, the original authors are essentially relying only on the
erasure correcting capabilities of the codes. We show that a careful choice of
parameters allows correction of errors as well, causing the required field size
to be quadratic rather than cubic in n.

The message we consider is an a×b-matrix M over a finite fieldF. Each row
of this message is encoded by means of an [n, b]Reed-Solomon code, yielding
an a × n-matrix S where each row is a codeword. Across the i’th channel,
Alice sends the i’th column si of S. Since Bob needs to determine if Eve
modified some of these columns during transmission, Alice also computes
n verification tags {vi1, vi2, . . . , vin} for each si by applying uniformly sampled
hash functions from some family H. Denote the keys of these functions by
{ki1, ki2, . . . , kin}. Across the i’th channel, Alice then sends {si} ∪ {k ji , v ji}nj=1.
That is, each channel will transmit the codeword entries si , and a key/tag-pair
(k ji , v ji) for every channel j.

When Bob receives the possibly modified values {s′i} ∪ {k
′
ji , v′ji}

n
j=1, he will

check the integrity of s′i by computing the hash value hk′i j
(s′i) and comparing

the result with the received tag v′i j . He will do so for each received key/tag-
pair, and if more than t tags disagree with the computed values, Bob will mark
s′i as modified and treat it as an erasure when recovering the message.

With large probability, these checks performed by Bob reveal a consid-
erable part of the corrupt channels delivering erroneous information. This
causes a number of columns in S′ to be marked as erasures. However, some
small number e of corrupted channels may have passed the checks, meaning
that the remaining entries in S′ may still contain errors. In fact, each row of
S′ may contain up to t − e erasures and e errors. If the parameter b agreed
upon by Alice and Bob is sufficiently small, Bob may nevertheless correct
these erasures and errors in S′. Since the rows of S′ are codewords of an [n, b]
Reed-Solomon code which has minimal distance n− b+ 1, Bob can recover
the correct message if

2e+ t − e < n− b+ 1 =⇒ b ≤ n− (t + e) = t + 1− e.

Thus, after verifying the received values, Bob can determine if the message
can be recovered by simply counting the number of non-erased columns
and computing syndromes. The complete description of our protocol is
given in Protocol 1 on page 37. The correctness of the protocol follows from
essentially the same arguments as used by [PCRS10], albeit with the following
modification.
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Lemma 5.1:
If at least t− e columns of S′ are marked as erasures in step 4. of the protocol,
Bob will recover the correct message.

Proof:
Let u ≥ t − e be the number of erased columns, meaning that each row of S′

contains at most t−u errors. The minimal distance of the code is d = n− b+1,
which means that u erasures and t−u errors can be corrected if 2(t−u)+u< d .
This is true because

2(t − u) + u= 2t − u≤ t + e ≤ n− b,

where the last inequality follows from the requirement e ≤ t + 1− b given in
the protocol specification.

Protocol reliability
Under the assumption that the hash family H applied in the protocol is ϵ-
almost universal, we can bound the probability that Bob cannot recover the
correct message.

Proposition 5.2:
If H is an ϵ-almost universal family of hash functions, then

Pr[The protocol fails]≤
t(t + 1)ϵ

e+ 1
.

Proof:
By Lemma 5.1, at least e + 1 of the channels modified by Eve must pass the
integrity check performed by Bob. To achieve this, it is necessary that the hash
value of the modified s′i matches at least one verification tag vi j sent across an
honest channel.

The ϵ-almost universality of H implies that Prh←H[h(si) = h(s′i)] ≤ ϵ
whenever si ̸= s′i . Hence, ϵ is an upper bound on the probability that a single
corrupt channel agrees with a single honest channel. Since there are t + 1
honest channels, the probability for a modified channel to be consistent with
at least one honest can be bounded above by (t + 1)ϵ.

Let X be the random variable counting the number of modified but
uncaught channels. Since the hash keys ki j , ki′ j′ are independent whenever
(i, j) ̸= (i′, j′), the integrity checks of the modified channels can be considered
as t independent Bernoulli trials, each with a success probability of at most
(t + 1)ϵ. Thus, X follows a binomial distribution, and has expected value
E[X ]≤ t(t + 1)ϵ. The Markov inequality now gives

Pr[X ≥ e+ 1]≤
E[X ]
e+ 1

≤
t(t + 1)ϵ

e+ 1
,

and the result follows.
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Protocol 1: One-round RMT

This protocol allows Alice to reliably send ab symbols of a finite field F to Bob
in one round by using n = 2t + 1 channels, t of which may be controlled by an
adversary. Beforehand, Alice and Bob have agreed upon a parameter e ∈ N, which
satisfies e ≤ t + 1 − b. Additionally, they agree on an ϵ-almost universal hash family
H = {hk : Fa → Fη | Fη}.

1. The message is represented as a matrix M ∈ Fa×b and each row is encoded using
an [n, b] Reed-Solomon code over F.

2. For each column si of the resulting codewords, Alice samples uniformly and
independently n keys {ki1, ki2, . . . , kin} and computes vi j = hki j

(si) for each j ∈
{1, 2, . . . , n}.

3. Across the i’th channel, Alice transmits {si} ∪ {k ji , v ji} j=1,2,...,n.

4. Bob receives the possibly modified values {s′i} ∪ {k
′
ji , v′ji} j=1,2,...,n for i = 1,2, . . . , n.

For each i, he compares the tag v′i j received from the j’th channel to the hash value
hk′i j
(s′i). If these disagree for more than t channels, he will mark si as modified.

5. For each row in S′, Bob computes the syndrome to check if it contains errors.
Depending on the result, he proceeds with one of the three following steps.

(a) The syndrome is zero: S′ contains no errors, meaning that Bob can simply
use polynomial interpolation to recover the message.

(b) The syndrome is nonzero, and S′ contains at least t−e erased columns: Bob
uses a decoding algorithm for Reed-Solomon codes to correct the erasures
and errors, hereby recovering the message.

(c) The syndrome is nonzero, and S′ contains less than t − e erased columns:
Too many modified channels have passed the integrity checks. The protocol
has failed.

Number of bits transmitted

When the proposed protocol is used to transmit a message, the total number
of F-symbols transmitted is n(a + n|V|+ n|K|), where |V| and |K| denote the
number of field symbols necessary to represent vi j and ki j , respectively.

Using polynomial evaluation

For concreteness, we analyse the reliability when HηPEval is applied with K = F.
Here, both the keys and the verification tags consist ofηfield elements. Hence,
the total number of transmitted bits is 2ηn2 + an. Depending on the message
size, this can give various transmission rates, but under the assumption that
η is some constant value, the optimal transmission rate of Θ(1) is obtained
when both a and b are Θ(n). That is, when the message is of size Θ(n2).

Since the hash family is aη

|F|η -almost universal, it follows from Proposition
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5.2 that we must require

t(t + 1)aη

(e+ 1)|F|η
≤ δ =⇒ |F| ≥ a

�

t(t + 1)
(e+ 1)δ

�
1
η

.

in order to obtain reliabilityδ. In particular, we note that forη= 1, the original
protocol by [PCRS10] requires |F| ≥ n3/δ. In the proposed protocol, we can
set both b and e to be Θ(n) and obtain the requirement |F| ≥ Θ(n2/δ). In
other words, by reducing the second dimension of the message, the required
field size is reduced by a factor of n asymptotically. Furthermore, introducing
the parameter η highlights the trade-off between the number of F-symbols
transmitted and the required field size.

6 Comparison with existing protocols

In order to compare the RMT-protocols proposed in Sections 4 and 5 to those
already in the literature, we will restrict ourselves to the hash family HηPEval
from Definition 2.2 with K = F and η= 1.

For five protocols, Table 1 gives an overview of the required field size
given δ; the message size in F-symbols; whether the protocol attains the
optimal transmission rate; and whether it is computationally efficient. Here,
efficient means polynomial in the number of available channels. We use the
Θ-notation to keep the presentation as clear and self-contained as possible.

For the protocol of Section 5, we remark that a = Θ(n) was chosen even
though it is in principle possible to use any value smaller than |F|. Choosing
greater values, however, also increases the required field size. We shall
refrain from doing such analysis here since Table 1 already shows the desired
improvement.

As the table indicates, the first two protocols are better suited for small
message sizes. Although both have the same asymptotic performance,

Protocol Field size
Message

size
Optimal

Computational
efficiency

[BPRW16; Sec. 4.1] Θ(n2/δ) ⌊n/8⌋+ 1 ! !

This work, Sec. 4 Θ(n2/δ) ⌊n/5⌋+ 1 ! !

[PCRS10; Sec. 4] n3/δ Θ(n2) ! !

[STW12; Sec. 3.1] Θ(n4) Θ(n2) ! %

This work, Sec. 5 Θ(n2/δ) Θ(n2) ! !

Table 1. Comparison of one-round RMT-protocols. The second column shows the
minimal field size given a desired reliability parameter δ. The third column
gives the message size (in terms of F-elements) that leads to an optimal trans-
mission rate, and the fourth indicates whether such an optimal transmission
rate is achievable. The final column states whether the computational cost is
at most polynomial in the number of channels.
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the modification suggested in Section 4 allows a larger message size. The
remaining three protocols all have Θ(n2) as the optimal message size, which
suggests that they should fare better when transmitting larger messages. It
may be noted that the protocol proposed in Section 5 achieves this while
reducing the required field size by a factor of n asymptotically.

Even though Table 1 gives an overview of the general properties of each
protocol, it does not reveal how they will perform in concrete problem
instances. If the message size and the number of channels have already been
fixed, a separate analysis is needed to determine the protocol that will perform
the best.
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Abstract

We consider recent constructions of 1-out-of-N OT-extension from Koles-
nikov and Kumaresan (CRYPTO 2013) and from Orrù et al. (CT-RSA 2017), based
on binary error-correcting codes. We generalize their constructions such that
q-ary codes can be used for any prime power q. This allows to reduce the num-
ber of base 1-out-of-2 OT’s that are needed to instantiate the construction
for any value of N , at the cost of increasing the complexity of the remaining
part of the protocol. We analyze these trade-offs in some concrete cases.

1 Introduction

A K-out-of-N oblivious transfer, or
�N

K

�

-OT, is a cryptographic primitive that
allows a sender to input N messages and a receiver to learn exactly K of these
with neither the receiver revealing which messages he has chosen to learn nor
the sender revealing the other N − K input messages. This is a fundamental
cryptographic primitive in the area of secure multiparty computation, and
in fact [Kil88] showed that any protocol for secure multiparty computation
can be implemented if the OT functionality is available. However, the results
in [IR89] indicate that OT is very likely to require a public key cryptosystem,
and therefore implementing OT is relatively expensive. Unfortunately, well-
known protocols such as Yao’s garbled circuits [Yao82] and the GMW-
compiler [GMW87] rely on using a large number of independent instances of
OT. It is therefore of interest to reduce the number of OT’s used in a protocol
in an attempt to reduce the overall cost. This can be done using what is
called OT-extensions, where a large number of OT’s are simulated by a much
smaller number of base OT’s together with the use of cheaper symmetric
crypto primitives, such as pseudorandom generators.

Beaver showed in [Bea96] that OT-extension is indeed possible, but it was
not before 2003 that an efficient

�2
1

�

-OT-extension protocol was presented
by Ishai et al. in [IKNP03]. In addition, while this protocol had security against
passive adversaries, subsequent has work showed that active security can be
achieved at a small additional cost [KOS15].

In [KK13], Kolesnikov and Kumaresan noticed that Ishai et al. were in
essence relying on the fact that the receiver encodes its input as a codeword
in a repetition code, and therefore one can generalize their idea by using
other codes, such as the Walsh-Hadamard code, which not only obtains
efficiency improvements for

�2
1

�

-OT-extension, but also allows to generalize

the protocol into passively secure
�N

1

�

-OT-extension. In such an extension

protocol the base OT’s are
�2

1

�

-OT’s, but the output consist of a number

of
�N

1

�

-OT’s. In more recent work, Orrù et al. [OOS17] transformed the

protocol by [KK13] into an actively secure
�N

1

�

-OT-extension protocol by
adding a “consistency check” which is basically a zero-knowledge proof that
the receiver is indeed using codewords of the designated code to encode his
selections. As shown in [OOS17], 1-out-of-N oblivious transfer has a direct
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application to the problem of private set inclusion and, via this connection,
to the problem of private set intersection. In fact this application requires
only a randomized version of

�N
1

�

-OT, where the sender does not have
input messages, but these are generated by the functionality and can be
accessed on demand by the sender. The structure of the aforementioned OT
extension protocols is especially well suited for this application, since such
a randomized functionality is essentially implemented by the same protocol
without the last step, where the sender would send its masked inputs to the
receiver.

The aforementioned papers on
�N

1

�

-OT-extension relied on the use of
binary linear codes, and the concrete parameters of the resulting construction,
the number of OT’s and the value of N , are given respectively by the length
and size of the binary linear code being used. Furthermore, the construction
requires that the minimum distance of the code is at least the desired security
parameter. Well-known bounds on linear codes, such as the Plotkin, Griesmer
or Hamming bounds [MS83], provide lower bounds for the length of a code
with certain size and minimum distance, and therefore these imply lower
bounds on the number of base OT’s for the OT-extension protocol. In fact,
even if we omit the requirement on the minimum distance, we can see that
at least log2 N base OT’s are needed for those extension protocols.

In this paper, we discuss the use of q-ary linear codes, where q can be
any power of a prime, as a way of reducing the number of required base OT’s
in the 1-out-of-N OT-extension constructions mentioned above. We show
that one can easily modify the protocol in [OOS17] to work with q-ary codes,
rather than just binary. Given that all parameters of the code still have the
same significance for the construction and, in particular, N is still the size (the
number of codewords) of the code, we obtain a reduction in the number of
base OT’s required: indeed, for given fixed values N and d , the minimal length
among all q-ary linear codes of size N and minimum distance d becomes
smaller as q increases. In particular one can show cases where the lower
bound of log2 N base OT’s can be improved even if we have relatively large
minimum distance.

This improvement, however, comes at a cost: since we need to commu-
nicate elements of a larger field, the communication complexity of the OT-
extension protocol (not counting the complexity of the base OT’s) increases.
This increase is compensated to some extent by the fact that this communic-
ation complexity also depends on the number of base OT’s.

The concrete tradeoffs obtained by the use of q-ary codes depend of
course on N and the security level. We show several examples comparing
explicit results listed in [OOS17] and the q-ary alternative achieving the same
(or similar) N and security level. For example, for the largest value of N
considered in [OOS17] we show that by using a linear code over the finite
field of 8 elements, we need less than half of the base OT’s, while the
communication complexity increases only by 33%.

When q is a power of two, we can show an improvement on the complexity
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of the consistency check that we use in the case of a general q. Namely, the
consistency check in [OOS17] works by asking the receiver, who has previously
used the base OT’s to commit to both the codewords encoding his selections
and some additional random codewords, to open sums of random subsets
of these codewords. The natural way of generalizing this to a general prime
power q is to ask the receiver to open random linear combinations over Fq
of the codewords. However, in case q is a power of two, we show that it is
enough to open random linear combinations over F2, i.e., sums, just as in
[OOS17] (naturally, this extends to the case where q is a power of p, where
it would be enough to open combinations over Fp). The advantage of this
generalization is of course that the verifier needs to send less information to
describe the linear combinations that it requests to open, and in addition less
computation is required from the committer to open these combinations.

We give a presentation of the protocol and its security proof that is
inspired by a recent work on homomorphic universally composable secure
commitments [Cas+16]. As noted in [OOS17], there is a strong similarity
between the OT-extension protocol constructions in the aforementioned
works and several protocol constructions in a line of work on homomorphic
UC commitments [Cas+15; Cas+16; FJNT16]. In the first part of the OT-extension
protocol in [KK13], the base OT’s are used for the receiver to eventually
create an additive 1-out-of-2 sharing of each coordinate in the codewords
encoding his selection, so that the sender learns exactly one share of each.
This is essentially the same as the committing phase of the passively secure
homomorphic UC commitment proposed in [Cas+15] (one can say that the
receiver from the OT-extension protocol has actually committed to his inputs
at that point). In order to achieve active security, a consistency check was
added in [FJNT16], which is basically the same as the one introduced in
[OOS17] in the context of OT-extension. Finally, [Cas+16] generalized this
consistency check by proving that rather than requesting the opening of
uniformly random linear combinations of codewords, these combinations
can be determined by a hash function randomly selected from an almost
universal family of hash functions. This leads to asymptotical complexity
gains, both in terms of communication and computation (since one can use
linear time encodable almost universal hash functions which can in addition
be described by short seeds), but in our case it also allows us to give a unified
proof of security in both the case where the linear combinations for the
consistency check are taken overFq and when they are taken over the subfield.

The work is structured as follows. After the preliminaries in Section 2,
we present our OT-extension protocol and prove its security in Section 3.
In Section 4, we show that the communication cost can be reduced by
performing the consistency checks over a subfield, and finally Section 5
contains a comparison with previous protocols.
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2 Preliminaries

This section contains the basic definitions needed to present and analyse the
protocol for OT-extension.

Notation
Throughout this paper, q will denote a prime power and Fq a finite field of q
elements. Every finite field has elements 0 and 1, and hence it will be natural
to embed the set {0,1} in Fq .1 Bitstrings in {0,1}n and vectors from Fn

q are
denoted in boldface. The i-th coordinate of a vector or bitstring b is denoted
bi .

For a bitstring b ∈ {0, 1}n, we will use the notation ∆b to denote the
diagonal matrix in Fn×n

q with entries from the vector b, i.e. the (i, i)-entry
of ∆b is bi . Note that for vectors b,c ∈ Fn

q , the product c∆b equals the
componentwise product of b and c.

Linear Codes
Since our protocol depends heavily on linear codes, we recall here the basics
of this concept. First, a (not necessarily linear) code of length n over an
alphabet Q is a subset C ⊆Qn. An Fq-linear code C is an Fq-linear subspace of
Fn

q . The dimension k of this subspace is called the dimension of the code, and

therefore C is isomorphic to Fk
q . A linear map Fk

q → C can be described by a

matrix G ∈ Fk×n
q , which is called a generator matrix for C. Note that G acts on

the right, so w ∈ Fk
q is mapped to wG ∈ C by the aforementioned linear map.

For x ∈ Fn
q we define the support of x to be the set indices where x is

nonzero, and we denote this set by supp(x). Using this definition we can turn
Fn

q into a metric space. This is done by introducing the Hamming weight and
distance. The Hamming weight of x is defined as wH(x) = | supp(x) |, and this
induces the Hamming distance dH(x,y) = wH(x−y), where y ∈ Fn

q as well. The
minimum distance d of a linear code C is defined to be

d =min{dH(c,c′) | c,c′ ∈ C,c ̸= c′},

and by the linearity of the code it can be shown that in fact

d =min{wH(c) | c ∈ C \ {0}}.

Since n, k, and d are fixed for a given linear code C over Fq , we often refer to
it as an [n, k, d]q-code.

1Of course, the elements of {0,1} could be identified with the elements of the field of two
elements, F2. But for the sake of clarity, we will prefer to use {0,1} where we refer to bits and
bitstrings and no algebraic properties are needed.
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It may be shown that if x ∈ Fn
q is given by c+ e for some codeword c ∈ C

and an error vector e with wH(e) < d , it is possible to recover c from x and
supp(e). This process is called erasure decoding.

Another way to see erasure decoding is by considering punctured codes.
For a set of indices E ⊆ {1,2, . . . , n} we denote the projection of x ∈ Fn

q onto
the indices not in E byπE(x). For a code C and a set of indices E, we call πE(C)
a punctured code. Now consider the case where |E| < d , which implies the
existence of a bijection between C and πE(C). This is the fact exploited in
erasure decoding, where E is the set of indices where the errors occur.

As in [Cas+16], we will use interleaved codes. If C ⊆ Fn
q is a linear code, C⊙s

denotes the set of s×n-matrices with entries in Fq whose rows are codewords
of C. We can also see such an s× n-matrix as a vector of length n with entries
in the alphabet Fs

q . Then we can see C⊙s as a non-linear2 code of length n over
the alphabet Fs

q .

Since the alphabet Fs
q contains a zero element (the all zero vector), we

can define the notions of Hamming weight and Hamming distance in the
space (Fs

q)
n. We can then speak about the minimum distance of C⊙s and even

though C⊙s is not a linear code, it is easy to see that the minimum distance of
C⊙s coincides with its minimum nonzero weight, and also with the minimum
distance of C.

Cryptographic Definitions
Consider a sender S and a receiver R participating in a cryptographic protocol.
The sender holds v j,i ∈ {0,1}κ for j = 1, 2, . . . , N and i = 1,2, . . . , m. For each
i the receiver holds a choice integer wi ∈ [1, N]. We let Fκ,m

N-OT denote the
ideal functionality that, on inputs v j,i from S and wi from R, outputs vwi ,i for
i = 1,2, . . . , m to the receiver R. For ease of notation, we will let the sender
input N matrices of size κ×m with entries in {0,1}, and the receiver a vector
of length m, with entries in [1, N]. Hence, for the i’th OT the sender’s inputs
are the i’th column of each matrix, and the receiver’s input is the i’th entry of
the vector.

The protocol presented in Section 3 relies on two functions with certain
security assumptions, the foundations of which we define in the following.
For the first function let X be a probability distribution. The min-entropy of
X is given by

H∞(X ) = − log(max
x

Pr[X = x]),

where X is any random variable following the distribution X . If H∞(X ) = t
we say that X is t-min-entropy. This is used in the following definition.

2The code is linear over Fq , but not the alphabet Fs
q .
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Definition 2.1 (t-min-entropy strongly C-correlation robustness):
Consider a linear code C ⊆ Fn

q , and let X be a distribution on {0,1}n with min-
entropy t . Fix {ti ∈ Fn

q | i = 1, 2, . . . , m} from some probability distribution and
let κ be a positive integer. An efficiently computable function H: Fn

q → {0,1}κ

is said to be t-min-entropy strongly C-correlation robust if

{H(ti + c∆b) | i = 1, 2, . . . , m,c ∈ C}

is computationally indistinguishable from the uniform distribution on
{0,1}κm|C| when b is sampled according to the distribution X .

The second type of function we need is a pseudorandom generator.

Definition 2.2:
A pseudorandom generator is a function PRG: {0,1}κ → Fm

q such that
the output of PRG is computationally indistinguishable from the uniform
distribution on Fm

q .

If A= [a1,a2, . . . ,an] is a κ× n-matrix with entries in {0,1} for some integer n,
we use the notation PRG(A) = [PRG(a1),PRG(a2), . . . ,PRG(an)]where we see
PRG(ai) as columns of an m× n matrix.

In addition to the usual concept of advantage, one can also consider the
conditional advantage as it is done in [OOS17]. Let A be an event such that
there exist x0 and x1 in the sample space of the two random variables X0 and
X1, respectively, where Pr[X i = x i | A] > 0 for i = 0,1. Then we define the
conditional advantage of a distinguisher D given A as

Adv(D|A) =
|︁

|︁

|︁Pr[D(X0) = 0|A]− Pr[D(X1) = 0|A]
|︁

|︁

|︁.

We end this section by presenting the following lemma, which allows us to
bound the advantage by considering disjoint cases. The proof follows by the
law of total probability and the triangle inequality.

Lemma 2.3:
Let A1, A2, . . . , An be events as above. Additionally, assume that the events are
disjoint. If
∑︁n

i=1 Pr[Ai] = 1, then

Adv(D)≤
n
∑︂

i=1

Adv(D | Ai)Pr[Ai]

for any distinguisher D.

3 Actively Secure OT-Extension

In this section we describe and analyse a generalization of the protocol de-
scribed in [OOS17] which uses OT-extensions to implement the functionality
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Fκ,m
N-OT by using only n≤ m base OT’s, which are 1-out-of-2. Our OT-extension

protocol is also using 1-out-of-2 base OT’s, but works with q-ary linear codes
instead of binary. Our main result is summarized in the following theorem.

Theorem 3.1:
Given security parameters κ and s, let C be an [n, k, d]q linear code with
k = logq(N) and d ≥ max{κ, s}. Additionally, let PRG: {0, 1}κ → Fm+2s

q be a
pseudorandom generator and let H: Fn

q → {0, 1}κ be a t-min-entropy strongly
C-correlation robust function for all t ∈ {n− d +1, n− d +2, . . . , n}. If we have
access to C, the functions PRG and H, and the functionality Fκ,n

2-OT, then the
protocol in Protocol 1 on page 50 implements the functionality Fκ,m

N-OT.
The protocol is computationally secure against an actively corrupt adver-

sary.

The Protocol
We start by noticing that in our protocol R has inputs wi ∈ Fk

q rather than

choice integers wi ∈ [1, N]. However, the number of elements in Fk
q is qk = N ,

and hence wi can for instance be the q-ary representation of wi . In this way
we have a bijection between selection integers and input vectors.

Our protocol is, like the protocol in [OOS17], very similar to the original
protocol in [IKNP03]. The idea in this protocol is that we first do OT’s with
the roles of the participants interchanged such that the sender learns some
randomness chosen by the receiver. Afterwards, R encodes his choice vectors
using the linear code C and hides the value with a one-time pad. He sends
these to S, who will combine this information with the outputs of the OT
functionality to obtain a set of vectors, only m of which R can compute; namely
the ones corresponding to his input vectors. When S applies a t-min-entropy
strongly C-correlation robust function H to the set of vectors, he can use the
outputs as one-time pads of his input strings. Like in [OOS17] the protocol
contains a consistency check to ensure that R acts honestly, or otherwise he
will get caught with overwhelming probability. The full protocol is presented
in Protocol 1 on page 50.

In order to argue that the protocol is correct, we see that for each i, the
sender S computes and sends the values yw,i for all w ∈ Fk

q . Since k = logq(N),
this yields N strings for each i ∈ {1,2, . . . , m}. The receiver R obtains one of
these because

H(qi −wiG∆b) = H(qi − ci∆b) = H(ti).

Furthermore, if both S and R act honestly, the consistency checks in phase III
will always pass. This follows from the observation that

T̃ + W̃ G∆b = M(T0 + C∆b) = MQ.

Hence, we note that if only passive security is needed in Protocol 1, we can
omit phase III and set s = 0. The aforementioned steps are included to
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Protocol 1: OT-Extension

This protocol implements the functionalityFκ,m
N-OT having access toFκ,n

2-OT. The security
of the protocol is controlled by the security parameters κ and s. The sender S and the
receiver R have agreed on a linear code C ⊆ Fn

q with generator matrix G of dimension
k = logq(N) and minimum distance d ≥max{κ, s}. The protocol uses a pseudorandom
generator PRG: {0, 1}κ → Fm+2s

q and a function H: Fn
q → {0,1}κ, which is t-min-

entropy strongly C-correlation robust for all t ∈ {n − d + 1, n − d + 2, . . . , n}. R has
m inputs w1,w2, . . . ,wm ∈ Fk

q , which act as selection integers. S has inputs vw,i ∈ {0,1}κ,

indexed by i ∈ {1, 2, . . . , m} and w ∈ Fk
q .

I. Initialization phase

(a) S chooses uniformly at random b ∈ {0, 1}n.

(b) R generates uniformly at random two seed matrices N0, N1 ∈ {0, 1}κ×n and
defines the matrices Ti = PRG(Ni) ∈ F(m+2s)×n

q for i = 0,1.

(c) The participants call the functionality Fκ,n
2-OT, where S acts as the receiver

with input b, and R acts as the sender with inputs (N0, N1). S receives
N = N0+(N1−N0)∆b, and by using PRG, he can compute T = T0+(T1−T0)∆b.

II. Encoding phase

(a) Let W ′ ∈ Fk×m
q be the matrix which has wi as its columns. R generates a

uniformly random matrix W ′′ ∈ Fk×2s
q , and defines the (m + 2s) × k-matrix

W = [W ′ |W ′′]T .

(b) R sets C =W G, and sends U = C + T0 − T1.

(c) S computes Q = T + U∆b. This implies that Q = T0 + C∆b.

III. Consistency check

(a) S samples a uniformly random matrix M ′ ∈ F2s×m
q and sends this to R.3 They

both define M = [M ′ | I2s].
(b) R computes the 2s× n-matrix T̃ = M T0 and the 2s× k-matrix W̃ = MW and

sends these matrices to S.

(c) S verifies that MQ = T̃ + W̃ G∆b. If this fails, S aborts the protocol.

IV. Output phase

(a) Denote by qi and ti , the i’th rows of Q and T0, respectively. For i = 1, 2, . . . , m
and for all w ∈ Fk

q , S computes yw,i = vw,i ⊕H(qi −wG∆b) and sends these to
R. For i = 1, 2, . . . , m, R can recover vwi ,i = ywi ,i ⊕H(ti).

3In Section 4, we show if the protocol relies on a code overFpr , it is enough to choose M ′ ∈ F2s×m
p

ensure that the receiver uses codewords in the matrix C . What a malicious
receiver might gain by choosing rows which are not codewords is explained
in [IKNP03; Sec. 4].

Proofs of Security
In this section we give formal proofs for security. The proof of security against
a malicious sender works more or less the same as the proof in [OOS17] but in
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a different notation. For completeness, we have included this proof. However,
we present the proof against a malicious receiver in another way, where the
structure, some strategies, and some arguments differ from the original proof.

Theorem 3.2:
Protocol 1 is computationally secure against an actively corrupt sender.

Proof:
To show this theorem we give a simulator, which simulates the view of the
sender during the protocol. The view of S is ViewS = {N , U , T̃ , W̃}. The
simulator SimS works as follows.

(i) SimS receives b from S and defines a uniformly random matrix N , sets
T = PRG(N), and passes N back to S.

(ii) Then SimS samples U uniformly at random and sends this to S.
Additionally, it computes Q as S should.

(iii) In phase III the simulator receives M ′ from S, and constructs M . The
matrix W̃ is sampled uniformly at random in F2s×k

q , and using this, SimS

sets T̃ = MQ− W̃ G∆b. It sends T̃ and W̃ to S.

(iv) SimS receives yw,i from S and since SimS already knows Q and b, it can
recover vw,i = yw,i⊕H(qi−wG∆b) and pass these to the ideal functionality
Fκ,m

N-OT.

We now argue that the simulator produces values indistinguishable from
ViewS . The matrix N is distributed identically in the real and ideal world. Since
both T0 and T1 are outputs of a pseudorandom generator, the matrix T0 − T1,
and therefore also U , is computationally indistinguishable from a uniformly
random matrix. In the real world, W̃ = M ′(W ′)T+(W ′′)T is uniform since W ′′ is
chosen uniformly. The simulator SimS constructs T̃ such that the consistency
check will pass. This will always be the case in the real world, and hence S
cannot distinguish between the real and ideal world. Additionally, we note
that step (iv) ensures that the receiver obtains the same output in both worlds.
This shows security against an actively corrupt sender.

We now shift our attention to an actively corrupt receiver. This proof is not
as straight forward as for the sender. The idea is to reduce the problem
of breaking the security of the protocol to the problem of breaking the
assumptions on H. Before delving into the proof itself, we will introduce some
lemmata and notations that will aid in the proof. The focus of these will be
the probability that certain events happen during the protocol. These events
are based on situations that determine the simulator’s ability or inability to
simulate the real world. Essentially, they are the event that R passes the
consistency check, which we denote by PC; the event that R has introduced
errors in too many positions, denoted by LS; and the event that the error
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positions from the consistency check line up with the errors in C , which we
call ES. These will be defined more precisely below.

Inspired by the notation in the protocol, we define

C̃ = MC . (4.1)

A corrupt receiver may deviate from the protocol and may send an erroneous
W̃ , which we denote by W̃ ∗. Let

C̄ = C̃ − W̃ ∗G

and let E = supp(C̄), where C̄ is interpreted in C⊙2s . When writing C̃ , C̄ , and E
later in this section these are the definitions we are implicitly referring to.

Lemma 3.3:
Let C, C , and M be as in Protocol 1. Further, let LS be the event that |E| ≥ s,
and let ES be the event that for every C ′ ∈ C⊙2s there exists a Ĉ ∈ C⊙m+2s such
that supp(C̃ − C ′) = supp(C − Ĉ). Then the probability that neither ES nor LS
happen is at most q−s .

Proof:
The matrix M ′ in Protocol 1 is chosen uniformly at random, and hence M can
be interpreted as a member of a universal family of linear hashes. Thus, this
lemma is a special case of [Cas+16; Theorem 1] when letting m′ = m+2s, s′ = s,
and t ′ = 0 where the primes denote the parameters in [Cas+16]. Additionally,
note that our event LS happens if MC has distance at least s from C⊙2s .

We will now bound the probability that an adversary is able to pass the
consistency check, even if C contains errors.

Lemma 3.4:
Let PC denote the event that the consistency check passes. Then

Pr[PC]≤ 2−|E|.

Proof:
In order to compute Pr[PC], we consider C̄ and T̄ = T̃ − T̃ ∗, where the ∗
indicates that the matrix may not be constructed as described in the protocol.
The event PC happens if MQ = T̃ ∗ + W̃ ∗G∆b. However, from the definition of
Q, MQ = T̃ + C̃∆b, implying that PC happens if and only if

T̃ + C̃∆b = T̃ ∗ + W̃ ∗G∆b ⇐⇒ T̄ = −C̄∆b.

Now consider T̄ and C̄ in (Fn
q)
⊙2s , meaning that the entries C̄ j and T̄ j are

elements in F2s
q . If the adversary chooses C̄ j = 0 for some j ∈ {1,2, . . . , n}, it
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must choose T̄ j = 0 as well since the check would fail otherwise. If it chooses
C̄ j ̸= 0, it has two options. Either bet that b j = 0 and set T̄ j = 0 or bet that
b j = 1 and set T̄ j = −C̄ j . This means that for each entry j ∈ E the adversary
has probability 1

2 of guessing the correct value of b j . For every entry j /∈ E,
each possible b j gives a consistent value since C̄ j = T̄ j = 0. By this and the
independence of the entries in b, it follows that the probability of the check
passing is bounded by Pr[PC]≤ 2−|E|.

This immediately gives the following corollary.

Corollary 3.5:
If LS denotes the same event as in Lemma 3.3, then

Pr[PC | LS]≤ 2−s.

We now have the required results to prove the security of Protocol 1 against
an actively corrupt receiver. The events PC, LS, and ES from the previous
lemmata and corollaries will also be used in the proof of the following
theorem.

Theorem 3.6:
Protocol 1 is computationally secure against an actively corrupt receiver.

Proof:
As in the proof of Theorem 3.2, we construct a simulator SimR simulating
the view of the receiver, which is ViewR = {M ′,yw,i}. The simulator works as
follows.

(i) SimR receives N0 and N1 from R.

(ii) The simulator receives U from R and combines these with T0 = PRG(N0)
and T1 = PRG(N1) to reconstruct the matrix C . Additionally, it samples
uniformly at random an internal value b. Using this b, the simulator SimR
computes Q = T0 + C∆b.

(iii) SimR samples a random M ′ like the sender would have done in the
protocol and sends this to R. In return, it receives T̃ ∗ and W̃ ∗, where
the ∗ indicates that the vectors may not be computed according to the
protocol. The simulator runs the consistency check and aborts if it fails.

(iv) Otherwise, it erasure decodes each row of C by letting E be the erasures
to obtain W ′. If the decoding fails, it aborts. If the decoding succeeds,
the simulator gives W ′ as inputs to the ideal functionality Fκ,m

N-OT, which
returns the values vwi ,i to SimR. It can now compute ywi ,i = vwi ,i ⊕H(qi −
wiG∆b), and chooses yw,i uniformly at random in Fκq for all w ̸=wi .
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The matrix M ′ is uniformly distributed both in the real and ideal world. Hence,
we only need to show that the output yw,i produced by the simulator is
indistinguishable from the output of the protocol.

Let Z be a distinguisher for distinguishing between a real world execution
of the protocol and an ideal execution using the simulator. By Lemma 2.3 its
advantage is bounded by

Adv(Z)≤Adv(Z | PC) +Adv(Z | PC,LS)Pr[PC | LS]

+Adv(Z | PC,LS,ES)Pr[LS,ES] +Adv(Z | PC,LS,ES)Pr[PC],
(4.2)

where we have omitted some probability factors since they are all at most 1.
Notice that ywi ,i is constructed identically in both worlds. The remaining yw,i
are uniformly distributed in the ideal world, but constructed as

yw,i = vw,i ⊕H(qi −wG∆b) (4.3)

in the real world. Also notice that, if the consistency check fails, the simulator
aborts before constructing the yw,i . This is the same as in the real world, and
the only information R has received before this is M ′, which is identically
distributed in both worlds. Hence, the simulator is perfect in this case. This
implies that the first term on the right-hand side in (4.2) is zero.

Since the consistency check by the simulator is identical to the consistency
check done by S, it follows that the probability for the consistency check to
pass even if R might have sent inconsistent values is the same in both worlds.
This means that Pr[PC | LS]≤ 2−s by Corollary 3.5. In a similar fashion, Lemma
3.3 implies that the penultimate term in (4.2) can be bounded above by q−s . In
summary, (4.2) can be rewritten as

Adv(Z)≤ 2−s + q−s +Adv(Z | PC,LS,ES)2−|E|. (4.4)

To show that this is negligible in κ and s, assume the opposite; that is, Z has
non-negligible advantage. We then construct a distinguisher D breaking the
security assumptions on H.

The distinguisher D simulates the protocol with minor changes in order
to produce its input to the challenger. After receiving the challenge it uses
the output of Z to respond. There exist inputs and random choices for R and
S, which maximize the advantage of Z , and we can assume that D has fixed
these in its simulation. This also means that PC, LS and ES happen in the
simulation since otherwise, Adv(Z) is negligible.

Because ES happens, puncturing C in the positions in E gives a codeword
in πE(C⊙m+2s). Further, the event LS ensures that this corresponds to a
unique codeword in C⊙m+2s . Hence, D is able to erasure decode and for
i = 1, 2, . . . , m+2s obtain ci =wiG+ei , where ci is the i’th row of C , wH(ei)< d ,
and supp(ei) ⊆ E.

The following arguments use that no matter which b the challenger
chooses, the distinguisher D knows ei∆b. This follows from the fact that PC
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has happened and therefore b j for j ∈ E is known to the adversary, which is
simulated by D. Hence, the distinguisher is able to construct t′i = ti + ei∆b,
where the b is the vector eventually chosen by the challenger, and ti the i’th
row of T0. Letting t = n − |E|, define the probability distribution X to be
the uniform distribution on Fn

2 under the condition that the indices in E are
fixed to the corresponding entry of b. By uniformity this distribution has
min-entropy t . The distinguisher passes X and the t′i to the challenger. It
receives back xw,i for all i = 1,2, . . . , n and w ∈ Fk

q and needs to distinguish
them between being uniformly random and being constructed as

xw,i = H(t′i +wG∆b), (4.5)

As in the protocol, let Q = T0+C∆b, where b is again the vector chosen by the
challenger. Therefore, if xw,i is constructed as in (4.5), we have that

xw,i = H(ti + ei∆b +wG∆b)
= H(qi − ci∆b + ei∆b +wG∆b)
= H(qi − (wi −w)G∆b).

The distinguisher will now construct and input to Z the following

ywi ,i = vwi ,i ⊕H(t′i),

yw,i = vw,i ⊕ xwi−w,i , for w ̸=wi .

Since t′i = ti + ei∆b = qi −wiG∆b, we have that ywi ,i is identical to the value
computed in both the real and ideal worlds.

For the remaining w we notice that if the challenger has chosen xw,i
uniformly at random, then the values yw,i are uniformly distributed as well.
This is the same as the simulator will produce in the ideal world. On the other
hand, if xw,i = H(t′i +wG∆b), then we have yw,i = vw,i ⊕H(qi −w∆b). This is
exactly the same as produced during the protocol in the real world. Hence,
D can feed the values yw,i to Z , which can distinguish between the real and
ideal world, and depending on the answer from Z , D can distinguish whether
the xw,i are uniformly distributed or are constructed as H(t′i +wG∆b). Hence,

the advantage of D is the same as that of Z under the restriction that PC, LS,
and ES happen. This means that

Adv(D) = Adv(Z|PC,LS,ES)≥ 2|E|
�

Adv(Z)− 2−s − q−s
�

, (4.6)

where the inequality comes from (4.4). This contradicts that H is t-min-
entropy strongly C-correlation robust, and therefore Z must have negligible
advantage in the security parameters κ and s.

4 Consistency check in a subfield

Assume that q = 2r and that r | s. By restricting the matrix M ′ in Protocol 1 to
have entries in F2, the set of possible matrices M form a 2−2s-almost universal
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family of hashes. The probability in Lemma 3.3 can then be replaced by 2−s

by setting m′ = m + 2s, s′ = s
r , and t ′ = 2s(1 − 1/r). This modification will

show itself in (4.4), but here only the term q−s is replaced by 2−s , and hence the
advantage will still be negligible in κ and s. However, choosing M ′ in a subfield
reduces the communication complexity, since the number of bits needed to
transmit M ′ is lowered by a factor of r . Furthermore, the computation of T̃
and W̃ can be done using only sums in Fq , instead of multiplication and sums.

This method of reducing the communication complexity can be done to
an intermediate subfield, which will give a probability bound between q−s and
2−s . In a similar way, this procedure could also be applied to fields of other
characteristics.

5 Comparison

We compare the parameters of our modified construction with those that can
be achieved by the actively secure OT-extension construction from [OOS17].
We will show that the ability to use larger finite fields in our modified
construction induces a tradeoff between the number of base OT’s that are
needed for a given N and given security parameters (and hence also the
complexity of the set-up phase), and the complexity of the encoding and
consistency check phases of the extension protocol.

We have shown that given an [n, k, d]q-code, with d ≥max{κ, s}, one can
build an OT-extension protocol that implements the functionalityFκ,m

N-OT using
the functionality Fκ,n

2-OT, where N = qk . The parameters achieved in [OOS17]
are the same as we obtain in the case q = 2.

We will limit our analysis to the case where q = 2r , and r | s. We fix the
security parameters s and κ, and fix N to be a power of q, N = qk . Note then
that N = 2k·log2 q . Let n′ and n be the smallest integers for which there exist
an [n′, k log2 q,≥ d]2-linear code and an [n, k,≥ d]q-linear code, respectively.
As we discuss later, we can always assume that n ≤ n′, and in most cases
it is in fact strictly smaller. Therefore, by using q-ary codes one obtains a
reduction on the number of base OT’s from n′ to n, and therefore a more
efficient initialization phase. Note for example that the binary construction
always requires at least a minimum of log2 N base OT’s, while using q-ary
codes allows to weaken this lower bound to n≥ logq N .

On the other hand, however, this comes at the cost of an increase in
the communication complexity of what we have called the encoding and
consistency check phases of the protocol since we need to send a masking
of codewords over a larger field. We compare these two phases separately
since the consistency check is only needed for an actively secure version of
the protocol and it has a smaller cost than the encoding phase anyway. In
the encoding phase, [OOS17] communicates a total of (m+ s)n′ bits, while our
construction communicates (m + 2s)n log2 q bits. However, typically m ≫ s,
and therefore we only compare the terms mn′ and mn log2 q. Hence, the
communication complexity of this phase gets multiplied by a factor log2 q·n/n′.
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During the consistency check phase, which is less communication intensive,
[OOS17] communicates a total of sm+sn′+sk log2 q bits while our construction
communicates 2sm+ 2sn log2 q+ 2sk log2 q bits when using the method from
Section 4.

We now discuss in more detail the rates between n and n′ that we can
obtain for different values of q. In order to do that, having fixed d and k, let n′

and n denote the minimum values for which [n′, k log2 q,≥ d]2-linear codes
and [n, k,≥ d]q-linear codes exist. Let k′ denote k log2 q. It is easy to see that
n≤ n′ by considering a generator matrix for the binary code of length n′ and
considering the code spanned overFq by that same matrix. In many situations,
however, n is in fact considerably smaller than n′. The extreme case is when
q = N , and therefore k = 1, in which case one can take the repetition code
overFq and set n= d . It is difficult to give a general tight bound on the relation
between n and n′, although at least we can argue that n ≤ n′ − k′ + k: indeed,
given an [n′, k′,≥ d]2-code C2 then one can obtain an [n′, k′,≥ d]q-code Cq by
simply considering the linear code spanned over the field Fq by the generator
matrix of C2 and then shorten4 Cq at k′ − k positions, after which we obtain an
[n,≥ k,≥ d]q-code C, with n= n′− k′+ k. This bound is however by no means
tight in general. We now consider concrete examples of codes, that will be
summarized in Table 1.

Comparison

Code N n (Base OT’s) d n CC

Walsh-Had. [KK13] 256 256 128
Juxt. simplex code over F4 256 170 128 ÷ 1.51 × 1.33

Punct. Walsh-Had. [OOS17] 512 256 128
Juxt. simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511,76,≥ 171]2-BCH [OOS17] 276 511 ≥ 171
[455,48,≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023,443,≥ 128]2-BCH [OOS17] 2443 1023 ≥ 128
[455,154,≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

Table 1. Comparison of using binary and q-ary codes for OT-extension. In the last two
columns we consider the decrease in the number of base OT’s and increase in
the dominant term of the communication complexity in the encoding phase
when we consider a q-ary construction.

Small values of N

For relatively small values of N (N < 1000), [KK13] suggests the use of Walsh-
Hadamard codes, with parameters [2k′ , k′, 2k′−1]2, while [OOS17] improves

4Shortening a code at positions i1, . . . , it means first taking the subcode consisting of all
codewords with 0′s at all those positions and then erasing those coordinates.

57



Paper B

on this by using punctured Walsh-Hadamard codes instead. Punctured
Walsh-Hadamard codes (also known as first order Reed-Muller codes) are
[2k′−1, k′, 2k′−2]2-linear codes. These are the shortest possible binary linear
codes for those values of N and d , as they attain the Griesmer bound. In terms
of N , the parameters can be written as [N/2, log2 N , N/4]2.

The natural generalization of these codes to Fq are first order q-ary Reed
Muller codes, which have parameters [qk−1, k, qk−1 − qk−2]q . Moreover, there
is a q-ary generalization of Walsh-Hadamard codes, known as simplex codes,

which have parameters [ qk−1
q−1 , k, qk−1]q .

For example for q = 4, the parameters of the simplex code can be written
in terms of N as [(N − 1)/3, log4 N , N/4]4, and hence, for the same values of d
and N , the number of base OT’s is reduced by a factor 3/2 since n/n′ < 2/3.
On the other hand, the communication complexity of the encoding phase
increases by a factor 2n/n′ < 4/3 compared to using binary punctured Walsh-
Hadamard codes. We note, however, that this comparison is only valid if N is
a power of 4.

Because of the fact that N needs to be a power of q, in the comparison
table below it will be convenient to use the juxtaposition of two copies of
the same code. This means that given an [n, k, d]q code C′, we can obtain a
[2n, k, 2d]q code by sending each symbol in a codeword twice. With respect to
the examples listed in [OOS17], we see that by choosing an adequate finite field
and using juxtapositions of simplex codes, the number of OT’s gets divided
by a factor slightly over 1.5, while the communication complexity increases
by a somewhat smaller factor.

Larger values of N

For larger values of N , [OOS17] suggests using binary BCH codes. We use q-ary
BCH codes instead. It is difficult to find BCH codes that match exactly the
parameters (N , d) from [OOS17] so in our comparison we have always used
larger values of both N and d . This is actually not too advantageous for our
construction since the codes in [OOS17] were selected so that their length is
of the form 2m − 1 (what is called primitive binary BCH codes, which usually
yields the constructions with best parameters) and that results in a range of
parameters where it is not adequate to choose primitive q-ary BCH codes.
Nevertheless, in the case where the large value N ′ = 2443 is considered in
[OOS17], we can reduce the number of base OT’s needed to less than half,
while the communication complexity only increases by 4/3, and in addition
to that we achieve a larger value N = 2462. Observe that, for this value of N ,
with a binary code the number of base OT’s would be restricted by the naïve
bound n′ ≥ log2 N = 462 in any case (i.e. even if d = 1), while using a code over
F8 we only need to use 455.
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Abstract

Nested code pairs play a crucial role in the construction of ramp secret sharing
schemes [KUM12] and in the CSS construction of quantum codes [KKKS06].
The important parameters are (1) the codimension, (2) the relative minimum
distance of the codes, and (3) the relative minimum distance of the dual
set of codes. Given values for two of them, one aims at finding a set of
nested codes having parameters with these values and with the remaining
parameter being as large as possible. In this work we study nested codes from
the Hermitian curve. For not too small codimension, we present improved
constructions and provide closed formula estimates on their performance.
For small codimension we show how to choose pairs of one-point algebraic
geometric codes in such a way that one of the relative minimum distances is
larger than the corresponding non-relative minimum distance.

1 Introduction

In this paper we study improved constructions of nested code pairs from
the Hermitian curve. Here the phrase ‘improved construction’ refers to
optimizing those parameters important for the corresponding linear ramp
secret sharing schemes as well as stabilizer asymmetric quantum codes. Our
work is a natural continuation of [GGHR18], where improved constructions
of nested code pairs were defined from Cartesian product point sets. The
analysis in the present paper includes a closed formula estimate on the
dimension of order bound improved Hermitian codes, which is of interest in
its own right, i.e. also without the above mentioned applications.

A linear ramp secret sharing scheme is a cryptographic method to encode
a secret message in Fℓq into n shares from Fq . These shares are then
distributed among a group of n parties and only specified subgroups are able
to reconstruct the secret. A secret sharing scheme is characterized by its
privacy number t and its reconstruction number r . The first is defined as the
largest number such that no subgroup of this size can obtain any information
on the secret. The second is defined to be the smallest number such that
any subgroup of this size can reconstruct the entire secret. A linear ramp
secret sharing scheme can be understood as the following coset construction.
Consider linear codes C2 ⊂ C1 ⊆ Fn

q . Let {b1, . . . ,bk2
} be a basis for C2 and

extend it to a basis {b1, . . . ,bk2
,bk2+1, . . . ,bk2+ℓ} for C1. Here, of course, ℓ is

the codimension of C1 and C2. Choose elements a1, . . . , ak2
uniformly and

independent at random and encode the secret s= (s1, . . . , sℓ) as the codeword
c= (c1, . . . , cn) = a1b1+ · · ·+ ak2

bk2
+ s1bk2+1+ · · ·+ sℓbk2+ℓ. Then use c1, . . . , cn as

the shares. The crucial parameters for the construction are the codimension
of the pair of nested codes and their relative minimum distances d(C1, C2) and
d(C⊥2 , C⊥1 ). Recall that these are defined as

d(C1, C2) =min{wH(c) | c ∈ C1\C2}
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and similar for the dual codes. The following well-known theorem (see for
instance [KUM12]) shows how to determine the privacy number and the
reconstruction number.

Theorem 1.1:
Given Fq-linear codes C2 ⊂ C1 of length n and codimension ℓ, the correspond-
ing ramp secret sharing scheme encodes secrets s ∈ Fℓq into a set of n shares

from Fq . The privacy number equals t = d(C⊥2 , C⊥1 )−1, and the reconstruction
number is r = n− d(C1, C2) + 1.

A linear q-ary asymmetric quantum error-correcting code is a qk dimensional
subspace of the Hilbert space Cqn

where error bases are defined by unitary
operators Z and X , the first representing phase-shift errors, and the second
representing bit-flip errors [CRSS98; KKKS06; Ste96]. In [IM07] it was
identified that in some realistic models phase-shift errors occur more
frequently than bit-flip errors, and the asymmetric codes were therefore
introduced [EJLP13; IM07; LaG12a; SKR09; WFLX10] to balance the error
correcting ability accordingly. For such codes we write the set of parameters
as [[n, k, dz/dx]]q where dz is the minimum distance related to phase-shift
errors and dx is the minimum distance related to bit-flip errors. The CSS
construction transforms a pair of nested classical linear codes C2 ⊂ C1 ⊆ Fn

q
into an asymmetric quantum code. From [SKR09] we have

Theorem 1.2:
Consider linear codes C2 ⊂ C1 ⊆ Fn

q . Then the corresponding asymmetric
quantum code defined using the CSS construction has parameters

[[n,ℓ= dim C1 − dim C2, dz/dx]]q

where dz = d(C1, C2) and dx = d(C⊥2 , C⊥1 ).

Quantum codes with d(C1, C2)> d(C1)or d(C⊥2 , C⊥1 )> d(C⊥2 ) are called impure,
and they are desirable due to the fact that one can take advantage of this
property in connection with the error-correction. More precisely, one can
tolerate ⌊(d(C1, C2)− 1)/2⌋ phase-shift errors and ⌊(d(C⊥2 , C⊥1 )− 1)/2⌋ bit-flip
errors, respectively, but in the decoding algorithms it is only necessary to
correct up to ⌊(d(C1)− 1)/2⌋ and ⌊(d(C⊥2 )− 1)/2⌋ errors, respectively. Despite
this observation, only few impure codes have been presented in the literature.

With the above two applications in mind, the challenge is to find nested
codes C2 ⊂ C1 such that two of the parameters ℓ, d(C1, C2), d(C⊥2 , C⊥1 ) attain
given prescribed values, and the remaining parameter is as large as possible.
In this paper we analyse two good constructions from the Hermitian function
field. In the first we consider code pairs such that C1 is an order bound
improved primary code [AG08; GMRT11] and such that C2 is the dual of
an order bound improved dual code [HLP98]. Considering in this case the
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minimum distances rather than the relative distances is no restriction due to
the optimized choice of codes – the minimum distances d(C1) and d(C⊥2 )
being so good that there is essentially no room for d(C1, C2) > d(C1) or
d(C⊥2 , C⊥1 ) > d(C⊥2 ) to hold. For this construction to work, the codimension
cannot be very small. For small codimension when d(C1) and d(C⊥2 ) are far
from each other we then show how to choose ordinary one-point algebraic
geometric codes such that one of the relative distances becomes larger
than the corresponding ordinary minimum distance. In particular, this
construction leads to impure asymmetric quantum codes.

The paper is organized as follows. In Section 2 we collect material
from the literature on how to determine parameters of primary and dual
codes coming from the Hermitian curve, and we introduce the order bound
improved codes1. In Section 3 we establish closed formula lower bounds on
the dimension of order bound improved Hermitian codes of any designed
minimum distance. We then continue in Section 4 by determining the
pairs (δ1, δ2) ∈ {1, . . . , n} × {1, . . . , n} for which the order bound improved
primary code C1 of designed distance δ1 contains C2, the dual of an order
bound improved dual code of designed distance δ2. This and the information
from Section 3 is then translated into information on improved nested code
pairs of not too small codimension in Section 5. Next, in Section 6 we
determine parameters of nested one-point algebraic geometric code pairs
of small codimension for which one of the relative distances is larger than
the non-relative. Finally, in Section 7 samples of the given constructions are
compared with known asymmetric quantum codes, with existence bounds
on asymmetric quantum codes, and with non-existence bounds on linear
ramp secret sharing schemes. Section 8 is the conclusion.

2 Hermitian codes and their parameters

Given an algebraic function field over a finite field, let= P1, . . . , Pn,Q be rational
places. By H(Q)we denote the Weierstrass semigroup of Q, and we write

H∗(Q) = {λ ∈ H(Q) | CL(D,λQ) ̸= CL(D, (λ− 1)Q)}

where D = P1 + · · · + Pn. Recall that the dual code of CL(D,λQ) is written
CΩ(D,λQ). The order bound [DP10; HLP98] then tells us that if

c ∈ CΩ(D, (λ− 1)Q)\CΩ(D,λQ)

(which can only happen if λ ∈ H∗(Q)), then the Hamming weight of c satisfies

wH(c)≥ µ(λ) (4.1)

1This section also contains a collective treatment of the order bounds for general primary as
well as dual (improved) one-point algebraic geometric codes which may not be easy to find in
the literature.
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where
µ(λ) = #{η ∈ H(Q) | λ−η ∈ H(Q)}.

The similar bound for the primary case [AG08; Gei03; GMRT11] tells us that if

c ∈ CL(D,λQ)\CL(D, (λ− 1)Q),

then
wH(c)≥ σ(λ) (4.2)

where
σ(λ) = #{η ∈ H∗(Q) | η−λ ∈ H(Q)}.

Besides implying that

d(CL(D,λQ))≥min{σ(γ) | 0≤ γ≤ λ,γ ∈ H∗(Q)}
d(CΩ(D,λQ))≥min{µ(γ) | λ < γ,γ ∈ H∗(Q)}, (4.3)

which are both as strong as the Goppa bound, it tells us that for ε,λ ∈ H∗(Q)
with ε < λ it holds that

d(CL(D,λQ), CL(D,εQ))≥min{σ(γ) | ε < γ≤ λ,γ ∈ H∗(Q)}, (4.4)

and similarly

d(CΩ(D,εQ), CΩ(D,λQ))≥min{µ(γ) | ε < γ≤ λ,γ ∈ H∗(Q)}. (4.5)

Furthermore, for i ∈ H∗(Q) let fi ∈ L(iQ)\L((i − 1)Q). Then we obtain the
improved primary code

Ẽ(δ) = Span{( fi(P1), . . . , fi(Pn)) | σ(i)≥ δ},

which clearly has minimum distance at leastδ and highest possible dimension
for a primary code with that designed distance. Similarly, the improved dual
code

C̃(δ) =
�

Span{( fi(P1), . . . , fi(Pn)) | µ(i)< δ}
�⊥

has minimum distance at least δ and again the highest possible dimension
for a dual code with that designed distance.

Turning to the Hermitian curve xq+1 − yq − y over Fq2 where q is a prime
power, it is well-known that the corresponding function field has exactly q3+1
rational places P1, . . . , Pq3 ,Q. Choosing n= q3 one obtains H(Q) = 〈q, q+1〉 and

H∗(Q) = {iq+ j(q+ 1) | 0≤ i ≤ q2 − 1, 0≤ j ≤ q− 1}. (4.6)

In [Sti88] it was shown that

CL(D,λQ) = CΩ(D, (q3 + q2 − q− 2−λ)Q) (4.7)

for anyλ ∈ H∗(Q), and the minimum distance was established for dimensions
up to a certain value. The minimum distance for the remaining dimensions
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was then settled in [YK92]. In the present paper we shall need improved code
constructions, and we will in some cases also be occupied with the relative
distances rather than minimum distances. To this end we recall material
from [Gei03] on the functions µ andσ – stated there in the more general case
of norm-trace curves, but adapted here to the Hermitian case.

Proposition 2.1:
Consider the Hermitian curve. For iq+ j(q+ 1) ∈ H∗(Q)we have

σ(iq+ j(q+ 1)) =
§

q3 − iq− j(q+ 1) if 0≤ i < q2 − q
(q2 − i)(q− j) if q2 − q ≤ i ≤ q2 − 1, (4.8)

and µ
�

(q2 − 1− i)q + (q − 1− j)(q + 1)
�

= σ
�

iq + j(q + 1)
�

. For each λ ∈ H∗(Q)
there exists a word c ∈

�

CL(D,λQ)\CL(D, (λ−1)Q)
�

∩Ẽ(σ(λ))having Hamming
weight equal to σ(λ).

Proof:
Given a numerical semigroup Λwith finitely many gaps and an element λ ∈ Λ,
we know from [HLP98; Lem. 5.15] that #

�

Λ\(λ+Λ)
�

= λ. As #H∗(Q) = q3 we
therefore obtain σ(iq + j(q + 1)) ≥ q3 − (iq + j(q + 1)). On the other hand, it
is clear that σ(iq + j(q + 1)) ≥ (q2 − i)(q − j) by the definition of σ. Taking
the maximum between these two expressions, we obtain the right hand side
of (4.8). That these estimates on σ are the true values and that the last part
of the proposition holds true both follow as a consequence of [Gei03; Lem.
4]. The details of applying [Gei03; Lem. 4] are left for the reader. Finally,
the relation between µ and σ is a consequence of H∗(Q) being a box in the
parameters i and j, see (4.6).

In Appendix A we list a series of lemmas which all follow as corollaries to
Proposition 2.1 and which will be needed in Sections 3 and 4.

Throughout the rest of the paper we restrict to considering codes derived
from the Hermitian curve, and we always assume the length to be n = q3.
From Proposition 2.1 we see that the bound (4.4) on the relative distance of
CL(D,εQ) ⊂ CL(D,λQ) is sharp. A similar remark then holds for the bound (4.5)
on the dual codes due to (4.7). Finally, we observe from [Gei03; Sec. 4] that

Ẽ(δ) = C̃(δ) (4.9)

holds. Proposition 2.1 therefore not only gives us the true value of the
minimum distance of the improved primary codes (without loss of generality
we may assume δ = σ(λ) for some λ ∈ H∗(Q)), but also does it for the
improved dual codes.

We conclude the section with some information on the cases where the
improved primary codes coincide with one-point algebraic geometric codes.
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Corollary 2.2:
For δ > q2 − q we have Ẽ(δ) = CL

�

D, (q3 − δ)Q
�

, but CL
�

D, (q3 − (q2 − q))Q
�

is
strictly contained in Ẽ(q2 − q).

This corollary implies that the dimension of Ẽ(δ) can be determined from the
usual one-point Hermitian codes whenever δ > q2−q. For later reference we
state these dimensions in terms of δ.

Proposition 2.3:
Denote by g = q(q − 1)/2 the genus of Hermitian function field. If q2 − q <
δ < q3 − 2g + 2, then the dimension of Ẽ(δ) is given by q3 − g + 1 − δ. If
q3 − 2g + 2≤ δ ≤ q3, we have

dim Ẽ(δ) =
a+b
∑︂

s=0

(s+ 1)−max{a, 0}

where q3 −δ = aq+ b(q+ 1) for −q < a < q and 0≤ b < q.

Proof:
First, note that in both cases Corollary 2.2 implies the equality Ẽ(δ) =
CL(D, (q3 −δ)Q). For the first case recall from [Sti93; Cor. II.2.3] that the code
CL(D,λG)has dimensionλ+1−g whenever 2g−2< λ < n. By the assumptions
on δ, we have q3−δ > q3−(q3−2g+2) = 2g−2, meaning that CL(D, (q3−δ)Q)
has dimension q3−δ+1− g . By the observation in the beginning of the proof,
the same holds true for Ẽ(δ).

To prove the second case, observe that the dimension of CL(d, (q3 −δ)Q)
is exactly the number of elements λ in H∗(Q) with λ ≤ q3 − δ. By (4.6) such
elements have the form λ = iq + j(q + 1), but equivalently we can write
λ = i′q + j where i′ = i + j. By the division algorithm this representation
is unique for 0≤ j < q. For i′q+ j to satisfy the requirements of (4.6), we also
require i′ − j = i ≥ 0. That is, H∗(Q) contains the integers whose quotients
modulo q are at least their remainders modulo q.

Writing q3 − δ = (a + b)q + b with 0 ≤ b < q using the division algorithm,
the number of elements in H∗(Q) less than (a+ b+1)q is given by

∑︁a+b
s=0 (s+1).

If b ≥ a + b, which happens only if a ≤ 0, this number is also the number of
elements with value at most q3−δ. Otherwise, the count includes b−(a+b) = a
elements of H∗(Q) that are greater than q3 − δ. Hence, subtracting max{a, 0}
gives the desired count in both cases.

It remains to establish information on the dimension of Ẽ(δ) for δ ≤ q2 − q
since the improved codes differ from the usual Hermitian codes in this case.
This subject is treated in the next section.
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3 The dimension of improved codes

As explained in the previous section, the dimension of Ẽ(δ) can be determ-
ined from well-known methods as long as δ > q2 − q. In this section we
present closed formula lower bounds on the dimension in the remaining
cases. We start with an important lemma.

Lemma 3.1:
Let δ ≤ q2. The number of integer points

(x , y) ∈ {q2 − q, . . . , q2 − 1} × {0, . . . , q− 1}

with (q2 − x)(q− y)≥ δ is at least

q2 −
�

δ+δ ln(q2/δ)
�

. (4.10)

If δ < q, then the number of integer points is at least

q2 − ⌊δ+δ ln(δ)⌋ , (4.11)

which is stronger than (4.10).

Proof:
The number of integer points in the given Cartesian product is at least that of
the volume of

{(x , y) ∈ [q2 − q, q2]× [0, q] | (q2 − x)(q− y)≥ δ},

which equals

∫︂ q2− δq

q2−q

∫︂ q− δ

q2−x

0

d y d x

=q(q2 −
δ

q
− q2 + q) +

∫︂ q2−q

q2− δq

δ

q2 − x
d x

=q2 −δ−δ[ln(z)]qδ
q

= q2 −δ−δ ln(q2/δ),

where we used the substitution z = q2− x . Since the number of integer points
is integral, we obtain the bound ⌈q2 − δ − δ ln(q2/δ)⌉, which is the same as
(4.10).

Ifδ < q, then the number of integer points is at least the combined volumes
of

{(x , y) ∈ [q2 − q, q2]× [0, q] | x ≤ q2 −δ or y ≤ q−δ}

and

{(x , y) ∈ [q2 −δ, q2]× [q−δ, q] | (q2 − x)(q− y)≥ δ}.
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The first mentioned volume equals q2 −δ2. The latter volume is

∫︂ q2−1

q2−δ

∫︂ q− δ

q2−x

q−δ
d y d x

=

∫︂ q2−1

q2−δ

�

δ−
δ

q2 − x

�

d x

=δ(δ− 1)−δ[ln(z)]δ1 = δ(δ− 1)−δ ln(δ).

Adding up the two volumes, we obtain (4.11) by applying the ceiling function
as above.

The dimension of the improved codes of designed distance at most q2 − q is
covered by the following two propositions. Recall from (4.9) that the equality
C̃(δ) = Ẽ(δ)holds for codes defined from the Hermitian function field. Hence,
the stated formulas for primary codes also hold for the dual codes.

Proposition 3.2:
Given q < δ ≤ q2 − q write

q3 −δ = q3 − q2 + aq+ b(q+ 1)

where −q < a < q and 0≤ b < q.
If 0< a, then

dim(Ẽ(δ))≥ q3 −δ− g + 1−
a+b
∑︂

s=0

(s+ 1) + a+ q2 −
�

δ+δ ln(q2/δ)
�

.

If a ≤ 0, then

dim(Ẽ(δ))≥ q3 −δ− g + 1−
a+b
∑︂

s=0

(s+ 1) + q2 −
�

δ+δ ln(q2/δ)
�

.

Proof:
Let g = q(q−1)/2 be the number of gaps in H(Q), i.e. the genus of the function
field. As is well-known, for 2g ≤ λ < q3 − 1 the number of ε ∈ H∗(Q) with
ε≤ λ equals λ− g+1. Therefore, by choosing λ= q3−δ the restriction on δ as
given in the proposition implies that there are exactly q3 −δ− g + 1 elements
ε ∈ H∗(Q)with ε≤ q3−δ. These elements then satisfyσ(ε)≥ δ by Lemma A.2.
From (4.8) we see that the additional elements in H∗(Q) with σ(ε) ≥ δ must
belong to

{iq+ j(q+ 1) | q2 − q ≤ i ≤ q2 − 1, 0≤ j ≤ q− 1}. (4.12)

Lemma 3.1 gives an estimate on the total number of elements ε in (4.12) with
σ(ε)≥ δ. Adding this number to q3−δ− g+1, we have counted the elements
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ε in (4.12) with ε≤ q3 −δ twice. By using similar arguments as in the proof of

Proposition 2.3, the number of such elements equals
∑︁a+b

s=0 (s + 1) − a when

0 ≤ a < q, and it equals
∑︁a+b

s=0 (s + 1) when −q < a < 0. This proves the
proposition.

Proposition 3.3:
Given 1≤ δ ≤ q the dimension of the code Ẽ(δ) satisfies

dim(Ẽ(δ))≥ q3 − ⌊δ+δ ln(δ)⌋ .

Proof:
By Lemma A.7 the elements λ ∈ H∗(Q) which do not satisfy σ(λ) ≥ δ must
belong to {iq+ j(q+1) | q2−δ ≤ i ≤ q2, q−δ ≤ j < q}. The number of elements
in this set having σ(λ) < δ is bounded above by ⌊δ + δ ln(δ)⌋ by Lemma 3.1.
Since the total number of monomials in H∗(Q) is q3, the result follows.

4 Inclusion of improved codes

As already mentioned our first construction of improved nested code pairs
consists of choosing C̃(δ2) and Ẽ(δ1) such that C̃(δ2)⊥ ⊂ Ẽ(δ1). To treat
this construction we therefore need a clear picture of the pairs (δ1,δ2) of
minimum distances that imply this inclusion. We establish this in the present
section. As it turns out, the formulas for σ and µ given in Proposition 2.1
mean that several cases must be considered, and each case is presented as a
separate proposition.

In the following, quantifiers on λ,ϵ are considered on the domain H∗(Q).
Given δ1 ∈ σ(H∗(Q)), define δmax

2 to be the maximal value of δ2 such that
C̃(δ2)⊥ ⊆ Ẽ(δ1) holds. This inclusion is equivalent to

∀λ:
�

(σ(λ)< δ1)→ (µ(λ)≥ δ2)
�

. (4.13)

We first observe that if we can find a λ1 ∈ H∗(Q) such that
�

∀ϵ > λ1 : µ(ϵ)≥ µ(λ1)
�

∧
�

∀ϵ < λ1 : σ(ϵ)≥ δ1

�

(4.14)

is true, then (4.13) is also true whenever δ2 ≤ µ(λ1). In particular, we therefore
have

δmax
2 ≥ µ(λ1). (4.15)

On the other hand, we immediately see from (4.13) that a λ2 ∈ H∗(Q)with

σ(λ2)< δ1 (4.16)

implies the bound

δmax
2 ≤ µ(λ2). (4.17)
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In the proofs of each of the following propositions, our strategy therefore
is to determine λ1 and λ2 satisfying (4.14) and (4.16), respectively, while also
satisfying µ(λ1) = µ(λ2). From (4.15) and (4.17) it then follows that δmax

2 = µ(λ1).
Note, however, that λ1 and λ2 need not be distinct. If λ1 = λ2, we shall simply
use λ.

With this strategy in mind, the following lemmas will prove very useful.

Lemma 4.1:
Let λ= iq+ j(q+1) ∈ H∗(Q), meaning that 0≤ i < q2 and 0≤ j < q. In addition,
assume that i ≤ q2 − q, i = q2 − 1, or j = 0. If ϵ ∈ H∗(Q) satisfies ϵ < λ, then
σ(ϵ)≥ σ(λ).

Proof:
For both the cases i < q2 − q and j = 0, the claim follows by Lemma A.3. If
i = q2 − q, Lemma A.5 implies that σ(λ) = σ((i + j)q), and any ϵ ∈ H∗(Q)
satisfying λ > ϵ > (i+ j)q has σ(ϵ)≥ σ((i+ j)q) by Lemma A.6. This also holds
true for ϵ < (i + j)q by the first part of the proof.

Finally, for i = q2 − 1 consider ϵ = i′q + j′(q + 1) ∈ H∗(Q) with ϵ < λ. If
q2 − q ≤ i′ ≤ q2 − 1, the claim follows by Lemmas A.4 and A.6. Otherwise, ϵ is
at most (q2 − q− 1)q+ (q− 1)(q+ 1) = q3 − q− 1, meaning that σ(ϵ)≥ q+ 1 by
Lemma A.3. The proof follows by noting that σ(λ)≤ q.

Lemma 4.2:
Let λ= iq+ j(q+1) ∈ H∗(Q), meaning that 0≤ i < q2 and 0≤ j < q. In addition,
assume that i ≥ q− 1 or j = 0. If ϵ ∈ H∗(Q) satisfies ϵ > λ, then µ(ϵ)≥ µ(λ).

Proof:
This proof is similar to the one of Lemma 4.1. Defining the notation λ′ =
(q2 − 1− i)q+ (q− 1− j)(q+ 1), the translation of Lemma A.2 into information
on µ gives µ(λ) = n−λ′ whenever

i > q− 1 or j = q− 1. (4.18)

Additionally, if ϵ ∈ H∗(Q)with ϵ > λ, then ϵ′ < λ′ where the ϵ′ is defined in the
same way as λ′. This implies that µ(λ) < µ(ϵ)when λ = iq+ j(q+ 1) satisfies
(4.18). This immediately proves the claim for i > q− 1.

For i = q − 1 the µ-equivalent of Lemma A.5 gives µ(λ) = µ((i − (q − 1−
j)) + (q − 1)(q + 1)), and any elements between have greater µ-value by the
translation of Lemma A.6. The remaining elements greater than λ are covered
by the first part of the proof.

The last part of the proof is j = 0 and i < q − 1, which follows the same
procedure as the last part of the proof of Lemma 4.1.

Proposition 4.3:
Let 2≤ δ1 ≤ q. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if δ2 ≤ q3 − (δ1 − 2)(q+ 1).
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Proof:
Let λ′ = (q2 − 1)q + (q − δ1)(q + 1). We have σ(λ′) = δ1 by (4.8), and Lemma
4.1 implies that σ(ϵ) ≥ δ1 for all ϵ < λ′. Additionally, Lemmas A.4 and A.6
yield that λ = λ′ + q + 1 is the smallest element in H∗(Q) with a strictly
smaller σ-value. Combining this with Lemma 4.2 applied to λ reveals that
λ satisfies (4.14). However, (4.16) is satisfied as well since σ(λ) < δ1. Thus,
δmax

2 = µ(λ) = q3 − (δ1 − 2)(q+ 1).

Proposition 4.4:
Let q < δ1 ≤ q2 − q. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if

δ2 ≤

¨

q3 − q2 + q−δ1 + 2 if 0≤ b ≤ a
q3 − q2 − a(q+ 1) if b > a

where δ1 − (q+ 1) = aq+ b for a ≥ 0 and 0≤ b < q.

Proof:
First, observe that aq+ b ≤ (q− 3)q+ (q− 1), meaning that a is at most q− 3.

Assume that b = 0. Then λ= (q2 − 1− a)q has σ(λ) = δ1 − 1, meaning that
it satisfies (4.16). Note that µ(λ) = q3 − q2 − aq + 1, which can be rewritten to
obtain the claimed expression.

If 0< b ≤ a, we can use λ= (q2−q−1−a+(b−1))q+(q−1−(b−1))(q+1),
which satisfies (4.16) since σ(λ) = δ1 − 1. Here, we see that

µ(λ) = q3 − q2 − aq− b+ 1= q3 − q2 + q−δ1 + 2.

Finally, for b > a we can let λ = (q2 − q − 1)q + (q − 1 − a)(q + 1) with
σ(λ) = (a + 1)q + a + 1 < δ1. Again, λ satisfies (4.16). Calculating the value
of µ gives µ(λ) = q3 − q2 − a(q+ 1).

In all three of the above situations, the element immediately preceding λ
in H∗(Q) is given by λ′ = λ− 1, and the reader may verify that σ(λ′) ≥ δ1. In
each case applying Lemma 4.1 to λ′ implies thatσ(ϵ)≥ δ1 for all ϵ < λ. Lemma
4.2 applied to λ then shows that λ satisfies (4.14) as well. In conclusion, the
specified values of λ satisfy both (4.14) and (4.16), and computing each value
of µ(λ) gives the expression in the proposition.

Proposition 4.5:
Let q2 − q < δ1 ≤ q3 − 2q2 + 2q. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if δ2 ≤
q3 − q2 + q+ 2−δ1.

Proof:
Set λ′ = n− δ1 and observe that λ′ ≥ 2q2 − 2q = 4g where g is the genus of
the Hermitian function field. Thus, λ′ is a non-gap in H∗(Q), and σ(λ′) = δ1
by (4.8). Lemma 4.1 implies that any smaller element of H∗(Q) has σ-value at
least δ1. We see, however, that λ= λ′+1 has σ(λ) = δ1−1, and it must be the
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smallest such value. At the same time it meets the requirements of Lemma
4.2, implying that (4.14) is fulfilled. As already noted λ satisfies (4.16) as well,
meaning that δmax

2 = µ(λ) = q3 − q2 + q+ 2−δ1.

Proposition 4.6:
Let q3 − 2q2 + 2q < δ1 ≤ q3 − q2. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if

δ2 ≤

⎧

⎨

⎩

(a+ 1)q+ b+ 2 if b < a
(a+ 2)q if a ≤ b < q− 1

(a+ 2)q+ 1 if b = q− 1

where q3 − q2 −δ1 = aq+ b for a ≥ 0 and 0≤ b < q.

Proof:
First note that aq+ b ≤ (q− 2)q, implying that a is at most q− 2. Assume that
b < a and let λ = (q+ a− (b+ 1))q+ (b+ 1)(q+ 1). This element satisfies the
requirements of Lemma 4.2, and λ−1 satisfies the requirements of Lemma 4.1.
This means that λ fulfils (4.14). Simultaneously, (4.16) is met sinceσ(λ) = δ1−1.
Thus, δmax

2 = µ(λ) = (a+ 1)q+ b+ 2.
Let a = b and λ = (q − 1)q + (a + 1)(q + 1). Applying Lemmas 4.1 and 4.2

to λ− 1 and λ as above, we see that λ satisfies (4.14). It also meets (4.16) since
σ(λ) = δ1 − 1. Subsequently, δmax

2 = µ(λ) = (a+ 2)q.
Now, consider a < b < q − 1 and let λ1 = (q − 1)q + (a + 1)(q + 1) and

λ2 = (a+ 1)q+ (q− 1)(q+ 1). We can apply both Lemmas 4.1 and 4.2 to λ1 to
obtain that it satisfies (4.14). On the other hand, σ(λ2) < δ1 implies that (4.16)
is fulfilled. In addition, µ(λ1) = µ(λ2), which gives δmax

2 = µ(λ1) = (a+ 2)q.
The remaining part is b = q− 1. If this happens, note that λ= (q+ a+ 1)q

has σ(λ) = δ1 − 1, whereas λ− 1 = (a+ 1)q+ (q− 1)(q+ 1) has σ(λ− 1) = δ1.
By the same arguments as in the first part of the proof, we obtain that
δmax

2 = µ(λ) = (a+ 2)q+ 1.

Proposition 4.7:
Let q3 − q2 ≤ δ1 ≤ q3. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if

δ2 ≤

¨

a+ 1 if b < a
a+ 2 if b ≥ a

where q3 −δ1 = aq+ b for a ≥ 0 and 0≤ b < q.

Proof:
Assume first that b < a, and set λ1 = aq and λ2 = a(q+1). The latter meets the
assumptions of Lemmas 4.1 and 4.2, meaning that λ2 satisfies (4.14). Observe
that σ(λ1)< δ1 and µ(λ1) = µ(λ2). From this we see that δmax

2 = µ(λ1) = a+ 1.
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Otherwise, if b ≥ a, let λ= (a+1)q, which satisfies (4.16) by the observation
thatσ(λ)< δ1. The element of H∗(Q) immediately preceding λ is λ′ = a(q+1),
which has σ(λ′)≥ δ1. As in the previous proofs, applying Lemmas 4.1 and 4.2
to λ′ and λ, respectively, shows that λ fulfils (4.14). Hence, δmax

2 = µ(λ) = a+ 2.

It is worth noting that C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if every λ ∈ H∗(Q) with
σ(λ)< δ1 also satisfies µ(λ)≥ δ2. By Proposition 2.1 this may be rewritten as
µ(λ)< δ1 implying σ(λ)≥ δ2. Hence, the inclusion of codes is symmetric in
the sense that C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if C̃(δ1)⊥ ⊆ Ẽ(δ2).

One could expect that this symmetry would show up in Propositions 4.3–
4.7 as well. However, this is not the case since the propositions describe
the maximal value of δ2 such that C̃(δ2)⊥ ⊆ Ẽ(δ1) for a given value of δ1.
Although this implies that C̃(δ1)⊥ ⊆ Ẽ(δ2), there may be a δ′ > δ1 such that
C̃(δ′)⊥ ⊆ Ẽ(δ2) as shown in Example 4.8 below.

Example 4.8:
Let q = 4 and set δ1 = 6. Then considering the values of σ and µ as given
in Table 4 of the Appendix reveals that the greatest possible value of δ2 such
that C̃(δ2)⊥ ⊆ Ẽ(δ1) is given by δ2 = 48. By the observations above we know
that this implies C̃(6)⊥ ⊆ Ẽ(48) as well. However, inspecting the tables again
will reveal that the C̃(8)⊥ is also a subset of Ẽ(48). Notice that both of these
observations agree with the formulas in Propositions 4.4 and 4.6. ◀

5 Improved nested codes of not too small codimension

Based on our findings in Sections 3 and 4, we are now able to describe
the parameters of our first construction of nested code pairs, namely the
one where the codimension is not too small. If δ1,δ2 ∈ H∗(Q) satisfy the
conditions in one of the Propositions 4.3–4.7, it follows that C̃(δ2)⊥ ⊆ Ẽ(δ1).
By the bounds (4.4) and (4.5) and the observation following Proposition 2.1,
the relative distance of this code pair is exactly d(Ẽ(δ1)) = δ1, and the relative
distance of its dual is d(C̃(δ2)⊥) = δ2.

For each possible pair of designed distances described in Propositions 4.3–
4.7, we can combine the dimensions of the usual Hermitian codes with the
dimension bounds of Propositions 3.2 and 3.3. This gives bounds on the
codimension, ℓ, of C̃(δ2)⊥ ⊆ Ẽ(δ1).

Proposition 5.1:
Let δ1,δ2 ∈ H∗(Q), and δ1 ≤ q. Further, let δ2 satisfy the conditions of
Proposition 4.3, meaning that C̃(δ2)⊥ ⊆ Ẽ(δ1). Denote their codimension by
ℓ.

If δ2 ≤ q, then

ℓ≥ q3 − ⌊δ1 +δ1 ln(δ1)⌋ − ⌊δ2 +δ2 ln(δ2)⌋.
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If q < δ2 ≤ q2 − q, then

ℓ≥ q3 + q2 − g + 1− ⌊δ1 +δ1 ln(δ1)⌋ −δ2 −
a+b
∑︂

s=0

(s+ 1)

− ⌊δ2 +δ2 ln
�

q2/δ2

�

⌋+max{a, 0}

where a and b are as in Proposition 3.2 applied to δ2.
If q2 − q < δ2 < q3 − 2g + 2, then

ℓ≥ q3 − g + 1− ⌊δ1 +δ1 ln(δ1)⌋ −δ2.

Finally, if q3 − 2g + 2≤ δ2, we have

ℓ≥
a+b
∑︂

s=0

(s+ 1)− ⌊δ1 +δ1 ln(δ1)⌋ −max{a, 0}

where q3 −δ2 = aq+ b(q+ 1) for −q < a < q and 0≤ b < q.

Proof:
By Proposition 3.3 we have dim Ẽ(δ1)≥ q3 − ⌊δ1 +δ1 ln(δ1)⌋. In each case, we
can obtain a bound on the codimension ℓ by subtracting an upper bound on
C̃(δ2)⊥ = q3 − dim Ẽ(δ2). In turn, such a bound can be obtained via a lower
bound on dim Ẽ(δ2).

In the case δ2 ≤ q the dimension of Ẽ(δ2) can again be bounded by
Proposition 3.3. In the second case the bound on dim Ẽ(δ2) follows by
Proposition 3.2. Proposition 2.3 delivers the bounds in the two final cases.

Proposition 5.2:
Let δ1,δ2 ∈ H∗(Q) and q < δ1 ≤ q2 − q. Further, let δ2 satisfy the conditions of
Proposition 4.3, meaning that C̃(δ2)⊥ ⊆ Ẽ(δ1). Denote their codimension by ℓ
and let a1, b1 be as in Proposition 3.2 applied to δ1.

If δ2 ≤ q, then

ℓ≥ q3 + q2 − g + 1−δ1 −
a1+b1
∑︂

s=0

(s+ 1) +max{a1, 0}

− ⌊δ1 +δ1 ln(q2/δ1)⌋ − ⌊δ2 +δ2 ln(δ2)⌋.

If q < δ2 ≤ q2 − q, then

ℓ≥q3 + 2q2 − 2g + 2− (δ1 +δ2)−
a1+b1
∑︂

s=0

(s+ 1) +max{a1, 0}

−
a2+b2
∑︂

s=0

(s+ 1) +max{a2, 0} − ⌊δ1 +δ1 ln(q2/δ1)⌋ − ⌊δ2 +δ2 ln(q2/δ2)⌋
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where a2 and b2 are as in Proposition 3.2 applied to δ2.
Finally, if q2 − q < δ2, then

ℓ≥ q3+q2−2g +2− (δ1+δ2)−
a1+b1
∑︂

s=0

(s+1)−⌊δ1+δ1 ln(q2/δ1)⌋+max{a1, 0}.

Proof:
We use the same strategy as in the proof of Proposition 5.1. A bound for the
dimension of Ẽ(δ1) can be found in Proposition 3.2. For δ2 ≤ q the bound on
dim Ẽ(δ2) comes from Proposition 3.3, and in the case q < δ2 ≤ q2−q it comes
from Proposition 3.2. In the final case the bound follows from Proposition 2.3,
where we note that δ2 ≤ q3−2g+2 by Proposition 4.4 and the assumption on
δ1.

Proposition 5.3:
Let δ1,δ2 ∈ H∗(Q) and q2 − q < δ1 < q3 − 2g + 2. Further, let δ2 satisfy the
conditions of Proposition 4.3, meaning that C̃(δ2)⊥ ⊆ Ẽ(δ1). Denote their
codimension by ℓ.

If δ2 ≤ q, we have

ℓ≥ q3 − g + 1−δ1 − ⌊δ2 +δ2 ln(δ2)⌋.

If q < δ2 ≤ q2 − q, then

ℓ≥ q3 + q2 − 2g + 2− (δ1 +δ2)−
a+b
∑︂

s=0

(s+ 1)− ⌊δ2 +δ2 ln(q2/δ2)⌋+max{a, 0}

where a and b are as in Proposition 3.2 applied to δ2.
Finally, for q2 − q < δ2 we have

ℓ= q3 −δ1 −δ2 − 2g + 2.

Proof:
Again, the the strategy is the same as in the proof of Proposition 5.1. The exact
dimension of Ẽ(δ1) is given by Proposition 2.3. For δ2 ≤ q the dimension of
Ẽ(δ2) can be bounded by applying Proposition 3.3, and in the case q < δ2 ≤
q2 − q the bound follows by Proposition 3.2. For the final case we note by
Proposition 4.5 that δ2 < q3−q2+q+2−(q2−q) = q3−4g+2. Hence, the exact
dimension of Ẽ(δ2) is given by the first part of Proposition 2.3 in this case.

Proposition 5.4:
Let δ1,δ2 ∈ H∗(Q) and q3−2g+2≤ δ1. Further, let δ2 satisfy the conditions of
Proposition 4.3, meaning that C̃(δ2)⊥ ⊆ Ẽ(δ1). Denote their codimension by
ℓ. Then

ℓ≥
a+b
∑︂

s=0

(s+ 1)−max{a, 0} − ⌊δ2 +δ2 ln(δ2)⌋
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where q3 −δ1 = aq+ b(q+ 1) for −q < a < q and 0≤ b < q.

Proof:
The dimension of Ẽ(δ1) is given by the last part of Proposition 2.3. To obtain a
bound on the maximal value of δ2, note that the the minimal value of q3 −δ1
can be written as q2 − q − 2 = q(q − 2) + (q − 2). Proposition 4.7 now implies
δ2 ≤ q. Hence, dim Ẽ(δ2)≥ q3 − ⌊δ2 +δ2 ln(δ2)⌋ by Proposition 3.3.

The application of Theorem 1.1 or 1.2 translates Propositions 5.1–5.4 into
information on improved linear ramp secret sharing schemes and improved
asymmetric quantum codes, respectively. The details are left for the reader.

6 Improved information on nested codes of small codimension

We will now consider a second construction which in general gives nested
code pairs of smaller codimension than the construction in Section 5. This
construction bears some resemblance to the one given in [GGHR18; Sec. IV],
but in the setting of Hermitian codes.

From the definition of the codes, CL(D,λ2Q) ⊊ CL(D,λ1Q) whenever
λ2 < λ1 and both λ1 and λ2 belongs to H∗(Q). Our second construction is
captured by the following two propositions.

Proposition 6.1:
Let λ1 = iq+ j(q+1) ∈ H∗(Q)where i ≤ j < q, and define λ2 = jq+ i(q+1)−1.
Then CL(D,λ2Q) ⊊ CL(D,λ1Q)have codimension ℓ= j−i+1, and their relative
distances satisfy

d
�

CL(D,λ1Q), CL(D,λ2Q)
�

= q3 −λ1 = d(CL(D,λ1Q)), (4.19)

and

d
�

CL(D,λ2Q)⊥, CL(D,λ1Q)⊥
�

= (i + 1)( j + 1)≥ d
�

CL(D,λ2Q)⊥
�

. (4.20)

The inequality in (4.20) is strict if and only if i ̸= 0 and j ̸= q− 1.

Proof:
The codimension of CL(D,λ1Q) and CL(D,λ2Q) is given by the number of
elements ϵ in H∗(Q) with λ2 < ϵ ≤ λ1. By (4.6) H∗(Q) contains every integer
between λ2 and λ1, meaning that the codimension is exactlyλ1−λ2 = j− i+1.

To prove the first equalities in (4.19) and (4.20), we use Proposition 2.1 to
obtain σ(λ1) = q3 − λ1 and µ(λ2) = (i + 1)( j + 1). Applying (4.4) and (4.5)
then implies that the relative distances are at least q3 − λ1 and (i + 1)( j + 1),
respectively. That these are indeed equalities follows from the observations
following Proposition 2.1.

In (4.19) the last equality follows from the last part of Proposition 2.1. For
(4.20) the observations in [Gei03; Rem. 4] imply that (4.3) is in fact an equality.
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Thus, the minimal distance of d
�

CL(D,λ2Q)⊥
�

is given by µ((i + j)(q + 1)) =
i + j + 1 if i + j < q and

µ
�

(i − (q− 1− j))q+ (q− 1)(q+ 1)
�

= q(i + j − q+ 2)

otherwise. In the first case equality with (i+1)( j+1) occurs if and only if i = 0,
and in the second if and only if j = q− 1.

In the above construction we only consider values of i less than q. A similar
technique can be used for q2 − q ≤ i < q2. We state the proposition, but omit
the proof since it follows by similar arguments as above.

Proposition 6.2:
Let λ1 = (q2 − 1− i)q + (q − 1− j)(q + 1) ∈ H∗(Q) where i ≤ j < q, and define
λ2 = (q2 − 1− j)q + (q − 1− i)(q + 1)− 1. Then CL(D,λ2Q) ⊊ CL(D,λ1Q) have
codimension ℓ= j − i + 1, and their relative distances satisfy

d
�

CL(D,λ1Q), CL(D,λ2Q)
�

= (i + 1)( j + 1)≥ d(CL(D,λ1Q)), (4.21)

and

d
�

CL(D,λ2Q)⊥, CL(D,λ1Q)⊥
�

= q3 − iq− j(q+ 1) = d
�

CL(D,λ2Q)⊥
�

.

The inequality in (4.21) is strict if i ̸= 0 and j ̸= q− 1.

By applying one of Theorems 1.1 and 1.2, we can transform Propositions 6.1
and 6.2 into information on improved linear ramp secret sharing schemes
and improved asymmetric quantum codes, respectively. The details of this
translation are left for the reader.

7 Comparison with bounds and existing constructions

Having presented two improved constructions of nested code pairs in
Sections 5 and 6, this section is devoted to the comparison between the
corresponding asymmetric quantum codes and codes that already exist in the
literature. The codes are also compared with the Gilbert-Varshamov bound
for asymmetric quantum codes. Moreover, we compare the corresponding
secret sharing schemes with a recent lower bound on the threshold gap
[CSR19]. When presenting code parameters we give the actual codimension
rather than using the estimates in Section 5 which rely on the bounds in
Propositions 3.2 and 3.3.

Since the codes obtained in Sections 5 and 6 are relatively long compared
to the field size, the literature does not contain many immediately comparable
codes. Yet, one way to obtain such codes is by using Construction II of
La Guardia [LaG12b; Thm. 7.1], which gives asymmetric quantum generalized
Reed-Solomon codes. Adjusting the theorem to codes over Fq2 gives the
following result.
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Theorem 7.1:
Let q be a prime power. There exist asymmetric quantum generalized Reed-
Solomon codes with parameters

[[m1m2, m1(2k−m2 + c),≥ d/≥ d − c]]q2

where 1< k < m2 < 2k+ c ≤ q2m1 and k = m2 − d + 1, and where m2, d > c + 1,
c ≥ 1, and m1 ≥ 1 are integers.

Example 7.2:
By using different values for the parameters in Theorem 7.1, we obtain
asymmetric quantum codes of varying lengths. If the chosen parameters
give a code of length less than q3, we can pad each codeword with zeroes in
order to obtain the correct length. Note that this does not change the relative
distance of the nested codes nor of their duals.

For q = 3 Table 1 lists the best code parameters that can be obtained
in this way together with the comparable codes from the constructions in
Sections 5 and 6. In the third column, the parameter dz is maximized under
the condition that the dimension and the distance dx are at least as high as in
[LaG12b]. In the fourth, the dimension is maximized, keeping at least the same
minimal distances. As is evident, the codes of the present paper perform very
favourably.

We further note that all presented new codes exceed the Gilbert-Varsha-
mov bound for asymmetric quantum codes [Mat17; Thm. 4]. Additionally, we
remark that nesting usual one-point Hermitian codes and using the Goppa
bound does not provide asymmetric quantum codes as good as the ones in
columns three and four. ◀

The two constructions in Theorem 24 and Corollary 29 of [GGHR18] based
on codes defined from Cartesian product point sets provide another way to
obtain asymmetric quantum codes that can be compared to the ones in this
paper. We summarize these constructions in the following two theorems.

Theorem 7.3:
Consider integers m ≥ 2 and s ≤ q where q is a prime power. Given δ1 ∈
{1,2, . . . , sm} define v ∈ {0,1, . . . , m− 1} such that sv ≤ δ ≤ sv+1, and choose an
integerδ2 ≤ ⌊(s−δ1/s

v+1)sm−v+1⌋. Then there exists an asymmetric quantum
code with parameters

[[sm,ℓ,δ1/δ2]]q

where

ℓ≥ sm −
m
∑︂

t=1

1
(t − 1)!

�

δ1

�

ln
�

sm

δ1

��t−1

+δ2

�

ln
�

sm

δ2

��t−1
�

.
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Theorem 7.4:
Consider integers 1 < s ≤ q where q is a prime power, and let m ∈ {0, 1, . . . ,
s− 1}. Then for any ℓ ≤ m+ 1 such that ℓ is even if and only if m is odd, there
exists an asymmetric quantum code with parameters

[[s2,ℓ, dz/dx]]q

where the distances are dz =
1
4

�

2s − (m − ℓ + 1)
��

2s − (m + ℓ − 1)
�

and dx =
1
4 (m− ℓ+ 3)(m+ ℓ+ 1). The two distances may also be interchanged.

Construction of [LaG12b; Thm. 7.1] This paper

(m1, m2, k, c) Code dz maximized ℓmaximized

(2,13, 2,10) [[27, 2,12/2]]9 [[27, 2, 23/2]]9 [[27,12, 12/2]]9
(2,13, 3,8) [[27, 2,11/3]]9 [[27, 2, 18/4]]9 [[27,11, 11/3]]9
(2,13, 4,6) [[27, 2,10/4]]9 [[27, 2, 18/4]]9 [[27,10, 10/4]]9
(2,13, 5,4) [[27, 2, 9/5]]9 [[27, 2, 16/6]]9 [[27, 9, 9/6]]9
(2,13, 6,2) [[27, 2, 8/6]]9 [[27, 2, 16/6]]9 [[27,10, 8/6]]9
(3, 9, 3,4) [[27, 3, 7/3]]9 [[27, 3, 19/3]]9 [[27,15, 7/3]]9
(3, 9, 4,2) [[27, 3, 6/4]]9 [[27, 3, 17/4]]9 [[27,15, 6/4]]9
(2,13, 3,9) [[27, 4,11/2]]9 [[27, 4, 20/2]]9 [[27,13, 11/2]]9
(2,13, 4,7) [[27, 4,10/3]]9 [[27, 4, 18/3]]9 [[27,12, 10/3]]9
(2,13, 5,5) [[27, 4, 9/4]]9 [[27, 4, 16/4]]9 [[27,11, 9/4]]9
(2,13, 6,3) [[27, 4, 8/5]]9 [[27, 4, 14/6]]9 [[27,10, 8/6]]9
(2,13, 7,1) [[27, 4, 7/6]]9 [[27, 4, 14/6]]9 [[27,11, 7/6]]9
(2,13, 4,8) [[27, 6,10/2]]9 [[27, 6, 18/2]]9 [[27,14, 10/2]]9
(2,13, 5,6) [[27, 6, 9/3]]9 [[27, 6, 16/3]]9 [[27,13, 9/3]]9
(2,13, 6,4) [[27, 6, 8/4]]9 [[27, 6, 14/4]]9 [[27,12, 8/4]]9
(2,13, 7,2) [[27, 6, 7/5]]9 [[27, 6, 12/6]]9 [[27,11, 7/6]]9
(2,13, 5,7) [[27, 8, 9/2]]9 [[27, 8, 16/2]]9 [[27,15, 9/2]]9
(2,13, 6,5) [[27, 8, 8/3]]9 [[27, 8, 14/3]]9 [[27,14, 8/3]]9
(2,13, 7,3) [[27, 8, 7/4]]9 [[27, 8, 12/4]]9 [[27,13, 7/4]]9
(2,13, 8,1) [[27, 8, 6/5]]9 [[27, 8, 10/6]]9 [[27,13, 6/6]]9
(2,13, 6,6) [[27, 10, 8/2]]9 [[27,10, 14/2]]9 [[27,16, 8/2]]9
(2,13, 7,4) [[27, 10, 7/3]]9 [[27,10, 12/3]]9 [[27,15, 7/3]]9
(2,13, 8,2) [[27, 10, 6/4]]9 [[27,10, 10/4]]9 [[27,15, 6/4]]9
(2,13, 7,5) [[27, 12, 7/2]]9 [[27,12, 12/2]]9 [[27,17, 7/2]]9
(2,13, 8,3) [[27, 12, 6/3]]9 [[27,12, 10/3]]9 [[27,17, 6/3]]9
(2,13, 9,1) [[27, 12, 5/4]]9 [[27,12, 8/4]]9 [[27,15, 6/4]]9
(2,13, 8,4) [[27, 14, 6/2]]9 [[27,14, 10/2]]9 [[27,19, 6/2]]9
(2,13, 9,2) [[27, 14, 5/3]]9 [[27,14, 8/3]]9 [[27,14, 8/3]]9
(2,13, 9,3) [[27, 16, 5/2]]9 [[27,16, 8/2]]9 [[27,19, 6/2]]9
(2,13, 10,1) [[27, 16, 4/3]]9 [[27,17, 6/3]]9 [[27,19, 4/3]]9
(2,13, 10,2) [[27, 18, 4/2]]9 [[27,19, 6/2]]9 [[27,21, 4/2]]9
(2,13, 11,1) [[27, 20, 3/2]]9 [[27,21, 4/2]]9 [[27,23, 3/2]]9

Table 1. Asymmetric quantum codes of length 27 over F9. The first column states the
parameters used in Theorem 7.1 to obtain the codes in the second. If necessary,
these have been padded with zeroes to obtain length 27. The codes in the third
and fourth columns are based on the construction in Sections 5 and 6.
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Example 7.5:
By using different parameters in Theorems 7.3 and 7.4 and padding with zeroes
if necessary, we obtain the asymmetric quantum codes presented in Table 2.
This table also shows comparable codes from the constructions in Sections 5
and 6 which have either dz or ℓmaximized as in Example 7.2. From the table
it is evident that the codes of the present paper perform very favourably.

Again, we further note that all presented new codes exceed the Gilbert-
Varshamov bound [Mat17; Thm. 4], and that these codes cannot be constructed
using information from the Goppa bound applied to nested one-point
Hermitian codes. ◀

Example 7.6:
A few codes of length 8 over F4 are given in [EJS15]. The construction
in Section 5 can match – but not improve on – the codes [[8,1, 4/3]]4,
[[8,2, 5/2]], [[8, 2,3/3]]4, [[8,3, 4/2]]4, and [[8, 4,3/2]]4. Additionally, [EJS15]
presents a code with parameters [[8, 1,6/2]]4, where we can construct an
[[8,1, 4/3]]4-code instead. All of these codes exceed the quantum Gilbert-
Varshamov bound [Mat17; Thm. 4], and the Goppa bound applied to nested
one-point Hermitian codes cannot provide such parameters.

Some codes over F9 are presented as well. These codes do, however, have
a length that is at least 36. ◀

When presenting constructions of codes, it is customary to compare it to
tables of ‘best known’ linear codes such as [Gra18; SS18]. Unfortunately, similar
tables do not exist for asymmetric quantum codes. As we shall recall in a
moment, however, one can still measure asymmetric quantum codes against
the usual bounds on linear codes.

Before doing so, we observe that the tables in [Gra18] only contains
alphabets up to F9, whereas [SS18] has F256 as its largest alphabet. As indicated
by the following example, however, the latter tables are generally not as
optimized as the ones by [Gra18].

Example 7.7:
In some cases the improved codes Ẽ(δ) exceed the codes given by [SS18]. For
instance, when considering codes over F16, the codes Ẽ(12), Ẽ(9), and Ẽ(8)
with parameters [64,48, 12]16, [64,51, 9]16, and [64, 53,8]16, respectively, all
provide a minimal distance that is one higher than the corresponding code
in the table.

Over F25 the same is true for the codes Ẽ(20), Ẽ(16), and Ẽ(12), which have
parameters [125,97, 20]25, [125,101, 16]25, and [125, 106,12]25. Additionally,
Ẽ(15) has parameters [125, 103,15]25, exceeding the table distance by 2. ◀

Recall from Section 6 that our second construction of nested code pairs

82



II. Papers

(which are code pairs of small codimension) gives impure asymmetric
quantum codes. This is already an advantage as the error-correcting
algorithms can take advantage of the impurity. Another advantage of
considering relative distances rather than only minimal distances emerges
when analysing the error-correcting ability of asymmetric quantum codes.
In order to illustrate this advantage, we can compare nested codes from the
construction in Section 6 with pairs of best known linear codes from the
tables in [Gra18; SS18]. Note that the pairs of best known linear codes from
such tables generally do not result in nested code pairs; that is, they are not
guaranteed to satisfy the requirement that the dual of one code is contained in
the other. The comparison with tables of best known linear codes is done in
the following example. Whenever the tables of [SS18] are considered, we will
use the minimum distance of an improved algebraic geometric Goppa code
from the Hermitian curve if this exceeds the table value as in Example 7.7.

Example 7.8:
Having fixed a code pair C2 ⊂ C1 ⊆ Fn

q of codimension ℓ and d(C1) = δ1, we
consider the greatest value g(ℓ,δ) such that the tables of best known linear
codes ensure the existence of C , C ′ ⊆ Fn

q with dim C − dim C ′ = ℓ, d(C) = δ1,

and d(C ′⊥) ≥ g(ℓ,δ1). This is the same method as used in [GGHR18], and
bears resemblance to the idea in [EJS15; Thm. 2]. Using this procedure it
is in no way guaranteed that C ′ ⊂ C . However, as shown in Table 3 the
construction in Section 6 is in many cases on par with the best known codes,
while simultaneously guaranteeing the inclusion C2 ⊂ C1. In some cases the
use of relative distances will even exceed the values obtained from the best
known codes. As in the previous examples, the codes in Table 3 all exceed the
Gilbert-Varshamov bound for asymmetric quantum codes [Mat17; Thm. 4]. ◀

Turning to secret sharing schemes, [CSR19] presents a lower bound on the
threshold gap r− t . That is, the authors bound the smallest possible difference
between the reconstruction number r and the privacy number t for q-ary
linear ramp secret sharing schemes with n shares and secrets from from Fℓq .
For linear ramp secret sharing schemes over Fq2 , they show that

r ≥ t +
(q2m − 1)(n+ 2) + (q2m+2 − q2m)(ℓ− 2m)

q2m+2 − 1
(4.22)

for every m ∈ {0,1, . . . ,ℓ− 1}. Of course, one should choose the m that gives
the best bound. Comparing the secret sharing schemes obtained in this paper
with the bound (4.22) helps to quantify how optimal the construction is. This
is done in the following example, which also illustrates the advantage of
using the improved codes from Section 5 and the improved information from
Section 6 rather than relying solely on the Goppa bound applied to nested
one-point Hermitian codes.
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Constructions of [GGHR18] This paper

Type (s , m) Code dz maximized ℓmaximized

Thm. 7.4 (5, 2) [[27, 1, 16/4]]9 [[27, 1, 20/4]]9 [[27, 4,16/4]]9
Thm. 7.4 (5, 4) [[27, 1, 9/9]]9 [[27, 1, 13/9]]9 [[27, 5, 9/9]]9
Thm. 7.4 (5, 1) [[27, 2, 20/2]]9 [[27, 2, 23/2]]9 [[27, 4,20/2]]9
Thm. 7.4 (5, 3) [[27, 2, 12/6]]9 [[27, 2, 16/6]]9 [[27, 6,12/6]]9
Thm. 7.4 (5, 2) [[27, 3, 15/3]]9 [[27, 3, 19/3]]9 [[27, 7,15/3]]9
Thm. 7.4 (5, 4) [[27, 3, 8/8]]9 [[27, 3, 12/8]]9 [[27, 7, 8/8]]9
Thm. 7.4 (5, 3) [[27, 4, 10/4]]9 [[27, 4, 16/4]]9 [[27, 10,10/4]]9
Thm. 7.3 (5, 2) [[27, 5, 7/1]]9 [[27, 5, 19/2]]9 [[27, 17, 7/2]]9
Thm. 7.4 (5, 4) [[27, 5, 5/5]]9 [[27, 5, 13/6]]9 [[27, 13, 6/6]]9
Thm. 7.3 (5, 2) [[27, 7, 6/1]]9 [[27, 7, 17/2]]9 [[27, 19, 6/2]]9
Thm. 7.3 (5, 2) [[27, 7, 4/2]]9 [[27, 7, 17/2]]9 [[27, 21, 4/2]]9
Thm. 7.3 (5, 2) [[27, 7, 3/3]]9 [[27, 7, 15/3]]9 [[27, 21, 3/3]]9
Thm. 7.3 (5, 2) [[27, 8, 5/1]]9 [[27, 8, 16/2]]9 [[27,19, 6/2]]9
Thm. 7.3 (5, 2) [[27, 9, 3/2]]9 [[27, 9, 15/2]]9 [[27,23, 3/2]]9
Thm. 7.3 (5, 2) [[27, 10, 4/1]]9 [[27,10, 14/2]]9 [[27,21, 4/2]]9
Thm. 7.3 (5, 2) [[27, 11, 2/2]]9 [[27,11, 13/2]]9 [[27,25, 2/2]]9
Thm. 7.3 (5, 2) [[27, 12, 3/1]]9 [[27,12, 12/2]]9 [[27,23, 3/2]]9
Thm. 7.3 (5, 2) [[27, 14, 2/1]]9 [[27,14, 10/2]]9 [[27,25, 2/2]]9
Thm. 7.3 (5, 2) [[27, 17, 1/1]]9 [[27,17, 7/2]]9 [[27,25, 2/2]]9

Table 2. Asymmetric quantum codes of length 27 over F9. The first column indicates
whether Theorem 7.3 or 7.4 was used in the codes given in the third column.
The second states the parameters used, except for those that can be read off
directly from the code. The codes in the fourth and fifth columns are based
on the construction in Sections 5 and 6.

(i, j) Parameters g (ℓ,δ1)

(2, 2) [[27,1, 13/9]]9 9
(1, 1) [[27,1, 20/4]]9 4
(1, 2) [[27,2, 16/6]]9 6
(0, 1) [[27,2, 23/2]]9 2
(0, 2) [[27,3, 19/3]]9 3

(3, 3) [[64, 1,37/16]]16 16
(2, 2) [[64, 1, 46/ 9]]16 8
(1, 1) [[64, 1,55/ 4]]16 4
(2, 3) [[64, 2,41/12]]16 12∗

(1, 2) [[64, 2,50/ 6]]16 6
(0, 1) [[64, 2,59/ 2]]16 2
(1, 3) [[64, 3,45/ 8]]16 8∗

(0, 2) [[64, 3,54/ 3]]16 3
(0, 3) [[64, 4,49/ 4]]16 5

(i, j) Parameters g (ℓ,δ1)

(4, 4) [[125,1, 81/25]]25 25
(3, 3) [[125, 1, 92/16]]25 14
(2, 2) [[125,1, 103/ 9]]25 –
(1, 1) [[125,1, 114/ 4]]25 –
(3, 4) [[125, 2, 86/20]]25 19
(2, 3) [[125, 2, 97/12]]25 10
(1, 2) [[125,2, 108/ 6]]25 –
(0, 1) [[125,2, 119/ 2]]25 –
(2, 4) [[125, 3, 91/15]]25 13
(1, 3) [[125,3, 102/ 8]]25 –
(0, 2) [[125,3, 113/ 3]]25 –
(1, 4) [[125,4, 96/10]]25 10
(0, 3) [[125,4, 107/ 4]]25 –
(0, 4) [[125,5, 101/ 5]]25 6

Table 3. Comparing the asymmetric quantum codes from Section 6 with the best
known codes. For q = 3 [Gra18] is used, and for the remaining values of q,
[SS18] is used. The codes marked in bold exceed g(ℓ,δ1), and the values of
g(ℓ,δ1) marked with an asterisk stem from the improvements in Example
7.7. A dash indicates that the tables do not contain enough information to
determine g(ℓ,δ1).
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Example 7.9:
In each of the plots in Figures 1 and 2 on pages 90 and 91, respectively, a desired
privacy number t has been fixed. For each codimension the plots then show
the minimal reconstruction number r achievable with the constructions from
Sections 5 and 6 when privacy number at least t is required. The plots also
show the lower bound in (4.22).

Recall that the codes under consideration have length q3, meaning that
the four corresponding secret sharing schemes support 27, 64, 125, and 343
participants, respectively. As the plots demonstrate, the constructions of this
paper provide secret sharing schemes with parameters that could not be
obtained by using nested Hermitian one-point codes and the Goppa bound
alone.

We remark that the four given examples use a relatively large privacy
parameter t . Yet, it is also possible to obtain improved reconstruction
numbers for small values of t . ◀

8 Concluding remarks

In this paper we presented two improved constructions of nested code
pairs from the Hermitian curve, and gave a detailed analysis of their
performance when applied to the concepts of secret sharing and asymmetric
quantum codes. Regarding information leakage in secret sharing we
studied the reconstruction number r and the privacy number t , which give
information on full recovery and full privacy, respectively. We note that it is
possible to obtain information about partial information leakage by studying
relative generalized Hamming weights rather than just relative minimum
distances [Gei+14; KUM12]. For asymmetric quantum codes we applied the
CSS construction. Applying the method of Steane’s enlargements [Ste99] is a
future research agenda.
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Appendix A Additional results on σ and µ

In this section we state a number of lemmas that are needed in Sections 3 and
4. The lemmas all follow as corollaries to Proposition 2.1. To aid the reader in
understanding them more easily, we first give an example for reference.

Example A.1:
In Table 4 we list H∗(Q), σ(H∗(Q)), and µ(H∗(Q)) for the Hermitian function
field over F16, i.e. for q = 4. Entries are ordered according to (i, j) where
λ= iq+ j(q+ 1).

87

https://doi.org/10.1142/S0219749912500050
https://doi.org/10.1142/S0219749912500050
https://doi.org/10.1007/s11128-011-0269-3
https://doi.org/10.1007/s11128-017-1748-y
https://doi.org/10.1007/s11128-017-1748-y
https://doi.org/10.1098/rspa.2008.0439
https://doi.org/10.1103/PhysRevA.54.4741
https://doi.org/10.1109/18.796388
https://doi.org/10.1109/18.21267
https://doi.org/10.1109/TIT.2010.2046221
https://doi.org/10.1109/TIT.2010.2046221
https://doi.org/10.1007/BFb0087995


Paper C

15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75
10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70
5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

49 45 41 37 33 29 25 21 17 13 9 5 4 3 2 1
54 50 46 42 38 34 30 26 22 18 14 10 8 6 4 2
59 55 51 47 43 39 35 31 27 23 19 15 12 9 6 3
64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
3 6 9 12 15 19 23 27 31 35 39 43 47 51 55 59
2 4 6 8 10 14 18 22 26 30 34 38 42 46 50 54
1 2 3 4 5 9 13 17 21 25 29 33 37 41 45 49

Table 4. Upper table: H∗(Q). Middle table: σ(H∗(Q)). Lower table: µ(H∗(Q))

The first lemma explains when (4.2) equals the Goppa bound and when it is
sharper.

Lemma A.2:
For all λ = iq + j(q + 1) ∈ H∗(Q) it holds that σ(λ) ≥ n− λ where n = q3. The
inequality is strict if and only if q2 − q ≤ i < q2 and 1≤ j < q}.

The next five lemmas give information on the relation between the values
σ(iq+ j(q+1)) andσ(i′q+ j′(q+1)) for different constellations of i, j, i′, j′. Using
the translation from σ to µ as given in Proposition 2.1, this simultaneously
implies relations on µ.

Lemma A.3:
For 0 < i ≤ q2 − q − 1 and 0 ≤ j < q − 1 it holds that σ(iq + j(q + 1)) =
σ((i − 1)q + ( j + 1)(q + 1)) + 1. Furthermore, for 0 ≤ i ≤ q2 − q − 1 it holds
that σ(iq+ (q− 1)(q+ 1)) = σ((i + q)q) + 1.

Lemma A.4:
The sequence

�

σ(0·q),σ(q), . . . ,σ((q2 − 1)q),σ((q2 − 1)q+ (q+ 1)),

σ((q2 − 1)q+ 2(q+ 1)), . . . ,σ((q2 − 1)q+ (q− 1)(q+ 1))
�

is strictly decreasing.

Lemma A.5:
We haveσ((q2−q+s)q+ t(q+1)) = σ((q2−q+ t)q+s(q+1)) for 0≤ s, t < q−1.
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Lemma A.6:
Given q2 − q ≤ i ≤ q2 − 1 then for non-negative s such that q2 − q ≤ i − s we
have σ((i − s)q + s(q + 1)) ≥ σ(iq). Similarly, given 0 ≤ j ≤ q2 − 1 then for
non-negative s such that j+ s ≤ q−1 we have σ((q2−1− s)q+( j+ s)(q+1))≥
σ((q2 − 1)q+ j(q+ 1)).

Lemma A.7:
If σ(iq+ j(q+ 1))≤ q then q2 − q ≤ i < q2.

Finally, we present a lemma on the relation between σ(λ) and µ(λ) for λ
belonging to a certain window.

Lemma A.8:
For λ= iq+ j(q+ 1) ∈ H∗(Q)with q ≤ i < q2 − q and j arbitrary; or q2 − q < i ≤
q2−1 and j = 0; or 0≤ i < q and j = q−1, we haveµ(λ)+σ(λ) = q3−(q2−q−1).
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Figure 1. The minimal achievable reconstruction number r given a desired privacy
number t . The plots show the constructions from Sections 5 and 6, a
construction using the Goppa bound only, and the lower bound from (4.22).
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Figure 2. The minimal achievable reconstruction number r given a desired privacy
number t . The plots show the constructions from Sections 5 and 6, a
construction using the Goppa bound only, and the lower bound from (4.22).
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Abstract

In this paper, we study the construction of quantum codes by applying
Steane-enlargement to codes from the Hermitian function field. We cover
Steane-enlargement of both usual one-point Hermitian codes and of order
bound improved Hermitian codes. In particular, the paper contains two
constructions of quantum codes whose parameters are described by explicit
formulae, and we show that these codes compare favourably to existing,
comparable constructions in the literature. Furthermore, a number of the
new codes meet or even exceed the quantum Gilbert-Varshamov bound.

1 Introduction

The prospect of quantum computers potentially surpassing the computa-
tional abilities of classical computers has spawned much interest in studying
and building large-scale quantum computers. Since such quantum systems
would be very susceptible to disturbances from the environment and to im-
perfections in the quantum gates acting on the system, the implementation of
a working quantum computer requires some form of error-correction. This
has led to the study of quantum error-correcting codes, and although such
codes are conceptually similar to their classical brethren, their construction
calls for different techniques. Nevertheless, results have been found that link
classical codes to quantum ones, suggesting that good quantum codes may
be found by considering good classical codes.

A well-known class of algebraic geometric codes is the one-point codes
from the Hermitian function field. For these one-point Hermitian codes, one
of the simplest bounds on the minimal distance is the Goppa bound. For
codes of sufficiently large dimension, however, the Goppa bound does not
give the true minimal distance, and the order bound for dual codes [DP10;
HLP98] and for primary codes [AG08; Gei03; GMRT11] give more information
on the minimal distance of the codes. These improved bounds also give rise
to a family of improved codes with designed minimal distances, and we shall
refer to such codes as order bound improved codes.

The construction of quantum codes from one-point Hermitian codes
has already been considered in [SK06], and from order bound improved
Hermitian codes in [CG18]. Neither of these works, however, explore the
potential benefit from applying Steane-enlargement to the codes under
consideration. Thus, this paper will address this question, and describe the
quantum codes that can be obtained in this manner.

The work is structured as follows. Section 2 contains the preliminary
theory on quantum codes and order bound improved Hermitian codes that
will be necessary in the subsequent sections. Afterwards, Section 3 covers
the results of applying Steane-enlargement to one-point Hermitian codes
and order bound improved Hermitian codes. The parameters of the resulting
codes are then compared to codes already in the literature and to the quantum
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Gilbert-Varshamov bound in Section 4. Section 5 contains the concluding
remarks.

2 Preliminaries

In this section, we shall reiterate the necessary definitions and results
regarding both quantum error-correcting codes and order bound improved
Hermitian codes. For both of these, we will be relying on nested pairs of
classical codes, and on the relative distance of such pairs. Thus, recall that for
classical, linear codes C2 ⊊ C1, we define the relative distance of the pair as

d(C1,C2) =min{wH(c) | c ∈ C1 \ C2},

where wH denotes the Hamming weight.

Quantum codes
A k-dimensional quantum code of length n over Fq is a qk-dimensional
subspace of the Hilbert space Cqn

. This space is subject to phase-shift errors,
bit-flip errors, and combinations thereof. For a quantum code, we define its
two minimal distances dz and dx as the maximal integers such that the code
allows simultaneous detection of any dz − 1 phase-shift errors and any dx − 1
bit-flip errors. When such a code has length n and dimension k, we refer to
it as an [[n, k, dz/dx]]q-quantum code.

The literature contains many works based on the assumption that it is not
necessary to distinguish between the two types of errors. Thus, the quantum
code is only associated with a single minimal distance. That is, we say that
its minimal distance is d =min{dz , dx}, and the notation for the parameters is
presented slightly more compactly as [[n, k, d]]q . In this case, we refer to the
quantum code as being symmetric, and in the previous case we refer to it as
being asymmetric.

One of the commonly used constructions of quantum codes was provided
by Calderbank, Shor, and Steane [CS96; Ste96] and relies on a dual-containing,
classical error-correcting code in order to obtain a quantum stabilizer code.
That is, it relies on a classical code C which contains its Euclidean dual C⊥.
It was later shown that the dual-containing code can be replaced by a pair
of nested codes, giving asymmetric quantum codes. This generalized CSS-
construction is captured in the following theorem found in [SKR09].

Theorem 2.1:
Given Fq-linear codes C2 ⊊ C1 of length n and codimension ℓ, the CSS-
construction ensures the existence of an asymmetric quantum code with
parameters

[[n,ℓ, dz/dx]]q

where dz = d(C1,C2) and dx = d(C⊥2 ,C⊥1 ).
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Corollary 2.2:
If the [n, k, d] linear code C ⊆ Fn

q is dual-containing, then a

[[n, 2k− n, d]]q

symmetric quantum code exists.

When the CSS-construction is applied to a dual-containing binary linear
code as in Corollary 2.2, Steane [Ste99] proposed a procedure whereby the
dimension of the resulting quantum code may be increased. In the best case,
this can be done with little or no decrease in the minimal distance of the
quantum code. This procedure – eponymously named Steane-enlargement
in the literature – has later been generalized to q-ary codes as well [Ham08;
LLX10].

Theorem 2.3:
Consider a linear [n, k] code C ⊆ Fn

q that contains its Euclidean dual C⊥. If C′ is
an [n, k′] code such that C ⊊ C′ and k′ ≥ k+ 2, then an

��

n, k+ k′ − n,≥min
�

d,
�

(1+ 1
q )d

′
�	

��

q

quantum code exists with d = d(C,C′⊥) and d ′ = d(C′,C′⊥).

When presenting the parameters of a Steane-enlarged code in propositions
of this paper, we will often state the dimension in the form 2k−n+(k′− k). In
this way, we highlight the dimension increase since 2k − n is the dimension
of the non-enlarged quantum code.

Order bound improved Hermitian codes
We first recall a number of definitions regarding the Hermitian function field.
For more details, the reader is referred to [Sti09]. The Hermitian function field
H overFq2 is the function field Fq2(X , Y ) defined by the equation X q+1 = Y q+Y .
It is well-known that H has q3 + 1 rational places, which we will denote by
P1, P2, . . . , Pq3 ,Q where Q is the unique common pole of X and Y . A divisor of a
function field is a formal sum of places, and for the purpose of coding theory
the divisor D = P1 + P2 + · · ·+ Pn where n= q3 is commonly used.

For any integer λ, the Riemann-Roch space L(λQ) = { f ∈ H | ( f ) ≥
−λQ} ∪ {0} contains – in addition to zero – all the elements of H that have
pole order at most λ in Q and no other poles. Here, ( f ) is the principal divisor
of f . The one-point algebraic geometric code associated with the divisors D
and λQ is then

CL(D,λQ) = {( f (P1), f (P2), . . . , f (Pn)) | f ∈ L(λQ)},
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where f (Pi) denotes the residue class map. Since the support of D contains
only rational places and none of these are Q, it may be shown that CL(D,λQ) ⊆
Fn

q2 and that it is indeed a linear code.
The codes defined below rely heavily on the Weierstraß semigroup of Q.

We denote this by H(Q), and it contains the non-negative integers λ such that
−νQ( f ) = λ for some f ∈

⋃︁∞
i=0 L(iQ). As in [CG18; GMRT11], we consider a

special subset of H(Q), namely

H∗(Q) = {λ ∈ H(Q) | CL(D,λQ) ̸= CL(D, (λ− 1)Q)}.

It may be shown that in fact

H∗(Q) = {iq+ j(q+ 1) | 0≤ i < q2, 0≤ j < q}. (4.1)

Now, fix an element fλ ∈ L(λQ) \L((λ− 1)Q) for each λ ∈ H∗(Q), and define
the map σ : H∗(Q)→ N given by

σ(iq+ j(q+ 1)) =

¨

q3 − iq− j(q+ 1) if 0≤ i < q2 − q
(q2 − i)(q− j) if q2 − q ≤ i < q2 . (4.2)

This map is the order bound for primary Hermitian codes, and it provides
a lower bound on the weight of codewords. In particular, any codeword in
CL(D,λQ) \ CL(D, (λ − 1)Q) has weight at least σ(λ). Thus, by strategically
picking out only those codewords that are guaranteed to have a certain
designed distance, it is possible to construct an improved primary code

Ẽ(δ) = SpanFq2
{( fλ(P1), fλ(P2), . . . , fλ(Pn)) | σ(λ)≥ δ}.

Furthermore, it was shown in [CG18] as a special case of [Gei03] that Ẽ(δ) has
minimal distance exactly δ whenever δ ∈ σ(H∗(Q)).

For the order bound to produce an improved code, the designed distance
must be sufficiently small. Otherwise, the code Ẽ(δ) simply corresponds to
one of the usual one-point Hermitian codes. This correspondence is given in
the following result from [CG18; Cor. 4].

Lemma 2.4:
For δ > q2 − q we have Ẽ(δ) = CL(D, (q3 − δ)Q), but CL(D, (q3 − (q2 − q))Q) is
strictly contained in Ẽ(q2 − q).

For δ ≤ q2 − q, the work [CG18] contains a lower bound on the dimension
of Ẽ(δ). In Proposition 2.6 below, we give an explicit formula describing
the dimension in this case. This formula relies on the number of (number
theoretic) divisors of a certain type, as specified in the following definition.

Definition 2.5:
For n ∈ Z+, we let τ(q)(n) denote the number of divisors d of n such that
0≤ d ≤ q and n/d ≤ q.
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From the definition it should be clear that τ(q)(n) can be computed in O(q)
operations.

Proposition 2.6:
Let 1≤ δ ≤ q2, and write δ− 1= aq+ b for 0≤ b < q. Then

dim(Ẽ(δ)) = q3 − q2 −
a(a− 1)

2
−min{a, b}+

q2
∑︂

i=δ

τ(q)(i).

Proof:
We give the proof by partitioning H∗(Q) in three disjoint sets:

Λ1 = {iq+ j(q+ 1) ∈ H∗(Q) | i + j < q2 − q, 0≤ i < q2 − q, 0≤ j < q}

Λ2 = {iq+ j(q+ 1) ∈ H∗(Q) | i + j ≥ q2 − q, 0≤ i < q2 − q, 0≤ j < q}

Λ3 = {iq+ j(q+ 1) ∈ H∗(Q) | q2 − q ≤ i < q2, 0≤ j < q}.

We first determine the cardinality of Λ2. Considering some iq+ j(q+ 1) ∈ Λ2,
and writing i = q2 − q− k, there are q− k possible values of j. There are q− 1
such integers k since q2 − 2q + 1 ≤ i < q2 − q within the set Λ2. This implies
that

|Λ2|=
q−1
∑︂

k=1

(q− k) =
q(q− 1)

2
= g,

where g is the genus of the Hermitian function field. From this, it is also seen
that |Λ1|= q3 − q2 − |Λ2|= q3 − q2 − g .

All elements λ of Λ1 satisfy σ(λ) = q3 − λ. The largest element λ′ in Λ1 is
given by λ′ = (q2 − 2q)q + (q − 1)(q + 1), which has σ(λ′) = q2 + 1. Thus, all
elements of Λ1 have σ(λ)≥ δ, meaning that Λ1 contributes |Λ1|= q3 − q2 − g
to the dimension of Ẽ(δ).

In order to determine the number of elements in Λ2 that satisfyσ(λ)≥ δ,
we compute |Λ2| − |{λ ∈ Λ2 | σ(λ) < δ}|. As was the case for Λ1, all elements
of Λ2 have σ(λ) = q3 −λ. From this it follows that

σ(Λ2) = {q+1, 2q+1, 2q+2, 3q+1, 3q+2, 3q+3, 4q+1, . . . , (q−1)q+(q−1)}.

Combining this with the assumption that δ− 1= aq+ b, where both a and b
are non-negative, the number of elements in σ(Λ2) smaller than δ is exactly

a−1
∑︂

i=1

i +min{a, b}=
a(a− 1)

2
+min{a, b}.

Because the total number of elements is |Λ2| = g , the set Λ2 contributes
g − a(a− 1)/2−min{a, b} to the dimension.

Finally, consider σ(Λ3) = {σ(λ) | λ ∈ Λ3} as a multiset. We will count
(with multiplicity) the number of elements s ∈ σ(Λ3) with s ≥ δ. Observe
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that σ(λ) = (q2 − i)(q − j) for all the elements λ = iq + j(q + 1) ∈ Λ3. Hence,
s ∈ σ(Λ3), if and only if s = d · s

d where d ≤ q and s
d ≤ q. Since there are τ(q)(s)

such divisors d , it follows that the multiplicity of s in σ(Λ3) is given by τ(q)(s).
Subsequently, the number of elements satisfying s ≥ δ is

q2
∑︂

s=δ

τ(q)(s).

By summing the contribution from each of the sets Λ1, Λ2, and Λ3, we obtain
the dimension as claimed.

We note that the dimension formula in Proposition 2.6 does not provide an
efficient method for computing the dimension of the code Ẽ(δ). Since the
set Λ3 defined in the proof has q2 elements, we can loop over all of these
and compute the σ-value of each in Θ(q2) operations, thus determining the
dimension of Ẽ(δ). Using the formula in Proposition 2.6, however, requires
the computation of τ(q)(s) for up to q2 values of s. This gives a total complexity
of O(q3) operations. The formula in Proposition 2.6 does, however, provide
an advantage when we are not interested in a dimension, but rather certain
codimensions as will be the case in Section 3. Here, we will only need to
compute τ(q) for m values, where m is a small integer; typically m= 1 or m= 2.

If only a lower bound for the dimension is needed, Lemma 6 of [CG18]
implies that the sum in Proposition 2.6 can be bounded below by q2 − ⌊δ +
δ ln(q2/δ)⌋ for q ≤ δ < q2 and by q2 − ⌊δ+δ ln(δ)⌋ for δ < q.

3 Steane-enlargement of Hermitian codes

In order to apply Steane-enlargement to the codes defined in Section 2, we
now determine a necessary and sufficient condition for Ẽ(δ) to be dual-
containing. While this is possible to do by considering the improved codes
directly, it is easier to prove via a condition for the usual one-point Hermitian
codes to be dual-containing. The latter is well-known, and the following result
was given in [Tie87], and can also be found in [Sti09; Prop. 8.3.2].

Proposition 3.1:
The code CL(D, (q3 −δ)Q) is dual-containing, if and only if

δ ≤
�

1
2
(q3 − q2 + q)
�

+ 1. (4.3)

Corollary 3.2:
The code Ẽ(δ) is dual-containing, if and only if δ satisfies (4.3).
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Proof:
For δ > q2 − q, Lemma 2.4 ensures that Ẽ(δ) = CL(D, (q3 −δ)Q), and the result
follows from Proposition 3.1. For smaller values of δ, the result follows from
the observation that Ẽ(q2 − q+ 1) ⊊ Ẽ(δ).

In Theorem 2.3, the relative distances d(C,C′⊥) and d(C′,C′⊥) of the code pairs
are used to determine the distance of the resulting quantum code. In the case
of one-point Hermitian codes and order bound improved Hermitian codes,
however, these specific relative distances coincide with the corresponding
non-relative distances. To see this, consider two codes C and C′ that are
either of the form CL(D,λQ) or Ẽ(δ). In order to apply Theorem 2.3, we
must require C⊥ ⊊ C ⊊ C′, and we claim that this implies d(C,C′⊥) = d(C)
and d(C′,C′⊥) = d(C′). Indeed, since C is dual-containing, Proposition 3.1 and
Corollary 3.2 ensure that it contains the smallest dual-containing Hermitian
code. That is, CL(D, (q3 − δmax)Q) ⊆ C where δmax =

�

1
2 (q

3 − q2 + q)
�

+ 1
as in (4.3). This observation combined with C ⊊ C′ implies the inclusion
C′⊥ ⊊ CL(D, (q3−δmax)Q), which in turn gives C′⊥ ⊆ CL(D, (q3−δmax−1)Q). Thus,
every codeword of C′⊥ has Hamming weight at least d(CL(D, (q3−δmax−1)Q)) =
δmax + 1. This exceeds both d(C) and d(C′), and our claim on the relative
distances follows. For this reason, we only need to consider the non-relative
distances in the proofs below.

In the following proposition, we explore the Steane-enlargement from
Theorem 2.3 applied to the usual one-point Hermitian codes. That is, we show
by how much the dimension of the symmetric quantum error correcting code
can be increased without decreasing its minimal distance. Before giving the
result itself, we state the following lemma, which follows from [YK92].

Lemma 3.3:
Let g = q(q − 1)/2 be the genus of the Hermitian function field. If λ ∈ N
satisfies 2g ≤ λ < q3, then λ ∈ H∗(Q).

Proposition 3.4:
Assume that δ satisfies (4.3), and additionally that δ ≥ q2 + 3. If k denotes
the dimension of CL(D, (q3 − δ)Q), then there exists a quantum code with
parameters

��

q3, 2k− q3 +
�

δ−1
q2+1

�

,≥ δ
��

q2
. (4.4)

Proof:
According to Proposition 3.1, the code CL(D, (q3 − δ)Q) is dual-containing.
Letting δ′ = δ − ⌈(δ − 1)/(q2 + 1)⌉, it is also seen that CL(D, (q3 − δ)Q) ⊆
CL(D, (q3 − δ′)Q). Lemma 3.3 ensures that the ⌈(δ − 1)/(q2 + 1)⌉ integers
δ − 1,δ − 2, . . . ,δ′ are all included in H∗(Q), meaning that the dimension of
CL(D, (q3−δ′)Q) is k+⌈(δ−1)/(q2+1)⌉ ≥ k+2. Thus, we can apply Theorem 2.3
to obtain a quantum code over Fq2 of length and dimension as in (4.4). This
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code has minimal distance at least δ since
�

1+
1
q2

�

δ′ >

�

1+
1
q2

��

δ−
δ− 1
q2 + 1

− 1
�

= δ− 1,

and since Lemma 2.4 ensures that d
�

CL(D, (q3 −δ)Q)
�

= d(Ẽ(δ)) = δ.

We now turn our attention to the order bound improved codes, and begin by
considering the case where both codes can be described as improved codes.

Proposition 3.5:
Assume that δ ∈ σ(H∗(Q)), and that 2 ≤ δ ≤ q2. Let k denote the dimension
of Ẽ(δ), and choose an m ∈ {1, 2, . . . ,δ − 1}. Write δ − 1 = aq + b and
δ−m− 1= a′q+ b′ such that 0≤ b, b′ < q, and define

K =min{a, b} −min{a′, b′}+
a(a− 1)− a′(a′ − 1)

2
+

m
∑︂

i=1

τ(q)(δ− i). (4.5)

If K ≥ 2, then there exists a [[q3, 2k− q3 + K ,≥ δ−m+ 1]]q2 quantum code.

Proof:
Consider any m such that 1≤ m< δ, and defineδ′ = δ−m. By Corollary 3.2, the
code Ẽ(δ) is dual-containing. Furthermore, Ẽ(δ) ⊆ Ẽ(δ′), and Proposition 2.6
implies that the dimension difference is dim(Ẽ(δ′))− dim(Ẽ(δ)) = K . Thus, if
K ≥ 2, we can apply Theorem 2.3 to obtain a quantum code, whose dimension
is 2k− q3 + K . To determine its minimal distance, we see that

¡�

1+
1
q2

�

δ′
¤

=
¡

(δ−m) +
δ−m

q2

¤

= δ−m+ 1.

The result follows from the fact that min{δ,δ−m+ 1}= δ−m+ 1.

To fully describe the quantum codes that can be constructed using the order
bound improved codes, it is also necessary to consider the case where
an ordinary one-point Hermitian code is enlarged to an improved code.
Otherwise, we would neglect certain cases where the order bound improved
codes are in some sense ‘too good’ to be used for enlargement as shown in
the following example.

Example 3.6:
Consider the code pair CL(D, 52Q) ⊊ CL(D, 54Q) over F16. These codes have
codimension 2, and CL(D, 52Q) is dual-containing, meaning that we can apply
Theorem 2.3 to obtain a quantum code of dimension 2 · 47− 64+ 2= 32 and
minimal distance d = min{12, (1 + 1/16) · 10} = 11. Using improved codes
only, it is not possible to obtain as good parameters. The reason for this is
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that the codimension between Ẽ(12) and Ẽ(10) is only 1. In fact, we have the
inclusions

CL(D, 52Q) ⊊ Ẽ(12) ⊊ Ẽ(10) = CL(D, 54Q).

Thus, if we restrict ourselves to improved codes only, we need to either start
from a code smaller than Ẽ(12) or enlarge to a code larger than Ẽ(10). But
neither option gives as good parameters as applying Steane-enlargement to
CL(D, 52Q) ⊊ Ẽ(10). ◀

Despite the above observations, we shall refrain from stating the resulting
parameters in a separate proposition since it would essentially say no more
than Theorem 2.3. That is, such enlargements are generally not well-behaved
enough to give meaningful formulae for their codimensions and minimal
distances apart from the obvious ones, which already appear in Theorem 2.3.

To conclude this section, we give a few examples over F16 to illustrate the
constructions presented in this section.

Example 3.7:
Let q = 4, δ = 20, and consider the code CL(D, (q3 − δ)Q) = CL(D, 44Q). As in
Proposition 3.4 we set δ′ = 20− ⌈19/17⌉ = 18, and apply Theorem 2.3 to the
pair CL(D, 44Q) ⊊ CL(D, 46Q). This yields a quantum code with parameters
[[64,16, 20]]16. Had we instead applied Corollary 2.2 directly to CL(D, 44Q),
the resulting parameters would be [[64, 14,20]]16. ◀

Example 3.8:
The order bound improved code Ẽ(5) is dual-containing by Corollary 3.2,
and has parameters [64,56, 5]16. This code is contained in Ẽ(4), which
is a [64, 59,4]16-code. By applying the Steane-enlargement-technique,
Theorem 2.3, we obtain a quantum code of length 64, dimension 2 ·56−64+3,
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Figure 1. Graphical representation of the inclusions Ẽ(5) ⊊ Ẽ(4) over F16 from
Example 3.8. Additional explanation may be found within the example.
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and a minimal distance of at least

min
§

5,
¡�

1+
1

16

�

4
¤ª

= 5.

That is, we can construct a [[64,51, 5]]16-quantum code. If only one-point
Hermitian codes are used, the best quantum code of dimension 51 has
parameters [[64,51, 4]]16 stemming from CL(D, 60Q) ⊊ CL(D, 66Q).

A graphical representation of the code inclusions can be found in Figure 1.
Here, the top grid shows H∗(Q) arranged according to indices i and j as in (4.1).
The bottom grid shows the same arrangement, but with the map σ from (4.2)
applied to each element.

The different shaded regions indicate the basis vectors of the codes
Ẽ(5), and Ẽ(4) used above. The code Ẽ(5) is spanned by the codewords
( fλ(P1), fλ(P2), . . . , fλ(Pn)) with σ(λ) ≥ 5. The elements λ ∈ H(Q)∗ satisfying
this are exactly those in the lightly shaded regions. The elements in the darkly
shaded region contains those λ ∈ H∗(Q) for which σ(λ) = 4, meaning that
the corresponding codewords ( fλ(P1), fλ(P2), . . . , fλ(Pn)) are in Ẽ(4), but not
in Ẽ(5). ◀

4 Comparison with existing constructions

We will now compare the Steane-enlarged quantum codes from Section 3
to some of those already in the literature. In order to conserve space,
the examples presented in this section will primarily be those where the
constructions of the present paper improve upon existing constructions. This
is not meant to imply that such improvements can always be expected –
the cited works also contain specific examples of quantum codes whose
parameters exceed what can be obtained using the results in Section 3.

For each code presented here, its parameters will also be compared to the
Gilbert-Varshamov bound from [FM04].

Theorem 4.1:
Let n > k ≥ 2 with n ≡ k (mod 2), and let d ≥ 2. Then there exists a pure
stabilizer quantum code [[n, k, d]]q if the inequality

d−1
∑︂

i=1

(q2 − 1)i
�

n
i

�

< qn−k+2 − 1 (4.6)

is satisfied.

We will follow the same convention as [MTT16] and write [[n, k, d]]‡q if the
parameters (n, k, d) do not satisfy (4.6). That is, the ‡ indicates that the
code parameters exceed those that are guaranteed by the Gilbert-Varshamov
bound. If (4.6) instead holds for (n, k, d), but not for (n, k, d + 1), we will
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denote the parameters of the code by [[n, k, d]]†q . As stated in Theorem 4.1,
these comparisons are only possible for n≡ k (mod 2). For code parameters
(n, k, d) with n ̸≡ k (mod 2) we shall use the same notation, but applied to
(n, k − 1, d). We note that [JX11; Cor. 4.3] is another Gilbert-Varshamov-type
bound that allows n ̸≡ k (mod 2), but for the codes presented in the following,
Theorem 4.1 is stronger than [JX11; Cor. 4.3]. Therefore, only Theorem 4.1 will
be used.

Example 4.2:
Comparing the codes found in Example 3.7 to Theorem 4.1, we obtain

[[64,16, 20]]‡16 and [[64,14, 20]]†16. Thus, the Steane-enlarged code exceeds
the Gilbert-Varshamov bound, whereas the CSS-code only meets the bound.

Neither of the two codes presented in Example 3.8 meet or exceed the
bound of Theorem 4.1. ◀

In the two following examples, we will focus on comparison of quantum
codes derived from the Hermitian function field. Specifically, we will
compare the Steane-enlarged codes from Section 3 with the CSS-codes
considered in [CG18].

Example 4.3:
For the order bound improved Hermitian codes from Section 3, we give in
Table 1 a number of examples where the Steane-enlargement in Proposi-
tion 2.6 yields better parameters than those achievable in [CG18]. In all of
these examples, the construction of [CG18] gives an asymmetric quantum
code where dz − dx = 1. By using the Steane-enlargement technique, the min-
imal distance dx can be increased by one, yielding a symmetric quantum code
of the same dimension. That is, Steane-enlargement yields a code of para-
meters [[n, k, d]]q2 , where the construction of [CG18] yields [[n, k, d/(d−1)]]q2 .
Had we not applied Steane-enlargement in these cases, we would have to
resort to the lower of the minimal distances when considering symmetric
codes.

All the codes given in Table 1 retain their original minimal distance during
enlargement, and the columns marked Dim. increase indicate the increase
in dimension when applying Theorem 2.3 rather than Corollary 2.2. ◀

Example 4.4:
To exemplify the advantage of using the order bound improved codes and
the Steane-enlargement technique, Table 2 shows a number of possible
quantum code parameters overF16 when using different constructions based
on the Hermitian function field. The codes in the first two columns stem
from the CSS-construction applied to the usual one-point Hermitian codes,
when bounding the distance by either the Goppa bound or the order bound.
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Code Dim. increase

[[ 8, 4, 3]]‡4 2
[[ 27, 23, 3]]‡9 2
[[ 27, 19, 4]]†9 2
[[ 27, 11, 7]]†9 2
[[ 64, 60, 3]]‡16 2
[[ 64, 56, 4]]†16 2
[[ 64, 51, 5]]16 3
[[ 64, 40, 9]]†16 2
[[ 64, 36, 10]]16 2
[[ 64, 30, 13]]†16 2
[[125,121, 3]]‡25 2
[[125,117, 4]]†25 2
[[125,112, 5]]25 3
[[125,107, 6]]25 2
[[125, 97, 9]]25 2
[[125, 91, 11]]25 2
[[125, 79, 16]]25 2
[[125, 75, 17]]25 2

Code Dim. increase

[[125, 67, 21]]25 2
[[343,339, 3]]‡49 2
[[343,335, 4]]‡49 2
[[343,330, 5]]†49 3
[[343,325, 6]]49 2
[[343,319, 7]]49 4
[[343,313, 8]]49 2
[[343,308, 9]]49 3
[[343,289, 15]]49 2
[[343,284, 16]]49 3
[[343,271, 21]]49 2
[[343,267, 22]]49 2
[[343,258, 25]]49 3
[[343,251, 29]]49 2
[[343,244, 31]]49 3
[[343,235, 36]]49 2
[[343,231, 37]]49 2
[[343,219, 43]]49 2

Table 1. Comparison between nearly symmetric codes obtained via the procedure in
Section 5 of [CG18] and the Steane enlarged codes from this paper. Further
details are given in Example 4.3.

The third and fourth columns show the possible quantum code parameters
when using order bound improved codes. In the third column, only the CSS-
construction is used, and in the fourth Steane-enlargement is applied. Codes
marked with ∗ have better parameters than all preceding codes in the same
row.

As is evident from the table, the use of the order bound gives more
knowledge on the minimal distance in column two, but also provides even
better parameters when applying Steane-enlargement to the order bound
improved codes. ◀

A different way to produce codes over F9 of length 27 is to consider codes
from a Cartesian product of size 3·9= 27, e.g. F3×F9, as described in [GGHR18].
In the next example, we consider two such Cartesian products and show how
the resulting quantum code parameters compare against those of the Steane-
enlarged codes from Section 3.

Example 4.5:
If we apply Theorem 2.3 to Ẽ(7) ⊊ Ẽ(6), we obtain a quantum code

with parameters [[27, 11,7]]†9. Had we instead used the CSS-construction,

Theorem 2.1, the best parameters would be [[27,9, 7]]†9 obtained from the
code Ẽ(7) = CL(D, 20Q). If we apply the CSS-construction to codes defined
from the Cartesian product F3 × F9, the best parameters with minimal
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distance 7 are [[27,5, 7]]9. By considering Steane-enlargement of codes from
such Cartesian products as done in [CG19], the best parameters are instead
[[27,8, 7]]9. Hence, the quantum code derived from Steane-enlargement of
Hermitian codes improves the dimension significantly compared to the other
three methods.

Similar examples can be found over other fields. For instance, over F16

the Steane-enlargement of Ẽ(9) ⊊ Ẽ(8) produces parameters [[64,40, 9]]†16,
whereas the CSS-construction applied to Hermitian codes yields [[64,38, 9]]16.
The two Cartesian constructions give [[64, 32,9]]16 and [[64,35, 9]]16. ◀

Instead of considering one-point algebraic geometric codes, it is also possible
to consider the more general t-point codes in the hope of finding better
parameters. The next example considers quantum codes from two- and
three-point codes.

Example 4.6:
In [LP17], the authors give a general description of quantum codes that can
be obtained by applying Theorem 2.1 to nested t-point algebraic geometric
codes. They also give a number of corollaries [LP17; Cors. 3.3, 3.5, 3.6]
that can readily be applied to the Hermitian function field to give specific
parameters. For instance, [LP17; Table 2] contains the two-point Hermitian
codes listed in the first column of Table 3. Turning to the three-point codes
produced by [LP17; Cor. 3.6], the quantum codes with the same distances
as the aforementioned two-point codes are given in the second column of
Table 3. Finally, the third column shows the parameters produced by applying
Theorem 2.3 to improved codes. The lengths of these are all one or two higher
than the corresponding quantum code from the two-point and three-point
Hermitian codes, respectively, but as evident from Table 3 the dimensions are
significantly higher for small distances. ◀

The last construction we will consider is La Guardia’s construction of
quantum generalized Reed-Solomon codes defined in [La 12]. These codes
are asymmetric, but as mentioned in Section 2 they can be considered as
symmetric by disregarding the highest of the two minimal distances.

Example 4.7:
Figure 2 on page 110 shows the best possible dimension that can be obtained
from three different methods given a desired minimal distance. The first
method is the Steane-enlargement described in Section 3, and the second
is the CSS-construction applied to Hermitian codes as in [CG18]. The final
method comes from [La 12; Thm. 7.1] which yields quantum generalized Reed-
Solomon codes. In this latter construction, codes of length q3 over Fq2 are
produced by choosing the defining parameters appropriately. But as noted
in [GGHR18], better parameters can commonly be found by searching for
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One-point codes Order bound improved

Goppa bound Order bound CSS Steane-enlargement

[[64, 30,12]]16 [[64,30, 12]]16 [[64, 30,12]]16 [[64,30, 13]]†16∗
[[64, 32,11]]16 [[64,32, 11]]16 [[64, 32,12]]†16∗ [[64,32, 11]]16
[[64, 34,10]]16 [[64,34, 10]]16 [[64, 34,10]]16 [[64,34, 10]]16
[[64, 36, 9]]16 [[64,36, 9]]16 [[64, 36, 9]]16 [[64,36, 10]]16∗
[[64, 38, 8]]16 [[64,38, 9]]16∗ [[64, 38, 9]]16 [[64,38, 9]]16
[[64, 39, 7]]16 [[64,39, 9]]16∗ [[64, 39, 6]]16 [[64,39, 9]]16

[[64, 40, 7]]16 [[64,40, 8]]16∗ [[64, 40, 8]]16 [[64,40, 9]]†16∗
[[64, 42, 6]]16 [[64,42, 6]]16 [[64, 42, 8]]16∗ [[64,42, 7]]16
[[64, 44, 5]]16 [[64,44, 5]]16 [[64, 44, 6]]16∗ [[64,44, 7]]16∗
[[64, 45, 4]]16 [[64,45, 5]]16∗ [[64, 45, 5]]16 [[64,45, 6]]16∗
[[64, 46, 4]]16 [[64,46, 5]]16∗ [[64, 46, 6]]16∗ [[64,46, 5]]16
[[64, 48, 3]]16 [[64,48, 5]]16∗ [[64, 48, 5]]16 [[64,48, 5]]16
[[64, 50, 2]]16 [[64,50, 4]]16∗ [[64, 50, 4]]16 [[64,50, 5]]16∗
[[64, 51, 0]]16 [[64,51, 4]]16∗ [[64, 51, 4]]16 [[64,51, 5]]16∗
[[64, 54, 0]]16 [[64,54, 4]]16∗ [[64, 54, 4]]16 [[64,54, 3]]16

[[64, 56, 0]]16 [[64,56, 3]]16∗ [[64, 56, 3]]16 [[64,56, 4]]†16∗
[[64, 58, 3]]†16 [[64,58, 3]]†16∗ [[64, 58, 3]]†16 [[64,58, 3]]†16
[[64, 60, 0]]16 [[64,60, 2]]†16∗ [[64, 60, 2]]†16 [[64,60, 3]]‡16∗
[[64, 62, 0]]16 [[64,62, 2]]†16∗ [[64, 62, 2]]†16 [[64,62, 2]]†16

Table 2. Comparison between different methods for constructing quantum codes
from the Hermitian function field over F16. Further details are given in
Example 4.9.

Two-Point Code Three-Point Code Section 3

[[26,16, 3]]9 [[25,15, 3]]9 [[27, 23, 3]]‡9
[[26,14, 4]]9 [[25,13, 4]]9 [[27, 19, 4]]†9
[[26,12, 5]]9 [[25,11, 5]]9 [[27, 15, 5]]†9
[[26, 4, 9]]†9 [[25, 3, 9]]†9 [[27, 5, 9]]‡9
[[26, 2, 10]]†9 [[25, 1, 10]]†9 [[27, 3,10]]‡9

Table 3. Examples of quantum codes from two- and three-point Hermitian codes
over F9 from [LP17; Cor. 3.5] and [LP17; Cor. 3.6], respectively, along with the
comparable codes from Section 3.
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codes of shorter length and then padding with zeros to obtain codes of length
q3. Thus, Figure 2 shows the best parameters when using this trick. ◀

As a final example, we will compare the codes from the current section to the
quantum Singleton bound [KL97; Rai99].

Theorem 4.8:
Let C be a quantum code with parameters [[n, k, d]]q , where k > 0. Then

2d ≤ n− k+ 2.

Example 4.9:
A number of the codes presented in the preceding examples meet the
quantum Singleton bound, Theorem 4.8. More precisely, this holds true
for the code [[27, 23,3]]‡9 from Tables 1 and 3; the codes [[64,60, 3]]‡16,

[[125,121, 3]]‡25, and [[343,339, 3]]‡49 from Table 1; and the codes [[64, 62,2]]†16

and [[64, 60,3]]‡16 from Table 2. ◀

5 Concluding remarks

The results obtained in this work demonstrate that Steane-enlargement of
improved Hermitian codes can produce quantum codes with significantly
better parameters than other known constructions, especially for small
designed distances. It is interesting whether similar, or better, parameters
can be produced by the Steane-like technique from [GHR15] when applied to
such codes, but we leave this question open.
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Abstract

In this work, we study quantum error-correcting codes obtained by using
Steane-enlargement. We apply this technique to certain codes defined from
Cartesian products previously considered by Galindo et al. in [GGHR18].
We give bounds on the dimension increase obtained via enlargement, and
additionally give an algorithm to compute the true increase. A number of
examples of codes are provided, and their parameters are compared to
relevant codes in the literature, which shows that the parameters of the
enlarged codes are advantageous. Furthermore, comparison with the Gilbert-
Varshamov bound for stabilizer quantum codes shows that several of the
enlarged codes match or exceed the parameters promised by the bound.

1 Introduction

Quantum computers promise to deliver computational power far exceeding
what can be achieved by classical computers, see for instance [Sho94; Sim94].
Naturally, this has led to much interest in the construction of large scale
quantum computers. The quantum bits used in such a system would,
however, be prone to errors caused by interaction with the environment.
Therefore, methods for correcting such errors are essential, and quantum
error correcting codes provide a possible solution.

As in classical coding theory, the performance of a quantum code is
assessed based on parameters such as the size of the underlying field, the
length of the code and its dimension, and the number of errors that the code
can correct. Some of the earliest quantum codes such as [CRSS98; CS96;
Sho95] were binary, but just as in classical coding theory it is also possible
to study codes over arbitrary finite fields [KKKS06; Rai99]. When working
over Fq – i.e. the finite field of q elements – a quantum code of length n and
dimension k is a qk-dimensional subspace of Cqn

.
One important difference between classical and quantum error correction

lies in the types of errors that can happen. Whereas classical bits are
susceptible only to bit flip errors, quantum bits are also affected by phase
shift errors. Thus, we can consider two measures of minimal distance for
quantum codes: dx for bit flips, and dz for phase shifts. Some authors treat
the two types of errors equally, and in this case only a single minimal distance
d = min{dx , dz} is associated to the quantum code. The code is then called
symmetric. Alternatively, the two types of errors can be treated separately
– e.g. to account for the two types of errors happening with different
probabilities [IM07]. In this case both of the distances are of interest, and
the codes are called asymmetric. Clearly, the parameters in the asymmetric
setting can be translated into the symmetric setting by ignoring the highest
distance.

Traditionally, quantum codes were only studied in the symmetric case,
but by now the literature contains a great number of works studying either
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of the two types of codes. In this work, we only consider symmetric codes,
and some recent developments in this field are [GHR19; LLW19; LMS20; LP17;
LWLG19; SYW19; TZ19]. In this setting, the code parameters are commonly
written in the form [[n, k, d]]q , and we will follow this convention.

In [GGHR18], Galindo et al. gave two constructions of asymmetric quantum
error-correcting codes constructed by applying the CSS-construction to
nested classical codes based on Cartesian product point sets. The resulting
codes have good parameters compared to existing constructions when
investigating which combinations of n, k, dx , and dz are possible for various
values of q. In addition, these codes compare favourably to the Gilbert-
Varshamov bound for asymmetric quantum codes. As mentioned above,
someone interested in symmetric codes could use the results from [GGHR18]
by discarding the highest distance, but this essentially wastes coding space
which could instead be used to increase the dimensions of the codes. In
this work, we take an alternative approach and apply Steane-enlargement
to that family of codes in order to produce symmetric codes directly. We
thereby produce quantum error-correcting codes with good – sometimes
even optimal – parameters.

The classical codes considered in this work are special cases of what is
called monomial Cartesian codes in a recent work [LMS20]. In that paper,
the authors derived a way to determine if a monomial Cartesian code is
dual-containing, and used this to construct quantum codes via the CSS-
construction. The classical codes used in their construction are, however,
different from the ones used in the current paper. In particular, the improved
codes considered in this work have the best possible dimension given any
designed distance.

This work is structured as follows: Section 2 recalls the definitions and
results needed in subsequent sections. This includes the CSS-construction
and Steane-enlargement as well as results from the theory of classical algeb-
raic geometry codes. Afterwards, Section 3 describes a new construction
of quantum codes, including bounds on and exact values of the dimension
increase. The section ends by comparing the resulting parameters to other
known constructions. Finally, Section 4 contains the conclusion and outlines
open problems for future work.

2 Preliminaries

In this section, we recall two results on the CSS-construction and Steane-
enlargement that allow construction of quantum codes from classical codes.
Then we give a description of a family of codes and the corresponding
improved codes, both of which were previously considered in [GGHR18]. In
our analysis, we will rely on the notion of relative distances of nested pairs of
classical linear codes. Thus, recall that for codes C2 ⊊ C1 their relative distance
is defined as

d(C1,C2) =min{wH(c) | c ∈ C1 \ C2},
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where wH denotes the usual Hamming weight. In general, however, the
relative distance is difficult to determine, and the bound d(C1,C2) ≥ d(C1)
is commonly used instead.

The CSS-construction and Steane-enlargement
One way to construct quantum error-correcting codes is by using the so-
called CSS-construction [CS96; Ste96] named after Calderbank, Shor, and
Steane. The original construction uses a dual-containing classical linear code
to construct a symmetric quantum error-correcting code.

Theorem 2.1:
If the [n, k, d] linear code C ⊆ Fn

q contains its Euclidean dual, then an

[[n, 2k− n, d]]q

symmetric quantum code exists.

Steane [Ste99] proposed a variation on this procedure, which in some cases
allows an increase in dimension compared to the corresponding CSS-code
but without reducing the minimal distance. Below, we state the q-ary
generalization of this procedure, which may be found in [Ham08; LLX10].

Theorem 2.2:
Consider a linear [n, k] code C ⊆ Fn

q that contains its Euclidean dual C⊥. If C′

is an [n, k′] code such that C ⊊ C′ and k′ ≥ k+ 2, then an

��

n, k+ k′ − n,≥min
�

d,
�

(1+ 1
q )d

′
�	

��

q

quantum code exists with d = d(C,C′⊥) and d ′ = d(C′,C′⊥).

Remark:
Here we note that if C and C′ are codes that satisfy the conditions of
Theorem 2.2, then the inclusions C′⊥ ⊊ C⊥ ⊆ C ⊊ C′ hold, which implies
d(C′⊥)≥ d(C). In particular, this means that whenever d(C′)< d(C), it must be
the case that d ′ = d(C′,C′⊥) = d(C′). For the specific enlargements considered
in Section 3, it turns out that this observation allows us to use the usual
minimal distances rather than the relative distances while still obtaining the
same parameters of the quantum codes.

Codes from Cartesian product point sets
Let q = pr where p is a prime number, and let r1, r2, . . . , rm be positive integers
such that ri | r . Then we have the inclusions Fpri ⊆ Fq , and it is possible to
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consider the Cartesian product S = Fpr1 × Fpr2 × · · · × Fprm ⊆ Fm
q . Now, define

the polynomials

Fi(X i) =
∏︂

α∈Fpri

(X i −α) = X pri

i − X i ,

and consider the ring R= Fq[X1, X2, . . . , Xm]/I where

I = 〈F1(X1), F2(X2), . . . , Fm(Xm)〉

is the vanishing ideal of the Fi ’s. Letting n = |S| =
∏︁m

i=1 pri and S =
{α1,α2, . . . ,αn}, we obtain a vector space homomorphism ev: R→ Fn

q given by

ev(F + I) = (F(α1), F(α2), . . . , F(αn))

as described in [GGHR18]. Adopting a vectorized version of their notation, we
define for r= (r1, r2, . . . , rm) the set

∆(r) = {X a | a ∈ Nm, 0≤ a j < pr j , j = 1, 2, . . . , m},

where we use the multi-index notation X a = X a1
1 X a2

2 · · ·X
am
m . For a subset

L ⊆∆(r), define the code

C(L) = SpanFq
{ev(X a + I) | X a ∈ L}, (4.1)

which clearly has length n. To describe the distance of C(L), we use the map
σ : ∆(r)→ N given by

σ(X a) =
m
∏︂

j=1

(pr j − a j).

Proposition 2.4:
Let C(L) be defined as in (4.1). Then dim C(L) = |L|, and

d(C(L))≥min{σ(X a) | X a ∈ L} (4.2)

with equality if X a ∈ L implies X b ∈ L for all choices of b1 ≤ a1, b2 ≤
a2, . . . , bm ≤ am.

Proof:
The claim about the dimension is for instance shown in the proof of [GGHR18;
Thm. 16]. The inequality (4.2) can be proved by using the footprint bound as
done in [GH01; Prop. 1].

To see the equality, write Fpri = {v(i)1 , v(i)2 , . . . , v(i)pri }, let X a ∈ L, and observe
that the expansion of the polynomial

f =
m
∏︂

j=1

a j
∏︂

i=1

(X j − v( j)i )
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contains only monomials X b with b as described in the proposition. This
means that ev( f + I) ∈ C(L). Moreover, f possesses exactly

∏︁m
j=1(p

ri − a j) =
σ(X a) non-zeros.

This proposition not only allows us to determine the exact minimal distance
of the codes considered in the following section, but more importantly it also
enables us to determine certain relative distances when combined with the
observations in Remark 2.3.

Improved codes
The information on the minimal distance provided by σ leads to improved
code constructions in a straightforward manner. By defining

L(δ) = {X a ∈∆(r) | σ(X a)≥ δ}, (4.3)

the code C(L(δ))has designed distanceδ by Proposition 2.4. In addition, this is
the true minimal distance since σ(X b)≥ σ(X a) if b1 ≤ a1, b2 ≤ a2, . . . , bm ≤ am.
The dual of C(L(δ)) can be described by studying the map µ: ∆(r) → N
defined as

µ(X a) =
m
∏︂

j=1

(a j + 1).

In particular, by letting L⊥(δ) = {X a ∈ ∆(r) | µ(X a) < δ} we obtain the
following result.

Proposition 2.5:
Let L(δ) be defined as in (4.3). Then C(L(δ))⊥ = C(L⊥(δ)).

Proof:
First, note thatσ(X a) = µ(X b) for bi = pri −a j−1. This implies that the number
of monomials with a given σ-value δ is exactly the number of monomials
with µ-value δ. As a consequence,

dim C(L⊥(δ)) = |{X a ∈∆(r) | σ(X a)< δ}|= n− dim C(L(δ)) = dim C(L(δ))⊥.

Hence, it suffices to show that C(L⊥(δ)) ⊆ C(L(δ))⊥, and we do so by proving
that the evaluation of any X b with µ(X b)< δmust be in C(L(δ))⊥.

Using contraposition, assume that X b /∈ C(L(δ))⊥. Then some ev(X a) ∈
C(L(δ)) satisfies ev(X a) ·ev(X b) ̸= 0. As shown in [GHR15; Prop. 1], this happens
if and only if1 ai + bi > 0 and ai + bi ≡ 0 (mod pri −1) holds true for each index
i ∈ {1,2, . . . , m}. In other words, we have ai + bi = pri − 1 or ai + bi = 2(pri − 1).

1In their notation, the situation in consideration has J = ∅ and p | N j for each j
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In each case, this implies pri − ai ≤ bi + 1. In combination with the fact that
σ(X a)≥ δ since ev(X a) ∈ C(L(δ)), we obtain the inequalities

δ ≤ σ(X a) =
m
∏︂

i=1

(pri − ai)≤
m
∏︂

i=1

(bi + 1) = µ(X b).

In conclusion, if µ(X b) < δ, we have ev(X b) ∈ C(L(δ))⊥, which proves the
proposition by the observations in the beginning of the proof.

3 Steane-enlargement of improved codes

We are now ready to apply Steane-enlargement to the codes defined in
Section 2. Our results rely on a simple, but crucial, observation: for each
index i = 1, 2, . . . , m, σ(∆(r)) contains an ‘edge’ with values 1,2, . . . , pri . This
is illustrated in Figures 1 and 2. This means that we can easily give a lower
bound on the dimension increase when enlarging the code C(L(δ)). To
ease the notation in the following, we will order the exponents ri such that
r1 ≥ r2 ≥ · · · ≥ rm.

Proposition 3.1:
Let q = pr , and let r ∈ Zm

+ be a vector such that ri | r for each i and r1 ≥ r2 ≥
· · · ≥ rm. Additionally, let 2 < δ ≤ pr2 + 1, and let K be the largest index such
that δ− 1 ≤ prK . Then if C(L(δ)) is a dual-containing [n, k] code, there exists
a quantum error-correcting code with parameters

[[n,≥ 2k− n+ K ,≥ δ]]q. (4.4)

Proof:
Write C = C(L(δ)), and let C′ = C(L(δ − 1)). Since 1 < δ − 1 ≤ prK , the
observation at the start of this section implies that there are at least K ≥ 2
monomials X a ∈ ∆(r) such that σ(X a) = δ − 1. Thus, C′ has dimension
k′ ≥ k + K . As described in Section 2, C and C′ have minimal distances δ
and δ − 1, respectively. Thus the observation in Remark 2.3 ensures that
d(C′,C′⊥) = d(C′) = δ− 1, and we obtain

�

(1+ 1
q )d(C

′)
�

=
�

(1+ 1
q )(δ− 1)
�

= δ,

where the last equality stems from the assumption that δ− 1 ≤ pr2 ≤ q. The
claim now follows by applying Theorem 2.2 to C and C′, and by using the
bound d(C,C′⊥)≥ d(C) = δ.

A few additional remarks can be made about the Steane-enlargement
described in Proposition 2.4.
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Figure 1. The values of σ(∆(r)) for p = 3 and r = (2,1). The shaded region shows the
edges with values 1,2, . . . , 9= pr1 and 1,2, 3= pr2 , respectively.

pr1
pr3

pr2

Figure 2. A sketch of∆(r) in the case m= 3. As in the 2-dimensional case in Figure 1, the
shaded region shows the edges where the σ-values are 1, 2, . . . , pri for each i.

Remark:
The observation that leads to Proposition 2.4 does not help in the caseδ > q+1
since we require δ ≤ pr2 + 1 ≤ q + 1. This does not mean that Steane-
enlargement is impossible for δ > q+1, but merely that we cannot guarantee
that it is possible.

Remark:
The increase in dimension when applying Steane-enlargement to the code
C(L(δ)) may be greater than the K specified in Proposition 3.1 since this K
is determined by considering monomials along the ‘edges’ as in Figure 2.
There may be several other monomials that have σ-value δ − 1, yielding a
quantum error-correcting code with even better parameters. In Section 3,
we characterize the situations where this may happen, and give an improved
bound in such cases.

Before studying the dimension increase more thoroughly, we illustrate
Proposition 3.1 through an example.

Example 3.4:
Let q = 32 = 9 and r = (2, 2,1). The classical code C(L(4)) has
parameters [243, 236,4]9, whence the CSS-construction, Theorem 2.1, gives
a [[243, 229,4]]9 quantum code. Since δ − 1 = 3 = pr3 , Proposition 3.1
ensures that Steane-enlargement will instead provide a code with parameters
[[243,≥ 232,≥ 4]]9. In this case, the true dimension is in fact 232.

Using the same q and r, the code C(L(7)) is a [243,221, 7]9 classical code,
yielding a [[243,199, 7]]9 quantum code via the CSS-construction. This time,
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Proposition 3.1 only guarantees a dimension increase of 2 when applying
Steane-enlargement, but the actual parameters of the enlarged code are
[[243,207,≥ 7]]9, meaning that the dimension has been increased by 8. ◀

Determining the exact dimension increase
As mentioned in Remark 3.3, the dimension of an enlarged code may
be greater than predicted in (4.4). In this section, we will generalize the
map τ(q) from [CG20] to provide an algorithm for computing the exact
dimension increase when applying Steane-enlargement to the code C(L(δ)).
This generalization will also aid in characterizing those values of δ where
Proposition 3.1 underestimates the dimension.

Definition 3.5:
For s ∈ Z+ and r ∈ Zm

+ , we letτ(r)(s) denote the number of tuples (d1, d2, . . . , dm)
such that 1≤ di ≤ pri for every i, and such that s =

∏︁m
i=1 di .

Proposition 3.6:
Let s and r be as in Definition 3.5, and assume that r1 ≥ r2 ≥ · · · ≥ rm. Let K be
the largest index such that s ≤ prK . Then if s is. . .

• . . .prime, we have τ(r)(s) = K .

• . . . square, we have τ(r)(s)≥ K +
�K

2

�

.

• . . .non-prime and non-square, we have τ(r)(s)≥ K2.

Proof:
Assume first that s is prime. Then any tuple (d1, d2, . . . , dm) ∈ Z+ with s =
∏︁m

i=1 di must have di = s for some i and d j = 1 for j ̸= i. Hence, in this case
τ(r)(s) is the number of indices i such that di ≤ pri , which is exactly K .

If s is non-prime, there are still K tuples with a single entry greater than
1 as in the prime case. But we may also split s in two factors s = f1 f2 such
that f1, f2 < s ≤ prK . Now, for any distinct indices i1, i2 ∈ {1,2, . . . , K}, the tuple
(d1, d2, . . . , dm) with di1 = f1, di2 = f2, and di = 1 for i /∈ {i1, i2} is one of the
tuples counted by τ(r)(s). The number of ways to choose the indices i1, i2 is
K(K − 1). If s is not a square number, f1 and f2 are distinct, and each of the
K(K − 1) choices of i1, i2 leads to a distinct tuple. Is s is a square, we may have
f1 = f2, and the number of distinct tuples is instead K(K − 1)/2=

�K
2

�

. In both
cases, we obtain the claimed inequality by adding K .

Proposition 3.7:
Let s ∈ Z+. Then the number of monomials X a ∈ ∆(r) that have σ(X a) = s is
τ(r)(s).
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Proof:
We have σ(X a) = s if and only if

∏︁m
i=1(p

ri − ai) = s. Since 0 ≤ ai < pri , this is
equivalent to
∏︁m

i=1 di = s for 1≤ di ≤ pri , proving the proposition.

Combining Propositions 3.6 and 3.7, we obtain the following immediate
corollary.

Corollary 3.8:
Let q, r, and δ be as in Proposition 3.1. Then (4.4) gives the true dimension if
and only if δ− 1 is a prime number. If δ− 1 is not a prime, the bound on the
dimension may be increased by

�K
2

�

if δ−1 is a square number and by K(K−1)
otherwise.

Example 3.9:
We now return to the codes in Example 3.4. In the case of C(L(4)), we
saw that Proposition 3.1 gave the true minimal distance. Having established
Corollary 3.8, we now know that this is no coincidence since δ − 1 = 3 is a
prime number.

For the code C(L(7)), δ− 1= 6 is neither prime nor square. Consequently,
Corollary 3.8 tells us that the dimension must increase by at least K2 = 22 = 4,
which is 2 more than the bound from Proposition 3.1. Both bounds are,
however, still smaller than the true value of 8. ◀

Since it may not be obvious how to compute τ(r), we give the following
recursive algorithm. Its correctness can be shown by a simple inductive
argument.

Algorithm 1: Recursive computation of τ(r)(s)

On input r= (r1, r2, . . . , rm) and s ∈ Z+, this algorithm computes τ(r)(s)

1. Check if r is a single value r1. If this is the case, return 1 if s ≤ r1, and 0 otherwise.

2. Initialize a counter variable c := 0.

3. For each integer d ∈ {1, 2, . . . , pr1}with d | s, do the following:

• Let r′ = (r2, r3, . . . , rm), and compute τ(r
′)(s/d).

• Update c to be c := c +τ(r
′)(s/d).

4. Return c.

Since the number of d ’s considered in Algorithm 1 is at most
∏︁m−1

i=1 pri = n/prm ,
the total number of operations is O(n/prm). This is a factor prm better than
considering all X a ∈ ∆(r) and counting the ones with σ(X a) = s. We collect
these observations on Algorithm 1 and its relation to Proposition 3.1 in the
following proposition.
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Proposition 3.10:
Let q, r, and δ be as in Proposition 3.1. Then the true dimension of the
quantum code in (4.4) is 2k − n+ τ(r)(δ). Furthermore, Algorithm 1 correctly
computes τ(r)(δ) in O(n/prm) operations, where n=

∏︁m
i=1 pri .

Examples of parameters
To conclude our exposition, we give concrete parameters of Steane-enlarged
codes in several examples. We then compare the parameters of these codes
to those of other known constructions and bounds. For each code presented
here, we will compare it to the Gilbert-Varshamov bound from [FM04].

Theorem 3.11:
Let n > k ≥ 2 with n ≡ k (mod 2), and let d ≥ 2. Then there exists a pure
stabilizer quantum code [[n, k, d]]q if the inequality

d−1
∑︂

i=1

(q2 − 1)i
�

n
i

�

< qn−k+2 − 1 (4.5)

is satisfied.

In the same way as [MTT16], we will use the notation [[n, k, d]]‡q in the following
to indicate that the parameters (n, k, d) exceed the Gilbert-Varshamov bound
– i.e. that (4.5) is not satisfied – and we will write [[n, k, d]]†q if (n, k, d) satisfies
(4.5), but (n, k, d + 1) does not. This is only possible for n ≡ k (mod 2),
which is always the case for CSS-codes from dual-containing codes, but not
necessarily for Steane-enlarged codes. Thus, for code parameters (n, k, d)
with n ̸≡ k (mod 2), we will use the same notation, albeit with the bound
applied to the parameters (n, k− 1, d).

Remark:
There is another bound, [JX11; Cor. 4.3], which covers all values of n and k. For
the parameters presented in the current work, however, that bound is weaker
than (4.5), and several of the codes in the examples below exceed [JX11; Cor. 4.3]
but not Theorem 3.11. For this reason, we shall use Theorem 3.11 throughout.

In addition to the Gilbert-Varshamov bound, we will refer to the quantum
Singleton bound in some cases. This bound is

2d ≤ n− k+ 2, (4.6)

and its proof can be found in [KL97; Rai99].

124



II. Papers

Example 3.13:
This is a continuation of Examples 3.4 and 3.9. When compared with the
Gilbert-Varshamov bound, Theorem 3.11, the CSS-code with parameters
[[243,229, 4]]†9 and the Steane-enlarged code with parameters [[243, 232,4]]†9
meet the bound, whereas the two codes of minimal distance 7 neither meet
nor exceed the bound. ◀

Example 3.14:
Consider q = 32 = 9 and r = (2, 1) as in Figure 1. Here, Proposition 3.1

guarantees that we can enlarge the CSS-codes [[27, 21,3]]†9 and [[27,17, 4]]†9
to codes of parameters [[27,23,≥ 3]]‡9 and [[27,19,≥ 4]]†9, respectively.
Furthermore, Corollary 3.8 ensures that these are the true dimensions. In
fact, the code [[27, 23,3]]‡9 is optimal since it meets the Singleton-bound (4.6).

There are two additional Steane-enlarged codes that are not captured
by Proposition 3.1. These are [[27,13, 5]]9 enlarged to [[27, 15,≥ 5]]†9, and
[[27,5, 7]]9 enlarged to [[27, 8,≥ 7]]9, where the increases in dimension
have been computed using Algorithm 1. In both cases, the technique in
Proposition 3.1 fails because δ > 4= pr2 + 1. ◀

Initially, we compare the parameters that can be achieved by using the CSS-
construction, Theorem 2.1, and those from Steane-enlargement, Theorem 2.2.
At the same time, the difference in dimension between these two construc-
tions is compared with the bounds that were given in Propositions 3.1 and
Corollary 3.8.

Example 3.15:
In Tables 1–4, we list parameters of quantum codes in various cases where
Proposition 3.1 guarantees that enlargement is possible. The tables contain
both the original CSS-code and its Steane-enlarged code along with the
predicted dimension increases from Proposition 3.1 and Corollary 3.8.

In these tables, the first column shows the parameters of quantum codes
obtained by applying Theorem 2.1 to dual-containing codes of the form
C = C(L(δ)). The second column shows the results of enlarging the codes in
the first column using C′ = C(L(δ−1)) in Theorem 2.2. Both of these columns
contain the true dimensions of the codes, and the three final columns
highlight the bounds on the dimension increase provided in Proposition 3.1,
Corollary 3.8, and Proposition 3.10. More precisely, the third column gives
the dimension increase guaranteed by Proposition 3.1, and the fourth shows
the bound provided by Corollary 3.8. Any number marked with an asterisk is
known to be the true value since δ−1 is a prime. The final column shows the
actual increase as computed by Algorithm 1.

Studying the tables, it is evident that Corollary 3.8 provides a better
bound for the dimension than Proposition 3.1, but that the actual increase in
dimension may be significantly higher. In any case, however, Proposition 3.10
ensures that the true increase can be computed using Algorithm 1. ◀
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Construction Dimension increase

Thm. 2.1 Thm. 2.2 Prop. 3.1 Cor. 3.8 Prop. 3.10

[[729,721, 3]]†9 [[729,724, 3]]‡9 3 3∗ 3
[[729,715, 4]]†9 [[729,718, 4]]‡9 3 3∗ 3
[[729,703, 5]]9 [[729,709, 5]]†9 3 6 6
[[729,697, 6]]9 [[729,700, 6]]9 3 3∗ 3
[[729,679, 7]]9 [[729, 688, 7]]9 3 9 9
[[729,673, 8]]9 [[729, 676, 8]]9 3 3∗ 3
[[729,653, 9]]9 [[729, 663, 9]]9 3 9 10
[[729,641, 10]]9 [[729, 647, 10]]9 3 6 6

Table 1. Code parameters from the Cartesian product with q = 32 = 9 and r = (2,2, 2).
The first and second columns contain CSS-codes and Steane-enlarged codes,
respectively. The third and fourth columns contain lower bounds on the
dimension increase with ∗ denoting a value that is known to be the true value.
The final column contains the true value as computed from Proposition 3.10.

Construction Dimension increase

Thm. 2.1 Thm. 2.2 Prop. 3.1 Cor. 3.8 Prop. 3.10

[[64,58, 3]]†8 [[64,60, 3]]‡8 2 2∗ 2
[[64, 54,4]]†8 [[64,56, 4]]‡8 2 2∗ 2
[[64, 48,5]]8 [[64,51, 5]]†8 2 3 3
[[64, 44,6]]8 [[64, 46, 6]]†8 2 2∗ 2
[[64, 36,7]]8 [[64, 40,7]]8 2 4 4
[[64, 32,8]]8 [[64, 34,8]]8 2 2∗ 2

Table 2. Code parameters from the Cartesian product with q = 23 = 8 and r = (3,3).
The first and second columns contain CSS-codes and Steane-enlarged codes,
respectively. The third and fourth columns contain lower bounds on the
dimension increase with ∗ denoting a value that is known to be the true value.
The final column contains the true value as computed from Proposition 3.10.

Having compared the two methods considered in this work, we now turn
our attention to other constructions of quantum codes. Thus, Examples 3.16–
3.19 illustrate how the parameters given in Tables 1–4 compare against existing
parameters in the literature. First, we consider the codes obtained from cyclic
codes in [LA16; LP10].

Example 3.16:
For δ < 8 the parameters of the codes in Table 1 surpass those presented
in [LP10; Tables 1 and 3]. There, codes with parameters [[728,714,≥ 3]]9,
[[728,704,≥ 4]]9, [[728, 690,≥ 6]]9, [[728,679,≥ 7]]9, and [[728,678,≥ 8]]9
are given. Apart from the one with δ = 8, the Steane-enlarged codes
in Table 1 are one symbol longer, but have a dimension that is at least 9
higher than the corresponding code in [LP10]. Likewise, the codes in Table 2
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have better parameters than those in [LA16; Tables 1 and 2] whenever δ ≤ 6.
More concretely, [LA16] lists quantum codes with parameters [[63, 57,≥ 3]]†8,
[[63,53,≥ 4]]†8, [[63, 49,≥ 5]]†8, and [[63, 45,≥ 6]]†8. For larger values of δ,
however, [LA16] outperforms the codes in Table 2.

All the codes in Tables 1 and 2 have q = pr and ri = r , which are in fact
hyperbolic codes. It seems to be a general pattern for such codes, that the
Steane-enlargements with small distances outperform the codes in [LA16;
LP10], but that this relation is reversed for larger distances.

The codes in Tables 3 and 4 have parameters that cannot be achieved
using the method from [LA16; LP10] since those codes all have lengths qm − 1
for some m≥ 2, where q is the field size. ◀

As a second comparison, we consider the parameters of quantum twisted
codes that have been compiled in [Ede].

Example 3.17:
Based on [BE00], the webpage [Ede] contains lists of quantum code paramet-
ers derived from twisted codes. For instance, the list for q = 9 contains the
codes [[730,718, 3]]†9, [[730,712, 4]]9, [[730,706, 5]]9, and [[730, 700,6]]9. The
comparable codes in Table 1 are both one symbol shorter and have higher
dimension. It may also be noted that two of the codes in Table 1 exceed the
Gilbert-Varshamov bound, while this is not the case for any of the codes listed
in this example.

The codes [[730,694, 7]]9, [[730, 688,8]]9, and [[730,682, 9]]9 from [Ede]
have better parameters than those in Table 1, but they are included in the table
for completeness.

A previous version of this paper contained an example of quantum codes
over F5 of length 625. As pointed out by a reviewer, however, the parameters
of those codes did not exceed the parameters of the codes listed in [Ede]. ◀

Next, we compare the quantum codes derived from the Suzuki curve in
[MTT16] to the Steane-enlarged codes presented in Table 2.

Example 3.18:
The codes in Table 2 have favourable parameters compared to those given in
[MTT16; Ex. 5], which are defined from the Suzuki curve. Specifically, the
codes in [MTT16] have parameters [[64, 54,3]]8, [[64, 52,4]]†8, [[64, 42,5]]8,
[[64,40, 6]]8, [[64, 38,7]]8, and [[64,36, 8]]8, which are all worse than those
in Table 2 except the one with distance 8. As a final remark, the code with
parameters [[64,60, 3]]‡8 meets the quantum Singleton bound (4.6). ◀

As a final example, we consider the monomial Cartesian codes from [LMS20]
that are guaranteed to be MDS.
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Construction Dimension increase

Thm. 2.1 Thm. 2.2 Prop. 3.1 Cor. 3.8 Prop. 3.10

[[1024,1016, 3]]†16 [[1024,1019, 3]]‡16 3 3∗ 3
[[1024,1010, 4]]†16 [[1024,1013, 4]]†16 3 3∗ 3
[[1024, 998, 5]]16 [[1024,1004, 5]]16 3 6 6
[[1024, 994, 6]]16 [[1024, 996, 6]]16 2 2∗ 2
[[1024, 978, 7]]16 [[1024, 986, 7]]16 2 4 8
[[1024, 974, 8]]16 [[1024, 976, 8]]16 2 2∗ 2
[[1024, 956, 9]]16 [[1024, 965, 9]]16 2 4 9
[[1024, 946, 10]]16 [[1024, 951, 10]]16 2 3 5
[[1024, 934, 11]]16 [[1024, 940, 11]]16 2 4 6
[[1024, 930, 12]]16 [[1024, 932, 12]]16 2 2∗ 2
[[1024, 900, 13]]16 [[1024, 915, 13]]16 2 4 15
[[1024, 896, 14]]16 [[1024, 898, 14]]16 2 2∗ 2
[[1024, 884, 15]]16 [[1024, 890, 15]]16 2 4 6
[[1024, 872, 16]]16 [[1024, 878, 16]]16 2 4 6
[[1024, 848, 17]]16 [[1024, 860, 17]]16 2 3 12

Table 3. Code parameters from the Cartesian product with q = 24 = 16 and r= (4,4, 2).
The first and second columns contain CSS-codes and Steane-enlarged codes,
respectively. The third and fourth columns contain lower bounds on the
dimension increase with ∗ denoting a value that is known to be the true value.
The final column contains the true value as computed from Proposition 3.10.

Construction Dimension increase

Thm. 2.1 Thm. 2.2 Prop. 3.1 Cor. 3.8 Prop. 3.10

[[1024,1014, 3]]†8 [[1024,1018, 3]]‡8 4 4∗ 4
[[1024,1008, 4]]†8 [[1024,1011, 4]]†8 3 3∗ 3
[[1024, 990, 5]]8 [[1024, 999, 5]]8 3 6 9
[[1024, 984, 6]]8 [[1024, 987, 6]]8 3 3∗ 3
[[1024, 960, 7]]8 [[1024, 972, 7]]8 3 9 12
[[1024, 954, 8]]8 [[1024, 957, 8]]8 3 3∗ 3
[[1024, 922, 9]]8 [[1024, 938, 9]]8 3 9 16

Table 4. Code parameters from the Cartesian product with q = 23 = 8 and r =
(3, 3,3, 1). The first and second columns contain CSS-codes and Steane-
enlarged codes, respectively. The third and fourth columns contain lower
bounds on the dimension increase with ∗ denoting a value that is known to
be the true value. The final column contains the true value as computed from
Proposition 3.10.
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Example 3.19:
Among the codes presented in this Tables 1–4, two were MDS-codes:

[[27,23, 3]]‡9 and [[64, 60,3]]‡8. From recent work [LMS20; Cor. 3.10] the same
lengths, dimensions, and minimal distances can be achieved, but the field
size is much larger. In particular, they require q > n so the corresponding
field sizes are at least 29 and 67, respectively. ◀

4 Conclusion

In this work, we showed how Steane-enlargement can be applied to codes
defined from Cartesian product point sets. Concretely, Proposition 3.1
contains a simple condition that, when satisfied, guarantees that Steane-
enlargement produces a higher dimension when compared to the CSS-
construction without reducing the distance. Furthermore, we gave an
improved, but still easily computable, bound on the dimension increase
during this enlargement, and provided an algorithm to compute the true
value.

Comparing the resulting quantum code parameters to existing construc-
tions revealed several cases where the Steane-enlarged codes from Cartesian
product point sets provide better parameters than comparable constructions.
Such improvements were especially common for small designed distances,
where the Steane-enlarged codes also exceed the Gilbert-Varshamov bound
in many cases.

This work and the work [CG20] shows that Steane-enlargement can
provide quantum codes with good parameters when the underlying classical
codes are defined from relatively simple point sets. Thus, it is natural to ask
whether other, more complicated point sets lead to good parameters in the
same way. We leave this question for future research.

5 Acknowledgements

The authors express their gratitude to Diego Ruano for delightful discussions
in relation to this work. In addition, the authors thank the anonymous
reviewers for their comments, which led to a better manuscript.

6 References
[BE00] J. Bierbrauer and Y. Edel. ‘Quantum twisted codes’. In: J. Comb. Des.

8(3) (2000), pp. 174–188. DOI: 10.1002/(SICI)1520-6610(2000)8:
3<174::AID-JCD3>3.0.CO;2-T.

[CG20] R.B. Christensen and O. Geil. ‘Steane-enlargement of quantum codes
from the Hermitian function field’. In: Des. Codes Cryptogr. (2020). To
appear. DOI: 10.1007/s10623-019-00709-7.

129

https://doi.org/10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T
https://doi.org/10.1007/s10623-019-00709-7


Paper E

[CRSS98] A.R. Calderbank, E.M. Rains, P.M. Shor and N.J.A. Sloane. ‘Quantum
error correction via codes over GF(4)’. In: IEEE Trans. Inf. Theory 44(4)
(July 1998), pp. 1369–1387. DOI: 10.1109/18.681315.

[CS96] A.R. Calderbank and P.W. Shor. ‘Good quantum error-correcting codes
exist’. In: Phys. Rev. A 54(2) (Aug. 1996), pp. 1098–1105. DOI: 10.1103/
PhysRevA.54.1098.

[Ede] Y. Edel. Some good quantum twisted codes. Accessed on 13th November
2019. URL: https : / / www . mathi . uni - heidelberg . de / ~yves /
Matritzen/QTBCH/QTBCHIndex.html.

[FM04] K. Feng and Z. Ma. ‘A finite Gilbert-Varshamov bound for pure stabilizer
quantum codes’. In: IEEE Trans. Inf. Theory 50(12) (Dec. 2004), pp. 3323–
3325. ISSN: 0018-9448. DOI: 10.1109/TIT.2004.838088.

[GGHR18] C. Galindo, O. Geil, F. Hernando and D. Ruano. ‘Improved Constructions
of Nested Code Pairs’. In: IEEE Trans. Inf. Theory 64(4) (2018), pp. 2444–
2459. DOI: 10.1109/TIT.2017.2755682.

[GH01] O. Geil and T. Høholdt. ‘On Hyperbolic Codes’. In: Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, 14th International
Symposium, AAECC-14, Melbourne, Australia November 26-30, 2001,
Proceedings. 2001, pp. 159–171. DOI: 10.1007/3-540-45624-4_17.

[GHR15] C. Galindo, F. Hernando and D. Ruano. ‘Stabilizer quantum codes from
J-affine variety codes and a new Steane-like enlargement’. In: Quantum
Inf. Process. 14(9) (Sept. 2015), pp. 3211–3231. ISSN: 1573-1332. DOI: 10.
1007/s11128-015-1057-2.

[GHR19] C. Galindo, F. Hernando and D. Ruano. ‘Classical and Quantum Evalu-
ation Codes at the Trace Roots’. In: IEEE Trans. Inf. Theory 65(4) (2019),
pp. 2593–2602. DOI: 10.1109/TIT.2018.2868442.

[Ham08] M. Hamada. ‘Concatenated Quantum Codes Constructible in Polyno-
mial Time: Efficient Decoding and Error Correction’. In: IEEE Trans.
Inf. Theory 54(12) (Dec. 2008), pp. 5689–5704. ISSN: 0018-9448. DOI:
10.1109/TIT.2008.2006416.

[IM07] L. Ioffe and M. Mézard. ‘Asymmetric quantum error-correcting codes’.
In: Phys. Rev. A 75(3) (Mar. 2007), p. 032345. DOI: 10.1103/PhysRevA.
75.032345.

[JX11] L. Jin and C. Xing. ‘Quantum Gilbert-Varshamov bound through sym-
plectic self-orthogonal codes’. In: 2011 IEEE International Symposium on
Information Theory Proceedings. July 2011, pp. 455–458. DOI: 10.1109/
ISIT.2011.6034167.

[KKKS06] A. Ketkar, A. Klappenecker, S. Kumar and P.K. Sarvepalli. ‘Nonbinary
Stabilizer Codes Over Finite Fields’. In: IEEE Trans. Inf. Theory 52(11) (Nov.
2006), pp. 4892–4914. DOI: 10.1109/TIT.2006.883612.

130

https://doi.org/10.1109/18.681315
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html
https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html
https://doi.org/10.1109/TIT.2004.838088
https://doi.org/10.1109/TIT.2017.2755682
https://doi.org/10.1007/3-540-45624-4_17
https://doi.org/10.1007/s11128-015-1057-2
https://doi.org/10.1007/s11128-015-1057-2
https://doi.org/10.1109/TIT.2018.2868442
https://doi.org/10.1109/TIT.2008.2006416
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1109/ISIT.2011.6034167
https://doi.org/10.1109/ISIT.2011.6034167
https://doi.org/10.1109/TIT.2006.883612


II. Papers

[KL97] E. Knill and R. Laflamme. ‘Theory of quantum error-correcting codes’.
In: Phys. Rev. A 55(2) (Feb. 1997), pp. 900–911. DOI: 10.1103/PhysRevA.
55.900.

[LA16] G.G. La Guardia and M.M.S. Alves. ‘On cyclotomic cosets and code
constructions’. In: Linear Algebra Appl. 488 (2016), pp. 302–319. ISSN:
0024-3795. DOI: 10.1016/j.laa.2015.09.034.

[LLW19] J. Lv, R. Li and J. Wang. ‘New Binary Quantum Codes Derived From One-
Generator Quasi-Cyclic Codes’. In: IEEE Access 7 (2019), pp. 85782–85785.
DOI: 10.1109/ACCESS.2019.2923800.

[LLX10] S. Ling, J. Luo and C. Xing. ‘Generalization of Steane’s enlargement
construction of quantum codes and applications’. In: IEEE Trans. Inf.
Theory 56(8) (2010), pp. 4080–4084. DOI: 10.1109/TIT.2010.2050828.

[LMS20] H.H. López, G.L. Matthews and I. Soprunov. ‘Monomial-Cartesian codes
and their duals, with applications to LCD codes, quantum codes, and
locally recoverable codes’. In: Des. Codes Cryptogr. (2020). To appear.
DOI: 10.1007/s10623-020-00726-x.

[LP10] G.G. La Guardia and R. Palazzo. ‘Constructions of new families of
nonbinary CSS codes’. In: Discrete Math. 310(21) (2010), pp. 2935–2945.
ISSN: 0012-365X. DOI: 10.1016/j.disc.2010.06.043.

[LP17] G.G. La Guardia and F.R.F. Pereira. ‘Good and asymptotically good
quantum codes derived from algebraic geometry’. In: Quantum Inf.
Process. 16(6) (May 2017), p. 165. ISSN: 1573-1332. DOI: 10.1007/s11128-
017-1618-7.

[LWLG19] R. Li, J. Wang, Y. Liu and G. Guo. ‘New quantum constacyclic codes’. In:
Quantum Inf. Process. 18(5) (Mar. 2019), p. 127. ISSN: 1573-1332. DOI: 10.
1007/s11128-019-2242-5.

[MTT16] C. Munuera, W. Tenório and F. Torres. ‘Quantum error-correcting codes
from algebraic geometry codes of Castle type’. In: Quantum Inf. Process.
15(10) (Oct. 2016), pp. 4071–4088. ISSN: 1573-1332. DOI: 10 . 1007 /
s11128-016-1378-9.

[Rai99] E.M. Rains. ‘Nonbinary quantum codes’. In: IEEE Trans. Inf. Theory 45(6)
(Sept. 1999), pp. 1827–1832. ISSN: 0018-9448. DOI: 10.1109/18.782103.

[Sho94] P. Shor. ‘Algorithms for quantum computation: discrete logarithms and
factoring’. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science. IEEE Computer Society, Nov. 1994, pp. 124–134. DOI:
10.1109/SFCS.1994.365700.

[Sho95] P.W. Shor. ‘Scheme for reducing decoherence in quantum computer
memory’. In: Phys. Rev. A 52(4) (Oct. 1995), R2493–R2496. DOI: 10.1103/
PhysRevA.52.R2493.

[Sim94] D. Simon. ‘On the power of quantum computation’. In: 2013 IEEE
54th Annual Symposium on Foundations of Computer Science. IEEE

131

https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1016/j.laa.2015.09.034
https://doi.org/10.1109/ACCESS.2019.2923800
https://doi.org/10.1109/TIT.2010.2050828
https://doi.org/10.1007/s10623-020-00726-x
https://doi.org/10.1016/j.disc.2010.06.043
https://doi.org/10.1007/s11128-017-1618-7
https://doi.org/10.1007/s11128-017-1618-7
https://doi.org/10.1007/s11128-019-2242-5
https://doi.org/10.1007/s11128-019-2242-5
https://doi.org/10.1007/s11128-016-1378-9
https://doi.org/10.1007/s11128-016-1378-9
https://doi.org/10.1109/18.782103
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493


Paper E

Computer Society, Nov. 1994, pp. 116–123. DOI: 10.1109/SFCS.1994.
365701.

[Ste96] A. Steane. ‘Multiple-Particle Interference and Quantum Error Correc-
tion’. In: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452(1954) (1996),
pp. 2551–2577. ISSN: 13645021.

[Ste99] A.M. Steane. ‘Enlargement of Calderbank-Shor-Steane quantum codes’.
In: IEEE Trans. Inf. Theory 45(7) (1999), pp. 2492–2495. DOI: 10.1109/18.
796388.

[SYW19] X. Shi, Q. Yue and Y. Wu. ‘New quantum MDS codes with large minimum
distance and short length from generalized Reed–Solomon codes’. In:
Discrete Math. 342(7) (2019), pp. 1989–2001. ISSN: 0012-365X. DOI:
https://doi.org/10.1016/j.disc.2019.03.019.

[TZ19] F. Tian and S. Zhu. ‘Some new quantum MDS codes from generalized
Reed–Solomon codes’. In: Discrete Math. 342(12) (2019), p. 111593. ISSN:
0012-365X. DOI: https://doi.org/10.1016/j.disc.2019.07.009.

132

https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/18.796388
https://doi.org/10.1109/18.796388
https://doi.org/https://doi.org/10.1016/j.disc.2019.03.019
https://doi.org/https://doi.org/10.1016/j.disc.2019.07.009




About the type

This thesis was typeset using LATEX

Text is set in Quattrocento and Cabin
Mathematics is set in Math Design
URL’s are set in Source Code Pro





R
EN

É B
Ø

D
K

ER
 C

H
R

ISTEN
SEN

Q
U

A
N

TU
M

 C
O

D
ES A

N
D

 M
U

LTIPA
R

TY C
O

M
PU

TATIO
N

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-674-8


	Omslag_René Bødker Christensen.pdf
	PHD_Rene_Bodker_Christensen_TRYK.pdf
	master (1).pdf
	Kolofon_René Bødker Christensen.pdf
	master (1)

	Omslag_René Bødker Christensen
	Blank Page
	Blank Page
	Blank Page



