229 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    PEGASE: A generic and adaptable intelligent system for virtual reality learning environments

    No full text
    International audienceThe context of this research is the creation of human learning environments using virtual reality. We propose the integration of a generic and adaptable intelligent tutoring system (Pegase) into a virtual environment. The aim of this environment is to instruct the learner, and to assist the instructor. The proposed system is created using a multi-agent system. This system emits a set of knowledge (actions carried out by the learner, knowledge about the field, etc.) which Pegase uses to make informed decisions. Our study focuses on the representation of knowledge about the environment, and on the adaptable pedagogical agent providing instructive assistance

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the VI International Scientific Conference “Advanced Information Systems and Technologies, AIST-2018”. The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing, computer networking and telecomunications, modern methods and information technologies of sustainable development. They will be useful for students, graduate students, researchers who interested in computer science

    IST Austria Thesis

    Get PDF
    Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction for tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually dissimilar domains

    Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses

    Full text link
    Tesis por compendio[ES] El uso de la realidad virtual (RV) se ha incrementado notablemente en la comunidad científica para la investigación del comportamiento humano. En particular, la RV inmersiva ha crecido debido a la democratización de las gafas de realidad virtual o head mounted displays (HMD), que ofrecen un alto rendimiento con una inversión económica. Uno de los campos que ha emergido con fuerza en la última década es el Affective Computing, que combina psicofisiología, informática, ingeniería biomédica e inteligencia artificial, desarrollando sistemas que puedan reconocer emociones automáticamente. Su progreso es especialmente importante en el campo de la investigación del comportamiento humano, debido al papel fundamental que las emociones juegan en muchos procesos psicológicos como la percepción, la toma de decisiones, la creatividad, la memoria y la interacción social. Muchos estudios se han centrado en intentar obtener una metodología fiable para evocar y automáticamente identificar estados emocionales, usando medidas fisiológicas objetivas y métodos de aprendizaje automático. Sin embargo, la mayoría de los estudios previos utilizan imágenes, audios o vídeos para generar los estados emocionales y, hasta donde llega nuestro conocimiento, ninguno de ellos ha desarrollado un sistema de reconocimiento emocional usando RV inmersiva. Aunque algunos trabajos anteriores sí analizan las respuestas fisiológicas en RV inmersivas, estos no presentan modelos de aprendizaje automático para procesamiento y clasificación automática de bioseñales. Además, un concepto crucial cuando se usa la RV en investigación del comportamiento humano es la validez: la capacidad de evocar respuestas similares en un entorno virtual a las evocadas por el espacio físico. Aunque algunos estudios previos han usado dimensiones psicológicas y cognitivas para comparar respuestas entre entornos reales y virtuales, las investigaciones que analizan respuestas fisiológicas o comportamentales están mucho menos extendidas. Según nuestros conocimientos, este es el primer trabajo que compara entornos físicos con su réplica en RV, empleando respuestas fisiológicas y algoritmos de aprendizaje automático y analizando la capacidad de la RV de transferir y extrapolar las conclusiones obtenidas al entorno real que se está simulando. El objetivo principal de la tesis es validar el uso de la RV inmersiva como una herramienta de estimulación emocional usando respuestas psicofisiológicas y comportamentales en combinación con algoritmos de aprendizaje automático, así como realizar una comparación directa entre un entorno real y virtual. Para ello, se ha desarrollado un protocolo experimental que incluye entornos emocionales 360º, un museo real y una virtualización 3D altamente realista del mismo museo. La tesis presenta novedosas contribuciones del uso de la RV inmersiva en la investigación del comportamiento humano, en particular en lo relativo al estudio de las emociones. Esta ayudará a aplicar metodologías a estímulos más realistas para evaluar entornos y situaciones de la vida diaria, superando las actuales limitaciones de la estimulación emocional que clásicamente ha incluido imágenes, audios o vídeos. Además, en ella se analiza la validez de la RV realizando una comparación directa usando una simulación altamente realista. Creemos que la RV inmersiva va a revolucionar los métodos de estimulación emocional en entornos de laboratorio. Además, su sinergia junto a las medidas fisiológicas y las técnicas de aprendizaje automático, impactarán transversalmente en muchas áreas de investigación como la arquitectura, la salud, la evaluación psicológica, el entrenamiento, la educación, la conducción o el marketing, abriendo un nuevo horizonte de oportunidades para la comunidad científica. La presente tesis espera contribuir a caminar en esa senda.[EN] In recent years the scientific community has significantly increased its use of virtual reality (VR) technologies in human behaviour research. In particular, the use of immersive VR has grown due to the introduction of affordable, high performance head mounted displays (HMDs). Among the fields that has strongly emerged in the last decade is affective computing, which combines psychophysiology, computer science, biomedical engineering and artificial intelligence in the development of systems that can automatically recognize emotions. The progress of affective computing is especially important in human behaviour research due to the central role that emotions play in many background processes, such as perception, decision-making, creativity, memory and social interaction. Several studies have tried to develop a reliable methodology to evoke and automatically identify emotional states using objective physiological measures and machine learning methods. However, the majority of previous studies used images, audio or video to elicit emotional statements; to the best of our knowledge, no previous research has developed an emotion recognition system using immersive VR. Although some previous studies analysed physiological responses in immersive VR, they did not use machine learning techniques for biosignal processing and classification. Moreover, a crucial concept when using VR for human behaviour research is validity: the capacity to evoke a response from the user in a simulated environment similar to the response that might be evoked in a physical environment. Although some previous studies have used psychological and cognitive dimensions to compare responses in real and virtual environments, few have extended this research to analyse physiological or behavioural responses. Moreover, to our knowledge, this is the first study to compare VR scenarios with their real-world equivalents using physiological measures coupled with machine learning algorithms, and to analyse the ability of VR to transfer and extrapolate insights obtained from VR environments to real environments. The main objective of this thesis is, using psycho-physiological and behavioural responses in combination with machine learning methods, and by performing a direct comparison between a real and virtual environment, to validate immersive VR as an emotion elicitation tool. To do so we develop an experimental protocol involving emotional 360º environments, an art exhibition in a real museum, and a highly-realistic 3D virtualization of the same art exhibition. This thesis provides novel contributions to the use of immersive VR in human behaviour research, particularly in relation to emotions. VR can help in the application of methodologies designed to present more realistic stimuli in the assessment of daily-life environments and situations, thus overcoming the current limitations of affective elicitation, which classically uses images, audio and video. Moreover, it analyses the validity of VR by performing a direct comparison using highly-realistic simulation. We believe that immersive VR will revolutionize laboratory-based emotion elicitation methods. Moreover, its synergy with physiological measurement and machine learning techniques will impact transversely in many other research areas, such as architecture, health, assessment, training, education, driving and marketing, and thus open new opportunities for the scientific community. The present dissertation aims to contribute to this progress.[CA] L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat científica per a la recerca del comportament humà. En particular, la RV immersiva ha crescut a causa de la democratització de les ulleres de realitat virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una reduïda inversió econòmica. Un dels camps que ha emergit amb força en l'última dècada és el Affective Computing, que combina psicofisiologia, informàtica, enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que puguen reconéixer emocions automàticament. El seu progrés és especialment important en el camp de la recerca del comportament humà, a causa del paper fonamental que les emocions juguen en molts processos psicològics com la percepció, la presa de decisions, la creativitat, la memòria i la interacció social. Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a evocar i automàticament identificar estats emocionals, utilitzant mesures fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha desenvolupat un sistema de reconeixement emocional mitjançant l'ús de la RV immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes fisiològiques en RV immersives, aquests no presenten models d'aprenentatge automàtic per a processament i classificació automàtica de biosenyals. A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat dimensions psicològiques i cognitives per a comparar respostes entre entorns reals i virtuals, les recerques que analitzen respostes fisiològiques o comportamentals estan molt menys esteses. Segons els nostres coneixements, aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i analitzant la capacitat de la RV de transferir i extrapolar les conclusions obtingudes a l'entorn real que s'està simulant. L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina d'estimulació emocional usant respostes psicofisiològiques i comportamentals en combinació amb algorismes d'aprenentatge automàtic, així com realitzar una comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat un protocol experimental que inclou entorns emocionals 360º, un museu real i una virtualització 3D altament realista del mateix museu. La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del comportament humà, en particular quant a l'estudi de les emocions. Aquesta ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i situacions de la vida diària, superant les actuals limitacions de l'estimulació emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella s'analitza la validesa de la RV realitzant una comparació directa usant una simulació altament realista. Creiem que la RV immersiva revolucionarà els mètodes d'estimulació emocional en entorns de laboratori. A més, la seua sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge automàtic, impactaran transversalment en moltes àrees de recerca com l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la comunitat científica. La present tesi espera contribuir a caminar en aquesta senda.Marín Morales, J. (2020). Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148717TESISCompendi
    corecore