3,375 research outputs found

    SPECIFIED MOTION AND FEEDBACK CONTROL OF ENGINEERING STRUCTURES WITH DISTRIBUTED SENSORS AND ACTUATORS

    Get PDF
    This dissertation addresses the control of flexible structures using distributed sensors and actuators. The objective to determine the required distributed actuation inputs such that the desired output is obtained. Two interrelated facets of this problem are considered. First, we develop a dynamic-inversion solution method for determining the distributed actuation inputs, as a function of time, that yield a specified motion. The solution is shown to be useful for intelligent structure design, in particular, for sizing actuators and choosing their placement. Secondly, we develop a new feedback control method, which is based on dynamic inversion. In particular, filtered dynamic inversion combines dynamic inversion with a low-pass filter, resulting in a high-parameter-stabilizing controller, where the parameter gain is the filter cutoff frequency. For sufficiently large parameter gain, the controller stabilizes the closed-loop system and makes the L2-gain of the performance arbitrarily small, despite unknown-and-unmeasured disturbances. The controller is considered for both linear and nonlinear structural models

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Dynamics and control of flexible spacecraft during and after slewing maneuvers

    Get PDF
    The dynamics and control of slewing maneuvers of NASA Spacecraft COntrol Laboratory Experiment (SCOLE) are analyzed. The control problem of slewing maneuvers of SCOLE is formulated in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of the flexible appendage. The control problem formulation incorporates the nonlinear dynamical equations derived previously, and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level

    Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics

    Get PDF
    Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena

    Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators

    No full text
    In this paper, results for active vibration control predicted from experimental measurements on a lightweight structure are compared with purely computational predictions. The structure studied is a 4.5m long satellite boom consisting of 10 identical bays with equilateral triangular cross sections. First, the results from a Fortran code that is based on a receptance analysis are validated against the experimental forced response of the boom structure. Exhaustive searches are then carried out to find the optimum positions for one and two actuators. Finally, a genetic algorithm is employed to find high-quality positions for three actuators on the structure that will achieve the greatest reductions in vibration transmission. Having found these actuator positions, experiments are then carried out to verify the quality of the theoretical predictions. It was found that the attenuation achievable in practice for one, two and three actuators were, respectively, 15.1, 26.1 and 33.5 dB

    Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators

    No full text
    In this paper, results for active vibration control predicted from experimental measurements on a lightweight structure are compared with purely computational predictions. The structure studied is a 4.5m long satellite boom consisting of 10 identical bays with equilateral triangular cross sections. First, the results from a Fortran code that is based on a receptance analysis are validated against the experimental forced response of the boom structure. Exhaustive searches are then carried out to find the optimum positions for one and two actuators. Finally, a genetic algorithm is employed to find high-quality positions for three actuators on the structure that will achieve the greatest reductions in vibration transmission. Having found these actuator positions, experiments are then carried out to verify the quality of the theoretical predictions. It was found that the attenuation achievable in practice for one, two and three actuators were, respectively, 15.1, 26.1 and 33.5 dB

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974
    • …
    corecore