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INTRODUCTION

Many future NASA missions would utilize significantly large and

flexible spacecrafts and would require very stringent pointing and

vibration suppression requirements. The active controller that can

achieve these objectives will have to be designed with very accurate

knowledge of the dynamic behavior of the spacecraft to ensure per-

formance robustness to a variety of disturbances and uncertainties.

In the past few years, several design approaches were proposed

for vibration control during and after slewing maneuvers. NASA

Langley Research Center initiated the Spacecraft Control Laboratory

Experiment (SCOLE) program [i] to promote direct comparison and

realistic test of various control design techniques against a common

laboratory article. The article was intended to resemble a large

space antenna attached to the space shuttle orbiter by a long

flexible mast.

The primary control objective of SCOLE is to direct the RF line-

of-sight (LOS) of the antenna-like configuration towards a fixed

target under conditions of minimum time and limited control

authority.

This problem of directing the LOS of antenna -like configuration

is studied as being composed of two-phase control problem during the

current research period. The two phases are namely, the slew

maneuver control of rigidized-body of SCOLE configuration and the

vibration suppression of flexible antenna. This formulation allows

the design of control systems using a decentralized control scheme

in which the dynamics of the two phases of control problem are

viewed as two subsystems with some interaction. The residual



vibration suppression of the flexible antenna at the end of the slew

maneuver is viewed as the second phase of the control problem.

BRIEF SUMMARYOF MAJOR ACCOMPLISHMENTS

(a) Decentralized Slew Maneuver of SCOLE

During the current research period, the basic software for the

decentralized slew maneuver control of SCOLE model was completed.

The software was based on an algorithm of Hierarchical Optimal

Control formulation in which the SCOLE model is viewed to be a

large-scale dynamical system composed of interconnected subsystems.

It was deduced that the system could naturally be decomposed along

the lines of dynamics of rigid part and those of flexible antenna.

Thus the set of uncoupled subsystems was generated together with

their coupling relations. The performance index to be minimized was

written in terms of the two subsystems and the subsystems were

further formulated individually in terms of two-point boundary value

problems. The necessary conditions for the individual subsystems

were developed in terms of nonlinear differential equations for

optimal control schemes.

(b) Quasilinearization of Subsystems:

The two-point boundary value problem of each subsystem was solved

by the method of quasilinearization. The process of quasilineariza-

tion for each subsystem involved the linearization of the nonlinear

system equations and utilizing the method of complementary

functions. An iterative search was incorporated in the algorithm to

get the final set of equations which satisfy the split boundary

conditions.



The complete control system design was developed at a second-

level in terms of a coordinating algorithm to optimize the overall

state trajectory.

The development of the software to design an optimal state

feedback control system for each subsystem allows specifications of

arbitrary large-angle nonlinear slew maneuvers. Computer simula-

tions of second-level trajectory optimizations were obtained and are

being analyzed for determining global optimal solutions.

(c) Shooting Method

The two-point boundary value problem for each subsystem is also

being solved using shooting method instead of quasilinearization

method to compare the solutions in terms of numerical convergence.

(d) Presentations and Publications

A detailed technical report based on Slew Maneuver Control has

been prepared for publication as NASA Contractor Report. A

presentation entitled, "Decentralized Slew Maneuver Control and

Vibration Suppression of Large Flexible Spacecrafts," was presented

at the Workshop on Computational Techniques in Identification and

Control of Flexible Flight Structures, Lake Arrowhead, California,

November, 1989. This paper is also to be published in the

proceedings. A second paper entitled, "Slew Maneuvers of Large

Flexible Spacecrafts" is to be presented and published at the 1990

American Control Conference in May 1989.

A chapter based on collective work of previous years is to be

published in a book entitled, "Modelling and Control of Large Space

Structures: The SCOLE Experience" to be edited by A. V. Balakrishnan

and L. Taylor. This is included in the appendix.
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SLEW MANEUVER DYNAMICS AND CONTROL OF
SPACECRAFT CONTROL LABORATORY EXPERIMENT

(SCOLE)

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte

Charlotte, NC 28223

ABSTRACT

In this article, the dynamics and control of slewing maneuvers of NASA
Spacecraft COntrol Laboratory Experiment (SCOLE) are analyzed. The control
problem of slewing maneuvers of SCOLE is formulated in terms of an arbitrary
maneuver about any given axis. The control system is developed for the combined
problem of rigid-body slew maneuver and vibration suppression of the _exible
appendage. The control problem formulation incorporates the nonlinear dynamical
equations derived previously in a report [1] and is expressed in terms of a two-
point boundary value problem utilizing a quadratic type of performance index.

The two-point boundary value problem is solved as a hierarchical control
problem with the overall system being split in terms of two subsystems, namely
the slewing of the entire assembly and the vibration suppression of the _exible
antenna. The coupling variables between the two dynamical subsystems are
identified and these two subsystems for control purposes are treated independently
in parallel at the first level. Then the state-space trajectory of the combined prob-
lem is optimized at the second level.

This work was supported by NASA grant NAG-I-535.
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1. INTRODLI(TI'ION

The primary control objective of the Spacecraft Control Laboratory Experi-

ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like

configuration towards a fixed target under the conditions of minimum time and

limited control authority [2]. This problem of directing the LOS of antenna- like

configuration involves both the slewing maneuver of the entire assembly and the

vibration suppression of the flexible antenna-like beam. The study of ordinary

rigid-body slew maneuvers has received considerable attention in the literature

[3,4] due to the fact that any arbitrary large-angle slew maneuver involves

kinematic nonlinearities. This is further complicated in the case of SCOLE by vir=

tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of

arbitrary large-angle slew maneuvers of SCOLE model were derived previously by

the author in a report [ I ] as a set of coupled equations with the rigid-body motions

including the nonlinear kinematics and the vibratory equations of the flexible

appendage. These nonlinear and coupled dynamical equations are used in this arti-

cle to study the slew maneuver control in terms of a hierarchical feedback control

scheme.

The control problem of slewing maneuvers of this large flexible spacecraft is

developed by using the two-point boundary value problem in terms of the rigid-

body slewing and the vibration suppression of the flexible appendage as two

separate dynamical subsystems. A deoentralized optimal control scheme is utilized

in order to solve individual boundary-value problem for each of the two subsys-

tems by defining their state variable models and incorporating the coupling vari-

ables between the two subsystems in these models. Also, the boundary conditions

of the overall system are reworked in terms of boundary conditions of each sub=

system. A quadratic performance index is utilized for the overall system and is

subsequently expressed in terms of a sum of two individual performance indioes of
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the subsystems.

The basic algorithm for obtaining an optimal closed-loop state feedback

scheme involves using a trajectory in terms of a vector of Lagrange multipliers as

an initial guess at level two. This is used at level one in quasilinearization applica-

tion.

The two-point boundary value problem for each subsystem is solved at level

one by using a quasilinearlzation technique as a trajectory optimization problem. In

the quasillnearization procedure, starting from an initial guessed state trajectory,

successive linearizations are performed of state equations in such a way that the

final solution of the state trajectory is within an acceptable degree subject to the

boundary conditions. The state vector definition at this level is an augmented state

vector which includes both system states and costates.

These optimum solutions of the subsystem trajectories are utilized at level

two to yield the updated trajectory of the vector of Lagrange multipliers of the

overall system to be used for quasilinearization process at level one. The basic

steps of the algorithm are repeated to optimize this second level trajectory with

respect to a prespecified error criterion to obtain an optimal feedback law.
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2. LIST OF SYMBOLS

B

F_.. 2(t )

Io

I2

J

K

L

M

M_

N

qi

r

r X

ry

Vector to the point of force application on the beam

Damping matrix

Force applied at the reflector mass center

Moment applied about the orbiter mass center

Equivalent Mass moment of inertia of total assembly

Mass moment of inertia matrix of the reflector

Functional used for two-point boundary value problem

The stiffness matrix

The Length of the beam

Angular velocity vector transformation

Effective moment applied at the reflector c.g.

The total number of subsystems

The generalized force vector

Generalized coordinates

Position vector from the orbiter mass center to the point of
attachment

x co-ordinate of the reflector mass center in the body-fixed

frame

y co-ordinate of the reflector mass center in the body-fixed
frame

Control vector of i th system

State vector of i th system

Vector of interconnecting variables

Unit vector representing the axis of rotation during the
slew maneuver

i th Eigenfunction corresponding to ux

i th Eigenfunction corresponding to uy
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i th Eigenfunction corresponding to u_

The attitude of the orbiter in the inertial frame

Slew Angle

The angular velocity of the orbiter in the inertial
frame

The angular velocity of the reflector in the inertial
frame

Vector of Euler parameters

Direc delta function

Dual functional for two-point boundary value problem

Vector of Lagrange multipliers
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$. ANALYTI(;:S

$1ew Maneuver Specification and Control Variable s

The analytics for the dynamics of SCOLE developed in reference [1] are used

to derive the control laws for an arbitrary slew maneuver. It is assumed that the

slew maneuver is performed by applying moments on the rigid shuttle and the

vibration suppression is achieved by means of forces on the flexible antenna and

the reflector. The slew maneuver is considered to be an arbitrary maneuver about

any given axis [1].

The slew maneuver is defined in terms of _ the axis about which the slew

maneuver is performed. If _ is the slew angle and _ is the angular velocity of the

orbiter in the inertial frame, then the four EtHer parameters can be defined as

El = _/isin 2_-

E2 = _/2sin{

% = _/3sin{

(1)

The four EtHer parameters can be related to the angular velocity components

of the rigid assembly as

El

E2

E3

E4

E1 E4

E2 E3

E3 -- E2

E4 -- E1

-- E3 E2

E4 -- E 1

E1 E4

-- E2 -- E3

0

ca)1

¢h2

o.I3

(2)

The slewing maneuver can be given in terms of the following equations [ I ]

Zo&__+ A = 0..(t (3)
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A2r_+ A3_ + B_ + K q_ = O(t) (4)

where,

G(t ) is the net moment applied about the mass center of the orbiter and is

given by the following equation (figs. 1 & 2)

__(t ) = c_(t ) + f.r_+ a_)xE2 • (5)

Also, Q_(t) represents the generalized force vector which is given by the following

equation

O(t ) =

trl

_., ( Qjx_(t ) + Qjy_(t)) +Qx_
}--1

E (Qjxa (t) +Q:y_(t)) +Qx2
]--1

°°,

ttl

E ( Q:x,(t) + Q:y,(t)) + O,i + Oyi + Q_
]=1

(6)

where, the generalized force components are given as

L

Qjx, = foFJx (z ,t )8(z --zj )¢bxt (z )dz (7)

L

Q:y, = f Fjy (z ,t )8(z -z: )ear (z )dz (8)
o

and

Qj _, (t) = o . (9)

Here, Fjx (z ,t ) is the x component of the concentrated force applied at location j

on the flexible antenna and F_y is the y component of that force.



Also,

-8-

Qxi (t) -- Fzx (t)_xi (L)

Qyi (t) = F2y (t)thyi (L) (10)

Qoai (t ) = M_o(t )cbq,i (L ) .

Here, F_.2 is the force applied at the rejector C. G.

Thus,

M_o(t )= F2xry + F2yr x + M2_ (11)

The location of reflector C. G. is given by coordinates (r x ,ry ) and M2_

represents the external moment applied at the r_ector C. G. Also, the nonlineari-

ties N 2 can be expressed in terms of pure rigid body kinematic nonlinearity and

the nonlinear coupling term between the rigid-body modes and the _exible modes.

N2 = A4 (to,0_.) + A5 (to,0__) _ (12)

The details of this term N2 are included in appendix A and the equation (12)

can be further simplified in terms of Euler parameters by relationships developed

in Appendix B as

N 2 = A 6 (o..g.) + A 7 ( __._.g._)_.

where & is the Eu.ler vector comprising all four Euler parameters.

(13)

From equations (3) and (4) and by defining A = - A 2r Io-1 A 2 + A 3 , the

following equations are obtained

_= lo-I[A2A-1B_.+ AzA-1Kq_+ _2A-1A2rlo-l + Ia]G(t )

(14)
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_. = --A -1Bj. -- A -1Kcl - A -IA 2rio -1G(t ) + A -1A 21"1o -1N 2(o_.,.Z)

+A -10 (t) • (15)

It is assumed that control forces applied for vibration suppression has negligi-

ble effect on rotational maneuver of the spacecraft in developing equations (14)

and (15). ALso, I3 represents 3x3 identity matrix in these equations.

Subsystems and State Variable Models

The two dynamical subsystems considered for decentralized control are the

dynamics of the slewing of the rigidized SCOLE assembly and the vibration

dynamics of the flexible antenna. These subsystems are represented by subscripts I

and II respectively for subsequent analysis.

The following are the definitions of state variables and control variables for

subsystem I.

x15_A01; xz6__A02; XlT__Aoa;

xls_a_G: Xzg___aG2;Xlxo_G_;

_I1__(_1, U12---_(_2, t/13____._(_3 •

The interconnecting variables from the second subsystem to reflect the cou-

pling between the subsystems are defined as

zIl__Xn: zz2_xn2;

zi6ZXO ; zx7ZXO ;

zi8_0 ; zz9__O ;

zxl_O.

zI3_xI13; z14_x114; Zls_O;
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The following state equations are obtained for subsystem I using these

definitions

XZ 1

xI2

x13

XI4 !

XI5

XI5

XI7

XI8

XI9

El 10

OI D' 0
--F-.k--

!

_ 0 i 01H

I I
O, OiO

XI1

XI2

X13

XI4

XI5

XI6

XI7

XI8

XI9

XI I0

+

OI OI 0
--.I- - +---

!

0 I B2 i, B 3

--4-
!

) I
It Oi 0

/-/I 1

UI2

UI3

ZI 1

ZI 2

ZI 3

ZI 4

+

)

I:
N 2 ( xl 1,xI 2,xI 3,x! 4 ,xI 5,xI 6 ,xl 7 )

Here, H = Io-l[A2A-1A2TIo-l+ I3],

(16)

B2 -- Io -1A 2 A -1K ,

B 3 = lo-IA 2A-1B ,

D __.

Xl4 --Xi3 XI2

XI3 XI4 --XI1

--Xi2 Xll XI4

--Xll --Xl2 --Xl3

For the seoond subsystem which is the flexible appendage of the entire system,

the first two flexible modes are considered and the corresponding state variables

and control variables are defined as
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XH_ ___qx; XH_ a_.q2;

XlI3 _.._ql; XI14 _==q2;

u,,z gQ ; uH2AQ2;

As in the previous case, the coupling between the two subsystems is derived

in terms of the following interconnecting variables from the first subsystem.

ZHi AXsi; ZHzAXsz; ZH3AXs3;

ZII 4 _ XI 4;

ZII5 _X15; ZH6 A._xI6; zlI7 ___x17;

ZH7 A_Xxs; ZHg_AXsg; ZH10_Axsl0 •

The following are the state equations of this subsystem.

Xlll

Xl12

XlI 3

Xll 4

0 I

I
-A-1K I

1

--A -1 B

Xlll

Xl12

Xl13

XlI4

+

I

0 I 0

m_ _lu

A-1 i -1AI --A 2r Io -1

UH I

UH2
n m

ZIl 8

Zll 9

ZH 10

+

0 II

-A -1A 2rio -1 IN 2(ZH

The Optimal Control Problem

1 ,Zll 2 ,ZH 3 ,Zll 4 ,ZH 5,ZlI 6 ,ZH 7 ) (17)

A general problem for the optimal control of interconnected dynamical sys-

tems like large flexible spacecrafts can be formulated as

Minimize J ( ._ u_ _ ) i = 1,2 ..... N (18)
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w.r.t, u i

where x_4 is the n t dimensional state vector of the ith subsystem, u4 is the

corresponding m i dimensional control vector and _ is the ri dimensional vector of

interconnectton inputs from the other subsystem. The integer N represents the

total number of subsystems and the scalar functional J is defined by

"[ 1] = _ P, ( _ (t/) ) + f L, z, (t)_ (t).z, (t) dt
t --1 t o

(19)

[ 1

where L i Ix4 (t)u_ (t)_ (t)] is the performance index at time t for i 1,2,..,N

subsystems. The functional J defined in equation (19)_s to be minimized subject to

the constraints which define the subsystem dynamics, i.e.

= _ [_(t)_(t)_(t),t] ,to <t <tl

_(to)=x_ _ , i = 1,2 .... N

Also, the minimum of J must satisfy the interconnection relationship

(20)

N

Z ._'(x_,._ )=0 . (21)
t=1

The Open-IQop Hi¢r_r¢hi_l Control

Using the method of Goal Coordination or infeasible method [15,20], we con-

sider another problem which is obtained by maximizing the dual function ¢( _ )

with respect tok(t)(t o _ t _< t/ ),where

x_..u .z

(.&,u ,z ,.._ ] (22)
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subject to constraints in equations (20) and (21 ).Here

X

X_.l

o

.

I/1 Z__.I

o

jI

Z_jv

(23)

Also, h in equation (22) is a vector of Lagrange multipliers which is given as

_

[

(24)

•

N t! t¢

"J= Z e_(x_(t/))+ f L,(_.u,z_.t)dt+ f
i _-1 t o to

j = 1,2 ..... N

Rewriting this functional _r as

• (x_.j,t)dt (25)

(x,(tz))+

t-1

t_

Li (x,.u,..z,,t)
to

+_rG_( x,g.i,t )]dt (26)

where,

J, - Pi C xd ( t f ) ) + [L, ( x.4 u__i_ ,t )+K._.TG_ (x_ z__/,t)]dt
to

(27)

and where _.r C_" ( x, _.# ,t ) has been refactored into the form k_.._ G_ ( _ .z, ,t ), i.e.
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tt N

} =I + fx_"
t o i_l

(28)

Then by the fundamental theorem of strong Lagrange duality [22]

min J =max ¢(2k), i = 1,2,...,N. (29)

x__

Thus an alternative way of optimizing J is to maximize • ( _ )

From equation (26), for a given _( t ), to <_t <_t! , the functional ) is

separable into N independent minimization problems, the ith of which is given by

t 1

M#, flL, )+h_rG_(_.z, )ldt (30)
to

x, .u, _

subject to

=_ (z_u_z_), to ..<t <t I

(to) =x__

(31)

This leads to a two-level optimization structure where on the first level, for

given h. the N Independent mInimization problems described in equations (30) and

(31) are solved and on the second level, the h_.(t)( to _< t _<t I ) trajectory is

improved by an optimization scheme like the steepest ascent method, i.e. from

iteration j to j + 1
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A.(t T+I = X_.(rY + od + d_) (r ) to <..t I (32)

N

d j = _7¢_(X_(t)) = ___ (x_) , (33)
i=l

_7¢> (h_.) is the gradient of ¢_ ( 2k), ocj > 0 is the step length and d_J is the steepest

ascent search direction. At the optimum d j _ 0 and the appropriate Lagrange mul-

ttpler, h__, is the optimum one.

The development of this algorithm depends on the assertion Max ¢_(__) =

rain J and this may not be valid for all nonlinear systems. Consequently, lineari-

zation of _._ , and linearized equations for f-a may be required for constraints to be

convex and convexity of the constraints is necessary to prove this assertion.

Nevertheless, the method is attractive from the standpoint of simplicity and. that

the dual function is concave for this nonlinear case. This ensures that if the duality

assertion is valid, the optimum obtained is the Global Optimum.

On the first level, since equation (30) is to be minimized subject to equation

(31), the necessary conditions lead to a two point boundary value problem from

which an open loop optimum control could be calculated. However, it is desirable

to calculate a closed loop control and for this the quasilinearization approach can

be utilized at level one for all subsystems. Thus an iterative scheme can be set up

whereby an initial trajectory of 2k (t)" , to _<t _<t! is guessed at level two and

provided to level one. At level one the two-point boundary value problems of the

subsystems are solved by quastltnearization. The state and control trajectories of

all the subsystems obtained at level one are sent to level two. The test for

optimality based on equation (33) is conducted at level two and if this is not

satisfied, equation (32) is used to obtain the new h__(t ) for the next iteration.

Subsystem Closed Loot) Contrc;llers
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The closed loop controllers are obtained at the first level by solving the two-

point boundary value problems of the subsystems utilizing the quasilinearization

procedure. As noted in equations (30) and (31), the first level problem for the ith

subsystem is

For given k__(t) , to <_t <_t I ,

_u_

(30)

subject to

=La(_,u,_), to <_t <_tI

(to) = x_._

(31)

For this problem, the Hamiltonian H i can be written as

H_ =L i (_a u,_ga ) + _.r.Qa (_z_) + 2]arf_a ( x__/u_ )

For a given k. the state and costate equations become

(34)

(t)=La (_) (35)

with

6, (t)= OH_
OZa

OL___L+ O_---f-rk+
O_ 02

(36)

OHt -0; OHt --0 (37)
a_ a_a

It is assumed here that using the equations (36) and (37), it is possible to

obtain the control u, and the interconnect variable vector z_ which is an explicit
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function of 2]./ and ._, i.e.

=_ (_,_)

(38)

=d_ (_,_)

Using these relationships for u_ and _ in equations (35) and (36), the following

equations are obtained

=_ (._,__), to ..<t _<ti (39)

=2 (_,_),

with the boundary conditions

to _<t _<tz (40)

(to)=x__

and from the transversaltty conditions

(41)

OPil'_ (tl) I (42)
(t/)- 0x,

Quasilinearizatlon Procedure

The two-point boundary value problem of ith subsystem is given by equa-

tions (39) and (40) subject to boundary conditions of equations (41) and (42).

This problem is solved by quasilinearization technique as follows.

equations (39) and (40) can be rewritten as

_(t )=Fl.y_(t )] (43)
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In the quasilinearization procedure, starting from an initial guessed trajectory

for v -- 2-Y (t) , su_essive linearizations are performed of equation (43) in such a

way that the final linear equation for 2_ solves equation (43) to an acceptable

degree subject to boundary conditions (41 ) and (42) which could be expressed in a

more general form as

2_(t o)rA o =b__r (44)

.v_( t I yr A 1 =b_/r (45)

where A o , A/ are 2n x n matrices.

The linearized equation of (43) about a trajectory 2_ = 2_J (t) is obtained by

Taylor series expansion as

_=F_. (y..Y) + Y (2-Y) (2--2-Y) + _ (46)

where J (,y}) is the Jacoblan of E.[2-( t )], 1o <t _<t/, at 2-J and _ represents the

contribution of the higher order terms. Neglecting these higher order terms, the fol-

lowing linear equation is obtained

£=_F_ (2-J) + y (2-J) (2--2-J) (47)

If the initial guessed trajectory 2_J while satisfying equations (44),(45) and

(47) does not satisfy equation (43), then an iterative search can be utilized to

obtain a better linearizing trajectory by various methods discussed in references 19,

20, and 71. This iterative search is given by noting that equation (47) can be writ-

ten by expanding individual equations (39) and (40) by Taylor series expansion

about a known trajectory x__(t ), Zl_(t ), t E [ to ,t! ] , and retaining terms of up to

first order. The linearized reduced differential equations are
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_(J+l)=a_ x_iJ (t),21i j (t) + _-(x._/(t),.._)(t)) x_(J÷l)(t)--x_iJ(t)

4" -_. (X._) (t) (t) ) .._(j+l)

_4 (j÷l) =_._ [_._../ II JJ (t),z_ J (t) + _ ( x_/(t ) ,_J (t) ) _(j +1)(t) - M (t)

+ _. (x_,J(t),__J(t)) (t)--__J(t)] (49)

These differential equations can be rewritten as

x_ () +1) _. A ll(t )x_a (: +l)(t ) + A 12(t )21i () +l)(t ) + e__l) (t) (50)

_._ (j +1) = A 2t(t )x, (j +l)(t ) + A zz(t )_ (; +1)(t ) + e_aj (t) (51)

or, in the partitioned matrix form,

[X_. (j +l)(t

)

.._ (J +l)(t )

where the matrices

Ail(t) A12(t)] ]____/(J÷l)(t)

= A21(t) A22(t)] 132/(J+1)(t) + [e_j (t
(52)

A 11(1 ) A _ A 12(t ) A _'/

- 0x, ' - 0_

a21(t)A _--_--b-- _)._a ' A22(t)A_-'_ '

and

el j A -- A ll(t )x._ j (t) -- A 12(t )_ ) (t) + a__

e_.2 J _A -- A 21(t )_-a j (t) -- A 22(t )_a j (t) 4- b/

are evaluated at _ _ (t), J2_j (t) and hence are known functions of time.

(53)
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The method of complementary functions [24] can be incorporated with this

tinearization of the differential equations in the implementation of iterative search.

An initial guess, & o, o, t e [ to, t/], is used to evaluate matrices in equa-

t.ions (53) at the beginning of the first iteration. In the next step, n sets of solu-

tions to the 2n homogeneous differential equations

__ (j+l) = Alx( t )x(/+l)(t ) + A12( t )2h (/+l)(t )

41_(j+l) ---- A21(I )x_4 (J +l)(t ) -!- A22(I )Zh (J +l)(t )

(54)

(55)

are generated by numerical integration. For (j +I) st iteration, these solutions are

denoted by .x/HI, _/HI; X_./H2, !)./H2, .... ;X_.t Hn , Zh Hn . The boundary conditions

used in generating these solutions are

 nl(to)=O,

X../H2( to ) = O,

(56)

x_ann( to)=O, 2_ttn( to)= [000 ...1 ]r .

Next, one particular solution at (j +1) denoted by x_4P , :Zhp , is generated by

numerically integrating equation (52) from to , to t I , using the boundary condi-

tions _ P (t o ) = x_.o, 2h _' (to) = O. Then, the complete solution of equation (52) can

be obtained by using the principle of superposition and is of the form

_(J+l)(t)=Cl_anl(t)+Cz_n2(t)+ .... +CnX, nn(t)+_P(t) (57)

_(/+D(t)=cl_Hl(t)+Cz__Hz(t)+ .... +c. 2hHn(t)+ZhP(t) (58)

where the values of cl , c2 ...... cn which make :_(i+l(t! )=Xt! are to be

detemined. To find these values of c _ , c 2 ...... c.., we let t = t/ in equation
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(58) and write it as

Here, c A[

_./ = [_n_(t! )

ClC 2 .... C n

"% ) .... + ).

is unknown. Solving for c yields

(59)

1 ]-1I 1c_C_= !h H l ( t ) 11 ( t / ) .... :_ Hn ( t / ) 21! - _ P • (60)
i

It is important to note that the indicated matrix inversion in equation (60)

has to exist in order to solve for c_C_.Substituting this solution of c_c_into equations

(57) and (58) gives the (j +1) st trajectory. This completes one iteration of the

quasilinearization algorithm and this trajectory can be further utilized to begin

another iteration, ff required. Generally, the iterative scheme is terminated by

comparing the j th and j + 1 st trajectories by calculating the norm shown in the

following equation and comparing it with a preselected termination constatnt, O.

(61)

Closed Loo D Control

In order to obtain the closed loop control, the solutlon of the linearlzed equa-

tion (47) can be written as

t!

Z( t/ ) = O ( t/ ,t ).t (t)+ ft _b (t/,r)i F (r)--J y.. (r)]d
r (62)

where _b is the state transition matrix of the system in equation (47). Rewriting

equation (62) in terms of solutions of states and costates and replacing the integral

terms by _ (t)
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io1 , o12.:I]i: t i(t/ = _2_(t/,t)_22(t/,t (t) + 2(t) • (63)

From equations (42) and (63)

- 021(t/ ,t )._ (t/ ,t ) + _b22(t/ ,t )_ (t ) + _2 (t ) . (64)

Thus,

_,. (t)[-,t,=-' [_2,(t)]. (65)

It is important to note here that (_)22 -1 always exists since it is a principal

minor of the state transition matrix.

Substituting equation (65) into equation (38)

=_ (_., t ) . (66)



- 23 -

5. REFERENCES

[I] Y. P. Kakad, "Dynamics of Spacecraft Control Laboratory Experiment
(SCOLE) Slew Maneuvers," NASA CR-4098 October 1987.

[2] L. W. Taylor, Jr. and A. V. Balakrishnan, "A Mathematical Problem and a

Spacecraft Control Experiment (SCOLE) Used to Evaluate Control Laws for
Flexible Spacecraft... NASA/IEEE Design Challenge," Proceedings of the

Fourth VPI/AIAA Symposium on Dynamics and Control of Large Structures,
pp 311-318, June 1983.

[3] A. S. Debs and M. Athans, "On the Optimal Angular Velocity Control of
Asymmetrical Space Vehicles," IEh-_ Trans. Automat. Contr., pp 80-83, Feb.
1969.

[4] T. A. W. Dwyer, III, "The Control of Angular Momentum for Asymmetric
Rigid Bodies," IEEE Trans. Automat. Contr., pp 686-688, June 1982.

[5] T. R. Kane, P. W. Liklns, and D. A. Levinson, Spacecraft Dynamics, New
York: McGraw-Hill, 1983.

[61 Y. P. Kakad, "Slew Maneuver Control of the Spacecraft Control Laboratory
Experiment (SCOLE)," Proceedings of ACC Conference, pp 1039-1044 June
1986.

[7] Y. P. Kakad, "Dynamics and Control of Slew Maneuver of Large Flexible
Spacecraft," Proceedings of AIAA Guidance, Navigation and Control Confer-
ence, pp 629-634, August 1986.

[8] B. Friedland, Control System Design - An Introduction to State-space
Methods, New York: McGraw-Hill, 1986.

[9] H. Goldstein, Classical Mechanics, Reading: Addison-Wesley, Second Edition,
1981.

[10] M. Balas, "Feedback Control of Flexible Systems," IEEE Trans. Automat.

Contr., pp 673-679, August 1978.

[II] A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control - Optimization, Esti-
mation, and Control, New York: John Wiley, revised printing, 1975.

[12] L. Meirovltch, Analytical Methods in Vibrations, New York: The Macmilhan
Company, 1967.

[13] E. S. Armstrong, "ORACLS - A System for Linear-Quadratic-Gausslan Con-
trol Law Design," NASA TP-1106, 1978.

[14] S. Joshi, "SCOLE Equations of Motion-A New Formulation," Proceedings of
the 2rid Annum SCOLE Workshop, NASA TM-89048, pp. 14-25, December
1985.



- 24 -

[15] M. G. Singh, Dynamical Hierarchical Control, New York: North-Holland Pub-
lishtng Company, 1980.

[16] J. L. Junkins, and J. D. Turner, Optimal SpacecraftRotational Maneuvers,
New York: ElsevierSciencePublishersB.V., 1986.

[17] P.L. Falb, and J. L. de Jong,SomeSuccessiveApproximation Methods in Con-
trol and Oscillation Theory, New York: AcademicPress,1969.

[18] H. B. Keller, Numerical Methods for Two-point Boundary-Value Problems,
Waltham, Massachusetts:Blaisdell Publishing Company, 1968.

[19] R. E. Bellman, and R. E. Kalaba, Quasilinearizationand Nonlinear Boundary-
Value Problems,New York: American ElsevierPublishing Company, 1965.

[20] M. G. Singh, and A. Titli, "Closed Loop Hierarchical Control for Non-linear
Systems Using Quasilinearization," Automatica, Vol. 1 I, pp 541-546, 1975.

[21] S. M. Roberts, and J. S. Shipman, Two-point Boundary Value Problems:
Shooting Methods, New York: American Elsevier Publishing Company, 1972.

[22] M. S. Mahmoud, M. F. Hassan, and M. G. Darwish, Large-Scale Control Sys-
tems, New York: Marcel Dekker Inc., 1985.

[23] D. Luenberger, Optimization by Vector Space Methods, New York: John
Wiley, 1969.

[24] D. E. Kirk, Optimal Control Theory - An Introduction, Englewood Cliffs, New
Jersey, Prentice-Hall Inc-, 1970.

[25] D. K. Robertson, "Three-dimensional Vibration Analysis of a Uniform Beam
with Offset Inertial Masses at the Ends," NASA TM-86393, September 1985.



- 25 -

APPENDIX A

The nonlinear term N2 is given in terms of the attitude of the orbiter, e_, and

angular velocity vector transformation matrix, M, as

N2 -- M-1

_J M-_-_

802

00s

Io_ + A fq..] (A-l)

where

M

cosO 2COSO 3 --COSO 2sinO 3 sinO 2

sinO a cosO 3 0

0 0 1

(A-2)

-- M r _ (A-S)

and

JM-I_ = [ 1- 801 1o 0 o
(A-4)

or M-10M _ 1 [ (--talsinO 2c0 s20 a+ol2si nO 2sinO 3cOsO s)- OO2 cosO2
(t_lsinO 2sinO a cOsO 3

--t_2sinO 2sin20 3) (ehcosO 2cosO a-_ECOSO 2sinO 3 ) ] (A-5)

tar M-10M - 1 [(ta2cosO 2) (-_icosO2) 0 ]-- oOs cosO 2
(A-6)

Since the transformation matrix, M , is a function of 0 2 and 0 a, the time

derivative of M can be expressed by the chain rule as
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= 2+ e3 • (A=7)

From equation (A- 1)

(-sine 2cos0 3)0 2 (sine 2sine 3)0 2 (cose 2)0 2

0 0 0

0 0 0

(A-8)

(-cose 2sin0 3)0 3 (-cose 2cos0 3)0 3 o

(cose 3)0 3 (--sine 3)0 3 0

0 0 0

(A-9)

Substituting these equations (A-8) and (A-9) in (A-7)

(-sine 2cosO 3)0 2+(-cos e 2sine a)0 3

(cose 3)03

0

(sine 2sine 3)0 2+(-cosO 2cosO3)0 3 (cosO 2)8 2

(-sine 3)0 3 0

0 0

(A-10)

From equation (A-3), this can also be expressed as

2V/ -- 1
cosO2

(-sine 2cose 3)(o)lcosO 2sine s (sine 2sine 3)(ohcose 2sine s

+02cosO 2cosO 3)+(-cos0 2sine 3) +02cos0 2cos0 3)+(-cose 2cose 3)

(-(axsine2cose3+o_zsine2slnO s

+_3cose2)

o

(cosO3)(-olsinO2cosO3

+o_2sine 2sine 3+o_scosO 2)

o

o

o

(-°)lsin0 2cose 3+°_2 sine 2sin0 3

+o3cos0 2)

0

(--sine 3)(-olsine 2cos03

+o2sin0 2sine S+°_scose 2)

0

0

0
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cosO 2(¢oxcosO 2sinO 3+t_2cosO 2cosO 3)

0

0

0

0

0

0

0

0

0

(A-I1)

cosO 3 cosO 2sinO s --slnO 2cosO s

--sinO 3 cosO 2cosO 3 sinO 2stnO 3

0 0 cosO 2

Thus, the nonlinear term N 2 can be rewritten as

(A-12)

Where the term A '3 is

N 2 = A '3(_,0_..)

A '3(to, O_) "- M -1

0

_)03

N 2 = A '3(__._0__)Ioto + A '3(_0_.)A zg-

-- A 4(¢o.0_) + A 5(¢o.0_)_. (A-13)

where A 4 depends on the rigid-body slewing and is nonlinear in terms of to and 0_

The second term relates the coupling between the rigid-body slewing and the flexi-

ble modes.
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APPENDIX B

The transformation that relates the orientation angles 0_ to Euler parameters E

is a nonlinear transformation. This transformation is developed for body-three

angles representation in this appendix and similar transformations can be derived

for other three representations, namely space-three angles, space-two angles, and

body-two angles.

(a) For sin02 _ 1 :

If-rr <02 <2,then
2

02 = sin-1 I2(_3q + E2e4) 1
(B-l)

If ( cosO lcosO 2) >I O, then

e 1 -" sin-1

(B-2)

If ( cosO xcosO z) < 0, then

If ( cosO 2cosO 3) >t O, then

(B-3)

03 = I - -2 (qc2 - e3_,_)
(B-4)

If ( cosO 2cosO 3) < O, then
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03-- ST _ sIn -I (B-5)

w

(b) For sine 2= :1:1, 0 2 is a constant. For sine 2= 1, 0 2= _-. However, if

ST

sine 2 = --1, then 0 2 = --_-. For this case, if ( sine xstne2sln0 3 + cose acosO 1 ) >/o,

then

el=sin-l[2( E2E3+ EIE4) ] •
(B-6)

If ( sine 1sine 2sine 3 + cose 3cose 1 ) < 0, then

el=_'r--sin-l[2( E2E3+ E1E4) ]
(B-7)

For this entire case, e 3 = o.
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APPENDIX C

Numerical Data:

The analytics developed in reference [1] are utilized together with the basic

SCOLE data [2] and the three dimensional linear vibration analysis [25] to generate

the following numerical data.

0.036

r = --0.036

--0.379

I o

1216640

= -31.66433

175690

-1.530307

7082976

-52503.9

175667.1

--52474.84

7131493
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A3_

0.45879E +2

0.36305E--1

-0.89042E- 1

-0.14067E0

-0.1457E0

0.1914E-1

0.84597E-1

--0.6893E --2

--0.4269E--1

0.4204E--2

0.36305E- 1

0.6211E +2

0.11263E0

-0.1471E0

-0.5518E- 1

0.19839E-1

0.3935E-2

-0.7165E-2

0.5969E-2

0.41227E -2

-0.89042E- 1

0.11263E0

0.32737E+2

-0.6392E- 1

--0.14526E0

0.7925E -2

-0.8369E- 1

--0.2829E--2

0.89767E- 1

0.1866E--2

-0.14067E0

-0.1471E0

-0.6392E-1

0.2547E+3

0.1908E0

-0.4278E--1

-0.76115E-1

0.1543E--1

0.2859E-- 1

--0.9067E-2

0.1457E0

-0.5518E - 1

--0.14526E0

0.1908E0

0.8103E +3

-0.2570E--1

--0.12912E0

0.9222E --2

0.4611E-1

-0.5947E--2

0.1914E-1

0.19839E-1

0.7925E--2

-0.4278E - 1

-0.2570E--1

0.23209E+5

0.10383E--1

-0.2089E--2

-0.3955E--2

0.1227E -2

0.84597E-- 1

0.3935E--2

--0.8369E--1

--0.76115E--1

--0.12912E0

0.10383E-1

0.55561E+5

-0.37286E-2

--0.3859E-1

0.23 97E-2

--0.6893E-2

--0.7165E--2

--0.2829E--2

0.1543E-1

0.9222E--2

-0.2089E--2

--0.37286E--2

0.1342962E +8

0.1421E-2

-0.4427E-3

-0.4269E-1

0.5969E-2

0.89767E-1

0.2859E- 1

0.4611E- 1

-0.3955E-2

-0.3859E-- 1

0.1421E-2

0.2095672E+8

--0.9108E-3

0.4204E -2

0.4127E-2

0.1866E -2

--0.9067E-2

-0.5947E-2

0.1227E-2

0.2397E-2

--0.4427E - 3

--0.9108E -3

0.8662547E + 10

A_=

-0.2133821E0

0.3808921E+3

-0.1808478E +3

0.1423380E +3

-0.2416743E +2

-0.6802273E0

0.2784792E +2

0.7842818E+1

-0.2694455E +2

-0.9225328E- 1

--0.3687057E +3

-0.3030935E +2

-0.1318596E +3

--0.1135851E+ 1

0.574383E +2

0.3104929E 2

0.6651585E +2

--0.1930097E +2

--0.5544252E +2

0.1594045E +2

-0.7253901E-1

-0.8427658E - 1

-0.125799E0

-0.2367351E-1

-0.9150328E - 1

-0.3843062E- 1

0.596075E--1

-0.4363533E-2

-0.4200623E -- 1

--0.1626004E--1
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The stiffness matrix K is calculated using equation (57) and the mode shape

coefficients given in Table 1. This matrix is a diagonal matrix and is represented in

terms of the diagonal elements as

K

k 1,1 = 0.2820217E 0

k2,2 = 0.3574692E0

k s,s = 0.2412807E 1

k 4,4 = 0.52 85116E 1

ks,5 = 0.1588654E2

k6,6 = 0.8573860E2

it7,7 --"0.1146118E3

its,s = 0.5686101E3

it 9,9 = 0.6254598E 3

lo,lo = 0.2114612E4

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio _ -- 0.003, it is calculated to be

B

b 1,1 = 0.9685964E--3

b2. 2 -" 0.1088608E-2

bs,3 = 0.2834016E--2

b4,4 = 0.4256808E-2

bs, s = 0.7387177E-2

b6,6 = 0.1719014E--1

b7, 7 -- 0.1984237E--1

ba,s = 0.4421234E-1

bg, 9 = 0.4633434E--1

lo,lo = 0.8527647E--1
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F_gure 1- Position Vectors in Inertial Frame
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d (-I,, t)

Figure 2- Vectors in Bod.v-faxed Frame


