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1. Introduction

Piezoelectric shunt damping is a well known technique to damp the vibrations of mechanical
structures. This technique relies on the piezoelectric effect that converts mechanical energy
into electrical energy. A damping effect on the host structure is observed when the electrical
energy is dissipated. In order to optimize the damping performance, the transferred energy
as well as the dissipated energy must be maximized. The transferred energy depends on the
piezoelectric constants as well as the vibration mode and the location of the piezoelements
within the structure. While higher piezoelectric constants generally increase the amount of
transferred energy, the location can typically only be optimized for one eigenform of the
structure. As a consequence, the piezoelectric transducer can be placed in such a way that it
only affects one eigenform of the system. One measure for the coupling of the piezoceramics is
the generalized coupling coefficient, which is defined for every vibration mode and generally
takes different values for the individual modes. The design of the electrical shunt aims at
maximizing the energy dissipation. Different networks have been developed, which can
be classified into the categories passive, active, linear or non-linear. The best choice of
network depends on the performance target, the availability of electrical power supply and
the vibration behavior and excitation type of the mechanical structure.

Passive resonant circuits have been among the first networks for piezoelectric shunt damping.
Forward studied inductance-resistance networks for the damping of optical systems [4] which
were tuned to the resonant frequency of the mechanical system. Hagood and von Flotow then
studied the performance and tuning of these LR-networks in more detail [7]. They described
the shunted piezoceramics as a frequency depending stiffness and damping element and they
showed the analogies of LR-shunted piezoceramics and tuned mass dampers. They obtained
from calculations that the damping effect grows with the piezoelectric coupling coefficient.
The standard LR-network can only be tuned to one frequency, therefore in the subsequent
years new circuits were proposed that are capable to damp several frequencies at the same
time [2, 9]. These networks basically consists of multiple LR branches that are tuned to the
individual frequencies to be damped.
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In order to enhance the limited damping performance of passive shuntings, active elements
have been proposed. The mostly studied element is a negative capacitance, which can be
realized by a negative impedance converter circuit [5]. Initially considered by Forward [3], a
negative capacitance proves to be able to increase the effective piezoelectric coupling factor.
Especially the combination of passive networks with active elements is a promising approach.
This class of networks is called ’active-passive hybrid piezoelectric network’ (APPN) by Tang
[21]. Most prominent APPN networks are a negative capacitance with a resistor and a negative
capacitance with an inductor and resistor.

The drawback of these linear resonant networks is that they all must be tuned to a certain
frequency, which has to be known in advance and which should not change during operation.
For many applications they are therefore not suitable. In these cases adaptive, non-linear
networks are a better choice. The most common one is the ’synchronized switch damping on
inductor’ (SSDI) technique, which consists of an LR-branch and a switch that can connect
and disconnect the network to the electrodes of the piezoceramics [10]. For the case of
monoharmonic excitation the switch is closed at the moments of maximum deformation of
the piezoceramics. In this moment, the electrical charge is inverted via the inductance. The
inductance value is very small in order to realize a fast inversion. When fully inverted, the
switch is closed so that the charge cannot flow anymore. During the following half period of

excitation the charge stays nearly constant, so that the piezoceramics generates a force acting
against the deformation velocity. The resulting force signal is nearly rectangular shaped.
Like for the passive LR shunting the damping strongly depends on the electrical damping
ratio, which can be set by the resistance value. A small damping results in a good inversion
of the charge, which amplifies the stationary charge amplitudes and the dissipated energy.
The adaptive capability of the SSDI technique comes from the triggering of the switching
times. Therefore, typically one additional sensor is used which monitors the vibration of the
mechanical structure. Due to this triggering, the force signal from the piezoceramics is always
in phase with the structure vibration and the performance is only minimally dependend on
the excitation frequency.

2. Modeling of mechanical structures with a shunted piezoceramics

In order to obtain general results which can be transferred to various mechanical structures,
the structure is reduced to a one degree of freedom oscillator. The piezoceramics is shunted
to an arbitrary electrical impedance Z, as shown in Figure 1. The equations of motion for this
general case read

[

m 0
0 0

] [

q̈
Q̈

]

+

[

d 0
0 0

] [

q̇
Q̇

]

+

[

c + α2

Cp

α
Cp

α
Cp

1
Cp

]

[

q
Q

]

=

[

F(t)
−up

]

, (1)

where the parameters m, d and c denote respectively the modal mass, damping and stiffness.
Stiffness c is herein the sum of the mechanical stiffness cmech and the stiffness of the

piezoelement cp. F(t) represents the external force, up is the voltage at the electrodes of
piezoceramics, Cp the capacitance of the piezoceramics and α the force factor which can be
deduced from geometry and characteristics of the piezoceramics and the mechanical structure.
The variables q and Q are respective the modal displacement and electrical charge.
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Figure 1. Single Degree-of-Freedom oscillator with piezoceramics and shunt circuit.

When the piezoceramics is shunted to an electrical circuit, the voltage up depends on the
charge Q as well as the impedance Z of the shunt,

up = ZQ. (2)

In this context, Z describes the relationship between voltage and charge rather than between
voltage and current. Inserting (2) into (1), the generalized equation of a shunt damping system
reads as

[

m 0

0 0

] [

q̈

Q̈

]

+

[

d 0

0 0

] [

q̇

Q̇

]

+

[

c + α2

Cp

α
Cp

α
Cp

1
Cp

+ Z

] [

q

Q

]

=

[

F(t)

0

]

. (3)

This equation is the basis for all further calculations.

3. Optimization of resonant LR-shunting for damped mechanical systems

Let us first consider a resonant LR-shunt with impedance Z = Ls2 + Rs. Substituting this
term into (3) leads us to

[

m 0

0 L

] [

q̈

Q̈

]

+

[

d 0

0 R

] [

q̇

Q̇

]

+

[

c + α2

Cp

α
Cp

α
Cp

1
Cp

] [

q

Q

]

=

[

F(t)

0

]

. (4)

For maximum damping performance the circuit parameters L and R have to be tuned in such
a way that the system has double eigenvalues. For the undamped case (d = 0) the optimal
parameters are well known.

With the help of normalized, non-dimensional parameters, the equations can be written in
a more compact form. In detail, the generalized piezoelectric coupling coefficient K, the
eigenfrequency of the system with isolated electrodes ωiso, the electrical eigenfrequency ωel,
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the electrical damping ratio ζ0 of the LR-branch and the frequency ratio ηel are introduced,

K2 =
α2

cCp + α2
, ωel =

√

1

CpL
, ω2

iso =
c + α2/Cp

m
,

ζ0 =
R

2

√

Cp

L
, ηel =

ωel

ωiso
=

√

m

α2L
K. (5)

The generalized piezoelectric coupling coefficient K is a measure of the effectiveness of the
piezoceramics. It depends on the piezoceramics characteristics as well as on the structure
vibration form. The shunt parameters L, R are substituted by non-dimensional parameters
ηel, ζ0. The matrix A of the corresponding state-space system then reads as

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

−1 −K2 0 0

−η2
el −η2

el 0 −2ηelζ0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (6)

and the characteristic equations become

det (A − λI) = λ4 + 2ζ0ηelλ
3 +

(

1 + η2
el

)

λ2 + 2ζ0ηelλ +
(

1 − K2
)

η2
el = 0. (7)

Double eigenvalues are obtained when the shunt parameters are tuned according to

ηel,opt =
1√

1 − K2
≈ 1, ζ0,opt = K. (8)

These equations basically state that the inductance has to be tuned in such a way that the
electrical resonant frequency nearly equals the mechanical resonant frequency. The damping
ratio of the circuit must match the generalized piezoelectric coupling coefficient K. The
resulting damping ratio from such a shunting then becomes

D =
K

2
√

1 − K2
≈ K

2
. (9)

This equation proves the importance of the generalized piezoelectric coupling coefficient K,
as the damping performance grows with K. Figure 2 shows the influence of the network
parameters upon the location of the complex eigenvalues.

For the damped mechanical oscillator, the same strategy can be followed to optimize the
system. Normalizing the mechanical damping by Dm = d

2mωiso
the characteristic equation

of the system becomes

λ4 +(2ζ0ηel + 2Dm) λ3 +
(

1 + η2
el + 4ζ0ηelDm

)

λ2 +
(

2ζ0ηel + 2η2
elDm

)

λ+
(

1 − K2
)

η2
el = 0.

(10)
The results for the optimal network parameters ηel,opt and ζ0,opt as well as the resulting
damping performance are very lengthy terms. It is useful to express them in a Taylor series,
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Figure 2. Eigenvalue of mechanical 1 DOF oscillator with LR-shunted piezoceramics.

and only consider the first elements of the series. This gives

ηel,opt ≈
1√

1 − K2
+

K

1 − K2
Dm,

ζ0,opt ≈ K +
√

1 − K2Dm,

D ≈ 1

2

K√
1 − K2

+
4 − 3K2

4 − 4K2
Dm. (11)

These approximations are valid for small mechanical damping ratios Dm, which is practically
fulfilled in most cases. The equations clearly show the trend when mechanical damping is
included. For the undamped case, Dm = 0, the results are per definition equal to the values

obtained in (8) and (9). But additional mechanical damping leads to a slight increase of
the optimum electrical resonant frequency ηel and damping ratio ζ0,opt. Naturally also the
resulting damping performance grows with additional mechanical damping. One can realize
that for high mechanical damping Dm (compared to the coupling coefficient K), the overall
damping converges the mechanical damping, D ≈ Dm, and the additional damping caused
by the shunted piezoceramics is negligible.
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Figure 3. SSDNCI network.

4. Synchronized switch damping on negative capacitance and inductance

(SSDNCI)

This section describes a novel combination of a negative capacitance together with the
well-known SSDI-technique schematized in Figure 3, which has recently also been studied
by other research groups [11]. It is intended to combine the adaptive ability of the SSDI with
the enhanced performance and coupling of a negative capacitor. Again the calculations will
be performed using nondimensional parameters,

δ =
Ce

Cp
, ωel =

1
√

(1 + δ)LCp

, ζ =
√

1 + δ
R

2

√

Cp

L
=

√
1 + δζ0, τ = ωelt. (12)

The electrical damping ratio of the LR-branch of the circuit is again termen ζ0, while the
overall electrical damping ratio with negative capacitance is ζ. The capacitance ratio δ can
be set by choosing appropriate values for the negative capacitance. For a positive external
capacitance, the parameter δ is positive, for a negative capacitance it is negative. The electrical
resonance frequency as well as the electrical damping ratio both depend on the capacitance
ratio ζ. Setting δ = 0 results in the standard SSDI technique without negative capacitance,
with the corresponding electrical damping ratio ζ0. Obviously, the negative capacitance
influences the electrical resonance frequency as well as the damping ratio. Especially the
latter one is important, as the damping ratio should be as small as possible. Using a negative
capacitance reduces the damping ratio.

The switching network is a nonlinear system, but it can be considered as linear during the
periods with open and closed switch. When the switch is closed, the shunt impedance Zcl

reads

Zcl =
1

1
Ls2+Rs

+ 1
1/Ce

=
Ls2 + Rs

CeLs2 + CeRs + 1
. (13)
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Substitution of Zcl into (3) and representation in terms of the non-dimensional parameters
yields

[

m 0

αδL (1 + δ)L

] [

q̈

Q̈

]

+

[

0 0

αδR (1 + δ)R

] [

q̇

Q̇

]

+

[

c + α2

Cp

α
Cp

α
Cp

1
Cp

] [

q

Q

]

=

[

F(t)

0

]

. (14)

The standard SSDI network without negative capacitance is the special case with δ = 0.

In this study, a harmonic mechanical vibration q is assumed, and the influence of the shunted
piezoceramics upon the vibration is neglected. This is fulfilled in good appromixation for
systems where the piezoelectric coupling is not excessively large. Therefore, the second
equation from (14) can be rewritten, summarizing all terms with q as excitation on the right

side,

(1 + δ)LQ̈ + (1 + δ)RQ̇ +
1

Cp
Q = −(αδLq̈ + αδRq̇ +

α

Cp
q). (15)

When the switch is open, the piezoceramics is connected to the negative capacitance, Ziso =
1

Ce
. Inserting this impedance into (3) yields

[

m 0

0 0

] [

q̈

Q̈

]

+

[

c + α2

Cp

α
Cp

α
Cp

1
Cp

+ 1
Ce

] [

q

Q

]

=

[

F(t)

0

]

. (16)

The charge Q is directly coupled with mechanical displacement q. During the switch open
period, the charge Q changes according to

Q(t) = − α

Cp

1
1

Cp
+ 1

Ce

q(t) + C = −α
δ

1 + δ
q(t) + C, (17)

where C is the offset of charge signal, which still has to be determined. For a harmonically
excited system, it can be calculated by assuming that the voltage signal is periodic with the
same period time. It is therefore sufficient to consider one half period time of excitation only.
Every half period consists of a period of open switch and of closed switch. Here the magnitude
change of switch open circuit and switch closed circuit are defined respectively as ∆Qopen and
∆Qclose. The steady state is then characterized by

∆Qopen + ∆Qclose = 0. (18)

This equation basically means that the voltage is the same after each period time. In the case
of harmonic excitation with an amplitude of q̂ and excitation frequency of Ω, the mechanical
displacement, velocity and acceleration can be expressed as

q(t) = q̂cos(Ωt), q̇ = −q̂ΩsinΩt, q̈ = −q̂Ω
2sinΩt. (19)

The change of charge ∆Qopen is proportional to the change in displacement during switch
open period. With the absolute charge value after inversion (which is the initial condition of
the closed switch period) termed Q0, and the absolute value before inversion Q∗, we can write
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∆Qopen = Q0 − Q∗ = −2α
δ

1 + δ
q̂,

Q0 =
1

2
∆Qopen + C = −α

δ

1 + δ
q̂ + C. (20)

Compared to the mechanical periodic time, the electric periodic time is normally very short.
Additionally, the switching occurs at the times when the deformation q is maximized, which
means that the velocity is zero. It is demonstrated in [14], that it is therefore feasible to
neglect the change of mechanical signals during the time the switch is closed. Thus we
can approximate the right side of (15) with the following terms: q(t) = q̂cos(Ωt) ≈ q̂, q̇ =
−q̂Ωsin(Ωt) ≈ 0, q̈ = −q̂Ω

2cosΩt ≈ −q̂Ω
2. As a result, the right side of the differential

equation becomes a constant,

(1 + δ)LQ̈ + (1 + δ)RQ̇ +
1

Cp
Q = αq̂(δLΩ

2 − 1

Cp
). (21)

The solution of (21) is the superposition of the general solution and the particular solution.
The particular solution can be obtained with the Duhamel integral. After some mathematical
calculations, the value of charge at τ∗, which is the moment of opening the switch, is obtained

as
Q(τ∗) = −e−πζQ0 − αq̂(1 + e−πζ), Q∗ = |Q(τ∗)|. (22)

The difference between Q∗ and Q0 is the magnitude change of charge for closed switch
∆Qclose. Combining all results, the stationary value of charge Q0 and the constant component

C are obtained as

Q0 = αq̂(
1 + e−πζ

1 − e−πζ
− 2δ

1 + δ

1

1 − e−πζ
), C =

1

1 + δ
αq̂

1 + e−πζ

1 − e−πζ
. (23)

The results for C and Q0 are the absolute values, their signs periodically change so that they
are always in antiphase with the velocity q̇. Further on, this result can be approximated for

low damping ζ ≪ 1,

C ≈ 1

1 + δ
αq̂

2

πζ
= (1 + δ)−

3
2 αq̂

2

πζ0
. (24)

Equation (24) demonstrates that the stationary charge is increased for δ < 0, which means that
only a negative capacitance increases the charge buildup. Especially when δ approaches −1,
the constant C is theoretically infinity. The negative capacitance is an active analog circuit, so

in practice the stationary charge cannot be infinitely high due to the limited maximal output
of the operational amplifier. Additionally, the overall capacitance has to be positive in order
to keep the electrical network stable. Therefore, the theoretical available range of the negative
capacitance is the same as for the LRC shunt circuit

− Cp < Ce < 0 or − 1 < δ < 0. (25)

The time signals of the SSDI and the SSDNCI with different capacitance ratios are given in
Figure 4. For a clear illustration of the switching times tcl and top, the inversion of charge does
not occur instantaneously, as it is assumed in the calculations. Obviously, a larger negative
capacitance increases the charge amplitudes as compared to the SSDI technique (δ = 0).
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Finally, the dissipated energy Ediss per vibration period, which is a measure of the damping
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Figure 4. Time signals of the electrical charge for different capacitance values δ.

performance, can be obtained by integrating the product of piezoelectric force and mechanical
velocity over a mechanical period time Tmech,

Ediss = −α

∫ t∗+Tmech

t∗
up(t)q̇(t)dt. (26)

When the charge inversion occurs nearly instantaneously, it is sufficient to consider the time

with open switch only. With above results the piezovoltage can be obtained as

up(t) =
α

Cp
q(t) +

Q(t)

Cp
=

α

Cp

1

1 + δ
q(t) +

C

Cp
. (27)

Inserting (27) into (26), the expression of dissipated energy is rewritten as

Ediss = − α

Cp

∫ t∗+Tmech

t∗

(

α
1

1 + δ
q(t)q̇(t) + Cq̇

)

dt = − α

Cp

∫ t∗+Tmech

t∗
Cq̇ dt. (28)

As it is shown in (28), the amount of dissipated energy only depends on the charge offset C.
Therefore the aim in the design of the nonlinear shunt network is to maximize the offset of the
charge. Another way to illustrate the damping performance is the hystereisis cycle, in which
the piezoelectric voltage or force is drawn versus the deformation. Periodic vibrations are
characterized by closed loops, and the energy dissipation is proportional to the enclosed area.
Fig. 5 depicts the hysteresis loops for the standard SSDI (δ = 0) and the SSDNCI with two
different capacitance ratios. The voltage amplitude immediately before inversion is maximal,
±ûp, and after inversion, ∓ûpe−πζ . For the case of an instantaneous voltage inversion, the
hysteresis cycles are parallelograms. The slope of these lines is proportional to the force factor
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α. However, for the extension of the area, only the voltage amplitude, i.e. the charge offset, is
relevant. Clearly, a negative capacitance has a positive effect in both states, therefore resulting
in a higher charge offset. Inserting (24) into (28) we can get the expression of the dissipated
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Figure 5. Hysteresis cycles for different capacitance values δ.

energy per period,

Ediss = 4
α2

Cp
q̂2 1 + e−πζ

1 − e−πζ

1

1 + δ
. (29)

The increase in dissipated energy has the same trend as for the charge offset. Comparing

with SSDI shunt, the dissipated energy is scaled by (1 + δ)−
3
2 . For a linear LRC shunt, the

dissipated energy is scaled by 1/(1 + δ), see also in [15].

5. Optimized switching law for bimodal excitation

The assuption of a harmonic excitation is not valid for all situations. In many cases,
the signal also contains additional frequencies. In order to discuss the influence of more
general excitations, in the following a bimodal excitation is considered, which contains two
frequencies Ω1 and Ω2 with Ω2 > Ω1,

q(t) = q̂1 cos (Ω1t) + q̂2 cos (Ω2t + ϕ). (30)

Both signals have in general different amplitudes and a phase shift between them.

It is obvious that the standard switching law, which means switching at the maxima of
the first mode, does not yield optimal results anymore. One can show that - using the

standard switching law - the dissipated energy per vibration period is exactly the same as
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Figure 6. Time signals for standard and enhanced SSDI with bimodal excitation.

for a monoharmonic excitation with frequency Ω1 only,

Ediss = 4
α2

Cp
q̂1

2 1 + e−πζ

1 − e−πζ
, (31)

which is the result for the SSDNCI circuit with δ = 0. Therefore more sophisticated
switching laws have been developed, which target to extract energy from the higher frequency
oscillations and use it to increase the damping of the main mode [17].

The new switching law described in the following is defined according to these positions:

• A modal observer reconstructs both vibrations in the first and second frequency of the
excitation.

• A timeframe −T2/2 < t < T2/2 around each first mode extremum is defined, where T2 is
the period time of the second vibration mode. This assures that exactly one maximum and
one minimum of the second mode is located within this timeframe.

• The switching is triggered at the moments of the second mode extremum. It the timeframe
is defined around a maximum of the first mode, then it is triggered at the second mode
maximum, if it is defined around a minimum of the first mode, then it is triggered at the

second mode minimum within this timeframe.

For such a switching law it is assured that the voltage induced by the second mode is added
to the value caused by the first mode. Figure 6 shows a comparison of the standard and the
enhanced switching law for a biharmonic excitation. The higher frequency is recognizable
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Figure 7. Amplification of dissipated energy with enhanced SSDI technique versus amplitude ratio rA

and frequency ratio rf.

in the high frequency oscillations during the open switch phases. One can realize that
in the standard switching law the switching always occurs exactly during the first mode
extrema. At these moments, the voltage at the piezoceramics might be increased or decreased
by the influence of the higher frequency, so that in mean this effect cancels out. With the
enhanced switching law, the switch is always triggered when the second mode is maximum
and augments therefore the voltage buildup. However, the switching is no longer occuring
in phase with the first mode velocity, which reduces slightly the energy dissipation. For more

details the reader is referred to [12].

Obviously the increase in energy dissipation grows with the second mode amplitude. But
also the frequency ratio rf = Ω2/Ω1 between the first and second mode has an influence. The

higher the second frequency, the smaller is the period time T2 and therefore the timeframe.
This means that the second mode maximum is in average closer to the first mode maximum,
which is ideal for the energy dissipation. Figure 7 shows the amplification of energy
dissipation versus the frequency ratio rf and the amplitude ratio rA = q̂2/q̂1. It can be
concluded that for a given frequency ratio rf (this ratio is approximately 2π = 6.26 for
the clamped beam), the energy dissipation grows linearly with the second mode amplitude.
Additionally, the energy dissipation grows with a higher second frequency. Theoretically,
for very low second mode amplitude, this enhanced switching law actually might give less
damping than the standard law (the borderline is marked by a red line). This is due to the
non-optimal phase shift of the switching signal, which is not in exact antiphase with the first
mode velocity anymore. But these regions are practically not very relevant.
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6. Technical applications

After discussing the performance of various shunt damping techniques, in the following

section two technical systems, namely a squealing disc brake and a bladed disc, are
investigated as potential applications for piezoelectric shunt damping.

6.1 Brake squeal

Brake noise that is dominated by frequencies above 1 kHz is usually called ’brake squeal’.
It is widely accepted that brake squeal is caused by friction induced vibrations. A friction
characteristic that is decreasing with relative velocity results in an energy input and can excite
vibrations. Other works explain the instability with nonconservative restoring forces [6, 18].

This mechanism does not need the assumption of a decreasing friction characteristic, and
it is not depending on certain damping properties. Although the brake function itself is
not affected by these vibrations, the generated noise marks a significant comfort problem.
Brake squeal remains unpredictable, even state-of-the-art FE analyses cannot cope with the
complexity of the problem. Therefore, brake manufacturers typically reduce the tendency
to squeal in a time consuming process of designing, building and testing of prototypes in a
mostly empirical way.

Recently, the use of piezoceramics has been investigated for the suppression of brake squeal
[22] in an active feedback control. The authors succeeded in controlling the squaling, however
this method requires sensing electronics, complex amplifiers and a power supply. Therefore,
this technology is expensive and unsuitable for many applications like automotive brakes.
Piezoelectric shunt damping for brake squeal control might be a cheaper alternative.

6.1.1 Brake prototype and stability analysis

Before designing the shunt damping network, the stability of the brake is studied using a
multibody system, as shown in Figure 8. This model has been introduced in [13] to simulate

Piezo

Brake pad

Brake pad

Brake disc

up

Figure 8. Brake model and disc eigenform.

the efficiency of linear LR and LRC shunts as well as a feedback control for brake squeal
suppression. The two brake pads are modelled as rigid bodies and the contact area is
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represented as a layer with distributed stiffness and damping properties. Both pads have two
translational degrees of freedom (out-of-plane and in-plane direction) and stay in contact with
the brake disc. The coefficient of friction μ between disc and pads is assumed to be constant.
The brake disc is described as an annular disc according to the Kirchhoff plate theory. Only
the mode with four nodal diameter and one nodal circle is considered, this mode is depicted
in Figure 8, as the corresponding frequency agrees best with the squealing frequency. The
rotation of the disc introduces gyroscopic terms. Further more, the brake model contains
nonconservative restoring forces as a result of the friction forces in the contact area between
the pads and the disc. These forces can be identified in the unsymmetric stiffness matrix.
Because of these forces, the mechanical model is possibly unstable. This can be shown by
a complex eigenvalue analysis, as reported in Figure 9. The stability of the brake system
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Figure 9. Imaginary part versus real part of the eigenvalues of the uncontrolled brake.

is determined by the largest real part of the eigenvalues, termed λmax. A variation of the

coefficient of friction μ shows the influence of the nonconservative restoring forces. Without
friction forces, μ = 0, the brake is asymptotically stable, as λmax is negative. With increasing
friction, two pairs of eigenvalues move in opposite direction. The system becomes unstable
above a critical friction force μcrit with λmax(μ = μcrit) = 0. The imaginary part corresponds
to the squealing frequency, and is termed Ωsq.

Figure 10 shows the prototype disc brake at the Institute of Dynamics and Vibration Research
with three piezoelectric stack actuators. Their forces act in the same direction as the brake
pressure so that the out-of-plane vibrations of the brake disc can be influenced. The
piezoceramics are placed between the inboard brake pad and the brake piston and protected
by a cap construction against shear forces and debris. Other publications propose a similar
placement of the actuators, for example the ’smart pads’ [23] which include the piezoceramics
directly into the back side of the brake pads. Another possibility is to place the actuators
within the brake piston [1]. Three piezoelectric stack actuators with circular cross section
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Cap

Piezo element

Piston

modification

Figure 10. Prototype disc brake with embedded piezoceramics.

and material FPM 231 from company MARCO are used. They are designed to withstand
brake pressures exceeding 30 bar and temperatures up to 200◦C. This is certainly not enough
for typical temperatures during strong brakings, but enough for principal feasibility studies
in the lab. It is possible to connect all piezoceramics with LR- or LRC-shunts. When the

SSDI-technique is used, one of the ceramics (typically the middle one) is used as a sensor and
the remaining two are shunted.

6.1.2 Modeling of the combined system and control of brake squeal

The tuning of the resonant LR- and LRC-shunts is done like it is described in [16] for an
assumed squealing frequency of fsq ≈ 3400Hz. The results for a passive LR and two negative
capacitance shunts with different capacitance ratios δ are shown in Figure 11. The maximum
real part λmax is given versus the squealing frequency fsq. The squealing frequency of the
brake model is artificially changed by multiplicating the stiffness matrix by a constant term,
which results in a change of all eigenfrequencies of the system.

All three networks are capable to stabilize the brake when tuned precisely, as λmax is negative.
However, the frequency bandwidth in which the brake is stable is very narrow for the passive
LR-shunt. Practically this frequency range is not enough for a robust suppression of the brake
squealing, as it might occur in a broad range due to the many possible eigenfrequencies of
the brake. As expected, the negative capacitance networks perform better. The maximum
reduction of λmax is equal to that achievable with LR-networks, but this occurs in a broader
frequency range. The closer the capacitance value is tuned to −1, the better the performance
results.

6.1.3 Measurements on the brake test rig

Measurements are conducted on the brake test rig with the modified brake using the following
procedure to experimentally determine the frequency bandwidth of the damping effect: The
passive LR or active LRC shunt is disconnected from the piezoceramics, and the brake
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Figure 11. Stability of the brake model for LR-shunt (δ = 0) and LRC-shunts with δ1 = −0.6 and
δ2 = −0.88.

pressure and disc speed is varied until a proper and steady squealing arises. During the
tests, this usually happens for pressures between 8 and 15 bar and velocities of 23 rpm of the
beake disc. The squealing frequency could be located at approx. 3400Hz. After this, the shunt
is connected to the electrodes, and the inductance and resistance are set to the calculated
optimum values. Afterwards, the inductance value is reduced until the damping effect is
vanishes, as the network is too strongly mistuned. This is the initial value of the inductance
at the beginning of each measurement.

During the measurements, the shunt is periodically connected and disconnected for 10
seconds. After each cycle, the inductance is increased so that in the following 10 seconds
of connection the shunt is tuned to a constant, new frequency. In the first half of each
measurement, the electrical resonance frequency is successively tuned closer to the squealing

frequency and the damping effect grows. In the middle of the measurement, the shunt is
tuned nearly perfectly, and the effect is maximized. In the second half, the mistuning grows
again as the inductance value is further increased, and the damping effect is diminished. The
measurement is stopped when no squealing reduction is noticeable anymore. This procedure
is repeated for different LR and LRC-shunts.

During the measurements, the sound pressure is recorded with a microphone, which is located
in a distance of 50 cm from the brake. In the upper plot of Figure 12 the sound pressure is given
versus the time for one exemplary measurement. In the lower plot, the corresponding sound
pressure level (SPL) and the inductance values are shown. As shown, during the measurement
time of more than 3 minutes, the SPL of the squealing brake remained nearly constant within
95-100 dB. In the very first and last switchings between connection and disconnection of the
shunt, nearly no reduction in the SPL is noticed, as the mistuning is too strong. In the middle
of the measurement the squealing stops immediately after connecting the shunt and starts
again after disconnecting. The remaining sound without the squealing is environmental noise,

710 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges



Shunted Piezoceramics for Vibration Damping - Modeling, Applications and New Trends 17

0 50 100 150 200

−2

0

2

0 50 100 150 200

70

80

90

100

0 50 100 150 200

25

55

Time t [s]

S
o

u
n

d
p

re
ss

u
re

[P
a]

S
P

L
[d

B
]

In
d

u
ct

an
ce

[m
H

]

Lopt

Figure 12. Sound pressure and SPL during one measurement with stepwise varied inductance.

which has been measured as high as 75 dB, and is dominated by the sound of the electric motor
that drives the brake disc.

The performance of the shunted piezoceramics is evaluated by the reduction of the mean
SPL during each 10 seconds of connection and disconnection for every inductance value. In
Figure 13 this reduction is given versus the indunctance (normalized to the optimal value).
The figure shows the results for the passive LR shunt (δ = 0) and two different LRC shunts
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Figure 13. Reduction in SPL versus inductance tuning for LR- and LRC-shunts.
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with the same capacitance ratios as in the simulations reported in Figure 11. It can be seen
that the maximum reduction for each shunt is achieved for the perfectly tuned shunts (L ≈
Lopt respectively η ≈ 1). In these cases, all shunts - including the passive LR shunt - are
capable to suppress the squealing totally, as predicted by the simulations. The differences in
the maximum reduction can be explained by different strength of the squealing. Naturally, a
weak squealing delimits the maximum possible reduction compared to a strong squealing.

From the inductance ratio L/Lopt, the frequency ratio between the electrical eigenfrequency
and the squealing frequency can be re-calculated. Defining the state ’silent’ and ’squealing’ by
an arbitrary threshold of 12 dB SPL-reduction, the brake is stabilized in a range of ∆ f = 40Hz
for the passive LR shunt. With actice LRC-shunts, the stabilized range covers ∆ f = 212Hz
with δ = −0.66 and ∆ f = 950Hz with δ = −0.88. These results show a good accordance
with the simulation results in Figure 11. However, some influences like the heating up of the
piezoceramics lead to a reduction of the piezoelectric effect so that the performance at the end
of each measurement is slightly lower than in the beginning.

6.2 Damping of turbine blades

Another application is the vibration damping of turbine blades. Here the excitation comes
from high static and dynamic loads. Static loads are due to centrifugal forces and thermal
strains while fluctuating gas forces are the cause of dynamic excitation which can lead to High
Cycle Fatigue (HCF) failures. As the material damping is extremely low, any further damping
provided to the structure is desireable. Coupling devices like underplatform dampers,
lacing wires and tip shrouds are common in turbomachinery applications [19, 20]. The
effectiveness of these damping concepts is limited to the relative vibrations of neighbouring
blades and therefore they are often only efficient for specific engine speeds and mode shapes.
Furthermore, the aerodynamics of the blades is influenced by these coupling devices.

In the following, the damping of turbine blades by shunted piezoceramics is studied with a
bladed disc model (BLISC), depicted in Figure 14, which has been introduced by Hohl [8]. Each

r

α

Figure 14. Photography and sketch of the BLISC test rig with attached piezoceramics.
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blade is equipped with a MACRO FIBER COMPOSITE piezoceramics M2814 P1 from MARCO

company for vibration damping.

6.2.1 Optimizing the location of the piezoceramics

The intention of this study was to optimize the placement of the piezoceramics within the
structure. As the geometry is too complex for an analytical description, it is modeled by Finite
Elements in Ansys using 3-D 20-Node structural solid elements (solid186) and a 3-D 20-node
coupled-flied solid (solid226) for the piezoelectric material. Subsequently a modal reduction
is performed. The location of every piezoceramics is described by the radius r and the
orientation α, which have to be optimized, with the generalized coupling coefficient K taken as
a measure of the coupling. This factor can be calculated by the system’ eigenfrequencies with
isolated and short circuit electrodes of the piezoceramics, which are both determined within
the FE program. Generally, the coupling with the individual eigenforms of the system differ
from each other. In Figure 15 the coupling coefficients for the first bending and first torsion
mode of the blades are given versus α and r. For the bending mode, the piezoceramics should
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Figure 15. Generalized coupling coefficient K for the first bending and torsion modes versus the location
of the piezoceramics.

be placed close to the clamped ending of the blade at r = 90mm, which is approximately
the radius of the disc. This can be explained by the bending moment, which is maximized
at this position. The bending moment reduces to zero at the free end of the blade, therefore
also the coupling reduces in that direction. The dependency with the orientation α is nearly
symmetric: the coupling is maximal when the piezoceramics is facing in radial direction
(α = 0◦ or α = 180◦) and minimal for α = 90◦. The resulting maximum coupling is K ≈ 3.5%.

For the torsion mode, the optimal radius is similar, yet slightly larger than for the bending
mode. However, the orientation is oppositional to the bending case: the best coupling results
for α = 45◦ , while it is nearly zero for α = 0◦ and α = 90◦. The maximum coupling with the
torsion mode is K ≈ 2.25% and thus smaller than for the bending.
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Therefore, for the overall optimal location a trade-off is necessary, and the piezoceramics is
placed with r = 97.5mm and α = 22.5◦. In this case the coupling with both the bending and
torsion mode is about K = 2%.

6.2.2 Measurements

Finally, measurements are conducted with the BLISC test rig. The system is excited
harmonically by additional piezoceramics placed at the back side at identical positions as
the shunted ones at the front side. One single passive LR network is connected to all
piezoceramics simultaneously, and the electrical eigenfrequency and the damping ratio are set
to the optimal values according to the previous sections. Figure 16 shows the measurement as
well as the simulation results for isolated electrodes and optimal LR-shunting. Generally, the
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Figure 16. Simulated and measured frequency response of the BLISC model for isolated electrodes and
LR-shunting.

simulation results are in very good agreement with the measured ones. The damping effect of
the shunted piezoceramics is clearly visible.

7. Conclusions

This chapter deals with shunted piezoceramics for vibration damping. A small overview
of typical shuntings is presented. Further on, a general model of a one degree of freedom
mechanical oscillator with embedded piezoceramics and external electrical circuit is derived.

Based on this system, the optimal tuning of a resonant LR-shunt is performed for a damped
mechanical system. The influence of the mechanical damping upon the optimal parameters
and the resulting damping performance is studied. Further on, a novel combination of a
’SSDI’ switching circuit and a negative capacitance is discussed. It is shown that this network
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inherits the adaptive structure of the SSDI technique and combines it with the enhanced
performance of a negative capacitance. An enhanced switching law for bimodal excited
systems is presented as well. With this technique, the damping of the main mode can be
maximized using the vibration energy stored in the higher mode.

Finally, a squealing disc brake and a bladed disc are introduced as two technical applications
for piezoelectric shunt damping. For both cases the vibration behavior is studied by
mechanical replacement models, and the location of the piezoceramics and the electrical
shuntings are chosen based on these models. In both cases it is possible to control
the vibrations and increase significanly the damping of the structure. Measurements are
conducted which validate the theoretical models.
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