787 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Information Extraction from Biomedical Texts

    Get PDF
    V poslední době bylo vynaloženo velké úsilí k tomu, aby byly biomedicínské znalosti, typicky uložené v podobě vědeckých článků, snadněji přístupné a bylo možné je efektivně sdílet. Ve skutečnosti ale nestrukturovaná podstata těchto textů způsobuje velké obtíže při použití technik pro získávání a vyvozování znalostí. Anotování entit nesoucích jistou sémantickou informaci v textu je prvním krokem k vytvoření znalosti analyzovatelné počítačem. V této práci nejdříve studujeme metody pro automatickou extrakci informací z textů přirozeného jazyka. Dále zhodnotíme hlavní výhody a nevýhody současných systémů pro extrakci informací a na základě těchto znalostí se rozhodneme přijmout přístup strojového učení pro automatické získávání exktrakčních vzorů při našich experimentech. Bohužel, techniky strojového učení často vyžadují obrovské množství trénovacích dat, která může být velmi pracné získat. Abychom dokázali čelit tomuto nepříjemnému problému, prozkoumáme koncept tzv. bootstrapping techniky. Nakonec ukážeme, že během našich experimentů metody strojového učení pracovaly dostatečně dobře a dokonce podstatně lépe než základní metody. Navíc v úloze využívající techniky bootstrapping se podařilo významně snížit množství dat potřebných pro trénování extrakčního systému.Recently, there has been much effort in making biomedical knowledge, typically stored in scientific articles, more accessible and interoperable. As a matter of fact, the unstructured nature of such texts makes it difficult to apply  knowledge discovery and inference techniques. Annotating information units with semantic information in these texts is the first step to make the knowledge machine-analyzable.  In this work, we first study methods for automatic information extraction from natural language text. Then we discuss the main benefits and disadvantages of the state-of-art information extraction systems and, as a result of this, we adopt a machine learning approach to automatically learn extraction patterns in our experiments. Unfortunately, machine learning techniques often require a huge amount of training data, which can be sometimes laborious to gather. In order to face up to this tedious problem, we investigate the concept of weakly supervised or bootstrapping techniques. Finally, we show in our experiments that our machine learning methods performed reasonably well and significantly better than the baseline. Moreover, in the weakly supervised learning task we were able to substantially bring down the amount of labeled data needed for training of the extraction system.

    A Supervised Learning Approach for Imbalanced Text Classification of Biomedical Literature Triage

    Get PDF
    This thesis presents the development of a machine learning system, called mycoSORT , for supporting the first step of the biological literature manual curation process, called triage. The manual triage of documents is very demanding, as researchers usually face the time-consuming and error- prone task of screening a large amount of data to identify relevant information. After querying scientific databases for keywords related to a specific subject, researchers generally find a long list of retrieved results, that has to be carefully analysed to identify only a few documents that show a potential of being relevant to the topic. Such an analysis represents a severe bottleneck in the knowledge discovery and decision-making processes in scientific research. Hence, biocurators could greatly benefit from an automatic support when performing the triage task. In order to support the triage of scientific documents, we have used a corpus of document instances manually labeled by biocurators as “selected” or “rejected”, with regards to their potential to indicate relevant information about fungal enzymes. This document collection is characterized by being large, since many results are retrieved and analysed to finally identify potential candidate documents; and also highly imbalanced, concerning the distribution of instances per relevance: the great majority of documents are labeled as rejected, while only a very small portion are labeled as selected. Using this dataset, we studied the design of a classification model to identify the most discriminative features to automate the triage of scientific literature and to tackle the imbalance between the two classes of documents. To identify the most suitable model, we performed a study of 324 classification models, which demonstrated the results of using 9 different data undersampling factors, 4 sets of features, and the evaluation of 2 feature selection methods as well as 3 machine learning algorithms. Our results demonstrated that the use of an undersampling technique is effective to handle imbalanced datasets and also help manage large document collections. We also found that the combination of undersampling and feature selection using Odds Ratio can improve the performance of our classification model. Finally, our results demonstrated that the best fitting model to support the triage of scientific documents is composed by domain relevant features, filtered by Odds Ratio scores, the use of dataset undersampling and the Logistic Model Trees algorithm

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin

    Learning with Low-Quality Data: Multi-View Semi-Supervised Learning with Missing Views

    Get PDF
    The focus of this thesis is on learning approaches for what we call ``low-quality data'' and in particular data in which only small amounts of labeled target data is available. The first part provides background discussion on low-quality data issues, followed by preliminary study in this area. The remainder of the thesis focuses on a particular scenario: multi-view semi-supervised learning. Multi-view learning generally refers to the case of learning with data that has multiple natural views, or sets of features, associated with it. Multi-view semi-supervised learning methods try to exploit the combination of multiple views along with large amounts of unlabeled data in order to learn better predictive functions when limited labeled data is available. However, lack of complete view data limits the applicability of multi-view semi-supervised learning to real world data. Commonly, one data view is readily and cheaply available, but additionally views may be costly or only available in some cases. This thesis work aims to make multi-view semi-supervised learning approaches more applicable to real world data specifically by addressing the issue of missing views through both feature generation and active learning, and addressing the issue of model selection for semi-supervised learning with limited labeled data. This thesis introduces a unified approach for handling missing view data in multi-view semi-supervised learning tasks, which applies to both data with completely missing additional views and data only missing views in some instances. The idea is to learn a feature generation function mapping one view to another with the mapping biased to encourage the features generated to be useful for multi-view semi-supervised learning algorithms. The mapping is then used to fill in views as pre-processing. Unlike previously proposed single-view multi-view learning approaches, the proposed approach is able to take advantage of additional view data when available, and for the case of partial view presence is the first feature-generation approach specifically designed to take into account the multi-view semi-supervised learning aspect. The next component of this thesis is the analysis of an active view completion scenario. In some tasks, it is possible to obtain missing view data for a particular instance, but with some associated cost. Recent work has shown an active selection strategy can be more effective than a random one. In this thesis, a better understanding of active approaches is sought, and it is demonstrated that the effectiveness of an active selection strategy over a random one can depend on the relationship between the views. Finally, an important component of making multi-view semi-supervised learning applicable to real world data is the task of model selection, an open problem which is often avoided entirely in previous work. For cases of very limited labeled training data the commonly used cross-validation approach can become ineffective. This thesis introduces a re-training alternative to the method-dependent approaches similar in motivation to cross-validation, that involves generating new training and test data by sampling from the large amount of unlabeled data and estimated conditional probabilities for the labels. The proposed approaches are evaluated on a variety of multi-view semi-supervised learning data sets, and the experimental results demonstrate their efficacy
    corecore