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Abstract

The focus of this thesis is on learning approaches for what we call “low-quality data”

and in particular data in which only small amounts of labeled target data is available.

The first part provides background discussion on low-quality data issues, followed by

preliminary study in this area. The remainder of the thesis focuses on a particular

scenario: multi-view semi-supervised learning.

Multi-view learning generally refers to the case of learning with data that has multi-

ple natural views, or sets of features, associated with it. Multi-view semi-supervised

learning methods try to exploit the combination of multiple views along with large

amounts of unlabeled data in order to learn better predictive functions when limited

labeled data is available.

However, lack of complete view data limits the applicability of multi-view semi-

supervised learning to real world data. Commonly, one data view is readily and

cheaply available, but additionally views may be costly or only available in some cases.

This thesis work aims to make multi-view semi-supervised learning approaches more

applicable to real world data specifically by addressing the issue of missing views

through both feature generation and active learning, and addressing the issue of model

selection for semi-supervised learning with limited labeled data.

This thesis introduces a unified approach for handling missing view data in multi-view

semi-supervised learning tasks, which applies to both data with completely missing

additional views and data only missing views in some instances. The idea is to learn a

feature generation function mapping one view to another with the mapping biased to
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encourage the features generated to be useful for multi-view semi-supervised learning

algorithms. The mapping is then used to fill in views as pre-processing. Unlike pre-

viously proposed single-view multi-view learning approaches, the proposed approach

is able to take advantage of additional view data when available, and for the case of

partial view presence is the first feature-generation approach specifically designed to

take into account the multi-view semi-supervised learning aspect.

The next component of this thesis is the analysis of an active view completion scenario.

In some tasks, it is possible to obtain missing view data for a particular instance, but

with some associated cost. Recent work has shown an active selection strategy can

be more effective than a random one. In this thesis, a better understanding of active

approaches is sought, and it is demonstrated that the effectiveness of an active selection

strategy over a random one can depend on the relationship between the views.

Finally, an important component of making multi-view semi-supervised learning ap-

plicable to real world data is the task of model selection, an open problem which is

often avoided entirely in previous work. For cases of very limited labeled training

data the commonly used cross-validation approach can become ineffective. This the-

sis introduces a re-training alternative to the method-dependent approaches similar in

motivation to cross-validation, that involves generating new training and test data by

sampling from the large amount of unlabeled data and estimated conditional probabil-

ities for the labels.

The proposed approaches are evaluated on a variety of multi-view semi-supervised

learning data sets, and the experimental results demonstrate their efficacy.
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Chapter 1

Introduction

In data mining or machine learning, a fundamental goal is to be able to predict some quantity of in-

terest about some data based on computational representations of the data with measurable features

for each instance of the data. For instance we might want to predict the categories present in an

image such as "car" or "fish" based on features of the image such as texture or shape descriptors or

whether or not a certain chemical has a toxic (carcinogenic) effect in humans based on its chemical

structure and in-vitro lab tests. Data mining and machine learning methods try to look at collected

sets of data called training data, e.g., images or chemicals, that are annotated with ground truth, or

“label”, information about some property of interest for each data instance, e.g., image category

or toxicity, in order to estimate, or learn, the relationship between the representations of the data

and the labels. In an ideal scenario, collected data is high-quality. That is an abundant amount of

labeled data is fully available, all from the target data source of interest. In the ideal high-quality

data case, labeled data is abundant - so that predictors can be estimated with high confidence, the

labeled data is all from the same fixed source as the data for the target task, all the features of the

data are available in all instances, data instances are independent, and there are no erroneous data

or outliers - extreme values not representative of the data which can mislead learning algorithms.

Unfortunately, such ideal high-quality data scenarios are rarely encountered in real-world appli-

cations due to error, difficulty, and cost associated with collecting and annotating data. Typically
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data have one or more of the following low-quality aspects.

∙ Only a small sample of labeled data is available from the target data.

∙ The data is only partially observed - i.e., there are missing values.

∙ There are errors, outliers, or noise present in the data and annotations.

∙ The distribution of the target data is not the same as the distribution of the training data, so

that the relationships learned in the collected data may not be accurate for the target data.

This includes such issues as concept drift where the target data distribution changes over

time, and sample selection bias where the collected data sample is not representative of the

target data sample.

The focus of this thesis is on the first case, of limited labeled data. It is often the case that

only a limited amount of labeled data can be collected for new tasks, due to such factors as time

and cost. When labeled data is limited, it becomes more important to make use of any additional

sources of information available - which can be in the form of different but related sets of data

that are fully labeled, different representations of the data (sets of data features), information about

the relationships between features of the data, and unlabeled data from the target data source.

In general, the type of low-quality issues along with the specific form of auxiliary information

available, whether data or some type of prior knowledge, determines the specific learning problem.

For instance when little or no labeled data is available from the target data distribution, but a

different set of high-quality labeled data is available from a related distribution, it may be desirable

to make use of this data in learning a predictive model for the target data, in some sense transferring

knowledge from one task to a related one. This corresponds to both issues of limited labeled data

and differing data distributions. The same issue arises if the data are unavoidably different, as is the

case with concept drift. Both of these cases correspond to the problem of transfer learning [142],

and the auxiliary information available comes in the form of the related high-quality data. My

previous work in this area focused on how to learn a predictive model using related but different
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training data along with unlabeled target data that could then be applied to the target data [148], and

also how to find an embedding for training and target data that would align the data distributions

and ideally remove the low-quality aspects from the data as a type of pre-processing [149, 150].

Another line of my previous work with limited labeled data is on utilizing auxiliary information in

the form of a known relationship between features of the data [147, 66]. These works are discussed

chronologically in the first part (the next three chapters) of this thesis, comprising preliminary study

on learning with low-quality data, and learning with limited labeled data in particular.

The main focus of this thesis, multi-view semi-supervised learning, corresponds to a different

learning problem for the case of small amounts of labeled training data. There are two key types of

auxiliary information associated with multi-view semi-supervised learning. The first corresponds

to prior knowledge about the features of the data - in the form of a natural partition of the fea-

tures, such that each partitioned set is sufficient for learning (as explained in Section 1.2) and also

such that the views are not entirely dependent on each other so that some different information

is potentially available. The second corresponds to the semi-supervised learning aspect, learning

when an additional, usually large, set of unlabeled data is available. This thesis can be seen as also

addressing an additional low-quality data aspect often associated with multi-view semi-supervised

learning in real world applications - that of structured missing values in the form of missing views.

That is, some data instances may be completely missing additional views of the data.

The remainder of this chapter proceeds as follows. First, more detail and background are

provided in Sections 1.1 and 1.2. Next, the motivation behind the main focus of this thesis is

described in Section 1.3. In Section 1.4, the contributions of this thesis are described. In the last

section, Section 1.5, the organization for the remainder of the thesis is given.

1.1 Supervised and Semi-Supervised Learning

The general goal of machine learning is to learn a predictive function f : X → Y mapping an

input data space X to an output label space Y using a set of training data examples. The char-
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acteristics of the label space for a learning problem determine the corresponding machine learning

task, for instance if Y is fixed and finite the task corresponds to classification and if Y ≡ ℝ

the task corresponds to regression. Supervised learning addresses the case where a training data

set consists of a set of data and label pairs, (x1,y1),(x2,y2), . . . ,(xn,yn) ∈X ×Y . In order to

employ supervised learning, data must be collected and annotated with labels, usually by a hu-

man. In many scenarios, unlabeled data examples are abundant but obtaining labeled data for a

target learning task can be error-prone, time-consuming, expensive, or even impossible. Semi-

supervised learning approaches aim to make use of the available unlabeled data to improve the

predictive performance of the learned function, particularly in cases where the amount of labeled

training data is small. Specifically, in addition to the training examples, a set of unlabeled training

instances, xn+1,xn+2, . . . ,xn+m ∈X , is available. While the unlabeled data alone do not provide

any information about the predictive function mapping, the combination of the unlabeled data,

specific assumptions about the data, and the limited labeled data can make it possible to learn

a function with improved predictive performance compared to a function learned using only the

limited labeled training data [224]. Typically this improvement is possible through a reduction in

some sense of the size of the hypothesis space for the predictive function [224]. A main category

of semi-supervised learning methods, and the focus of this thesis, is multi-view semi-supervised

learning.

1.2 Multi-View Learning and Multi-View Semi-Supervised Learn-

ing

Multi-view learning generally addresses the case of learning with data that has multiple natural

views, generally corresponding to distinct sets of features, associated with it. Specifically x ∈X

can be naturally represented as x = (x1,x2, . . . ,xk) ∈X 1×X 2× . . .×X k, corresponding to k

different views of the data. For example, when classifying webpages, two natural views for a

given webpage could be considered: the set of text features for any text on the webpage, and the
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set of link text features for any links to the webpage. Another example is chemical data. The

set of chemical structure features could correspond to one view and chemical-protein interaction

profiles could correspond to a second view. Multi-view semi-supervised learning methods try to

exploit the combination of multiple views with associated assumptions along with large amounts

of unlabeled data in order to learn better predictive functions when limited labeled data is available.

The fundamental idea exploited for multi-view semi-supervised learning is the idea of predictive

function agreement (consensus) of view-specific functions’ predictions on the unlabeled data. If

for each view a function from an associated hypothesis class exists that can achieve zero prediction

error, restricted to that view, then all of these functions from different views must agree exactly in

their predictions on all data instances, in particular the unlabeled data instances. Therefore, when

learning the predictive functions for the views, any combination of functions that disagree in their

predictions on the unlabeled data can be eliminated from consideration. In this way, the size of

the set of hypothesis functions that explain the labeled data well in each view can potentially be

reduced. In the more realistic case that the best performing functions in each view have some

base error, as long as the error is not too great there will still necessarily be overlap between

these functions’ predictions even if they do not universally agree on all instances [58]. In this

case the solutions can still be biased toward predictors that mostly agree on the unlabeled data

instances. The condition that for each individual view there exists an associated function from

a given hypothesis class that is able to achieve the best possible error rate is referred to as view

sufficiency.

1.3 Motivation

Multi-view data arises naturally in many applications. However, lack of complete view data limits

the applicability of multi-view semi-supervised learning to real world data. A common scenario is

that one data view is readily and cheaply available, but additional views may only be available in

some cases and may be costly to obtain.
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This proposed work aims to make multi-view semi-supervised learning approaches more ap-

plicable to real world data specifically by addressing the issue of missing views.

1.3.1 Some Motivating Examples

The following are some detailed examples of potential applications that fit the multi-view semi-

supervised learning scenario, with missing views being an issue.

1.3.1.1 Medical Diagnostics

In terms of medical diagnosis, in particular cancer diagnosis, prognosis prediction both before and

after treatments can be cast as a multi-view semi-supervised learning problem. For instance, if

the goal is survival prediction, since the data is censored ground truth labels are not obtainable

for many patients. If the goal is to determine pathologic complete response, potentially invasive

surgical procedures are required which furthermore are not entirely accurate, making ground truth

labels difficult to obtain. Additional views for patients can be obtained but these can be both costly

and inconvenient for the patients. For disease diagnosis in general, in many cases there is no

definitive test for a disease, or the disease can only be determined with more certainty after many

expensive tests such as ultrasound, MRI, and biopsy or after analyzing the results of different

treatments. For instance, a common test for elevated thyroid stimulating hormone levels could

indicate hypothyroidism, a pituitary adenoma, or a number of auto-immune diseases, with no

reliable single test to determine the underlying cause. Obtaining all sets of views for all patients is

prohibitively costly and in some case impossible, as is the case with obtaining label information.

Ideally, a diagnostic system could aid doctors by considering all partial view information available

and including undiagnosed patient information. This problem also motivates an active solution

where expensive and invasive procedures are only carried out if necessary. On the other hand,

there are some common sets of easily obtainable clinical features which would correspond to a

view present for all patients related to a particular disease. For instance, for lung cancer, common

clinical factors include forced expiratory volume, performance status, and gender.
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Recently an active multi-view semi-supervised learning approach was applied to data for long

cancer survival prediction and pathologic complete response prediction for chemo-radiotherapy

treatment, with promising results [209]. In these experiments, additional views were provided for

individual patients by imaging techniques like PET/CT scanning.

1.3.1.2 Cheminformatics

For prediction tasks involving chemicals, molecular structure features based on chemical graphs

can be readily obtained, but obtaining chemical-protein interaction profiles for a set of proteins

can be costly and time-consuming. Other expensive or difficult to obtain views include general in-

vitro tests and bio-assay screening, and various more complete characterizations of structure, such

as the results of nuclear magnetic resonance and x-ray crystallography. Additionally, labels are

also difficult to obtain, particularly when the goal is to evaluate new chemical compounds, for the

purpose of drug discovery and evaluation. If the final goal is to predict whether or not a chemical

would make an effective and safe drug, the amount of labeled data is limited. Another goal is to

determine side effects for a chemical compound, since so few drugs make it to the clinical trial

phase there is only a limited amount of data available about the side effects of drugs. Another

example is with chemical toxicity prediction, an earlier step in the drug discovery process. In this

case, reliable end-points are usually determined using animal studies which are both expensive and

time-consuming, and also not entirely accurate.

A small set of complete data has been used with multi-view semi-supervised learning for ad-

verse drug effect predictions [54], but for new chemicals or chemical groups additional views will

generally not be readily available.

1.3.1.3 Webpage Data

Webpage data potentially contain many views, which may or may not be present in a given in-

stance, including images, sounds, and information about incoming links. A standard view that

is always present is the text on the webpage itself. Additionally, classifying webpages manually
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would involve hiring human annotators; the process would be time consuming and expensive, and

error-prone due both to human error and the ambiguity of assigning a class to a webpage in some

cases. Furthermore, new classification tasks are constantly arising as the result of user-specific

preferences and search. For instance, a user’s particular preferences about what kind of webpages

he or she likes and also what webpages are relevant to a particular semantic search correspond to

prediction tasks with little to no labeled instances. More generally, this idea applies to personalized

prediction of other kinds as well, for instance such as for personalized product recommendation.

Considering in particular the additional view associated with the text of links on other pages

linking to a given webpage, the availability of this view is also limited. As an example, the WebKB

data presented in the first work on co-training [25] and used in subsequent work [220, 210] uses

text features for text on a webpage as one view, and text features from the incoming link text

as a second view. This second view is actually incomplete even in the WebKB data set, but the

incomplete view instances are just removed for the purposes of the experiments. For instance,

for the faculty vs. student classification task, about half of the webpages in each category do not

have any incoming links. However it is likely other pages do link to these, just that the crawler

used to collect the webpages did not find them in its finite search. Additionally, as new webpages

are created initially no incoming link information will be available, and existing webpages being

updated also changes this information; this may lead to misleading representation in the link view

if the same procedure is used for generating this view.

1.3.1.4 Multimedia Data

Another category of examples is with multi-media data, for example, tagged and annotated multi-

media data such as tagged images. In this case the annotation or tagging can be sporadic and noisy,

in the sense that tags may not necessarily correspond to categories present in media or desired

categories. Taking tagged images as an example, when available, tags may provide highly relevant

information as to the categories of objects or concepts captured in an image, but as annotators

cannot be obtained to annotate every image or new images, ideally it would be preferable to be

8



able to use tag information when available to improve a classifier for the single image view. Ad-

ditionally new classification tasks are likely to arise, limiting the amount of labeled data available

in such cases, for instance, as with webpage classification for each user there may be multiple new

classification tasks defined, characterizing a particular type of image he or she is looking for based

on high-level concepts.

1.3.2 Motivation from Theoretical Work

In order to determine what kind of bias to assert when trying to estimate missing views, a key

motivation for this thesis comes from theoretical study of multi-view semi-supervised learning.

As mentioned in Section 1.2, if each view is sufficient then multi-view semi-supervised learning

may offer some benefit, but another condition is necessary to determine whether or not it will

offer a benefit. Theoretical work characterizing what conditions are sufficient for multi-view semi-

supervised learning to succeed in improving predictive performance is a key motivation for the

proposed approach of this thesis for handling missing view data, and discussed in more detail in

Chapter 6. In short, conditions of expansion [9], and differences in empirical kernel maps using the

unlabeled data [179] are connected in characterizing how the labeled and unlabeled data are related

to each other in different views. These works motivate the idea of this thesis of using the difference

between the distance profiles with respect to the unlabeled data in each view for determining if

pairs of views provide sufficiently complementary information when evaluating candidate values

for filling in missing views, and for estimating the utility of completing an instance for active view

completion. This motivates the feature generation (Chapter 6) and active view completion (Chapter

7) approaches of this thesis work.

1.4 Contributions

This analysis of the commonality of theoretical results on multi-view semi-supervised learning

leads to the first proposed contribution of this thesis: a novel way of biasing the values selected
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for missing views so that the filled in values will be useful for multi-view semi-supervised learn-

ing algorithms. A unified approach for handling missing view data in multi-view semi-supervised

learning tasks is introduced, which applies to the complete range of missing view data. The idea is

to use the criteria for the success of multi-view semi-supervised learning algorithms to bias a fea-

ture generation function mapping one view to another. This is carried out using additional terms in

the objective function of a feature generation network model that encourages the data instances in

distinct views to be nearby different unlabeled instances, and also takes into account classification

performance for the generated data. The proposed approach can be seen as a pre-processing step

that fills in missing views, and so allows a user’s choice of multi-view semi-supervised learning al-

gorithms to be applied to the completed multi-view data. Unlike previously proposed single-view

multi-view learning approaches, the proposed approach is able to take advantage of additional

view data when available, and for the case of partial view presence is the first feature-generation

approach specifically designed to take into account the multi-view semi-supervised learning aspect.

The second contribution of my thesis is the analysis of the active view completion scenario,

which can be an alternative approach for semi-supervised learning depending on the application.

In some tasks, it is possible to obtain missing view data for a particular instance, but with some

associated cost, for example, an annotator could be hired to label an image, or a PET/CT scan could

be ordered for a patient. Recent work has shown for some data that an active selection strategy can

result in faster predictive performance improvement than when instances are randomly selected

for view completion [209]. However this work does not consider at all when an active strategy

may or may not be useful, and additionally the methods proposed for active selection are not

directly applicable to multi-view semi-supervised learning methods in general, as they require, for

example, estimates of predictive variance. In this thesis, different selection strategies are analyzed

and it will be demonstrated that the effectiveness of an active selection strategy over a random one

can depend greatly on the relationship between the views. Additionally a simple active selection

approach is proposed for which improved performance is demonstrated in the experimental study.

The final contribution of this thesis is on model selection for semi-supervised learning algo-
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rithms with limited labeled data. An important component of making multi-view semi-supervised

learning applicable to real world data is the task of model selection, which is often avoided entirely

in previous work and excluded from consideration. For cases of very limited labeled training data

such as those commonly encountered with multi-view semi-supervised learning scenarios, model

selection is a significant challenge, and listed as a key open problem in a recent survey [78]. With

missing views this task potentially becomes even more difficult since additional hyper-parameters

may need to be selected for the pre-processing step. Experimental results have demonstrated the

benefit of multi-view semi-supervised learning in cases of very limited labeled training data (e.g.,

[220, 25, 179]), but in order for such results to be achievable in practice, some practical method of

selecting the hyper-parameters for these methods is necessary. The widely used cross-validation

approach can become ineffective with too few labeled training instances [176], and the majority of

other proposed model selection methods are specific to the corresponding proposed algorithms and

frameworks. For instance one such approach is a marginal likelihood approach, in which hyper-

parameter estimation is achieved by numerical procedures attempting to approximately integrate

out the model parameters from a particular Bayesian probabilistic model for multi-view semi-

supervised learning, and maximizing this marginal likelihood with respect to the hyper-parameters

[209] (also called type II maximum likelihood or evidence-based approach). However this requires

assuming a particular probabilistic model for the different components of the model and the data,

so there is no straight-forward way to apply this approach to, for instance, the iterative co-training

algorithm (described in Chapter 5) that may, for example, use a decision tree classifier for one

view and a support-vector machine for the other, and whose final output is the result of iterative

pseudo-labeling and re-training. Furthermore an approach such as cross-validation allows perfor-

mance results to be estimated from actual observed performance of implemented algorithms as

opposed to analytic approximations. Therefore my thesis introduces an alternative, a sampling ap-

proach similar in motivation to cross-validation in order to estimate model performance. The pro-

posed approach involves generating new training and test data by sampling from the large amount

of unlabeled data and estimated conditional probabilities for the labels, and like cross-validation
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evaluates performance by re-training models and computing average predicted test errors.

Each component of the thesis is evaluated on several synthetic and real world data sets and the

experimental results demonstrate the efficacy of the proposed methods.

1.5 Thesis Organization

The chapters of this thesis together form a cohesive body of work/study on learning with low-

quality data and in particular learning with limited labeled data, and multi-view semi-supervised

learning with missing views. However the chapters are intended to be independent. While the

chapters are related, they were written, and the associated work was carried out, so that each

chapter could stand by itself.

The outline of the remainder of this thesis is as follows. First, preliminary study on learning

with low-quality data is given in the following three chapters. The first part, Chapter 2, is on work

on incorporating the structured relationship between features in learning for limited labeled data

problems [147], the second part, Chapter 3, is on adapting a large margin learning algorithm for

transductive transfer learning [148], and the final part of the preliminary study, Chapter 4, is on

feature extraction for knowledge transfer [150].

Afterwards, a general overview is given of the related work in multi-view semi-supervised

learning in Chapter 5. Then Chapters 6, 7, and 8 provide additional background information,

details on the proposed methods, and detailed experimental study for the proposed methods of

view completion via feature generation, active view completion, and model selection, respectively.

Finally, conclusions and key areas of future work drawn from the results of this thesis work are

discussed in the final chapter, Chapter 9.
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Chapter 2

Preliminary Study I: Laplacian

Regularization for Structured Input

2.1 Introduction

Consider a p-dimensional multivariate random variable X = (x1,x2, . . . ,xp) ∈ ℝp where there are

some known relationships for the features in X . We investigate the problem of performing effective

supervised learning to build accurate classification models for mapping such random variables to

class labels, based on observed samples and the relation of the features.

Data with intrinsic feature relationships are becoming abundant in many application domains

such as bioinformatics, sensor networks, and social networks among others. For instance, in

pathway-based microarray classification, a biological network contains a set of genes, taking val-

ues based on their expression levels, and there is a known binary relation of genes: the pathway

topology [119, 144]. In this case the goal of the data analysis is to use the expression data to predict

a measurable outcome, such as the presence or absence of a disease. In sensor networks, there has

been a burgeoning interest in incorporating sensors in everyday life to monitor the environment,

supply information, and ensure security. At a given time point regarding the state of the full sen-

sor network, the features are the readings of the sensors, and we usually know the topology or the
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physical location of the sensors in relation to each other. The goal of the analysis is to detect events

of interest based on the collective values of the sensors in the network.

Exploring the relationship between features is not new. Recently in structured feature selec-

tion, supervised learning algorithms have been explored for data sets where features have some

natural “structure” relationships [198, 211, 215, 219, 223]. For example, Yuan and Lin explored

the situation where features may be naturally partitioned into groups and studied the regression

problem of grouped features using a technique called grouped Lasso [211]. Another possible type

of structure relationship of features is a hierarchical relation (i.e., a directed acyclic graph defined

on features) and that has been explored in [198, 219]. In [215], both group structure and hierarchi-

cal relation have been studied in a unified framework. Recently Kim and Xing assumed that all the

features fit into a linear chain (e.g., genes in a chromosome) and have studied regression problems

for such data sets [109]. All these studies, however, do not consider the general case where a gen-

eral undirected graph is defined to capture the structure relationship of features for classification

and regression.

Here we extend previous work on structured feature selection and investigate the new classi-

fication problem where features of a data set have a natural graph relationship. We assume such

relationships are known and fixed among all instances of the data set. We call such a problem an

aligned graph classification problem where we may use a graph to model a datum, vertices rep-

resent features, edges represent binary relation between features, and vertex and edge set remains

the same across a set of samples. Specifically we formalize our classification problem below.

Problem Statement: the Aligned Graph Classification Problem. Given a random variable

X = (x1,x2, . . . ,xp) ∈ ℝp, a graph G is a feature relationship graph of X if the vertex set of G is

the p features. Given a set of n observations {(Xi,yi)}, Xi ∈X ⊂ ℝp, yi ∈ Y = {1,2, . . . ,K},

K ∈ ℕ, i ∈ [1,n], and a feature relationship graph, the aligned graph classification problem is to

build a classification model f : X →Y to assign class labels to unseen random variables in X to

minimize expected loss. To simplify discussion, from here on, we restrict Y = {1,2} to the binary
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class case, 0-1 loss function (i.e., 1 if y= f (x) and 0 otherwise), and undirected feature relationship

graphs. Furthermore, we restrict the feature relationship graph structure to be fixed across the set of

observations. In other words, the relationship between features is fixed and thus the edges defined

between features are fixed for the aligned graphs, each graph will have the same set of edges but

possibly different, but aligned, vertex labels, given by the value the random variable takes for that

observation.

One way to perform aligned graph classification is to simply use traditional supervised clas-

sification algorithms that do not consider the fixed graph structured represented by the feature

relationships. By incorporating the graph structure information along with the vertex labels (fea-

ture values) in the classification model construction the aim is to improve predictive performance

over methods that only consider the feature values for a given observation. Another approach for

aligned graph classification that might be considered is to use graph kernel functions for classifi-

cation [86]. Graph kernels map a set of data to a high dimensional Hilbert space without explicitly

computing the coordinates of the data. Coupled with kernel machines such as support vector ma-

chines, graph kernel methods can be used for tasks include classification [189], regression [51]

and feature extraction through principle component analysis [166]. The adoption of existing graph

kernels for aligned graphs, however, is not straightforward for two major reasons: (i) most current

graph kernels assume discrete node labels and aligned graphs have numeric node labels and (ii)

most current graph kernels measure the difference of graph structures while the graph structures

do not change in the aligned graph data.

Here instead of exploring graph kernel methods, we adopt the framework of logistic regression

and extend the work from numeric data to data with an intrinsic graph structure using regulariza-

tion. Logistic regression is a popular statistical method for classification that works by modeling

conditional probability distributions using a log-linear model and identifying parameters that max-

imize the log likelihood of the data, and has been successfully applied to many problems [84, 120].

Comparing to other classification algorithms, logistic regression has the benefits of probabilistic

outputs - the probability of a label is returned as opposed to only a discrete class label - and a
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straight-forward generalization from the binary classification case to the multi-class case. In ad-

dition, logistic regression tolerates missing values in data [121]. Many improvements have been

proposed and the two most significant ones are (i) adding regularization to the objective func-

tion and (ii) applying logistic regression in a kernel space. Incorporating a regularization term

that penalizes the square of the L2 norm of the parameters has been seen to improve the predic-

tive performance of the method particularly for high-dimensional and highly-correlated data [34],

following the same idea as ridge regression [91] in which, by penalizing the L2 norm of the param-

eters, reduced generalization error can be achieved by shrinking the prediction variance at the cost

of increasing bias.

Here, we extend the L2 regularized logistic regression with a straight-forward modification of

the objective function that allows the model learning to be regularized with respect to the graph

structure. The basic idea is to force the parameters to vary smoothly over the graph, the idea being

quite similar to recent work in semi-supervised learning. The structure of a similarity graph is

incorporated in the learning framework in the form of the Laplacian of the graph; the Laplacian

of the graph is used in unsupervised (e.g., [174]) and transductive and semi-supervised learning

(e.g., [3, 227] when such a similarity structure exists between the data samples. We pursue a

similar idea; to improve prediction we incorporate additional information in the form of the graph

structure relating the variables and enforce a smooth parameter variation over the graph structure

for the variables by means of regularization. The idea should be of particular interest when less

labeled information is available, i.e., for small sample data sets or data sets where the ratio of the

number of samples to the dimensionality of the data is small.

In summary, our contributions are

∙ We formalized the aligned graph classification problem for data set where features have a

natural structure relationship.

∙ We extended the logistic regression to include the normalized graph Laplacian, incorporating

the Laplacian in the regularization term. We showed that this results in a simple modification

to the original logistic regression solution and update using the efficient newton-raphson
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approach for finding the zeros of the gradient.

∙ We developed an approach to incorporate the graph Laplacian regularization in kernel logis-

tic regression, which uses a basis expansion to allow non-linear functions of the variables,

similar to support vector machines.

∙ We performed a comprehensive experimental evaluation, showed that Laplacian regularized

logistic regression is an effective method for incorporating the graph structure in the predic-

tion problem, evaluated these methods on synthetic and real world data sets and compared

the performance of the methods to competing methods including support vector machines

and unregularized logistic regression.

The rest of this chapter is organized in the following way. Section 2.2 discusses related work.

Section 2.3 presents background information and detailed discussion of our algorithms. Section

2.4 presents the experimental study of our algorithms as compared to competing methods. Finally

we give a short conclusion and a discussion of the future work.

2.2 Related Work

We use logistic regression as our framework for building classification models for aligned graph

classification; logistic regression has also been used extensively for scientific data analysis. For

example, sparse logistic regression was proposed to perform gene selection in [173], a partial least

squares with penalized logistic regression algorithm was proposed for high-dimensional, small-

sample problems in [67], and in [120] logistic regression is used for feature selection. The approach

of [173] has been recently improved in [33] using Bayesian regularization, and applied to the

problem of cancer classification, and an L2 penalized logistic regression method for classification

was proposed in [223].

In bioinformatics research there has recently been much interest in using computational meth-

ods to associate groups of genes such as groups defined by biological pathways (graphs) with a
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clinical outcome such as a disease. For example, a statistical method for determining if a group

of genes is significantly related to a clinical outcome by calculating a p-value for the group was

proposed in [72]. Another statistical test, the Multi-dimensional Cluster Misclassification test

(MCM-test), was proposed in [119] for associating pathways with disease outcomes by modeling

expression values for a group of genes as fuzzy sets for each outcome and using the membership

of the genes in the fuzzy sets to determine significance. For the similar problem of selecting sig-

nificant pathways and performing classification, a random forest approach was proposed in [143].

For the problem of detecting gene-gene interaction, an L2 regularized logistic regression method

was proposed in [144].

Our work is different from existing work in that we use a general graph to capture relationship

between features. In our method we consider a graph as a manifold and we factor in the graph

topology using graph Laplacian as a regularization factor. Hence the key insight is that the con-

ditional probability distribution, as evaluated in the logistic regression, varies smoothly along the

manifold representing a graph.

2.3 Methodology

2.3.1 Background and Notations.

A graph G is described by a finite set of nodes V and a finite set of edges E ⊂ V ×V . In most

applications, a graph is labeled, where labels are drawn from a label set λ . A labeling function

λ : V ∪E → Σ assigns labels to nodes and edges. In node-labeled graphs, labels are assigned to

nodes only and in fully-labeled graphs, labels are assigned to nodes and edges. Here we consider

node labeled graphs only since nodes represent features for a sample.

Following convention, we denote a graph as a quadruple G = (V,E,Σ,λ ) where V,E,Σ,λ are

explained before. We represent a graph with n nodes using its adjacency matrix ξ = (ξi, j)
n
i, j=1

where ξi, j = 1 if there exists an edge incident on nodes i and j in G, and zero otherwise. We use

capital letters, such as G, for a single graph, V [G] for the node set of G and E[G] for the edge set
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of G, and upper case calligraphic letters, such as G = G1,G2, . . . ,Gn, for a set of n graphs.

Two graphs G,G′ are aligned if there exists a 1-1 mapping ϕ : V [G]→V [G′] such that (u,v) ∈

E[G] if and only if (ϕ(u),ϕ(v))∈E[G′]. Clearly the aligned relation is (i) reflective, (ii) symmetric,

and (iii) transitive and hence an equivalence relation. A group of graphs is aligned if the graphs in

the group are pair-wise aligned.

Example 2.3.1. In Figure 2.1 we show three graphs defined on 4 features {x1,x2,x3,x4} with a

star topology. Clearly the three graphs are aligned since they have the same topology. We view

each graph as an instance of a 4-dimensional variable Xi = (xi1,xi2,xi3 ,xi4) ∈ ℝ4, i ∈ [1,3] with a

binary relation defined on the 4 features.

Figure 2.1: Three aligned graphs

2.3.2 Logistic Regression.

Before we introduce regularized logistic regression, we briefly overview basic logistic regression

[84]. Logistic regression fits a sigmoid function, P(Y = 1∣X⃗ = x⃗; β⃗ ) = 1
1+e−β⃗T x⃗

= eβ⃗T x⃗

eβ⃗T x⃗+1
, repre-

senting the probability the class label takes value 1 given the data sample has values x⃗ and the

parameters are β⃗ , to the training data, here we use x⃗ to denote a data vector with an additional

feature value of 1 concatenated to the beginning for convenience (to incorporate the intercept).

Using the training data we find the parameters β⃗ that best fit the data, and can then use the sigmoid

function to map any future data vector to a value in [0,1]. The fitting is achieved by maximizing the
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log-likelihood of the data (which we will denote as ℓ(β⃗ ), as it is a function of the parameters β⃗ ),

∑
N
i=1{yi log(P(Y = 1∣X⃗ = x⃗i; β⃗ ))+ (1− yi) log(1−P(Y = 1∣X⃗ = x⃗i; β⃗ ))}, which can be expressed

as:

ℓ(β⃗ ) =
N

∑
i=1
{yiβ⃗

T x⃗i− log(1+ eβ⃗ T x⃗i)} (2.1)

, by setting the gradient, ∂ℓ(β⃗ )

∂ β⃗
= ∑

n
i=1{⃗xi(yi−P(Y = 1∣X⃗ = x⃗i; β⃗ ))} , equal to 0⃗. We then find

the zeros using an iterative process, the Newton-Raphson algorithm, which requires taking the

second derivative of the log-likelihood. We express the derivative and second derivative of the

log-likelihood in matrix form so that the update becomes:

β⃗
new = β⃗

old− (
∂ 2ℓ(β⃗ old)

∂ β⃗∂ β⃗ T
)−1 ∂ℓ(β⃗ old)

∂ β⃗
(2.2)

which is:

β⃗
new = β⃗

old− (XTWX)−1XT (⃗y− p⃗) (2.3)

where p⃗ is a column vector with pi = P(Y = 1∣X⃗ = x⃗i; β⃗ old), and W = diag(p)∗diag(⃗1− p), where

diag(p) signifies a diagonal matrix with diagonal entries Wii = pi and all other entries set to 0, and

1⃗ is a column vector of ones, with dimension N. With the new beta calculated with equation 2.3,

the probabilities are recalculated (p and W updated), and the process repeats until convergence,

measured by the entries of W becoming close to 0 or by the change in β⃗ becoming close to 0,

using some small threshold value.

Thus for each data vector, we learn a set of parameters β⃗ , and can then map each data vector

to a probability of class label. We can threshold the output from the logistic regression at 0.5 to

obtain the predicted class.

2.3.3 Laplacian-Norm Regularized Logistic Regression.

Here we incorporate graph Laplacian as a regularization term in the logistic regression. Before

we talk about regularized logistic regression, we define graph Laplacian and normalized graph
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Laplacian.

For an undirected graph G with the adjacency matrix ξ , the Laplacian L of G is:

L = D−ξ ; (2.4)

Where D is the density matrix of ξ , defined as D = (di, j)
n
i, j=1 where

di, j =

⎧⎨⎩ ∑
n
k=1 ξi,k if i = j

0 otherwise

The normalized Laplacian is L = D−
1
2 LD−

1
2 .

Incorporating the normalized graph Laplacian norm as a regularization term in the logistic

regression actually results in a simple modification to the original logistic regression solution.

Furthermore, substituting the identity matrix for the normalized Laplacian L results in logistic

regression with the ridge penalty (the square of the L2 norm of β ), since β⃗ T Iβ⃗ = β⃗ T β⃗ .

The new objective function becomes:

g(β⃗ ) =
N

∑
i=1
{yiβ⃗

T x⃗i− log(1+ eβ⃗ T x⃗i)}− 1
2

λβ⃗
T L β⃗ (2.5)

The new gradient is given by:

∂g(β⃗ )

∂ β⃗
= XT (⃗y− p⃗)−λL β⃗ (2.6)

The new hessian is given by:

∂ 2g(β⃗ )

∂ β⃗∂ β⃗ T
=−XTWX−λL (2.7)

And the new newton-raphson update is given by:
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β⃗
new = β⃗

old− (XTWX +λL )−1(XT (⃗y− p⃗)−λL β⃗
old) (2.8)

2.3.4 Graph Regularized Kernel Logistic Regression.

Kernel logistic regression works by introducing a basis expansion so that f (⃗x) in P(Y = 1∣X⃗ =

x⃗; β⃗ ) = 1
1+e− f (⃗x) , previously equal to β⃗ T x⃗ is now equal to α0 +∑

N
i=1 αiK(⃗x, x⃗i) where K(., .) is a

kernel function implicitly defining a Hilbert space and a feature mapping. In order to keep our

Laplacian-regularization framework intact, we define a second method. Since the parameters are

translated to the feature space, i.e., from β⃗ varying over the p features (vertices) in the input

feature space to α⃗ varying over the n features in the kernel space, the original constraints on the

graph structure are lost for the parameters α . Thus, in order to include the Laplacian regularization

in the kernel space it is necessary to translate the graph structure from the input feature space to the

kernel feature space. Essentially we want to define a new weighted graph structure between the n-

samples such that the similarity function between two samples is regularized by the original graph

structure (the original graph Laplacian in our framework). This is a similar idea to semi-supervised

learning where we define an underlying similarity graph from the data. Here we want the graph

created to impose similarity based on the closeness for matching vertices and the smoothness over

the vertices.

In order to derive a similarity graph to regularize the alpha parameters, we estimate a sample

similarity function that itself is regularized by the Laplacian of the original graph. We start with

an edge of weight 1 between each training sample with the same label, of weight 0 (no edge)

otherwise, a rough graph with connections between all samples of the same class. To incorporate

the original graph structure, we train a logistic regression model to predict probabilities of link

connections that is regularized by the original graph Laplacian. To do this we use a similarity

measure (in the form of a Gaussian kernel function) between each pair of aligned vertices in the

original graph, and fit a set of logistic regression parameters, using the Laplacian regularization.

This translates the binary edge existence function to a weight that is regularized by the original
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graph structure, in effect smoothing the similarity function over the original graph structure.

To select the vertex-wise similarity parameter (width of the Gaussian) and the regularization

parameter, λ , one option is to perform a cross-validation grid search with the training data, enforc-

ing only that the thresholded output correctly predicts the link. In this way, the values can still vary

smoothly. However, the number of samples in this case becomes (n2− n)/2 (for n training sam-

ples), since each pair of training samples becomes a new training sample for the edge prediction

function, so performing the multiple iterations with this higher sample size set can be time con-

suming. As an alternative, we only perform the logistic regression once by setting σ equal to the

standard deviation for each feature and using a high λ value to strongly enforce the regularization

term (two times the number of new training samples), avoiding the lengthy grid search process.

In this way we can achieve our goal of creating a new graph structure in the kernel feature

space that is still regularized by the original graph structure in the input feature space. Figure 2.2

shows a comparison of the rough, original similarity matrix to the derived similarity matrix for 90

training samples from a synthetic data set. The original structure can still be seen in the regressed

similarity matrix (e.g., the cross shape) but this structure is softened (regularized).

(a) Similarity matrix de-
termined by class mem-
bership

(b) Similarity matrix de-
rived from regularized
regression

(c) Thresholded regres-
sion similarity matrix (at
0.5)

Figure 2.2: Regularized similarity graph for 90 samples of synthetic data

2.3.5 Regularized Local Logistic Regression.

Since the regularized kernel logistic regression method described in the previous section is time-

consuming to perform in full, we explore another kernel logistic regression method for learning
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nonlinear class boundaries as an alternative, local logistic regression. The motivation is that often

we may desire a model that does not find a global fit to the data, but rather a local fit, similar to the

nearest neighbor method and local linear regression method. In this case local logistic regression

can be used. Local logistic regression results from a simple modification to the original logistic

regression formulation; each sample is weighted by how close it is to the input test sample using

some smoothed distance function such as the Gaussian kernel, when the model is fitted. This

is described by the following weighting of the likelihood (L) equation: L = ∏
N
i=1 P(Y = yi∣X⃗ =

x⃗i; β⃗ )γi , with γi = e−
∣∣⃗xi−⃗xt ∣∣2

2σ2 for test input x⃗t , which translates into multiplying each term in the

log-likelihood by its sample weight. The Laplacian regularized version is the same as for regular

logistic regression, except for weighting samples in the likelihood term of the objective function.

The new update equations result by modifying equations 2.3 and 2.8 so that Wii = piγi and y⃗− p⃗

is scaled by the weights (diag(⃗γ)(⃗y− p⃗)). Here increasing the kernel width σ results in moving

closer to the global solution.

In the subsequent discussion for simplicity, we refer to the logistic regression method as “LR”,

the Laplacian-regularized logistic regression method as “LREG”, the L2 norm regularized logistic

regression method (with L equal to the identity matrix) as “L2”, the kernel logistic regression as

“KLR”. Similarly, we refer to the unregularized local logistic regression method as “LOC_LR”,

the the L2 norm regularized local logistic regression method as “LOC_L2” and the Laplacian-

regularized local logistic regression method as “LOC_LREG”.

2.4 Experimental Evaluation

2.4.1 Data

2.4.1.1 Synthetic Data.

We generated synthetic test data for an undirected graph with 19 vertices described by the 4 arbi-

trary created pathways shown in figures 2.3a - 2.3d, which specify the binary relationships between
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the given variables. For our tests we assume all we know is the existence of a relationship between

the variables and form the corresponding undirected graph and 19x19 adjacency matrix. To gener-

ate data, the graph class is labeled 1 if at least 2 pathways “produce” (take value) 1, otherwise it is

0. A pathway “produces” 1 if all the node values along any path from a start node (at the left) to an

end node of the path are greater than 0.5, otherwise it produces 0. Examples are given in figures

2.3e and 2.3f. We indicate a path with all values greater than 0.5 in Figure 2.3e by small arrows.

In Figure 2.3f we show a broken path since node (3) has value 0.3 which is less than 0.5. Thus

the pathway in Figure 2.3e “produces” a label 1 and the pathway in Figure 2.3f “produces” a label

0. To generate data we randomly generate values for all the nodes in the range [0,1] and test the

graph outcome. We generate 100 samples, and continue replacing samples with label 0 until half

have label 1.

(a) Pathway 1 (b) Pathway 2 (c) Pathway 3 (d) Pathway 4

(e) Functioning path-
way

(f) Non-functioning
pathway

Figure 2.3: Artificial pathways used to generate test data

2.4.1.2 Real World Data.

Next, we consider microarray gene expression data classification: given a set of samples of gene

expression values and the associated class labels (e.g., disease or no disease), learn a classification

model to predict the label of a test sample using its gene expression values as features. We can

view the microarray classification task as an aligned graph classification task by considering the

biological pathway structures associated with the genes. Here each pathway related to the outcome

of interest is represented by an undirected graph with vertices as genes and edges representing the

existence of relations between the genes such as protein-protein interactions resulting in activation
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or phosphorylation. To obtain the aligned graph structures for our experiments, we extract pathway

graphs from a standard source of biological pathway information, the internet-accessible KEGG

pathway database [107].

Since incorporating pathway structure in the learning process for pathways that are not related

to the outcome of interest would not be expected to improve performance, and to avoid testing ev-

ery pathway, we first perform external pathway selection. Determining which pathways are related

to a particular outcome could be performed separately by any number of methods, e.g., searching

through scientific literature for known related pathways, or using a computational statistical test

tool; we use a readily-available method provided as a pre-built statistical package, the global test

[72] method which tests if a group of variables are significantly related to an outcome of interest

(the idea of incorporating grouped variable selection into our Laplacian regularized framework is

an area of future work). We use global test with the pathway gene expression data paired with the

outcome labels to obtain a top candidate list of pathways from the KEGG database; the pathway

structures of the selected pathways form the aligned graphs used for evaluating our algorithms.

We used the following three data sets for our experimental study:

∙ Diabetes Data: The first microarray data set we include is a microarray data set related

to diabetes, obtained from [128] (available online at http://www.broad.mit.edu/

mpg/oxphos/). The data set contains the gene expression values of 22,280 genes for

44 different subjects, 17 with type 2 diabetes (DM2), 17 with normal glucose tolerance

(NGT) and 10 with impaired glucose tolerance (IGT). As in [119], we use only the samples

of subjects with type 2 diabetes and those with normal glucose tolerance, resulting in a

total of 34 samples. We use the global test method to estimate related pathways; we select

all pathways found to be related to the diabetes outcome by the global test method with a

significance p-value of less than 0.1 and keep those that have an associated graph structure,

resulting in the 14 pathways shown in table 2.1. In evaluating the aligned graph classification

methods, their performance on the Insulin Signaling Pathway is of particular interest, since

aside from the global test results, we would expect this pathway to be related to the diabetes
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disease, and as such can be more confident that the pathway is related to the outcome in this

case.

∙ Breast Cancer Data: The next data set we use is a microarray gene expression data set for

human breast cancer samples [45]; in this case there are 118 breast tumor samples and we

select the “alive at endpoint” factor as the class label, resulting in 41 positive samples and 77

negative samples. We once again use global test to select related pathways, however since

only 3 pathways were found with p-value less than 0.13, we select the pathways with graphs

from the top 20, resulting in 14 pathways.

∙ Yeast Data: The final data set is a microarray data set for yeast [127, 154]; here the gene ex-

pression values are measured across 18 independent samples of (Saccharomyces cerevisiae)

yeast cultures, and the goal is to classify whether or not a sample was grown with irradiation

(6 samples are labeled as Irradiated, I, and 12 as Not Irradiated, NI). Since the data set was

much smaller (around 6,000 genes), we obtained results for all pathways we were able to

make graphs for, a total of 94 pathways. In addition we applied pre-processing to handle

missing values by replacing feature values with the average value for that feature if at least

80% were not missing, otherwise we removed the feature.

2.4.2 Evaluation Criteria.

We use several approaches to evaluate the performance of the graph classification methods. For the

synthetic data we perform 100 trial iterations using a hold-out approach, generating a new sample

set from the given graph and using a fixed fraction of the 100 samples for the training data and the

remainder for testing, taking the average and standard deviation of the performance criteria across

the trials. For the diabetes data set, we average the performance across 30 iterations of ten-fold

cross-validation [110], and for the breast cancer data set, 30 iterations of five-fold cross-validation,

since there are more samples. For the yeast data, we estimated performance using two approaches,

due to the small data set size and imbalance of labels. For the first approach, we generate 50
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Table 2.1: Estimated related pathways found with global test (p-value < 0.1) for the Diabetes data
set

Index Pathway Genes P-value
1 Insulin signaling pathway 250 0.0673
2 mTOR signaling pathway 90 0.0229
3 Biosynthesis of steroids 42 0.0577
4 Oxidative phosphorylation 153 0.0384
5 Alanine and aspartate 44 0.0264metabolism
6 Phenylalanine, tyrosine and 14 0.0497tryptophan biosynthesis
7 Glycosphingolipid bio- 15 0.0931synthesis - lactoseries
8 Glycosphingolipid bio- 23 0.0839synthesis - globoseries
9 Lipoic acid metabolism 2 0.0379

10 Terpenoid biosynthesis 12 0.0337
11 Nitrogen metabolism 39 0.0969
12 Alkaloid biosynthesis I 7 0.0500
13 PPAR signaling pathway 118 0.0755
14 SNARE interactions in 65 0.0263vesicular transport

training and test sets by generating all 50 unique partitions of the positive class such that at least 2

samples from the positive class (I) are in each set, and randomly partition the data from negative

class (NI) so that the training set always has 10 samples. The other approach we used was bootstrap

sampling, the “.632+” bootstrap estimator (see [84] for more details), using 100 bootstrap data sets.

For all the experiments, we estimate the accuracy and performance for our new Laplacian reg-

ularized logistic regression method (LREG) and compare it to five other methods, which only use

the feature values of the graphs: previous logistic regression methods, including unregularized

logistic regression (LR), L2 norm regularized logistic regression (L2), and kernel logistic regres-

sion (KLR), and support vector machine methods which include a linear kernel support vector

machine (SVM_LIN) and a Gaussian radial-basis function (RBF) kernel support vector machine

(SVM_RBF) (see, e.g., [84] for more information about these common classifiers). In addition,

for our synthetic experiments and for the key diabetes pathway, we include results for the Lapla-

cian regularized local logistic regression (LOC_LREG) along with the unregularized local logistic

regression (LOC_LR) and an L2 norm regularized local logistic regression (LOC_L2). We im-

plemented the logistic regression methods in Matlab and used a Matlab toolbox implementation

for the support-vector methods. To select parameters for all aligned graph classification models
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where needed (specifically λ for the various regularized logistic regression methods, σ for the

kernel logistic regression methods and RBF SVM method, and C for the SVM methods), we per-

form a cross-validation grid search with the training data using a course-to-fine grid approach as

in LibSVM [35].

In addition to accuracy, we include three other common performance criteria as described in

the following list:

1. Accuracy (ACC): T P+T N
T P+T N+FP+FN

2. Matthews Correlation Coefficient (MCC):

T P∗T N−FP∗FN√
(T P+FP)(T P+FN)(T N+FP)(T N+RFN)

3. Sensitivity(SEN): T P
T P+FN

4. Specificity (SPE): T N
T N+FP

In this description, FP denotes “false positive,” a negative instance that was classified as positive,

TP denotes “true positive,” a positive instance that was classified as positive, TN denotes “true

negative,” a negative instance that was classified as negative, and FN denotes “false negative,” a

positive instance that was classified as negative.

Additionally, since the average accuracy of one method may be better than another, but the

standard deviation could be too high to distinguish if the method performed better consistently

across test iterations, we perform a paired t-test at the five percent level between the 100 test accu-

racies for each method, to determine if a method’s higher accuracy can be considered statistically

significant. For the real-world data sets with the cross-validation, the t-test is across the number of

iterations, 30.

2.4.3 Synthetic Data Classification Results.

The first set of results shows the performance criteria averaged over 100 iterations of a 60% hold-

out, so that for each iteration, 100 samples were generated from which 40 samples were randomly
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selected for training, 60 for testing (the samples were selected so that at least one-third of each

class was present). These results are shown in table 2.2, with the best method for each criteria

shown in bold (results for the local logistic regression methods are not included in this table to

save space, but are shown in figure 2.4).

Table 2.2: Results on synthetic test data for aligned graph classification methods

LREG L2 SVM_ LR SVM_ KLRLIN RBF
ACC 0.767 0.732 0.722 0.666 0.726 0.716
std 0.060 0.062 0.060 0.066 0.067 0.061
MCC 0.541 0.469 0.448 0.338 0.460 0.470
std 0.119 0.125 0.121 0.133 0.135 0.110
SEN 0.789 0.747 0.739 0.677 0.716 0.890
std 0.094 0.100 0.095 0.107 0.117 0.086
SPE 0.746 0.716 0.704 0.656 0.737 0.542
std 0.092 0.096 0.099 0.111 0.104 0.147

We performed a paired t-test at the five percent level on the accuracies obtained from the 100

runs, and found that the LREG method is performs significantly better in terms of accuracy (the

null hypothesis of same mean of distribution is rejected) than all of the other methods. Similarly,

all the regularized methods are found to perform significantly better than the unregularized logistic

regression (LR). These results are shown in table 2.3, in which a significance was found using the

paired t-test between the method in each row and column, a 1 indicating a significant difference

with a positive 1 indicating the method in the row had a higher average accuracy than the method

in the column and a negative 1 lower, and a 0 representing that the null hypothesis could not be

rejected.

Table 2.3: Paired t-test results on synthetic test data across 100 iterations, between each pair of
methods. A positive 1 indicates the method in the row performed significantly better on average
than the method in the column, a negative 1, worse, and a 0 that the difference in performance of
the two methods was not statistically significant according to the t-test at the 5% level.

LREG L2 SVM_ LR SVM_ KLRLIN RBF
LREG 0 +1 +1 +1 +1 +1
L2 -1 0 +1 +1 0 +1
SVM_ -1 -1 0 +1 0 0LIN
LR -1 -1 -1 0 -1 -1
SVM_ -1 0 0 +1 0 0RBF
KLR -1 -1 0 +1 0 0
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The next set of results, figure 2.4, shows the relationship between accuracy and the size of

the training set used, obtained by running the experiments with each hold-out percentage (100

iterations as before). As can be seen the Laplacian regularized method (LREG) outperforms the

others consistently, but the performance gain is greatest with smaller training sample size. While

the other methods converge to a lower value at the smallest training sample size tested (10 train-

ing samples), the Laplacian regularized method maintains a 5 percent higher accuracy. We also

included results for the local logistic regression methods, for the first 4 training set sizes. Here we

see that the L2 regularized local logistic regression (LOC_L2) is a significant improvement over the

unregularized local logistic regression (LOC_LR), and that the Laplacian regularized local logis-

tic regression (LOC_LREG) significantly outperforms both. For small samples, regular Laplacian

regularized logistic regression (LREG) outperforms LOC_LREG, which in turn outperforms the

other methods, but with increasing sample size the LOC_LREG method achieves comparable per-

formance. While in general, the results obtained for the local logistic regression method using a

nonlinear similarity function were worse than the methods with linear models, the results were

not far off. We included these results to show the plausibility of using the Laplacian regularized

local logistic regression to incorporate aligned graph structure for those cases where a nonlinear

boundary is desired or known to exist.
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Figure 2.4: Average Accuracy vs. Training Set Size for Synthetic Data

Figure 2.5 shows the variation of the accuracy of the Laplacian regularized logistic regression
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method (LREG) with respect to the regularization weight, λ , obtained by averaging over 100

iterations as before with a training set size of 40. We also include the results for the L2 regularized

logistic regression (L2) for comparison as well as the constant result for unregularized logistic

regression as a baseline. From the results we see that the LREG method’s performance varies

in a similar way to the L2 method’s performance with respect to the regularization parameter

for this experiment, and additionally that in this case it is safer to overestimate the value of the

regularization parameter than underestimate, since accuracy increases steadily until about λ = 24

at which point it remains close to the highest value reached.
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Figure 2.5: Average Accuracy vs. Regularization Parameter for Synthetic Data

2.4.4 Real-World Data Classification Results.

For the real-world data classification results, we show the results for each pathway, i.e., by treating

the set of data for each pathway as an aligned graph classification problem. Thus, for example,

for data with 14 pathways we in effect have 14 data sets. For the diabetes data, we performed

30 iterations of ten-fold cross-validation to estimate the performance of each method for each

pathway. The results of each method for each pathway are shown in figure 2.6, in which each point

on the x-axis represents a pathway, and each point on the y-axis the average accuracy.

For the 14 pathways, the Laplacian regularized method (LREG) performed significantly better

than the rest for 2 of the pathways, as did the linear SVM (SVM_LIN); the other methods did
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not perform significantly better than the rest of the methods for any of the pathways, except for

the kernel logistic regression method (KLR) for 1 pathway. Furthermore, the only pathways for

which the LREG method performed the worst were those for which all the methods had 50 percent

accuracy or worse.
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Figure 2.6: Average Accuracy vs. Pathway Index for Diabetes Data

We suspect one reason the Laplacian regularized method did not perform significantly better

on all pathways is that many pathways are likely unrelated to the disease outcome, or some of

the genes in a given pathway are related, but as a part of a different pathway instead of the given

pathway, in which case the Laplacian regularized method would not be expected to improve the

performance. Thus we take a closer look at the Insulin Signaling Pathway which we reason is

one pathway that is more likely to be related to the diabetes disease outcome. For this pathway

we also include results from the local logistic regression methods. The results for the Insulin

Signaling Pathway are shown in table 2.4, the best score for each criteria is shown in bold. For this

pathway, the Laplacian regularized logistic regression (LREG) performed the best for all criteria.

We also see that for this pathway the Laplacian regularized local logistic regression outperformed

the other kernel methods, and for each method adding regularization improved the performance.

By performing paired t-tests as with the synthetic data, we see that the improvement from the

LREG method was statistically significant (table 2.5).

In general in our experiments, the linear logistic regression methods, LR, LREG, and L2
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Table 2.4: Results on diabetes data for aligned graph classification methods for the Insulin Signal-
ing Pathway

LREG L2 SVM_ LR SVM_ KLRLIN RBF
ACC 0.650 0.598 0.615 0.490 0.565 0.575
std 0.056 0.052 0.035 0.068 0.062 0.053
MCC 0.301 0.197 0.230 -0.019 0.130 0.151
std 0.112 0.104 0.070 0.140 0.124 0.106
SEN 0.633 0.588 0.584 0.463 0.565 0.584
std 0.081 0.056 0.046 0.087 0.068 0.064
SPE 0.667 0.608 0.645 0.518 0.565 0.567
std 0.052 0.071 0.036 0.113 0.080 0.065

LOC_LREG LOC_L2 LOC_LR
ACC 0.590 0.540 0.509
std 0.046 0.056 0.075
MCC 0.180 0.081 0.017
std 0.093 0.113 0.156
SENS 0.588 0.551 0.483
std 0.073 0.084 0.131
SPEC 0.591 0.529 0.536
std 0.060 0.076 0.121

Table 2.5: Paired t-test results on diabetes test data across 30 iterations, between each pair of
methods. A positive 1 indicates the method in the row performed significantly better on average
than the method in the column, a negative 1, worse, and a 0 that the difference in performance of
the two methods was not statistically significant according to the t-test at the 5% level.

LREG L2 SVM_ LR SVM_ KLRLIN RBF
LREG 0 +1 +1 +1 +1 +1
L2 -1 0 -1 +1 +1 +1
SVM_ -1 +1 0 +1 +1 +1LIN
LR -1 -1 -1 0 -1 -1
SVM_ -1 -1 -1 +1 0 0RBF
KLR -1 -1 -1 +1 0 0

had comparable training time to the support-vector machine methods, and were in many cases

faster. However the kernel-based logistic regression methods, KLR and LOC_LR, LOC_L2, and

LOC_LREG usually took longer to train, KLR due to calculating the basis expansions and a slower

convergence of Newton’s method, and the local logistic regression took longer since the regression

process had to be repeated for each test point, since the weights γi assigned in the optimization were

based on the kernel similarity of the tests point to the training points. Thus due to time constraints,

we do not include results for these kernel-based methods for all data sets.

Next, we show the results for the breast cancer data in the same graph form as the diabetes

data in figure 2.7. In general the less regularized logistic regression such as L2 regularized logistic
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regression performs as well as unregularized logistic regression; the Laplacian regularized logistic

regression did not outperform all of the other classifiers for any pathway. We suspect that, since the

pathways themselves are not known for certain, the relation to the known pathways to the disease

may not be strong and hence regularization does not help too much. To test the hypothesis, we

checked the global test matches and identified that none of the pathways have p-value less than

0.05 and only the first three had p-value less than 0.10.
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Figure 2.7: Average Accuracy vs. Pathway Index for Breast Cancer Data

Finally we show the results for the 94 pathways of the yeast data for the 50 partition estimate

(training set size 10) in figure 2.8 and the “.632+” bootstrap estimate (training sets of size 18) in

figure 2.9, with the pathway number on the x-axis and the estimated accuracy on the y-axis. The

results are similar to the diabetes results, the best performing method varies for each pathway. The

Laplacian regularized logistic regression only obtains significantly improved performance for a

few of the pathways. However, we might expect this since it is likely only a few of the pathways

are directly related to the outcome of interest. In this case, however, we have no ground truth

available for which pathways are truly related, and the methods performed similarly on the top

pathways selected by global test, though even this test we would expect to be less accurate with

such few samples.
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Figure 2.8: Average Accuracy vs. Pathway Index for Yeast Data: Partitioning Estimate
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Figure 2.9: Average Accuracy vs. Pathway Index for Yeast Data: Bootstrap Estimate

2.5 Conclusion

Data with intrinsic graph topology are becoming abundant in many applications including bioin-

formatics and sensor network analysis. We call such data aligned graphs and in this chapter we

investigated a new problem of classification on aligned graphs. We have extended the L2 regular-

ized logistic regression to aligned graph classification. Our experimental study demonstrates the

utility of the methods in synthetic and real data sets. In the future, we will investigate dynamic
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graph structure, where we allow small amount of graph topology changes, in the Laplacian based

logistic regression framework.
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Chapter 3

Preliminary Study II: Large Margin

Transfer Learning

3.1 Introduction

Constructing mining and learning algorithms for data that may not be identically and independently

distributed (i.i.d.) is one of the emergent research topics in data mining and machine learning

[6, 18, 69, 96, 152, 165, 185, 196, 203]. Non-i.i.d. data occur naturally in applications such as

cross-language text mining, bioinformatics, distributed sensor networks and sensor-based security

[151], social network studies, low quality data mining [228], and ones found in multi-task learning

[114]. The key challenge of these applications is that accurately-labeled task-specific data are

scarce while task-relevant data are abundant. Learning with non-i.i.d. data in such scenarios helps

build accurate models by leveraging relevant data to perform new learning tasks, identifying the

true connections among samples and their labels, and expediting the knowledge discovery process

by simplifying the expensive data collection process.

Transfer learning aims to learn classification models with training and testing data sampled

from possibly different distributions. The common assumption in transfer learning is that the

training and testing data sets share a certain level of commonality and identifying such common
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structures is of key importance. For data that have well-separated structures, exploring the common

cluster structure of training and testing sets is a widely used technique [69, 196]. Instance based

methods assume a common relationship between the class label and samples and use weighting or

sampling strategies to correct differences between training and testing distributions [18, 96, 185].

In feature based methods, shared feature structure is learned in order to transfer knowledge in

training data to testing data [152, 165]. In addition, Xue et al. used a hierarchical Bayesian model

and developed a matrix stick-breaking process to learn shared prior information across a group of

related tasks [203]. From a multi-task learning framework, if we assume that the testing data is

coming from a new task and that the new task belongs to a parameterized task family, we can learn

the structure of such a parameterized task family and use that information for transfer learning, as

demonstrated in the zero-data learning algorithm [114].

In this chapter we explore a research direction motivated by manifold regularization which

assumes that data distribute on a low dimensional manifold embedded in a high dimensional space

[13]. The learning task is to find a low complexity decision function that well separates the data

and that varies smoothly on the manifold. Following the same intuition, we approach the non-i.i.d.

data learning problem by learning a decision function with low empirical error, regularized by

the complexity of the function and the difference between training and testing data distributions,

evaluated against the decision function. The idea is to in effect find a manifold for which the

training and testing data distributions are brought together so that the labeled training data can be

used to learn a model for the testing data. In particular, we aim to obtain a linear classifier, in a

reproducing kernel Hilbert space, such that it achieves a trade-off between the large margin class

separation and the minimization of training and testing distribution discrepancy, as projected along

the linear classifier. Our hypothesis is that unlabeled testing data reveal information about testing

data distribution and help build accurate classification models. Though large margin classifiers

have been investigated in similar contexts including semi-supervised learning and transductive

learning [13, 100, 190], applying large margin classifiers to transfer learning by incorporating a

regularization component measuring the distances between training and testing data is new and
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Figure 3.1: Decision boundaries for the standard support vector classifier (black) and our method
(red) on a simple generated 2-D transfer learning problem. This example is discussed in detail in
Section 3.5.

worth a careful investigation.

We illustrate our hypothesis in Figure 3.1 where we show an artificial data set in a 2D space

where training and testing data sets have different distributions. As shown in the figure, the support

vector machine builds a decision boundary that fits the training data well. Clearly the decision

boundary is not the optimal one as evaluated on the testing data set. Clustering based methods

are widely used in designing transfer learning algorithms. In this example, there is no obvious

clustering structure for the positive and negative samples and clustering based techniques will

not be very helpful. Yet another class of widely used methods is ones that are based on feature

extraction and feature selection. These methods will not be very useful since in this case we

only have two features and both of them are important. The key observation, as illustrated in this

example, is that we need to integrate feature weighting (in order to handle distribution mismatches

between training and testing samples) and model selection in a unified framework.

The major advantage of adopting the regularized empirical error minimization paradigm such

as the SVM is the potential to exploit many algorithms designed specifically for SVMs with only

slight modifications, if any. For example, there have been fast algorithms designed for handling

large data sets [94, 101], anomaly detection with one-class SVM, and multi-class SVM for multi-

category classification. Other advantages are the rigorous mathematical foundation such as the

Representer Theorem, global optimization with polynomial running time using convex optimiza-

tion, and geometric interpretations through generalized singular value decomposition. We discuss

40



these properties of SVM based transfer learning in detail in the Algorithmic study section.

3.1.1 Notations and Problem Statement

In supervised learning, we aim to derive (“learn”) a mapping for a sample x⃗ ∈X to an output

y ∈ Y . Towards that end we collect a set of n training samples Ds = {{⃗x1,y1}, . . . ,

{⃗xn,yn}} sampled from X ×Y following a (unknown) probability distribution Pr(⃗x,y). We also

have a set of m testing samples Dt = {⃗z1, . . . ,⃗zm} sampled from X following a (unknown) prob-

ability distribution Pr′(⃗x,y), where the corresponding outputs from Y are unavailable, or hidden,

and must be predicted. We assume that Ds are i.i.d. sampled according to the distribution Pr(⃗x,y)

and Dt are i.i.d. sampled according to the distribution Pr′(⃗x,y). In standard supervised learning,

we assume that Pr(⃗x,y) = Pr′(⃗x,y). The problem of large margin transductive transfer learning is

to learn a classifier that accurately predicts the outputs (class labels) for the unlabeled testing data

set when Pr(⃗x,y) and Pr′(⃗x,y) are different.

3.2 Related work

There are two main approaches to transfer learning that have been considered, inductive transfer

learning, where a small number of labeled test data are used along with labeled training data [4],

and transductive transfer learning, where a significant number of unlabeled testing samples are

used along with the labeled training data. Here we focus on transductive transfer learning.

A common approach to transfer learning is a model-based approach in which the different dis-

tributions are incorporated in a model, e.g., through domain specific priors [41] or through a model

with general and domain-specific components [59]. Several approaches have also been developed

for transductive transfer learning which consider the local structure of the unlabeled data, utilizing

some unsupervised learning methods, such as clustering [69] or co-clustering [196]. Our approach

is most similar to feature-based approaches to transfer learning, which include such approaches as

weighting features to find feature subsets [165] or feature subspaces [122, 140] that generalize well
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across distributions. The difference is that we do so in a regularization framework, which aims to

avoid over fitting and minimize the generalization error. Another approach that is similar to ours is

that of Bickel et al. [20]. They address the problem of covariate shift through a likelihood model

approach that takes into account the discrepancy between train and test distributions. However

their method results in a logistic regression based classifier from a non-convex problem, whereas

our approach results in an SVM classifier from a convex problem.

At the heart of our approach is the goal of finding a feature transform such that the distance

between the testing and training data distributions, based on some distribution distance measure,

is minimized, while at the same time maximizing a class distance or classification performance

criterion for the training data. There has also been work describing how to measure the distance

between distributions. A key idea is that the distance between two distributions can be measured

with respect to how well they can be separated, given some function class. For instance, Ben-

David et al. [15] used as an example the class of hyperplane classifiers and showed that the

performance of the hyperplane classifier that could best separate the data could provide a good

method for measuring distribution distance for different data representations. Along these same

lines, Gretton et al. [76] showed that for a specific function class, the measure simplifies to a form

that can be easily computed, the distance between the two means of the distributions, resulting

in the maximum mean discrepancy (MMD) measure, which we use here. The particular form of

this measurement makes it easier to incorporate into optimization problems, and so we chose this

formulation to estimate distribution distances.

All the methods cited previously, including transfer learning, are closely related to multi-task

learning and may be viewed as a special case of semi-supervised learning where unlabeled data

is used to enhance the learning of a decision function. The difference is that in transfer learning,

there is an assumed bias between training and testing samples. A recent review of semi-supervised

learning may be found in [38, 225]. A discussion of possible sample bias, in a multi-task learning

framework, may be found in [96, 175].
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3.3 Background

3.3.1 Large Margin Classifier

Here we briefly discuss the formulation of the standard support vector machine (SVM), since it

forms the basis for our transductive transfer support vector machine. Given (⃗x1,y1), . . . , (⃗xn,yn) ∈

X ×{±1} the supervised binary classification learning task is to learn a function f ∗(⃗x) for any

x⃗ ∈X that correctly predicts its corresponding class label y; of particular interest is generalization

accuracy the accuracy of the function on predicting unseen future data. For hyperplane classifiers

such as the SVM, the decision function is given by the function f ∗(⃗x) = sign( f (⃗x)+ b), where

f (⃗x) = w⃗T x⃗, and w⃗ controls the orientation of the hyperplane, and b the offset. For the separable

case, in which the two classes of data can be separated by a hyperplane, the SVM method tries to

find the hyperplane with the maximum margin of separation, where the margin is the distance to the

hyperplane of a point closest to the hyperplane. For the non-separable case, the SVM method tries

to identify the hyperplane with the maximal margin with slack variables called the soft-margin. It

can be shown that selecting the hyperplane with the largest margin minimizes a bound on expected

generalization error [190].

The binary soft-margin SVM formulation aims to learn a decision function f specified below:

f = argmin
f∈HK

C
n

∑
i=1

V (⃗xi,yi, f )+
1
2
∣∣ f ∣∣2K (3.1)

where K(⃗x, x⃗′) : X ×X → ℝ is a kernel function which defines an inner product (dot product)

between samples in X , HK is the set of functions in the kernel space, ∣∣ f ∣∣2K is the L2 norm of the

function f , and C is a regularization coefficient. V measures the fitness of the function in terms

of predicting the class labels for training samples and is called a risk function. The hinge loss

function is a commonly used risk function in the form of V = (1− yi f (⃗xi))+ and x+ = x if x ≥ 0

and zero otherwise.

If the decision function f is a linear function represented by a vector w⃗, equation 3.1 can be
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represented as:

min. 1
2 ∣∣w⃗∣∣

2 +C
n

∑
i=1

εi

s.t. εi ≥ 0

yi(w⃗T φ (⃗xi)+b)≥ 1− εi ∀i = 1, ...,n

(3.2)

Where an unregularized bias term b is included and φ (⃗xi) is the kernel feature vector of x⃗i. Fol-

lowing common terminology (e.g., [172]) we refer to this as the 1-norm soft margin SVM, and if

squared slack variables are penalized instead, i.e., C ∑
n
i=1 ε2

i , the 2-norm soft margin SVM.

3.3.2 Distribution Distance and MMD

For our formulation, it is necessary to choose a convenient distribution distance measure. One

popular distribution “distance” measure is the Kullback-Leibler divergence, based on entropy cal-

culations. However for our approach we need a nonparametric method suitable for a reproducing

kernel Hilbert space (RKHS) that is both efficient to compute and relatively easy to incorporate

into optimization problems while still allowing accurate distance measurement. One method that

has recently been shown to be both efficient and effective for estimating the distance between two

distributions in a reproducing kernel Hilbert space is the maximum mean discrepancy (MMD)

measure [76]. The measure derives from computing the distribution distance by finding the func-

tion from a given class of functions that can best separate the two distributions, with the function

class restricted to a unit ball in the RKHS. Additionally the particular form of this measure fits

quite well into our support vector formulation, as shown in Section 3.4. Here we briefly overview

the MMD measure for estimating the distance between two distributions. Given a set of n train-

ing samples Ds = {{⃗x1,y1}, . . . , {⃗xn,yn}} and a set of m testing samples Dt = {⃗z1, . . . ,⃗zm}. The

(squared) maximum mean discrepancy distance of the training and testing distributions is given by

the following formula:
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MMD2 = ∣∣1n ∑
n
i=1 φ (⃗xi)− 1

m ∑
m
i=1 φ (⃗zi)∣∣2

= 1
n2 ∑

n
i, j=1 K(⃗xi, x⃗ j)+

1
m2 ∑

m
i, j=1 K(⃗zi ,⃗z j)

−2 1
nm ∑

n,m
i, j=1 K(⃗xi,⃗z j)

(3.3)

The MMD measure has also recently been used in the context of transfer learning, e.g., for kernel

learning [140].

3.4 Algorithm

Our general approach is as follows. We want to find a feature transform that minimizes the

between-distribution distance, but at the same time maximizes the performance of a classifier on

data from the training distribution. The latter criterion could also be considered a distribution dis-

tance measure (along the lines of [15]) in this case the distance between the distributions of the

classes of the training data distribution. Thus in essence our general transfer learning approach is

described with Equation 3.4.

f = argmin
f∈HK

C
n

∑
i=1

V (⃗xi,yi, f )+
1
2
∣∣ f ∣∣2K +λd f ,K(Pr,Pr′) (3.4)

where Pr is the distribution of the training samples, Pr′ the distribution of the testing samples,

d f ,K(Pr,Pr′) is a distance measure of the two distributions, as evaluated against the decision func-

tion f and the kernel function K. λ controls the trade-off between the three components in the

objective function. Other symbols such as C,V,HK are the same as explained in Equation 3.1.

Following convention, we only consider linear decision functions f in the format f (⃗x) =

w⃗T φ (⃗x) where w⃗ is the direction vector of f . Also following convention, we introduce an un-

regularized bias term, b, so that the final function is given by f (⃗x)+b and the label is assigned as

sign( f (⃗x)+b).
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3.4.1 Projected Distribution Distance

One approach we take to measure the distance between two distributions is to estimate how well

the two distributions are separated as explored in the maximum mean discrepancy distance [76],

mentioned previously. We define the projected maximum mean discrepancy distance measure,

using a set of training samples Ds = {{⃗x1,y1}, . . . , {⃗xn,yn}} and a set of m testing samples Dt =

{⃗z1, . . . ,⃗zm} below. Here we take the squared projected maximum mean discrepancy measure for

our distribution distance measure, to estimate the distribution distance under a given projection w⃗:

d f ,K(Pr,Pr′)2 = ∣∣1n ∑
n
i=1 f (⃗xi)− 1

m ∑
m
j=1 f (⃗z j)∣∣2

= 1
n2 (∑

n
i=1 w⃗T φ (⃗x j))

2 + 1
m2 (∑

m
j=1 w⃗T φ (⃗z j))

2

−2 1
nm ∑

n,m
i, j=1 w⃗T φ (⃗xi)w⃗T φ (⃗z j)

(3.5)

With the given decision and distance functions, we can rewrite Equation 3.4 in vector format

below:

min. 1
2 ∣∣w⃗∣∣

2 +C
n

∑
i=1

εi +λd f ,K(Pr,Pr′)2

s.t. εi ≥ 0, yi(w⃗T φ (⃗xi)+b)≥ 1− εi ∀i = 1, ...,n
(3.6)

where d f ,K(Pr,Pr′)2 is estimated using Equation 3.5.

The major difficulty in solving Equation 3.6 is that w⃗ is a vector in the Hilbert space defined

by the kernel function K and hence may have infinite dimensionality. The Representer Theorem,

which states that any vector w⃗ that minimizes Equation 3.6 should be a linear combination of the

kernel feature vectors of the training and testing samples, provides a useful remedy.

w⃗ = ∑
n
i=1 βiφ (⃗xi)+∑

m
j=1 β ′jφ (⃗z j) (3.7)

where βi and β ′j are coefficients and w⃗ is the vector that optimizes Equation 3.6. For simplicity, we

denote

φ(S) = (φ (⃗s1), . . . ,φ (⃗sn+m)) = (φ (⃗x1), . . . ,φ (⃗xn),φ (⃗z1), . . . ,φ (⃗zm))
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is a list of kernel feature vectors for training and testing samples and

β⃗ = (β1, . . . ,βn,β
′
1, . . . ,β

′
m)

T

is a (n+m) column vector. Hence we have w⃗ = φ(S)β⃗ .

The key observation of the Representer Theorem is that if w⃗ has a component that is not in the

span of column vectors in φ(S), that component must be orthogonal to the linear space spanned

by the training and testing samples. In that case, the value of f , evaluated on training and testing

samples will remain unchanged but the L2 norm of f will increase [13]. The details of the formal

proof in this case can be found in the appendix. With the Representer Theorem, we state our

algorithm for large margin transductive transfer learning below.

3.4.2 Large Margin Transductive Transfer

Learning Algorithm

With the Representer Theorem, we learn the decision boundary without explicitly learning the

vector w⃗. We have the following observations.

∣∣w⃗∣∣2 = β⃗ T φ(S)T φ(S)β⃗ = β⃗ T Λβ⃗ (3.8)

where Λ is a (n+m) by (n+m) positive semi-definite matrix and Λi, j = K(φ (⃗si),φ (⃗s j)). Our

projected distribution distance measure can then be expressed as:
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d f ,K(Pr,Pr′)2

= 1
n2 (∑

n
i=1 w⃗T φ (⃗xi))

2 + 1
m2 (∑

m
j=1 w⃗T φ (⃗z j))

2

− 2
nm ∑

n,m
i, j=1 w⃗T φ (⃗xi)w⃗T φ (⃗z j)

= 1
n2 ∑

n
i, j=1 β⃗ T φ(S)T φ (⃗xi)β⃗

T φ(S)T φ (⃗x j)+

1
m2 ∑

m
i, j=1 β⃗ T φ(S)T φ (⃗zi)β⃗

T φ(S)T φ (⃗z j)−
2

nm ∑
n,m
i, j=1 β⃗ T φ(S)T φ (⃗xi)β⃗

T φ(S)T φ (⃗z j)

= 1
n2 β⃗ T [∑n

i, j=1(φ(S)
T φ (⃗xi)φ (⃗x j)

T φ(S))]β⃗+

1
m2 β⃗ T [∑m

i, j=1 φ(S)T φ (⃗zi)φ (⃗z j)
T φ(S)]β⃗−

2
nm β⃗ T [∑

n,m
i, j=1 φ(S)T φ (⃗xi)φ (⃗z j)

T φ(S)]β⃗

= 1
n2 β⃗ T KTrain[1]

n×nKT
Trainβ⃗ + 1

m2 β⃗ T KTest[1]
m×mKT

Testβ⃗

− 1
nm β⃗ T (KTrain[1]

n×mKT
Test +KTest[1]

m×nKT
Train)β⃗

= β⃗ T Ωβ⃗

(3.9)

where Ω is a (n+m)×(n+m) symmetric positive semi-definite matrix. KTrain is the (n+m)×n

kernel matrix for the training data, KTest the (n+m)×m kernel matrix for the testing data, and [1]k×l

is a k× l matrix of all ones.

With these two equations, Equation 3.6 is expressed using β⃗ in the following way:

min. β⃗ T (1
2Λ+λΩ)β⃗ +C

n

∑
i=1

εi

s.t. εi ≥ 0

yi(β⃗
T Ki +b)≥ 1− εi ∀i = 1, ...,n

(3.10)

where Ki = φ(S)T φ (⃗xi) is an (n+m) column vector.

It is easy to show that the optimization problem of Equation 3.10 has an objective with a

quadratic form of β⃗ and is a standard convex quadratic program, and hence can be solved using

quadratic program solvers.

48



3.4.2.1 Regularization of the Hilbert space basis coefficients

We can view the problem of Equation 3.10 as performing regression in the Hilbert space with a

hinge loss function and parameters β⃗ . Thus we propose adding an L2 penalty to the β⃗ parameters

to shrink the selection of the data points used for the classifier and to add numerical stability to the

algorithm in practical implementations - particularly with large matrices this can correct for slight

negative eigenvalues from calculating Ω. Thus our final objective to minimize is:

β⃗
T (

1
2

Λ+λΩ+λ2I)β⃗ +C
n

∑
i=1

εi, (3.11)

where I is the (n+m)× (n+m) identity matrix. In our experiments we found that generally a

moderate amount of such L2 regularization improved performance.

3.4.3 Simplification with Linear Kernel, Linear Feature Weighting

Below we show a special case with linear kernels and a feature weighting as opposed to a projection

for measuring the distribution distance and demonstrate that in this case our algorithm can be

viewed as a processing technique, following by a regular SVM model construction. We arrive at

this simplification if we consider the target projection w⃗ as representing a linear feature weighting

transform W = diag(w⃗) that does not project a data point but re-weights it, and measure the MMD

with respect to the feature weighting introduced for a given w⃗ and the resulting W . With linear

kernels, w⃗ is a vector in the original feature space, rather than in the kernel feature space, and the

MMD measure under this linear transform is given by equation 3.12.

MMD2 = (1
n ∑

n
i=1Wx⃗i− 1

m ∑
m
j=1Wz⃗ j)

2 (3.12)

We can rearrange the MMD measure to sum across each feature:

MMD2 = ∑
p
k=1 w2

k(
1
n ∑

n
i=1 xik− 1

m ∑
m
j=1 z jk)

2

= w⃗T Qw⃗
(3.13)
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where p is the dimensionality of x⃗ and Q is a p× p diagonal matrix with Qk,k = (1
n ∑

n
i=1 xik −

1
m ∑

m
j=1 z jk)

2 for k ∈ [1, p].

Plugging this back into our 1-norm soft-margin SVM formulation, we can combine the MMD2

term with the maximum margin term, resulting in the objective:

min. 1
2w⃗T Q′w⃗+C ∑

n
i=1 εi (3.14)

where I is a p× p identity matrix and Q′ = λQ+ 1
2 I.

We could derive a similar quadratic programming for computing w⃗ but it is unnecessary. The

problem presented in Equation 3.14 can be solved using a pre-processing step, followed by any

off-the-shelf SVM solver. To see this, notice that since Q′ is diagonal it can be expressed as UTU

with U = Q′
1
2 so that w⃗T Q′w⃗ becomes w⃗TUTUw⃗ = (Uw⃗)T (Uw⃗). Thus by defining w⃗′ = Uw⃗ and

re-scaling the data by 1/U (i.e., x⃗′i = x⃗i(1/U)), we obtain the standard SVM problem. To obtain w⃗

from the solution w⃗′∗ we simply divided by U . Note that we can incorporate nonlinearity in this case

through basis expansion; we simply define the feature f j for a given x⃗ as the output of the kernel

function between x⃗ and the data instance (from the training and testing sets) s⃗ j, j ∈ {1, . . . ,n+m}.

3.4.4 2-Norm Soft Margin Transductive Transfer Learning with General-

ized Singular Value Decomposition

In the previous sections, we discussed the SVM with 1-norm soft margin for transductive transfer

learning. In this section, we introduce a similar formalization for 2-norm soft margin transductive

transfer learning that is equivalent for the case of the standard SVM, in which we fix the hyperplane

norm ∣∣w⃗∣∣ and find the hyperplane direction that gives maximum separation, measured by γ . This

formalization reveals a geometric interpretation for the regularization. We discuss the geometric

interpretation using a technique known as generalized singular value decomposition (GSVD).

The 2-norm transductive transfer learning is an optimization problem specified below:
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min. −γ +λ MMD2+C ∑
n
i=1 ε2

i

s.t. yi(w⃗T x⃗i +b)≥ γ− εi ∀i = 1, ...,n

∣∣w⃗∣∣= 1

(3.15)

With the Representer Theorem we have w⃗= β⃗ T φ(S) where φ(S)= (φ (⃗x1), . . . ,φ (⃗xn),φ (⃗z1), . . . ,φ (⃗zm)).

Using the expression of MMD from Equation 3.9 and the L2 norm of w⃗ in Equation 3.8, we

have the following optimization problem:

min. −γ +λβ⃗ T Ωβ⃗ +C ∑
n
i=1 ε2

i

s.t. yi(β⃗
T Ki +b)≥ γ− εi ∀i = 1, ...,n

β⃗ T Λβ⃗ = 1

(3.16)

The Lagrangian of Equation 3.16 is L(w,b,γ,α,λ ,λ0) =− 1
4C

n

∑
i=1

α
2
i −

1
4

αiyiKT
i M−1Kiyiαi−λ0

where M = λΩ+λ0Λ.

Clearly, if the value of λ0 is known, the Lagrangian is a quadratic programming problem for

α . The difficulty here is that we have to optimize two variables λ0 and α . In regular SVM with 2-

norm soft margin, the optimal value of λ0 can be determined analytically once we know α and the

optimization problem adopts the quadratic programming format. In transductive transfer learning,

we do not have this convenience anymore. However, we may use a technique called generalized

singular value decomposition to show the effect of the distribution distance measure Ω in the

optimization.

For the kernel matrix Λ we obtain a matrix Γc such that K = ΓT
c Γc. Similarly for the kernel

matrix Ω we obtain a matrix Γd such that K = ΓT
d Γd . Given two square-matrix Γc and Γd with the

same size, if we apply the generalized singular value decomposition we have Γc = UΣ1RQT and

Γd = V Σ2RQT where U,Q are orthogonal matrices and R is an upper-triangular matrix. Then we

have the following formula:
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M = λ0Λ+λΩ = λ0ΓT
c Γc +λΓT

d Γd

= λ0QRT Σ2
1RQT +λQRT Σ2

2RQT

= QRT (λ0Σ2
1 +λΣ2

2)RQT

(3.17)

We have M−1 = QR(−1) 1
(λ0Σ2

1 +λΣ2
2)

R(−1)T QT . Hence M−1 is a shrinkage operator, penaliz-

ing smaller generalized singular values and the penalization is controlled by the two parameters λ0

and λ .

3.5 Synthetic Data Experiments

Here we give a synthetic 2D example to illustrate our approach. The training data distribution

is shown as the green dots or squares (for the negative class) and the black plus symbols (as the

positive class), generated by sampling from Gaussian distributions for each feature with σ2 =

1, centered at (0,−2) and (2,0) respectively. The testing distribution is generated in a similar

fashion, designed to be similar to the training distribution particularly along one dimension, with

the negative class, depicted with upside-down red triangles generated from a Gaussian distribution

centered at (0,2) and the positive class, depicted as blue circles, generated with a Gaussian centered

at (2,0).

The transductive support vector machine is a widely used method that handled to some extent

the possible difference between training and testing data sets. The transductive SVM tries to min-

imize the decision function norm and the errors on both the training and testing data, taking the

unknown labels as variables of the optimization problem, so that these labels must be solved for

along with the decision function. One of the key disadvantages of the transductive SVM is that the

underlying optimization problem is an NP-hard problem and hence an iterative approximation has

been used to solve it, which can take a very long time to finish. Our formalization of the transduc-

tive transfer SVM utilizes a quadratic programming optimization which is guaranteed to identify

the global minimum in worst-case polynomial time.
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The results for three versions of the support vector classifier are shown in Figure 3.2. The first is

the standard support vector machine (green line), which performs the worst, obtaining an accuracy

of .60, the second is the transductive SVM [100] (magenta line). The accuracy here improves to

.72. Finally, the results of our transductive transfer SVM with a 1-norm soft margin are shown and

the linear feature-weighting simplification (LMFW - red line), which tries to take into account the

distance between the testing and training distributions. In this case it achieves the best accuracy,

.84, and comes closest to finding the underlying ideal separation for a linear transform, a vertical

line between the two classes.
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Figure 3.2: Performance of different support vector classifiers on a simple generated 2-D transfer
learning problem.

The next example we give is for a nonlinear classification task. Here data of the negative

class are generated around the origin by sampling 100 points from a Gaussian distribution that is

stretched in one dimension and shrunken in the other, for the training data it is stretched along the

x2 axis, and for the test data along the x1 axis. The positive class is then generated in each case by

randomly sampling points from a uniform distribution in the box region around the negative class

distributions. Points that are less than a fixed threshold when evaluated in the Gaussian function for

the negative data distribution are discarded, and points are sampled until 100 are obtained. For all

three methods we use default parameters of σ = 0.5 for the RBF kernel width and regularization

parameter C = 1. The resulting classification boundaries learned by each of the three methods are

shown in Figure 3.1, this time for our large-margin projection algorithm (LMPROJ). Our algorithm
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again achieves superior performance.

3.6 Real-World Data Experiments

Here we evaluate our methods using collections of real-world data. We use data from four different

classification tasks, forming a combined total of 24 transfer learning data sets. Three of these tasks

are commonly used in the literature and are related to text classification (work that used all or some

of these data sets include [196, 69, 122, 140]). We include a fourth data set for transfer learning,

related to protein-chemical interaction prediction.

Besides baseline methods of the standard support vector machine (SVM) and the transductive

support vector machine (TSVM), we choose for comparison two recent state-of-the-art algorithms

from KDD’08 that showed impressive results, out-performing baseline methods and some previous

transfer learning methods in their experiments. The first comparison method is the Cross Domain

Spectral Classifier (CDSC) [122] (out-performing the methods of [196] and [175] in their exper-

iments). We implemented their method in Matlab, directly following the algorithm as presented

in the paper. The second is the Locally-Weighted Ensemble (LWE) classifier of [69]. We used

the same three methods that they used in their experiments for the ensemble, namely the Winnow

algorithm from the SNoW Learning Architecture [Carlson et al.], a logistic regression algorithm

from the BBR package [Genkin et al.] and the LIBSVM implementation of a support vector ma-

chine classifier [36]. We obtained parts of the code for their algorithm from an author’s website

http://ews.uiuc.edu/~jinggao3/kdd08transfer.htm and implemented the rest

following the algorithm in their paper.

We obtained three pre-processed text classification data sets from the paper [69] for our ex-

perimental study: the Reuters data sets, 20 newsgroups text classification data sets, and the spam

filtering data sets. We follow the sampling strategy in [122] to sample 500 instances each from the

testing and training distribution to form our training and testing data sets.

We confirmed the correctness of our implementation by obtaining similar results to the perfor-
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mance reported in the respective papers (in some cases slightly more and in some cases slightly

less accuracy). The methods we compared to did not list the type of normalization used, so we

tried three different ways to normalize the non-binary features, no normalization, [0,1] normal-

ization using both the training and testing data, and [0,1] normalization separately on the training

and testing data. Interestingly, the performance of all the methods except LWE improved slightly

using normalization, since normalization may interrupt the clustering structure in a data set. The

difference between the second and the third normalization methods is negligible and hence we only

report results on [0,1] normalization separately on the training and testing data.

From our methods, we tested both the large-margin projection approach as described in Section

3.4.2 and Equation 3.10 and the large margin feature-weighting approach as described in Section

3.4.3. We denote the two approaches as LMPROJ and LMFW, respectively. We tested these

two approaches as well as the basic SVM using a linear kernel and a cosine similarity measure,

K(⃗x, y⃗) = (⃗xT y⃗)/(∣∣⃗x∣∣∣∣⃗y∣∣) the same similarity measure used by the CDSC method and commonly

used in text mining. We only show results using the cosine similarity since they were slightly

better than with the linear kernel. We used Matlab and a convex solver, CVX [74, 75], to solve

the quadratic programs of the LMPROJ methods. For transductive transfer learning no labeled

testing data can be used in the training, and since the testing and training distributions are different

there is no easy way to use typical model selection approaches such as cross-validation to select

appropriate parameters [69]. Thus we give the best performance for each method over a range

of parameters, for the LWE and CDSC methods we center this range around the best performing

parameters reported in their respective papers. Because of this, the base line SVM method and

the transductive SVM method have higher accuracy as compared to those reported in the literature

when default parameter values are used. We also perform detailed parameter sensitivity analysis

to show how the performance is affected by each of the parameters in our method.
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3.6.1 Evaluation Criteria

To compare the performance of the different methods, the first evaluation criterion we use is the

F1 score, which is commonly used in information retrieval tasks such as document classification.

The F1 score is the harmonic mean of the precision (P) and recall (R): 2PR
P+R , where P is given by

t p
t p+ f p and R by t p

t p+ f n . t p denotes the number of true positive predictions, f p the number of false

positives, f n false negatives, and tn true negatives. The F1 score is particularly appropriate for the

spam filtering and chemical-protein interaction prediction data sets where predicting the positive

class, the existence of spam and chemical-protein interaction respectively, is of particular interest.

The second criterion we present results for is accuracy, commonly used to evaluate classification

performance in general. Accuracy is given by t p+tn
t p+tn+ f p+ f n .

3.6.2 Data Sets

A brief description of each data set and its set-up is given here. Table 3.3 in the Appendix summa-

rizes the data sets and gives the indexes by which we will refer to each in our results. For example,

data set 10 is an email spam filtering data set where the training data set is a set of public messages

and the testing data set is the set of emails collected from a specific user.

3.6.2.1 Reuters and 20 Newsgroups (Data sets 1 - 9)

These data sets both represent text categorization tasks, Reuters is made up of news articles with

5 top-level categories, among which, Orgs, Places, and People are the largest, and the 20 News-

groups data set contains 20 newsgroup categories each with approximately 1000 documents. For

these text categorization data, in each case the goal is to correctly discriminate between articles at

the top level, e.g., “sci” articles vs. “talk” articles, using different sets of sub-categories within each

top-category for training and testing, e.g., sci.electronics and sci.med vs. talk.politics.misc and

talk.religion.misc for training and sci.crypt and sci.space vs. talk.politics.guns and talk.politics.mideast

for testing. For more details about the sub-categories, see [196]. Each set of sub-categories rep-
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resents a different domain in which different words will be more common. Features are given by

converting the documents into bag-of-word representations which are then transformed into feature

vectors using term frequency, details to this procedure can also be found in [196].

3.6.2.2 Spam Filtering (Data sets 10 - 12)

For this task, there is a large quantity of public email messages available, but an individual’s emails

are generally kept private, and these messages will have different word distributions. The goal is

to use the publicly available email messages to learn to detect spam messages, and transfer this

learning to individual users’ email messages. There are three different users with associated email

messages. The features for this data set are also made using term frequency from bag-of-word

representations for the messages, details can be found in [19].

3.6.2.3 Protein-Chemical Interaction (Data sets 13 - 24)

For this data set, we test the ability of the algorithms to transfer learning across protein families for

protein-chemical interaction prediction. The goal is to be able to use the known protein-chemical

interactions for a given protein family to help predict which chemicals the proteins of another

protein family will interact with, for which no interaction information is known. We obtained a

data set from Jacob et al. [98] which includes all chemicals and their G protein-coupled recep-

tor (GPCR) targets, built from an exhaustive search of the GPCR ligand database GLIDA [138].

The data set contains 80 GPCR proteins across 5 protein families, 2687 compounds, and a total

of 4051 protein-chemical interactions. One family we discard since it has too few proteins and

interactions. For the proteins we extracted features using the signature molecular descriptors [99],

for the chemicals we used a frequent subgraph feature representation approach [95, 180], and we

used a threshold on the feature frequencies to obtain about 100 features each. We then built the

feature vector for a given protein-chemical pair by taking the tensor product between the protein

and chemical feature vectors.

For each protein family we then built a data set by sampling 500 pairs of proteins from the
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Figure 3.3: Prediction F1 score on all 24 data sets

family and chemicals that are known to interact (or took all available interactions for a given family

if there were less than 500). Since we had no “negative interaction” data we randomly sampled the

same number of protein-chemical pairs among the proteins of the given family and the chemicals

for which there was no known interaction, the assumption being that the positive interactions are

scarce. We then constructed 12 transfer learning tasks by using each protein family in turn as

the training domain and each other protein family for the testing domain. The break-down of the

protein families is shown in Table 3.3 in the Appendix.

3.6.3 Experimental Results

First, we show an overall comparison of our method with the two state-of-the-art methods we

compared with as well as the baseline of a SVM classifier with a cosine similarity kernel and the

off-the-shelf transductive SVM. For easy visualization we show a plot of the F1 scores in Figure

3.3 with the data set index on the x-axis and the F1 score on the y-axis for the different methods,

only showing here our method LMPROJ with the cosine similarity kernel (though the LMFW

method was comparable, as seen in Tables 3.1 and 3.2) marked by blue circles, the LWE method

marked by upside-down purple triangles, the CDSC method marked by green crosses, transductive

SVM (TSVM) by a dashed orange line, and traditional SVM by the dotted black line. The results

for accuracy are reported in Tables 3.1 and 3.2.

In Figure 3.3, we observe that there is a general agreement of all 5 different methods that we
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compared in the first 12 data sets. The chemical-protein interaction data sets are harder and there

is a large performance gap between different methods. Specifically comparing different methods,

the base-line SVM works almost always the worst. This is not surprising since we know there are

differences between training and testing samples and ignoring such differences usually does not

lead to optimal modeling.

The cross-domain spectral classifier method (CDSC) has competitive performance, as com-

pared to other methods. For some reasons that we do not fully understand, we observe a large

performance variation of the CDSC method across different data sets. The locally weighted en-

semble method (LWE) and the transductive SVM (TSVM) method have competitive performance

in the first 12 data sets but they do not perform very well in the chemical-protein data sets. The

results may suggest that the chemical-protein interaction data do not follow the clustering assump-

tion well.

We observe that the LMPROJ method delivers stable results across the 24 data sets. For both

accuracy and F1 score LMPROJ achieves the best score in 11 out of 24 data sets and is competitive

with the best methods for the majority of the other data sets. It obtains the best score more times

than any of the other methods.

We also note that we obtained somewhat better results for the SVM and TSVM methods than

typically reported in the literature (e.g., [69, 122]) on the same data sets that we use. This is because

in our study instead of selecting a default parameter or allowing an internal cross-validation on the

training data to be performed, to allow a fair comparison with the transfer learning approaches we

reported the best results over a set of parameters for the baseline methods.

Next we give parameter sensitivity results in Figure 3.4, for the accuracy criterion and the

three parameters λ , λ2, and C. For each plot, two parameters are fixed at the best values while

the third parameter is varied to generate the plots. Here we show representative results for a

couple of data sets, the 2nd Reuters data set - a text data set, and the second chemical-protein

interaction data set. In the last three subfigures we also show the sensitivity results for the three

parameters averaged over all 24 data sets. While the base accuracy was different for different data
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Figure 3.4: Parameter Sensitivity
Table 3.1: Accuracies for All Methods on Text Classification Datasets

Methods Reuters 20 Newsgroup Spam Filtering
1 2 3 4 5 6 7 8 9 10 11 12

SVM 0.80 0.70 0.68 0.79 0.76 0.78 0.76 0.84 0.91 0.77 0.77 0.85
TSVM 0.82 0.78 0.73 0.76 0.73 0.84 0.80 0.84 0.90 0.81 0.84 0.91
CDSC 0.86 0.75 0.67 0.71 0.87 0.66 0.73 0.83 0.90 0.68 0.82 0.56
LWE 0.81 0.71 0.66 0.87 0.79 0.84 0.70 0.87 0.92 0.84 0.91 0.95
LMFW 0.81 0.75 0.70 0.79 0.76 0.82 0.78 0.85 0.92 0.77 0.78 0.87
LMPROJ 0.83 0.78 0.71 0.81 0.77 0.85 0.84 0.87 0.93 0.84 0.82 0.90

Table 3.2: Accuracies for All Methods on Protein-Chemical Datasets

Methods Protein-Chemical Interaction
13 14 15 16 17 18 19 20 21 22 23 24

SVM 0.50 0.53 0.51 0.55 0.49 0.46 0.66 0.50 0.54 0.61 0.49 0.52
TSVM 0.56 0.56 0.61 0.51 0.60 0.45 0.72 0.55 0.72 0.66 0.48 0.57
CDSC 0.54 0.60 0.78 0.72 0.54 0.50 0.70 0.53 0.80 0.70 0.49 0.52
LWE 0.50 0.50 0.50 0.51 0.52 0.50 0.56 0.50 0.50 0.52 0.51 0.50
LMFW 0.56 0.63 0.74 0.60 0.54 0.56 0.66 0.54 0.75 0.57 0.49 0.63
LMPROJ 0.58 0.69 0.69 0.66 0.58 0.61 0.69 0.56 0.69 0.64 0.53 0.63

sets, the general trends are captured by averaging the results together. In general we see that as

we suspected larger values of λ tend to improve performance; as λ is increased, the performance

increases from the base standard SVM performance, and levels off to a maximum for a wide range

of parameters. The results for λ2 show that in general the L2 regularization slightly improves

performance up to moderate amounts, but past a certain point, i.e., too much regularization, the

performance deteriorates. Also the performance is relatively insensitive to C for a wide range of

values.

Finally the full results including a comparison of all the methods tested in terms of accuracy

are given in Table 3.1 and Table 3.2.
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3.7 Discussion and Future Work

We have addressed the problem of transductive transfer learning using regularization with the goal

of maximizing a classification margin while at the same time minimizing a distance between train-

ing and testing distributions. With extensive experimental study we demonstrated the effectiveness

of our approach, comparing it with some recent state-of-the-art methods. Our results demonstrate

the effectiveness of this viewpoint of using regularization to find a decision function that brings the

training and testing distributions together so that the training data can be effectively utilized.

One key idea for future work is incorporate an L1 penalty on β⃗ of the projection method to

encourage a sparse solution. Also, an open problem for transductive transfer learning in general

is how to perform parameter selection, since no labeled testing data is available. Another area of

future work is to experiment with different loss functions for our large-margin classifier, in partic-

ular, a truncated hinge-loss function (e.g., [200]), to avoid situations where errors on the training

data effectively prevent the transfer to the test domain. Finally, from our results we have seen that

two schools of thought for considering transfer learning problems, one which tries to match the

structure of the testing data and the other which tries to find some type of transform/embedding

that brings the testing and training data together, seem to some extent to provide complementary

results. Forming a hybrid method could potentially result in a more powerful classifier.

3.8 Appendix

3.8.1 Characteristics of Data Sets

Details for the transfer learning tasks are provided in Table 3.3.

3.8.2 Representer Theorem

The major difficulty in solving Equation 3.6 is that w⃗ is a vector in the Hilbert space defined by the

kernel function K and hence may have infinite dimensionality. Fortunately we have the following
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Table 3.3: Break down of data sets

Set Task Training TestInd.

1 Orgs v. (Reuters)
People Documents Documents

2 Orgs v. Place from sub- from different
3 People v. Place categories sub-categories
4 Comp v. Sci
5 Rec v. Talk (20 Newsgroups)
6 Rec v. Sci Documents Documents
7 Sci v. Talk from sub- from different
8 Comp v. Rec categories sub-categories
9 Comp v. Talk
10 Email Public User1’s emails
11 Spam messages User2’s emails
12 Filtering User3’s emails

13 Rhodopsin peptide Rhodopsin amine
receptors receptors

14 Rhodopsin peptide Rhodopsin other
receptors receptors

15 Rhodopsin peptide Metabotropic
receptors glutamate family

16 Cross- Rhodopsin amine Rhodopsin peptide
family receptors receptors

17 protein- Rhodopsin amine Rhodopsin other
chemical receptors receptors

18 interaction Rhodopsin amine Metabotropic
prediction receptors glutamate family

19 Rhodopsin other Rhodopsin peptide
receptors receptors

20 Rhodopsin other Rhodopsin amine
receptors receptors

21 Rhodopsin other Metabotropic
receptors glutamate family

22 Metabotropic Rhodopsin peptide
glutamate family receptors

23 Metabotropic Rhodopsin amine
glutamate family receptors

24 Metabotropic Rhodopsin other
glutamate family receptors

theorem, known as the Representer Theorem, which states that w⃗ is always a linear combination

of φ(xi) and φ(z j) where xi in Ds and z j in Dt . Below we prove that the Representer Theorem is

correct in our case.

Theorem 3.8.1. The vector w⃗ that minimizes the Equation 3.6 can be represented as

w⃗ =
n

∑
i=1

βiφ (⃗xi)+β
′
j

m

∑
j=1

φ (⃗z j) (3.18)

where βi and β ′j are coefficients.

Proof. We prove the theorem by showing contradiction. Let w⃗1 =
n

∑
i=1

βiφ (⃗xi)+β
′
j

m

∑
j=1

φ (⃗z j)+ w⃗⊥

be a vector optimize the Equation 3.6 where w⃗⊥ /∈ span(φ (⃗xi),φ (⃗z j)). And let w⃗0 = w⃗1− w⃗⊥ be
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the projection of w⃗1 in the linear space of span(φ (⃗xi),φ (⃗z j)). Then we have

fw1(xi) = w⃗1T φ(xi)

= w⃗T
0 φ(xi)+ w⃗T

⊥φ(xi)

= w⃗T
0 φ(xi)

(3.19)

And ∣∣w⃗1∣∣2 = ∣∣w⃗0∣∣2 + ∣∣w⃗⊥∣∣2 ≥ ∣∣w⃗0∣∣2. If we compare w⃗1 and w⃗0, we claim that the hinge

loss function values are exactly the same and the MMD regularizer values are exactly the same.

The only difference is that the norm of w⃗1 is larger than w⃗0. This claim contradicts the original

assumption that w⃗1 optimizes Equation 3.6. Hence w⃗⊥ = 0.
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Chapter 4

Preliminary Study III: Feature Extraction

for Knowledge Transfer with Low-Quality

Data

4.1 Introduction

Knowledge transfer, modeling data that are from related but not identically distributed sources, is

a problem of fundamental importance in knowledge discovery and data engineering. It has been

extensively demonstrated through experimental study that traditional modeling methods typically

perform drastically worse when the identically distributed assumption no longer holds (e.g., [57,

55, 69, 140]). A recurring knowledge transfer scenario that arises naturally in many application

domains is the task of using a set of often high-quality, labeled auxiliary data that is expensive to

obtain, to help predict the labels of a set of new data believed to come from a different but similar

distribution and having little or no label information.

Knowledge transfer (e.g., transfer learning, domain adaption, learning with out-of-domain

data) has attracted significant research interest from the machine learning and data mining commu-

nity [18, 69, 96, 152, 165, 185, 56]. Many learning and mining algorithms have been developed,
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including those based on exploring the clustering structure of data [69, 56], sampling strategies

which select samples that are more likely coming from the same distribution [18, 96, 185], shared

feature structure between the training data to testing data [152, 165], and latent variables for related

tasks [114, 201, 203].

In this chapter we investigate the problem of knowledge transfer in a totally different direction

and focus on preprocessing techniques that are widely used in data engineering research. In par-

ticular, we notice that effective representation of the original data is a critical but yet not fully ex-

plored research area for knowledge transfer. Feature extraction methods have been widely utilized

in data engineering for creating a suitable representation for subsequent modeling practices. One

of the most commonly used feature extraction methods is Principle Component Analysis (PCA)

[85], in which an ordered orthogonal basis is found for a set of data with the first vectors in the

basis capturing most of the variance in the data, and the projection of the data instances on some

top number of basis vectors is taken as the extracted feature representation. PCA based methods

have also been applied to perform feature extraction for knowledge transfer tasks (e.g., directly in

[201], in a kernel space in [140], and for comparison in [152, 27]). The direct application of PCA

based methods for knowledge transfer, however, usually does not lead to optimal results due to

various reasons. First different distributions of source and target data may mislead the direction

of the principle components. Second, for high dimensional data where data are often clustered in

subspaces rather than the full space, PCA may not reveal the best representation of the data.

Towards the end goal of effective data representation, we develop a general approach to feature

extraction and data representation based on a technique called sparse coding. Sparse coding is

widely used in high-dimensional data preprocessing for identifying a (small) group of higher-order

features of data from the raw representations [139, 152]. Such higher-order features are suitable

for subsequent analysis including subspace clustering [63] and missing value imputation [31]. The

limitations of sparse coding are that sparse coding still does not explicitly consider distribution

distance and can result in poor embeddings for knowledge transfer.

To address the limitations and enable effective feature extraction for data that may come from
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different distributions, we extend sparse coding to incorporate a regularization term that can in

effect be used to control how identical the distributions for different data sets are under the learned

embedding. In this way we hope to obtain an underlying structure that allows easy knowledge

transfer. We evaluate the proposed method with synthetic and real data experiments, including an

application to drug toxicity prediction.

4.2 Related Work

4.2.1 Feature Extraction with Sparse Coding

Sparse coding itself has been used for transfer learning [152] the idea being that it is able to capture

higher level features of the data which can then be used to allow knowledge transfer (see discussion

in Section 4.3.3 for details).

Recently Xie et al. considered the related problem of transfer learning for data sets having

differing but overlapping feature sets [201]. This is closely related work to the problem we con-

sider here, and is a special case of transfer learning with missing values. They proposed to use

the shared features to build regression models for predicting the missing values, then perform sin-

gular value decomposition to find a lower dimensional structure explaining the data and allowing

the knowledge transfer. The approach has two key shortcomings. First, imputation and learning

the embedding are performed separately, but the underlying structure is what explains the miss-

ing values so that the latent structure and imputation should be learned in tandem; from matrix

completion theory we know finding the lowest rank matrix that matches the non-missing values

allows perfect matrix completion under certain conditions [31]. Secondly, traditional embedding

techniques like SVD used in the previous approach can actually find poor embeddings for transfer

learning since they are designed to approximate the data well and do not explicitly consider trying

to make the data IID, in fact as we demonstrate with simple synthetic examples in a later section,

the embeddings found can actually hinder transfer learning. We also describe how our algorithm

can handle missing value imputation in tandem with the embedding process, and test this sparse
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coding approach under a standard classification setting.

4.2.2 Transfer Learning and Domain Adaption

Many learning algorithms have been developed for knowledge transfer [142]. A common approach

is a model-based approach in which the different distributions are incorporated in a model, e.g.,

through domain specific priors [41] or through a model with general and domain-specific compo-

nents [59]. Several approaches have also been developed for transductive transfer learning which

consider the local structure of the unlabeled data, utilizing some unsupervised learning methods,

such as clustering [69] or co-clustering [56]. There are methods based on model selection, se-

lecting features that generalize well across distributions [122, 140, 165]. The difference between

feature selection and feature generation is that we want to “discover” new features, based on the

existing features, for knowledge transfer and we do so in a regularization framework, which aims

to avoid over-fitting and minimize the generalization error.

Aside from the sparse-coding approaches and those embedding approaches mentioned previ-

ously, there has been additional work on embedding, specifically using eigendecomposition, for

knowledge transfer. Zhong et al. [217] proposed an approach consisting of choosing a kernel,

decomposing, and then selected instances to include by considering distribution distance; however

distribution distance is not incorporated in the embedding and useful instances could be thrown

away - potentially only reinforcing a poor concept. Pan et al. [140, 141] proposed learning a kernel

matrix with constraints on nearest neighbor distances and a distribution distance based regulariza-

tion using maximum mean discrepancy (MMD) [76], followed by eigendecomposition. However

they do not incorporate any class-based distribution distance, and we show that embedding by only

incorporating distribution distance can actually mislead the embedding and result in worse perfor-

mance than not incorporating distribution distance. A key reason for this is the embedding changes

the conditional distributions for the different data sources, so even if they were the same before

(often considered a requirement for domain adaptation approaches), after embedding they may no

longer agree. Additionally, depending on the kernel, the MMD can fail to capture differences in
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distributions, for instance if the kernel matrix learned happens to correspond to a linear kernel two

very different distributions can be considered similar if they have close means.

4.3 Methodology

4.3.1 Notation

We use the following notations throughout the rest of the chapter. We use lowercase letters to

represent scalar values, lower-case letters with an arrow to represent vectors (e.g., β⃗ ), uppercase

letters to represent matrices, and uppercase calligraphic letters to represent sets. Unless stated

otherwise, all vectors are column vectors. We use ∣∣A∣∣F to denote the Frobenius norm of a matrix

A,
√

Tr(AT A), where Tr denotes the trace; ∣∣⃗a∣∣1 denotes the L1 norm of the k-dimensional vector

a⃗, ∑
k
i=1 ∣ai∣. Note, for convenience we use: A:i to denote the ith column vector of the matrix A, Ai:

to denote the ith row vector of the matrix A, and Ai j to denote the (i, j)th entry of A, and similarly

ai to denote the ith entry, or coefficient, of the vector a⃗. Additionally matrix powers are taken as

entry-wise powers, for example, A2 denotes the matrix obtained by squaring each entry in A.

4.3.2 Preliminary Background on Sparse Coding

Given a set of n p-dimensional data points, {x⃗1, x⃗2, . . . x⃗n} ⊂ ℝp, we form the p×n data matrix X

by taking x⃗i as column i, i = 1, . . . ,n. The goal of sparse coding is to learn a set of r p-dimensional

basis vectors, {⃗b1, . . .⃗br} ⊂ ℝp forming p× r basis matrix B with column i = b⃗i, i = 1, . . . ,r, and

a set of n r-dimensional sparse (having few non-zero values) weight vectors, {w⃗1, . . . w⃗r} ⊂ ℝp

forming weight matrix W with column i = w⃗i, i = 1, . . . ,n, that approximate the original patterns

well, that is, BW ≈ X . Assuming the reconstruction error for a data pattern x⃗− Bw⃗ follows a

zero-mean Gaussian distribution with covariance σ2I, and taking a Laplace prior for the weight

coefficients and assuming a uniform prior on the basis vectors, then the posterior probability of the
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data for a given B and W is proportional to Equation 4.1.

n

∏
i=1

e−∣∣⃗xi−Bw⃗i∣∣22/(2σ2)e−α∣∣w⃗i∣∣1 (4.1)

The maximum a posteriori estimate for the basis and vectors can then be found by maximizing the

log of Equation 4.1 with the following optimization problem [116] :

argmin
B,W

1
2σ2 ∣∣X−BW ∣∣2F +α

n

∑
i=1
∣∣w⃗i∣∣1

s.t. ∣∣⃗bi∣∣22 ≤ c ∀i = 1, ...,n
(4.2)

where the constraints on the norm of the basis vectors are introduced to prevent them from growing

infinitely large, and can be viewed as regularization on the basis vectors as well. Typically c is

fixed, e.g., to 1, since allowing the basis norms to be bigger would allow the basis weights, the

entries of W , to shrink (reducing the L1 norm, and still produce the same reconstruction, so that the

effect α has would change. Here α acts as a tunable regularization parameter, trading off between

sparsity of the weights and approximation of X. The resulting new data representation is then given

by W. We label this sparse coding feature extraction method as SC in our experiments.

The problem in 4.2 is non-convex, but fixing either W or B the problem becomes convex in the

other (i.e., fix W and the problem is convex in B and vice versa). This was exploited in [116] along

with a Lagrange dual solution for learning the basis to derive an efficient algorithm for solving this

problem, by alternatively fixing W or B and solving for the optimal value of the other. We thus take

a similar alternating optimization approach for our algorithms, as described in subsequent sections.

4.3.3 Advantages and Limitations of Sparse Coding for Feature Extraction

in Knowledge Transfer

One benefit of sparse coding for knowledge transfer comes from the viewpoint of sparse coding

as a way of learning higher-order more general representations of data from the given low level

representations [139, 152]. By forcing the representations to be sparse combinations of the basis
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vectors it helps to ensure that the basis found is efficient at representing the set of patterns and

generally captures the main patterns of interest in the low level input representations. The idea

then is that while the low-level details for different data sets may be different, they will have some

commonalities, or overlap, in the higher-level representation that allows general principles to be

inferred in this higher order representation that are applicable to the different data sets. Such an

approach has been applied to learning higher order representations for knowledge transfer using

auxiliary data sources [152, 27, 117]. However the fundamental assumption here then must be

that the data sets are identically distributed in this higher order representation - if they are not,

then the higher order representation will still have the same issue as before - of non-identically

distributed data, and will still not enable knowledge transfer. As it is, sparse coding provides no

such guarantee.

Another way of viewing sparse coding which potentially offers more insight is from a geo-

metric perspective; sparse coding can be viewed as a way of performing subspace clustering. By

forcing the new data representations to be sparse the algorithm tries to find a set of representative

vectors or directions with the representations only being active among a few of the basis vectors -

the set of vectors for which a datum representation is non-zero could be seen as its subspace mem-

bership. It can be shown that if the data points lie in a set of independent subspaces, then sparse

coding can be used to fully identify the subspace clusters [63]. In this sense sparse coding could be

seen as being useful for knowledge transfer in the same sense as other cluster-based transfer learn-

ing methods: by identifying the shared cluster structure of the auxiliary data with the target data,

it can in effect select only those auxiliary data belonging to the same clusters as the target data for

extracting knowledge, or learning patterns, since only those data will have the same sets of features

active as the target data. The active features in the new representations can then be viewed as the

coordinates in the shared subspaces for the found basis. This ability to handle multimodal data is a

major advantage of the sparse coding algorithm over other embedding algorithms such as principle

component analysis [85] which only looks at directions of greatest variance completely missing

any internal structure and further restricting all basis vectors found to be perpendicular. However
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a fundamental issue here with sparse coding comes from the case of target data and auxiliary data

lying mostly in different subspaces. In the case of an auxiliary data set and a target data set lying

in different subspaces, sparse coding will generally result in representations for which no active

features are shared between the two data sets, since each will only have non-zero weights for those

basis vectors belonging to its own subspace (see Section 4.4.1 for an illustration of this case). In

this case no knowledge transfer is possible because the only non-zero features in the target data

will always be zero in the auxiliary data, so the auxiliary data cannot be used to help determine

patterns for those features and thus the target data. Nevertheless, just because the shared cluster

assumption used by sparse coding and many other knowledge transfer methods no longer holds

does not mean we should abandon our hope of utilizing available high-quality auxiliary data. In

the next few sections we propose some modifications to sparse coding to allow knowledge trans-

fer in such cases, and more generally for whenever the embedding found still does not result in

identically distributed data.

Another issue with sparse coding comes from selecting the size of the basis. In an unsupervised

setting where we learn a basis and weights that explain all of the data best, as we allow the basis to

grow beyond a certain size, the possible generalization shrinks. It is easy to see that if we allow the

basis dimension to equal the number of points, that a basis that minimizes the objective function is

given by one basis vector in the direction of each input data point. First all basis vector norms will

be maximized in order to allow minimum weights. Because the L1 penalty is used the additional

penalty is the same for larger weight values, so the smallest weight possible always comes from a

direct path to a data point. In this case sense each point would be assigned to its own coordinate,

no patterns could be found from the data. As we allow the basis to grow, sparse coding basically

becomes similar to a weighted k-nearest-neighbor algorithm [208].

4.3.4 Improving Sparse Coding with Regularization

A fundamental limitation as described in the last section is that sparse coding may actually find

an embedding that hinders knowledge transfer - there is nothing forcing the data sets in the new
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feature representations to be identically distributed. Since our goal is to transfer knowledge when

data distributions are not identical in order to utilize auxiliary data, it therefore makes sense to

address this problem by trying to enforce the the embedded data sets to be identically distributed.

To do this we propose to incorporate a distribution distance estimation between the embedded data

sets. Following the regularized regression framework in Equation 4.2, to incorporate distribution

distance, we add a tunable regularization term on the embedding weights for the two data sets that

penalizes the estimated distribution distance between these sets of weights. This type of regular-

ization could be viewed as a soft constraint that enforces the estimated distributions of the different

data sets to be identical. The new optimization problem is given in Equation 4.3, where U and V

are used to denote the weights for the training (source) and test (target) sets respectively, for con-

venience, p and q represent the probability density functions (pdfs) for each set respectively, and

d(,) some distribution distance function.

argmin
B,W

∣∣X−BW ∣∣2F +α

n

∑
i=1
∣∣w⃗i∣∣1 +βd(pU ,qV )

s.t. ∣∣⃗bi∣∣22 ≤ c ∀i = 1, ...,n
(4.3)

Since the penalty only includes the weight terms, we can still perform the alternating optimiza-

tion. Here β is another tunable regularization parameter which controls the importance given to

enforcing small distribution distance. In this case most distribution distance measures will result

in a non-convex problem for fitting W . Thus we can only find a local solution. Avoiding this

non-convexity is an open problem since accurate distribution distance measures as functions of

the finite-dimensional embedding can have multiple local minima (as illustrated in Section 4.4.1)

unless simpler but also less accurate distribution distance measures are used. Note that since the

distribution distance only depends on W the problem remains unchanged and is still convex when

W is fixed.

In general, most probability distribution distance measures require the pdfs of the two dis-

tributions in question. One commonly used measure that is an exception is the maximum mean

discrepancy (MMD) estimate [76, 140], that is useful in some kernel spaces, but in the original
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input space (i.e., with a linear kernel) provides only a weak measurement, for example, not being

able to distinguish between two different distributions with the same mean. To use a more accurate

distribution distance measure, we therefore need to estimate the pdfs of the two distributions. In

order to do this we propose to use a nonparametric density estimation technique, kernel density

estimation; this can be thought of as providing a smoothed histogram.

In general estimation tasks, the usefulness of kernel density estimation is somewhat limited

due to the curse of dimensionality, with the risk of the estimator growing with the dimensionality

of the data [195]. However in our case there are several benefits to using kernel density estimation.

First, since we need to restrict the dimensionality of the data to some degree to allow generalization

between data sources, this should alleviate to some extent the curse of dimensionality. Secondly,

we are not actually concerned with estimating the densities, just determining a difference in the

densities of two distributions and how this changes as the data changes, so as long as this difference

and change is captured it doesn’t matter how accurate the density estimation is. Finally, using a

differentiable kernel function in the estimation enables straight-forward computation of derivatives

which allows easy incorporation in standard optimization techniques like gradient descent. Since

the specific kernel function chosen is not very important for kernel density estimation [195] we use

the differentiable Gaussian kernel k(⃗x, y⃗) ∝ exp(−(1/(2h))∣∣⃗x− y⃗∣∣22) where h is the kernel width,

in our implementations.

With this approach we can then use a wide variety of distribution distance measures that use the

pdfs, including f-divergences such as χ2-divergence and Kullback-Leibler divergence and Lp-norm

distance measures. Here we use the symmetric version of the common KL-divergence measure,

the Jensen-Shannon divergence. The KL-divergence is given by dKL(P∣∣Q) = EP[log(p/q)] and

JS-divergence is dJS = 0.5(dKL(P∣∣Q)+dKL(Q∣∣P)). In general computing the KL-divergence for

multivariate data with continuous variables is still an open problem, but by estimating the density

we can then use the sample mean approximation to expected value given our data sample to predict

the KL-divergence as the expected value of the log-odds of the pdfs. Below we derive expressions

for the distance measure, and the gradient of the distance measure.
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We use K, G, and S to denote the kernel matrices for U with itself, U with V and V with itself,

e.g., G is an n×m matrix with entries G(i, j) = exp(−(1/(2h))∣∣⃗ui− v⃗ j∣∣22), where h is the kernel

width. Then to calculate the probability vectors for each data set under each distribution, we have

the following:

p⃗u = (1/(n(2πh)r/2))K⃗1,

q⃗u = (1/(m(2πh)r/2))G⃗1,

p⃗v = (1/(n(2πh)r/2))GT 1⃗,

q⃗v = (1/(m(2πh)r/2))S⃗1,

(4.4)

where e.g., p⃗v represents the pdf for the first data set (U) evaluated at each point in the second data

set V and 1⃗ denotes a vector of all ones of the appropriate length. Then the JS divergence estimate

is given with Equation 4.5.

dJS =
1
2
(⃗1T (log(p⃗u)− log(⃗qu))/n+ 1⃗T (log(⃗qv)− log(p⃗v))/m) (4.5)

Then the gradient for the lth column of U and V is given in Equation 4.6.

∇u⃗l dJS =
1

2nh
(U− u⃗l)(K:l/p⃗u +K:l/p(⃗ul))

− 1
2mh

(V − u⃗l)(GT
l:/q(⃗ul)+GT

l:/ p⃗v)

∇v⃗l dJS =
1

2mh
(V − v⃗l)(S:l /⃗qv +S:l/q(⃗vl))

− 1
2nh

(U− v⃗l)(G:l/p(⃗vl)+G:l /⃗qu)

(4.6)

From Equation 4.6 we see that moving in the direction of the negative computed gradient

makes sense intuitively as a rule to bring two distributions closer together. The distribution distance

gradient component for a given embedded point x corresponds to summing the vectors from x to

each of the other points, with vectors weighted proportional to the average of the ratio of the kernel

value between the two points to the pdf evaluated at x and the strength of the kernel value in the

total density estimate for that value. In other words, with gradient descent x will tend to move

toward the points of the other data set, and away from the points in its own data set, in a weighted
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manner. However, by also including the term causing the embedding to represent the input matrix

well this should help counter the diffusion effect for each data set. We refer to this method as

sparse coding with distribution distance regularization (SCDD).

Here we considered one source data set, which could actually be a combination of several

source data sets, and one target data set. It is straight-forward to extend the above approach to mul-

tiple data sets, e.g., one way is to simply add additional pairwise terms as above for the additional

data sets.

4.3.5 Incorporating Target Data Label Information

A common data mining or knowledge discovery task, which is the focus of our experiments in this

work, is classification, that is learning a predictive model from the data capable of determining

which class a data instance belongs to from its feature representation. Specifically we have a set

C of k classes, C = {1,2, . . . ,k} and each data instance x⃗i has an (known or unknown) associated

class label yi ∈ C . The final goal of classification is then to predict the labels of the target data

well, generally by estimating P(y∣⃗x) from the labeled data. Even for data where ground truth label

information is expensive and time consuming to obtain, usually a small amount of label information

can still be obtained. Thus we should be able to leverage this information for knowledge discovery

when available.

Furthermore, distribution distance regularization may not always be enough for knowledge dis-

covery. Enforcing small distribution distance for the distribution of the data instances for the two

data sets does not guarantee the conditional distributions resulting from the embeddings will be

identical. In fact since sparse coding with distribution distance will try to approximate the data

well while decreasing the distribution distance, it can end up finding a local non-ideal minimum

to the optimization problem 4.7 that misaligns the conditional distributions (e.g., compare syn-

thetic experiments 1 and 2 in Section 4.4.1). In general unless it is certain the distributions of the

source and target data sets are closely similar, some ground truth information for the target data is

necessary to determine the correct embedding for the data.
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We explored several options for incorporating conditional distribution information in the sparse

coding formulation including estimating conditional and joint distributions with kernel density

estimation. We found a class-based distribution distance estimation approach to work best, where

we use the same distribution distance estimate as in the previous section, only calculated between

the instances of the same class between the two data sets, for each class. The new objective is

given by Equation 4.7.

argmin
B,W

∣∣X−BW ∣∣2F +α

n

∑
i=1
∣∣w⃗i∣∣1 +βdJS(pU ,qV )

+β2(dJS(pU1,qV 1)+dJS(pU2,qV 2))

(4.7)

Here U1 denotes those embedded data instances in U that have label 1 and U2 those that have

label 2 and similarly for V 1 and V 2. For simplicity we just described the case of only two classes,

but our approach extends easily to multiple classes, simply by using a distribution distance term

for each class. Then computing the divergence and gradient for the new component is the same

as in the previous section, simply restricted to each class, specifically bringing together the dis-

tributions P(⃗x∣y = i) (that is the probability density of x⃗ given y = i) for each i in C . We refer

to this method as sparse coding with distribution distance and class-based distribution distance

regularization (SCDDCD).

Importantly, in our implementation we only compute the gradient component for the auxiliary

data, and not for the target data, since there are typically very few target data labels. If we updated

the labeled target instances as well the few labeled instances would tend to quickly move toward

the other data set without influencing the embedding found for the remainder of the target data set

- failing to reduce the distribution distance of the true conditional distributions since the unlabeled

points would be unaffected.

We can also motivate the incorporation of class-based distribution distance based on theoretical

results for knowledge transfer. The general form of such theoretical upper bounds on test (target)

error take the form of source (train) error plus distribution distance, based on the marginal distri-

butions [15, 14] when conditional distributions are the same or the conditional distributions [204].
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Since our approach enforces soft constraints that require the marginal distributions to be close, and

conditional distributions of the data given class to be close, if the classes are roughly balanced, we

are in effect enforcing that the conditional distributions of the class label given the data are close,

by Bayes’ rule. Additionally our approach can be viewed as directly aiming to minimize such

theoretical bounds, since first the distribution distance is minimized (and kernel density estimation

is consistent [195]) then a classifier is found to minimize training error.

4.3.6 Handling Missing Values: Weighted Loss Sparse Coding

A typical issue that arises in knowledge transfer between different sources of data is that the data

have different feature sets, so that only some overlapping set of features is shared in common for

different pairs of data sets, and additionally missing values are common. Our approach can easily

be adapted to handle such cases by introducing a non-negative p× n weighting matrix P. This

weight matrix is used to weight the reconstruction error described above, so that in the optimization

problems more importance is placed on those more heavily weighted entries. This formulation can

be used to perform sparse coding for data with missing values, by simply placing a zero in P at

each missing entry, and ones elsewhere. The resulting optimization problem, the weighted loss

sparse coding problem is given in 4.8, and the extensions for incorporating distribution distance

regularization are the same as described previously for unweighted sparse coding.

argmin
B,W

∣∣P∘ (X−BW )∣∣2F +α

n

∑
i=1
∣∣w⃗i∣∣1

s.t. ∣∣⃗bi∣∣22 ≤ c ∀i = 1, ...,n
(4.8)

Here ∘ is the Hadamard product, the entry-wise product between two matrices.

4.3.7 Solving the Optimization Problems

The general approach we take to solving the optimization problems presented in the last few sec-

tions is one of block coordinate descent, or alternating optimization. We generate a random basis B
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of input size r then continually update the weights W to minimize the objective value while holding

the basis fixed, followed by updating the basis to minimize the objective value while holding the

weights fixed, until convergence.

4.3.7.1 Updating the Basis

We originally tried several different approaches for fitting the basis B given fixed weight matrix

W , including a Lagrange dual approach, and the popular Nesterov’s method. We found that as the

basis size r grew beyond only a very small size a simple projected gradient descent with a line

search worked best in terms of efficiency and the embedding found. The gradient of the any of the

objective functions we use from Equations 4.2, 4.3, and 4.7 with respect to the basis B is given by

Equation 4.9.

∇B obj.=−XW T +BWW T (4.9)

To update the basis we first compute the negative gradient as the step direction. After computing

the new basis by adding the negative gradient, we project it onto the L2 ball constraint for each

basis vector, which amounts to scaling each vector to be of max length c. Then a line search is

performed where the step size is decreased if the objective value does not decrease. The process is

repeated until convergence.

For the weighted loss sparse coding formulation, the gradient computation is similar, e.g., the

gradient with respect to B is given in Equation 4.10 and the gradient for W takes a similar form.

∇B obj.=−(P2 ∘X)W T +(P2 ∘ (BW ))W T (4.10)

4.3.7.2 Updating the Weights

The same approach for updating the basis is used for updating the weights, except that we use the

sub-gradient to incorporate the non-differentiable L1 norm regularization term, and add in the gra-

dient terms for the appropriate distribution distance regularization terms depending on the methods

used as described in Sections 4.3.2 and 4.3.5 and Equation 4.6. Additionally no projection is nec-
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essary since there are no constraints on the weights. The sub-gradient of the objective functions for

the weight matrix W excluding the distribution distance regularization terms is given in Equation

4.11.

∇W obj.=−BT X +BT BW +α sign(W ) (4.11)

Here sign() is the sign function which returns 1 if its input is greater than 0, 0 if equal to 0, and−1

if less than 0.
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(d) Sparse Coding with Distr. Dist.

Figure 4.1: Comparison of features identified from different embedding methods for the Synthetic
data set 1.

4.3.7.3 Convergence

Since the objective with respect to W is nonconvex and not quasiconvex, although the objective

function value will not increase, insufficient decrease is potentially an issue with alternating op-

timization. In practice we check for such a situation by tracking the objective function value.

Additionally other similar optimization approaches could easily be used instead to alleviate this is-

sue, e.g., using block coordinate gradient descent instead [188] or regular gradient/pseudo-gradient

descent. However we found this coordinate descent approach to be effective in practice. For the
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hyper-parameter setting most frequently selected in our chemical toxicity experiments (Section

6.5) across all trials the number of iterations to convergence never exceeded 19 and the mean

number of iterations was 9.45.

4.4 Experimental Study with Synthetic Data Sets

We have implemented our methods in Matlab. All experiments are run on a 178-node cluster

where each node contains two Intel Xeon EM64T 3.2 Ghz processors and 4G memory. In order

to evaluate the performance of the different feature extraction methods for knowledge transfer, we

have created synthetic data sets and collected real-world data sets for chemical toxicity prediction

for environmental protection. Below we show our experimental study results with synthetic data

sets. We show results on real-world data sets in the next section.

4.4.1 Synthetic Data Experiments

For the synthetic data, we demonstrate the case where the target data set lies mostly in a different

cluster than a source data set from which we want to enable knowledge transfer. To simulate this

scenario, we generate two data sets, a source, or training, data set, and a target, or testing, data set.

To generate data we randomly sample 25 points each from two simple 2D Gaussian distributions,

one for each class. The first with mean (0.6,0), the second with mean (−3,0) and both with

covariance matrix {{1,0},{0, .5}}. We then rotate the source data by some number of degrees

θ and the target distribution by the same amount in the opposite direction −θ , using the rotation

matrix R = {{cos(θ),−sin(θ)},{sin(θ),cos(θ)}}.

Synthetic Experiment 1 For the first experiment, we sample 50 points for each data set as

described above and rotate the training data by θ = 25 degrees and the testing by θ =−25 degrees.

No labeled test instances are provided for learning the embeddings.

Synthetic Experiment 2 We generate 50 points for each data set using the same set up as

described above, except this time rotate the training data by +55 degrees around the origin, and the

80



−4 −2 0 2 4 6
−5

0

5

x
1

x 2
 

 

train +
train −
test +
test −
Test Acc.: 0.5

(a) Original Data

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

x
1

x 2

 

 

train +
train −
test +
test −
Test Acc.: 0.5

(b) PCA

1 1.5 2 2.5 3

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

x
1

x 2

 

 

train +
train −
test +
test −
Test Acc.: 0.54

(c) Embedding with only Distr.
Dist. and Class-Based Distr. Dist.

−6 −4 −2 0 2
−6

−5

−4

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

train +
train −
test +
test −
Test Acc.: 0.5

(d) Sparse Coding

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

x
1

x 2

 

 

train +
train −
test +
test −
Test Acc.: 0.32

(e) Sparse Coding with Distr. Dist.

−0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

 

 

train +
train −
test +
test −
Test Acc.: 0.98

(f) Sparse Coding with Distr. Dist.
and Class-Based Distr. Dist.

Figure 4.2: Comparison of embeddings found for Synthetic Experiment 2 - see text for details.

testing data by−55 degrees, increasing their dissimilarity and hence the difficulty of the knowledge

transfer. We then randomly provide only a single label from each class for the testing data to be

used in learning the embedding and final classifier.

4.4.1.1 Experiment Protocol

In our experimental study, we did not do an extensive parameter search but simply picked a default

value of 1 for the kernel width, the Lasso penalty weight of α1 = .2 (a larger value just tends to

compress the points more along the basis directions found), and a heavy weighting of 2000 for the

each distribution distance component when included. In the plots showing the results we also plot
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the support vector machine (SVM) decision boundary found from training on all labeled embedded

data points (including the two labeled points of the test data), with default linear SVM parameter

C = 1.

4.4.1.2 Experiment Results

The results for various embedding approaches are shown in Figure 4.1 and Figure 4.2, with all

figures plotted on square plots. For the first experiment, sparse coding identifies the two major

subspace clusters, and actual hurts the performance since it essentially assigns each data set to

one dimension. The data sets are similar enough however, that just incorporating the distribution

distance regularization allows for a very good embedding to be found (Figure 4.1d).

In the second experiment, as before, sparse coding (Figure 4.2d) identifies the two major sub-

spaces or clusters the data belong to, which does not help transfer knowledge in this case since as

before each cluster corresponds to a specific data set, so each is assigned its own dimension.

As we expected, just incorporating distribution distance (Figure 4.2e) may not help tremen-

dously in this case, since the nearest alignment of the distributions happens by misaligning the two

classes between the two data sets. Incorporating the very few available test labels with distribution

distance regularization between the data points of the same classes as described in Section 4.3.5

allows for a very good embedding to be found for transfer learning - the points of each class are

grouped together.

In addition we plot the results for PCA in Figure 4.2b. We see that PCA does not move the two

distributions close and hence bears poor classification results. To show that the distribution distance

minimizing alone is not enough and to demonstrate the utility of sparse coding, we show what

happens if just the evenly weighted sum of distribution distance and class distribution distances

are minimized with the same gradient procedure, without any sparse coding component, in Figure

4.2c. This results in a poor embedding.

Furthermore we note that this example also illustrates how even restricting the basis size for

PCA can easily fail: the principal component found is in the direction (0.040,−.999) which is
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nearly perpendicular to the best single projection direction for knowledge transfer in this case.

Finally in Figure 4.3 we show a more extreme case, where the same data generation process

was used, but the rotation for each data set was increased by 10 degrees. In this example the basic

embedding approaches completely fail whereas incorporating the distribution distance still allows

high accuracy.
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Figure 4.3: Comparison of embeddings found for Synthetic Experiment 3

4.5 Knowledge Transfer for Chemical Toxicity Prediction

We evaluated the performance of the aforementioned feature extraction approaches on an environ-

ment protection application. The overarching goal of the study is to identify efficient and accurate

computational approaches to evaluate toxicity of chemicals and their effects on the environment.

Collecting high quality data for chemical toxicity study is an expensive and time consuming pro-

cess. For example, for the TOXCAST data set described below, the study to obtain the animal

toxicity endpoints for about 320 chemicals cost nearly 2 million dollars and took over a year to

perform. In reality there are millions of chemicals that need to be evaluated. There is no feasible

experimental approach that we could imagine for collecting such data; modeling and computing

are indispensable components in the battle for a clean and healthy environment.

The data engineering challenge here is to leverage high quality data collect from the EPA and

to build models for chemicals that may deviate from the source distribution. Towards that end, we

collected our data sets and designed our experiments as detailed below.
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4.5.1 Source Data Set: TOXCAST

Environmental Protection Agency (EPA) has initiated a program called TOXCAST [103] (http:

//www.epa.gov/ncct/toxcast/) in which they have performed a series of in vitro tests to

collect features for predicting toxicity of chemicals. The TOXCAST data set included results of

309 unique chemicals from pesticides, a serious concern for environmental prediction. A total of

624 different assays, which can be classified into 9 different technologies, were used to predict tox-

icity of these chemicals. In vivo toxicity responses of most of these chemicals have been compiled

in another project by EPA called Toxrefdb (http://epa.gov/ncct/toxrefdb/). This study includes a

complete toxicity profile of 474 different chemicals. To construct data set 1, test results from the

TOXCAST data set and the chemical descriptors of the chemicals from the software Dragon were

used to construct the feature space. The class labels of these chemicals were the toxicity of these

chemicals as recorded in the Toxrefdb data set. The endpoint considered was “tumors on mouse

liver”. After removing duplicates and compounds with missing or inconclusive endpoint results,

the data set consists of 235 chemical compounds.

4.5.2 Target Data Set: CPDB

The Carcinogenic Potency Database (CPDB) (http://potency.berkeley.edu/) is a widely

used data resource which contains the results for carcinogenic tests on 1547 chemicals. The results

in the dataset are reported on rats, mice, hamsters, dogs and nonhuman primates. All the chemicals

that proved carcinogenic on mouse livers in the CPDB dataset were selected. These were around

50 in number. Thus, around 50 drugs were randomly picked from FDA approved drugs list and

these constituted the non-carcinogenic class. The carcinogenic chemicals selected from the CPDB

dataset and the non-carcinogenic chemicals selected from the list of FDA approved drugs together

formed the second dataset (Dataset 2) with a total of 112 compounds.

84



4.5.3 Features Used

For both data sets, we converted the chemical structures to vector-format data by computing chem-

ical descriptors, computed using the DRAGON software (version 5) [187]. The descriptors that

we used are a total of 120 atom centered fragments descriptors calculated for each chemical. In

our experience (unpublished data), such descriptors are good candidates for chemical activity pre-

diction. We removed any descriptors with variance 0 across both data sets, resulting in a total

of 95 features. We then normalized each feature across all data to have mean 0 and variance 1.

This set of features represents a common shared set that is readily available and easily obtainable

for a given chemical data set. For the source data set, an additional set of features was obtained

from the TOXCAST assay experiment results, as mentioned above. After similarly pre-processing

these features as well, we obtained 460 additional features for the source data set. For our initial

experiments we use only the shared feature representation. In subsequent experiments we analyze

and discuss the effect of incorporating the additional features with the weighted loss sparse cod-

ing formulation, to see if this common scenario of extra source-specific features could offer some

benefit. These experiment details are described in the Experiment Protocol section below.

4.5.4 Distribution Distance Between Source and Test Data

Recent work in chemical-protein interaction prediction demonstrating the effectiveness when enough

data is available of using models local to specific regions of the chemical space suggests that distri-

bution shift across the chemical space is a major issue for chemical data and associated prediction

tasks [181]. As our source data is from a very specific set of chemicals, and the target set corre-

sponds to a different distinct set of chemicals, as would most additional future prediction tasks,

this chemical toxicity prediction task corresponds to a transfer learning scenario. In order to con-

firm that the two data distributions are different, we measured the KL-Divergence between the

source and target data sets (for the shared set of features). Since our kernel-density-estimation-

based estimator of KL-Divergence depends on the kernel width chosen and is thus more suitable

for comparison than for obtaining an objective estimate, we use a k-nearest-neighbor density es-
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timation approach recently shown to have almost sure convergence [145]. This method depends

on selecting a number k of nearest neighbors to use in the estimate. We selected k = 8, resulting

in the estimated KL-Divergence of 10.54. Varying k from 3 to 47, the minimum KL-Divergence

estimate is 8.56 at k = 13 and the maximum is 20.02 at k = 3 (and the mean is 11.75). The es-

timated KL-Divergence of the source set with a version of the source set with random zero-mean

Gaussian noise added to each feature with standard deviation 0.1 (so that the two data sets are

nearly identical) for k = 8 is −0.94. Thus the KL-Divergence estimate suggests the difference in

distribution between the source and target data.

The characteristics of the data are summarized in Table 4.1.

Table 4.1: Characteristics of the Chemical Toxicity Data Sets

Size Size Num. Num. features Num. features KL-Div.
source target shared unique to unique to
data set data set features source data target data
235 112 95 460 0 10.54

4.5.5 Experiment Protocol

We use the fully-labeled source data TOXCAST and various increasing numbers of labeled samples

from the target data set CPDB, along with all of the unlabeled data from the target set CPDB, to

build a model. We then evaluate the accuracy of the model using the unlabeled CPDB data; this

is referred to as transductive learning. For each run, we randomly sample the given number of

labeled target instances from target data CPDB to be used in the training for the supervised model,

and use internal cross-validation with the training data (with the cross-validation evaluation using

only the labeled target data selected to be included in the training) to select model parameters for

the embedding methods (with the exception of the “KMEns” methods, as described in Section

4.5.5.2). For the case of no labeled target data, for which cross-validation could not be performed,

we report results for fixing the parameters to those in the search range resulting in the lowest model

complexity, e.g., smallest basis size and largest kernel width. We also tried setting the parameters

to the most frequently selected values when labeled target data was present, and obtained similar
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results, so we only show the former results. To simplify the model selection for the SCDD and

SCDDCD methods, we fixed the kernel width h to be equal to the basis size of the embedding

and for SCDDCD fixed the regularization parameters for the class distribution distance and data

distribution distance to be equal.

For model comparison, we collect accuracy ((TP+TN)/S), sensitivity (TP/(TP+FN)), and speci-

ficity (TN/(TN+FP)) for the constructed models, where TP stands for the number of true positives,

FP for the number of false positives, TN for the number of true negatives, FN for the number of

false negative, and S stands for the total number of instances. All the values reported are collected

from the testing data set only and are averaged across 100 experiments with mean and standard

deviation reported.

We run a series of experiments to analyze the performance of the proposed feature extraction

approach.

4.5.5.1 Experiment 1: Comparing Feature Extraction Methods in a Controlled Setting

For this first set of experiments we use only the shared features for the two data sets. Additionally

in order to control for unknown factors for specific feature extraction approaches that may, for

example, use arbitrary different base classifiers, or incorporate additional aspects such as manifold

learning or other semi-supervised learning methods, we first evaluate representative approaches

under the same controlled setting. Since the focus here is on feature extraction, and to have a fair

comparison of the different feature extraction methods, we use a fixed classifier (SVM with fixed

C and linear kernel) for all methods (including the baseline of no embedding, the original feature

space). For each embedding approach, a default linear SVM classifier with parameter C = 1 is

used on the embedded data to obtain the final predictions. The abbreviation used for each method

is given in the following list.

∙ SVM - The SVM classifier trained in the original feature space using both the auxiliary (source)

data and the labeled target instances.

∙ SVMTG - The SVM classifier in the original feature space using only the labeled target in-
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stances.

∙ PCA - Principal component analysis used on the combined auxiliary (source) and target data.

∙ SC - Sparse coding [152] (Section 4.3.2 Equation 4.2) on the combined data.

∙ SCDD - Sparse coding with just distribution distance regularization (Section 4.3.4, Equation

4.3).

∙ SCDDCD - Sparse coding with both distribution distance regularization and class-based dis-

tribution distance regularization (Section 4.3.5, Equation 4.7).

The results for the first set of experiments showing initial comparisons under this same setting are

shown in Tables 4.2, 4.3, and 4.4.

4.5.5.2 Experiment 2: Comparing Directly with State-of-the-Art Feature Extraction Trans-

fer Learning Methods

For this set of experiments, we follow the same set-up as for the first set of experiments. We

repeat the experiments for competitor state-of-the-art embedding approaches for transfer learning,

summarized in the following list.

∙ SSTCA - Semi-supervised transfer component analysis [141].

∙ KMEns - The cross-distribution kernel map ensemble method [217].

∙ KMSing - The non-ensemble version of the cross-distribution kernel map method [217], i.e.,

this corresponds to using only the final embedding of the KMEns method.

In addition to incorporating MMD distribution distance estimates, the SSTCA method also

incorporates semi-supervised learning components in the embedding for enforcing similar data

variance and manifold structure in the original and embedded data, plus source label information

for finding an embedding useful for classifying data - however this method still does not consider

conditional distribution similarity between training and test data. The authors showed in their

experiments that their method is largely insensitive to varying the hyper-parameters across a very

broad range, so we took the hyper-parameters they found to work best across their experiments and
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included a range around these hyper-parameters in the grid search with cross-validation in order to

select the hyper-parameters in the experiments. We found the performance was slightly worse if

we allowed the basis size to be chosen via cross-validation, so instead we report results for a fixed

basis size as the authors did in their experiments.

For the KMEns method, we obtained the code from the author’s website, and also did not use

cross-validation as cluster purity and error decrease is used to automatically determine when to

stop clustering [217]. We chose the SMO (SVM) classifier as the base classifier and the ensem-

ble version of their method, as these consistently had the best performance in their experiments.

Additionally we also provide comparison with a non-ensemble version (KMSing), to give some

idea of the effect of using an ensemble since our method could also be further extended to an en-

semble approach. We followed the same approach as the authors and set the number of iterations

to 10 - which they found to work best. In their hyper-parameter sensitivity study they found the

performance to increase for increasing number of iterations and typically level off at or before 10

iterations, across their experiments. Additionally we tried different approaches for choosing the

cluster labels and testing cluster purity, as well as varying the purity threshold from 0.9 to 0.6 and

found no improvement over the authors’ settings with threshold 0.9, for which we report results.

The results are shown in the Experiment Results section in Table 4.5 and Figure 4.4.

4.5.5.3 Experiment 3: Hyper-Parameter Sensitivity Analysis

For the next set of experiments we analyze the effect of the different components on the perfor-

mance of our final method (SCDDCD), and also the sensitivity of the performance to the setting

of the hyper-parameters, by varying the hyper-parameters. We chose the case of 30 labeled target

data instances as the amount to use for the hyper-parameter sensitivity study, and the set-up of

multiple experiment runs is the same as previously described. We took the mode of the hyper-

parameter values selected across the cross-validation results across all of the experiments. These

hyper-parameter values were: a basis size (r) of 16, an L1 regularization parameter (α) of 0.1

and distribution distance regularization parameters (β = β2) of 8000. To get the hyper-parameter
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sensitivity results we then repeated the experiments for num. labeled = 30 by fixing all but one of

these hyper-parameter values to the mode values, and varying the other in a range around the found

mode value. We report the results in plots in Figure 4.5.

4.5.5.4 Experiment 4: Incorporating Additional Source Data Features

For the final experiment we wanted to analyze the effects of incorporating the additional source

data features that are missing in the target data. We compare a direct application of our sparse

coding formulation for handling the missing values and also the regression plus singular value

decomposition approach [201]. The idea is that incorporating the relationship of the additional

potentially useful features with the shared features during the embedding could potentially help

identify a better embedding. We label our method for this missing value case SCDDCD-M. To

simplify these experiments we fixed the hyper-parameters for our method to the modes of those

chosen via cross-validation as described in the previous paragraph on hyper-parameter sensitivity

analysis. For the regression plus singular value decomposition approach [201] we obtained the

code from the author’s website to run on our data. We call this approach SVD when there are no

missing values and SVD-M when there are. Essentially the only real difference of this approach

from our previously tested PCA approach is that it uses a weighted k-nearest-neighbor classifier as

opposed to the fixed SVM classifier after embedding. As the authors did in their experiments we

fix the k-nearest neighbor parameter to 50 since it worked best in their experiments and also due

to weighting the k-nearest neighbor votes the method is somewhat less sensitive to this value. We

vary the embedding basis size and select this basis size via cross-validation. We report accuracy

results both for each method without incorporating the additional source features, and each method

with incorporating the additional source features, in Table 4.6, again results averaged over multiple

trials with the same procedure as used previously.
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4.5.6 Experiment Results

The results of the series of experiments are given in the following sections. The results are broken

down into four sections corresponding to the four sets of experiments described in the previous

Experimental Protocol section.

4.5.6.1 Experiment Results 1: Comparing Feature Extraction Methods in a Controlled Set-

ting

Table 4.2: Mean and std. dev. of accuracy out of 100 runs for each method on EPA data set, for increasing
amounts of labeled target data

Num. labeled 0 4 10 20 30 40
SVM 0.536±0.000 0.562±0.028 0.578±0.034 0.605±0.035 0.628±0.054 0.654±0.053
SVMTG n/a 0.523±0.090 0.648±0.065 0.676±0.065 0.684±0.046 0.725±0.047
PCA [201] 0.571±0.000 0.610±0.041 0.643±0.035 0.658±0.033 0.683±0.039 0.684±0.039
SC [152] 0.571±0.000 0.626±0.025 0.636±0.029 0.659±0.036 0.672±0.037 0.682±0.037
SCDD (Eq. 4.3) 0.545±0.002 0.617±0.036 0.622±0.044 0.656±0.036 0.672±0.041 0.684±0.053
SCDDCD (Eq. 4.7) 0.545±0.002 0.626±0.076 0.685±0.063 0.707±0.044 0.743±0.048 0.754±0.041

Table 4.2 shows the accuracy results for the experiments, with each row corresponding to a

method and each column corresponding to a number of labeled test instance used in training, in

increasing order. For the sparse coding methods, these results are also shown in the next results

section in the form of a plot of accuracy vs. number of labeled target instances for easier visualiza-

tion, in Figure 4.4. Table 4.3 and Table 4.4 similarly show results for the specificity and sensitivity,

respectively, which provide a measure of the bias of a method toward either reducing Type I errors

(false positives) or Type II errors (false negatives).

From the results we see that sparse coding incorporating both distribution distance and the

class-based distribution distance components (SCDDCD) in all cases obtains the best accuracy out

of all the methods. With only 4 labeled test data instances, the SVM classifier trained using no

auxiliary data (SVMTG) does little better than random guessing on average, but the SCDDCD

embedding method is able to raise the mean accuracy by an addition of 10 percent. As expected

with very little labeled target data, utilizing the available auxiliary data becomes a necessity. As

the amount of labeled test data given increases, the performance of SVMTG increases correspond-
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ingly, but the SCDDCD method still consistency out-performs the SVMTG method. Even with

as many as 40 labeled test instances, utilizing the auxiliary data with the SCDDCD method still

offers significant improvement over using only target data (SVMTG). For 4 labeled test instances

sparse coding (SC) achieves similar performance to SCDDCD - in this case the benefit of including

the test instances could be masked by noise. However, sparse coding improves more slowly with

increasing labeled test data and is quickly out-performed by SVMTG. Also just incorporating dis-

tribution distance with sparse coding (SCDD) slightly hurts performance for the smaller amounts

of labeled test instances, and generally performs about the same as SC. In this case it is clearly

not enough to just consider the distribution distance between the data sets. Except for the first

set of experiments with the number of labeled test instances equal to 4 for which PCA performed

worse than SC, PCA has similar performance to the SC method and is thus also not able to most

effectively utilize the auxiliary data in these experiments.

From the specificity and sensitivity results (Tables 4.3 and 4.4) we see that all of the embedding

methods that utilize the auxiliary data have a bias toward increased specificity at a cost of decreased

sensitivity. However the opposite is true for the method using only the target data, SVMTG. The

SCDDCD method however is somewhat more balanced.

Table 4.3: Mean and std. dev. of specificity out of 100 runs for each method on EPA data set

Num. lab. 4 10 20 30 40
SVM 0.67±0.03 0.68±0.04 0.70±0.05 0.72±0.07 0.73±0.08
SVMTG 0.37±0.40 0.54±0.17 0.64±0.14 0.62±0.11 0.68±0.07
PCA 0.90±0.07 0.90±0.06 0.91±0.06 0.91±0.06 0.91±0.06
SC 0.95±0.06 0.93±0.06 0.92±0.06 0.92±0.06 0.92±0.06
SCDD 0.90±0.06 0.90±0.070 0.89±0.05 0.91±0.05 0.90±0.05
SCDDCD 0.78±0.18 0.84±0.08 0.86±0.09 0.88±0.07 0.89±0.06

Table 4.4: Mean and std. dev. of sensitivity out of 100 runs for each method on EPA data set

Num. lab. 4 10 20 30 40
SVM 0.42±0.04 0.44±0.06 0.48±0.08 0.50±0.08 0.54±0.10
SVMTG 0.73±0.37 0.80±0.16 0.73±0.11 0.78±0.12 0.79±0.10
PCA 0.26±0.15 0.27±0.13 0.28±0.10 0.30±0.09 0.31±0.10
SC 0.21±0.09 0.24±0.10 0.26±0.09 0.27±0.09 0.29±0.09
SCDD 0.23±0.10 0.25±0.11 0.32±0.09 0.32±0.08 0.36±0.11
SCDDCD 0.42±0.19 0.48±0.15 0.49±0.12 0.55±0.12 0.55±0.11
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4.5.6.2 Experiment Results 2: Comparing Directly with State-of-the-Art Feature Extrac-

tion Transfer Learning Methods

Table 4.5 shows the accuracy results for the second set of experiments - comparison with the two

state-of-the-art transfer learning embedding methods SSTCA and KMEns, with the results of our

method reproduced for comparison. These results along with the results for our sparse coding

methods are also plotted in Figure 4.4 for easier visualization, in the form of accuracy vs. number

of labeled target data instances used in training.

Table 4.5: Comparison with state-of-the-art, mean and std. dev. of accuracy out of 100 runs for increasing
amounts of labeled target data

Num. labeled 0 4 10 20 30 40
SC [152] 0.571±0.000 0.626±0.025 0.636±0.029 0.659±0.036 0.672±0.037 0.682±0.037
SCDD (Eq. 4.3) 0.545±0.002 0.617±0.036 0.622±0.044 0.656±0.036 0.672±0.041 0.684±0.053
SCDDCD (Eq. 4.7) 0.545±0.002 0.626±0.076 0.685±0.063 0.707±0.044 0.743±0.048 0.754±0.041
SSTCA [141] 0.598±0.000 0.607±0.016 0.619±0.027 0.608±0.045 0.620±0.043 0.640±0.039
KMSing [217] n/a 0.546±0.084 0.598±0.090 0.679±0.099 0.720±0.087 0.767±0.078
KMEns [217] n/a 0.489±0.082 0.588±0.115 0.667±0.092 0.761±0.087 0.791±0.080
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Figure 4.4: Accuracy vs. num. labeled target data instances

In this case, our method of sparse coding incorporating both distribution distance and the class-

based distribution distance components (SCDDCD) obtains the best accuracy in comparison to the

state-of-the-art methods for the case of small amounts of labeled target data, but as the amount

of labeled target data gets larger the kernel map ensemble (KMEns) approach becomes more ef-

fective. However, the same kernel mapping approach without using the ensemble (KMSing), i.e.,

just using the embedding of the final iteration, remains comparable to our method for these in-
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creased amounts of labeled target data. We further note that our method might also potentially

benefit from an ensemble approach in the same way as the KMEns method, and pose exploring

ensemble approaches for our method as a direction for future work. For the SSTCA method, since

its performance does not increase as rapidly as the other methods with increasing labeled target

data, we suspect that its performance may suffer in part due to failing to consider the effect of the

embedding on the conditional distributions as well as relying heavily on the source data in part due

to additional components incorporated such as the supervisory component for the source data. On

the other hand, the KMEns method does not seem to be able to take full advantage of the auxiliary

(source) data, its accuracy is lower at first. We suspect that the different chemical data sets may to

some extent lie in different regions of the chemical space so that more labeled target data is neces-

sary to fully identify these regions and the correct cluster structure. Thus we hypothesize that with

limited labeled target data such cluster-based approaches may mostly be reinforcing sub-optimal

estimations about the class regions until more labeled target data becomes available, making such

approaches less effective at fully utilizing the source data in such cases. The SCDDCD method

however can still potentially allow knowledge transfer in such scenarios.

4.5.6.3 Experiment Results 3: Hyper-Parameter Sensitivity Analysis

The next set of results show the sensitivity of the SCDDCD method to the various hyper-parameters,

the basis size r, the L1 regularization parameter (α) and the distribution distance regularization pa-

rameters β = β2 (set to the same value). These results are shown in Figure 4.5. The first plot,
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Figure 4.5: Hyper-parameter sensitivity results - accuracy vs. hyper-parameter settings

Figure 4.5a, helps illustrate the importance of including a distribution distance estimation compo-
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nent. As the weight for this regularization component decreases, the accuracy drops. Additionally,

the accuracy remains comparably high for a wide range of larger values for the hyper-parameter

(note the x-axis is on a log scale). The next plot, Figure 4.5b, shows the sensitivity to the basis size.

Here the performance is relatively stable across various basis sizes tested. If the basis size is too

small the performance deteriorates, and the accuracy also decreases past a certain point as the basis

size grows too large, but the decrease is at a relatively slow rate. Finally Figure 4.5c shows the

sensitivity to the L1 regularization parameter. For this data it seems the performance is relatively

insensitive to this parameter as long as it is not too large.

4.5.6.4 Experiment Results 4: Incorporating Additional Source Data Features

Table 4.6 shows the results for the methods incorporating the additional source data features.

Table 4.6: Results when incorporating additional source data features, mean and std. dev. of accuracy out
of 100 runs for increasing amounts of labeled target data

Num. lab. 4 10 20 30 40
SCDDCD 0.63±0.08 0.69±0.06 0.701±0.04 0.74±0.05 0.75±0.04
SCDDCD-M 0.62±0.07 0.65±0.06 0.67±0.05 0.70±0.04 0.71±0.05
SVD [201] 0.57±0.01 0.58±0.01 0.60±0.02 0.62±0.03 0.64±0.02
SVD-M [201] 0.57±0.01 0.58±0.01 0.63±0.03 0.68±0.02 0.74±0.03

Here incorporating the additional source features actually hurts the performance of our sparse

coding method slightly. While the performance of the SVD method improves slightly when incor-

porating the additional features for the larger amounts of labeled data, we believe this is mostly due

to the k-nearest-neighbor algorithm and the nature of the regression. We found that the regressed

values for the target data were all very different from the collective set of additional features for

the source data, and all much more similar to each other. Thus when embedding the data with

the regressed values, the target data is mapped much more closely together, so target data is much

closer to target data than source data. Thus when computing the nearest neighbors and weighting

their predictions by similarity, the SVD-M method ends up selecting and weighting the target data

more highly and performance becomes similar to that of only using the target data (e.g., SVMTG).

We suspect that the additional features do not provide necessary additional information for

predicting the label over just using the chemical descriptor (common) features. Therefore trying to
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find an embedding that also encodes these additional features as well when they are not needed may

be difficult and hurt performance for our sparse coding method. We believe this task corresponds

to the case of the additional features providing a second view of the data, and that each view itself

is potentially sufficient. I.e., we suspect this may be a case where multi-view semi-supervised

learning [25] approaches could be helpful. This case is an area of future work, and in particular we

believe exploring a potential research direction combining multi-view semi-supervised learning,

missing value imputation, and transfer learning could prove effective.

4.6 Conclusion

Data with little to no ground truth information coming from a different distribution motivate us

to investigate approaches to leverage the available auxiliary data sources to aid in knowledge dis-

covery. We have explored a feature extraction perspective, starting with the popular sparse coding

approach which learns a set of higher order features for the data. After discussing the advantages

and limitations of sparse coding for knowledge transfer we have proposed new feature generation

algorithms to address those limitations and enable knowledge transfer, and verified the effective-

ness of our approach on real and synthetic data. We have evaluated the proposed methods on

both synthetic data sets and a real-world data set of chemical toxicity prediction, and found that

incorporating both distribution distance estimates and class-based distribution-distance estimates

was necessary to improve the sparse coding approach and provide comparable or better perfor-

mance with state-of-the-art transfer learning methods. This confirmed our hypothesis that finding

higher-level features alone is not enough to allow knowledge transfer. In the future we believe

our proposed approach could provide a good starting point for addressing the complicated task of

knowledge transfer from multiple heterogeneous data sources.
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Chapter 5

Related Work on Multi-View

Semi-Supervised Learning

This chapter presents a general overview of the related work in multi-view semi-supervised learn-

ing. More details and additional related work is presented in subsequent chapters for each specific

topic of my thesis.

Here, following common terminology in the machine learning literature, we use the phrase

“multi-view semi-supervised learning” to refer to learning methods that specifically exploit in

some way the view-specific predictor consensus concept described in the introduction (Chapter

1). It is important to note that there are more general approaches, more commonly referred to

as multi-modal data fusion methods, that do match the multi-view learning setting, and which

could also be considered unsupervised or semi-supervised as they often use unlabeled data for

the model estimation. The key difference is that these do not aim to exploit the main ideas and

data characteristics underlying multi-view semi-supervised learning of view function consensus

and the related assumptions of limited dependence between views and predictive sufficiency of

separate views. Essentially the multi-modal fusion approaches generally make fewer assumptions

about the characteristics of the data, which has the advantage of making the algorithms more gen-

eral, but the disadvantage of failing to exploit these specific characteristics when present. Aside
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from attempts to estimate the characteristics of the data to determine if assumptions hold, a simple

solution in practice is to additionally apply a multi-modal fusion approach as a backup when us-

ing multi-view semi-supervised learning approaches. That way if the more specialized multi-view

semi-supervised learning approach does not work as well according to model selection approach,

a more general multi-modal fusion approach can be substituted, while this ensemble approach is

out of the scope of this thesis, it is a direction for future research. Most multi-modal fusion ap-

proaches try to find a single shared representation for multiple modes of the data such as text and

images. One main approach for multi-modal data fusion is the use of latent probabilistic models

for the data [115, 163, 24, 11, 136, 108, 194, 213, 206, 202, 205, 44]; other approaches include

multiple kernel learning to combine different view kernels [112, 62, 207, 42, 102], general multi-

modal dimensionality reduction techniques [77], feature vector merging [182], and single modality

expert output merging [182, 97, 199]. Additionally multi-modal data fusion is a core problem in

multi-media data analysis. Atrey et al. provide a recent survey on multi-modal data fusion for

multi-media data [7]. Also many of the aforementioned multi-modal fusion approaches in the la-

tent probabilistic models category are related in some way to dimensionality reduction techniques

that do consider the consensus idea, described below in Section 5.2.1. Although they do not explic-

itly consider the consensus idea, these probabilistic models implicitly include mapping functions

between views, and essentially take shared representations from components of those functions,

which is similar to pre-processing and dimensionality reduction techniques using the consensus

idea. However, computing a single shared representations as the multi-modal fusion approaches

do excludes the potential benefit of applying a multi-view semi-supervised learning algorithm af-

ter this pre-processing stage to improve the predictive model estimation, as there are no longer

multiple views.

Additionally, multi-view semi-supervised learning is just one of many approaches to semi-

supervised learning, resulting from a particular set of assumptions. Different assumptions lead to

different semi-supervised learning approaches, for instance the assumption that data lie on a low-

dimensional manifold embedded in a high dimensional space corresponds to manifold learning. A
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recent survey on semi-supervised learning approaches has been provided by Zhu [224]; addition-

ally the fairly recent book on semi-supervised learning edited by Chapelle, Schölkopf, and Zien is

also informative [37].

As mentioned, methods for multi-view semi-supervised learning generally exploit in some way

the idea of predictive agreement on unlabeled data for ideal functions from each view, whether ex-

plicitly or implicitly. This is used to reduce the size of the hypothesis spaces and thus reduce

the variance of the model estimation. The following is an overview of work on multi-view semi-

supervised learning divided into four major categories: pseudo-labeling approaches, which iter-

atively label unlabeled instances; co-regularization approaches, which incorporate the agreement

idea into an optimization problem via constraints or regularization terms; work on active learning,

which use the agreement idea to select unlabeled instances for labeling by a human; and extensions

to multi-view semi-supervised learning.

5.1 Pseudo-Labeling Approaches

Among the first approaches proposed for multi-view semi-supervised learning were the pseudo-

labeling approaches. The algorithms in this category proceed iteratively, and at each iteration

labels or soft labels are assigned to some or all of the unlabeled instances, either based on view

agreement or confidence of models in individual views. These pseudo-labeled instances are then

used as labeled training instances for some or all of the views, thereby increasing the training set

size, the models are re-trained with the new pseudo-labeled data, and the process repeats iteratively

[53, 54, 21, 25, 164, 129, 58, 1, 133, 9, 8, 191, 47, 193, 137, 30, 22, 73, 221, 222, 28]. The

archetypal and one of the first proposed multi-view pseudo-labeling algorithms is co-training [25].

The co-training algorithm involves training predictors for each view with the initial labeled data.

Then, iteratively, the predictors in each view each label some number of unlabeled instances, and

those instances are added as labeled instances to the training set for the other views. Typically

the instances selected are the ones predicted with the highest confidence in terms of probability;
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e.g., for a linear model, this corresponds to the instances furthest from the decision hyperplane.

Much subsequent work following [25] has been on understanding co-training’s effectiveness and

establishing theoretical guarantees.

5.2 Co-Regularization Approaches

Instead of somehow pseudo-labeling the unlabeled data, co-regularization methods use semi-supervised

agreement-based regularization, that is penalizing the disagreement of different view functions on

the unlabeled data instances in the model estimation optimization problem [50, 111, 183, 178,

29, 65, 186, 158, 184, 210, 209, 179, 160, 159]. For example, the sum of the square differences

between the unlabeled data projected onto the linear prediction hyperplane direction in different

views is the most commonly used penalty [111, 178, 29, 158, 184, 210, 209, 179, 160, 159]. Co-

regularization was adopted as an alternative to co-training-style methods, due to limitations of such

approaches [178]. In particular, it was pointed out that co-training is a greedy maximizer that can

get stuck in poor solutions by not implicitly considering multiple solutions as co-regularization

does, and unlike co-regularization cannot be tuned to adjust the influence of different components

[178]. Additionally simple test cases were shown in which co-training fails consistently due to its

greedy nature but co-regularization succeeds [178].

5.2.1 Clustering and Dimensionality Reduction

Also closely related to co-regularization are pre-processing and clustering methods that use the

agreement idea [105, 106, 61, 220, 218, 5, 40, 23, 123, 60, 93, 48]. Typically these methods reduce

the dimensionality of the data by selecting those sets of basis vectors (or functions) in each view

for which the projected (or evaluated) unlabeled data are highly correlated (agree), the relation

being that underlying functions in each view that agree on unlabeled data will be combinations of

the correlated (agreement) directions (or functions). These approaches in essence follow the same

idea as co-regularization, except are usually unsupervised. Whereas co-regularization finds a single
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best function in each view for which the function predictions agree (are correlated) across views

and also match the labeled data, the approaches in this category typically find multiple functions

that agree and use these to form a basis for future learning tasks. This is usually captured via

linear models in some feature spaces, so that functions correspond to vectors and agreement to

correlation of projected data onto those vectors in different views. A common approach is to use

canonical correlation analysis [92, 82]. Canonical correlation analysis finds a set of corresponding

vectors for each view that are maximally correlated. Another approach is to use agreement in terms

of graph cuts, e.g., finding a normalized cut that works well for multiple graph views of the data

[218].

5.3 Active Learning Approaches

Active learning is a form of semi-supervised learning where the algorithm is sequentially allowed

to choose the unlabeled data instances to obtain ground-truth labels for [170]. Methods in this

category use the agreement idea for multiple views to help determine which unlabeled instances

are most important to label first [131, 132, 130, 111, 135, 134, 79, 192]. The common idea utilized

is to choose the unlabeled data instances which the models from different views disagree in their

predictions the most, and the approach has been shown to perform better than single-view active

learning approaches both in theory and practice [134, 79, 192].

Recently, the idea of actively obtaining missing views for a selected instance based on an

estimation of the information it would provide under a specific probabilistic model was proposed

[209].

5.4 Extensions, Including Missing View Considerations

A variety of extensions to multi-view semi-supervised learning approaches have been proposed.

To allow the ideas of multi-view semi-supervised learning to be applied in cases where only as

single view of data is available, different methods have been proposed including different ways of
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splitting the features of one view into multiple sets [137, 28, 43], using diverse predictors with the

same data in place of different views [191, 73, 221, 222], using clustering to generate other views

[155], and using a pre-existing view generation function [2]. Additionally, for the case of partially

available view information, i.e., additional views available in some cases, Yu et al. proposed to

marginalize out missing views in a Gaussian process model [209].

Additionally there has been subsequent work extending multi-view semi-supervised learning

approaches to special cases such as structured non-identical outputs [68], transfer learning sce-

narios [212], multi-task learning [87], cases where there is no correspondence between views

with transfer learning assumptions [83], and handling erroneous or noisy data resulting in view-

disagreement [47, 46]. Additional work has been proposed combining multi-view semi-supervised

learning with other semi-supervised learning approaches such as the transductive SVM [118] and

manifold regularization [178, 179].

When we say that one view is “missing” in multi-view semi-supervised learning for a data

instance, we mean that all the feature values in that view are not recorded. In this sense we

are discussing structured missing values, which is dramatically different from handling random

missing feature values, having differing assumptions and objectives. A recent thesis discusses

machine learning with missing feature values [125].
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Chapter 6

View Completion via Feature Generation

6.1 Introduction

With the fast development of cost-effective data collection methods in imaging, the health care

industry, the web, social networks, and sensor networks, data from multi-sensory devices, i.e.,

multi-view data, become ubiquitous. In the multi-view data setting, information collected from

each sensory device is a “view”. Often individual views are sufficient for prediction tasks given

enough labeled data. Multi-view semi-supervised learning methods aim to take advantage of large

amounts of unlabeled data by enforcing view-specific predictor consensus on the unlabeled data.

Multi-view semi-supervised learning (MVSSL) has been shown to be effective in a variety of

applications including text mining [25, 209, 210], image annotation [65, 186], and chemical clas-

sification [53, 54].

A key limitation that restricts the wide application of existing MVSSL approaches to a wide

range of real-world data sets is that those approaches require the completeness of the data set.

Complete multi-view data, however, are rare and a much more common scenario is incomplete

multi-view data where views may only be available for a subset of samples. For example, for

prediction tasks involving chemicals, molecular structure features based on chemical graphs (view

1) can be readily obtained, but obtaining the chemical bioactivity data (e.g., chemical-protein in-
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teraction profiles) for a set of proteins (view 2) can be costly and time-consuming. As another

example in medical diagnostics [209] where additional views correspond to expensive tests like

MRI imaging, information from such views are subject to opportunity. Yet another example of

incomplete views comes from webpage classification where incoming link text features provide a

convenient second view [25]. Such information may not be always available for new webpages

since it requires time and resources to collect.

This case of MVSSL with various amounts of incomplete view data, which we call multi-

view semi-supervised learning with partially observed views, is commonly encountered in many

real-world applications but has barely been addressed in the data mining and machine learning

literature. The first method to claim credit for considering missing views in the MVSSL setting

is the Gaussian process co-regularization (GPCR) approach [209]. Under this approach missing

views are handled in a Bayesian framework by integrating out the missing view function values.

Though it has achieved promising preliminary results, GPCR has several limitations. First, GPCR

is built on a particular MVSSL framework, co-regularization, which is not always the best or most

appropriate for a given application. Second, GPCR essentially ignores those unlabeled data points

without a second view, limiting its applicability to cases with little-to-no second view data. A

closely related direction to handling partially observed views is the study of MVSSL methods when

there is no second view data [28, 43, 73, 137, 155, 191, 221, 222]. The most recent, state-of-the-

art method in this category is pseudo multi-view co-training (PMC) [43], which is also the first in

this category to explicitly consider conditions for the success of MVSSL algorithms. This method

works by choosing a feature partition at each iteration in order to artificially derive two views.

However all of the methods in this category completely ignore additional view data and hence

cannot take advantage of such data when available. Furthermore, whereas appropriate real data

inherently satisfies the desired conditions, with artificially constructed view data the satisfaction

of such conditions can only be approximately estimated. In addition feature-splitting approaches

like PMC will fail when all or most of the features in a view are needed for a predictor to achieve

high-performance. Furthermore the transformation needed to result in two sufficient views may be
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more complex than a simple partition. Additionally these methods are also often tied to a particular

MVSSL algorithm, e.g., PMC is closely integrated with the co-training algorithm and it is not clear

if it could even be applied to a co-regularization algorithm, for example.

We aim to extend MVSSL to handle cases with partially observed views. In our study, we

assume there is one view that is present in all data. The rest of the views may only be partially

observed. Although this assumption may seem restrictive at first glance, it is quite generic in

real-world examples. For example, in the chemical activity prediction example that we cited pre-

viously, features computed from chemical structures are always available (since those features are

computed). As another example, in the webpage classification example, for every webpage, fea-

tures computed from the content of the page itself (e.g., the bag-of-word representation of the page)

are always available but the incoming link information may be missing.

To solve the problem, we have designed a unified approach, CoNet, which uses a feature-

generation network for learning a mapping to fill in missing views. A motivating observation is

that feature generation approaches are widely used to improve performance for standard supervised

learning tasks, therefore we might expect a feature generation approach to also be helpful in the

MVSSL setting. However, a key difference is that the goal for the generated data is different -

in this case the generated view data should have properties making it useful for MVSSL, that is

in conjunction with the original data. We start with the idea of using random nonlinear feature

generation functions to generate new view data. Random nonlinear features allow variability in the

generated view: the data points are “scattered” to some extent so that labeled data points may be

closest to different unlabeled data points in the generated view. This helps ensure that conditions

sufficient for the success of MVSSL algorithms are met, in particular the “expansion” condition

[9] requiring that there is some chance that some unlabeled data instances can be labeled with

“confidence” in one view but not the other. By incorporating these features together in a network

structure, we can then fine-tune the collective set of feature generation functions to further ensure

that the conditions for MVSSL algorithms are met, namely label consistency and view variability,

and additionally that the generated features are consistent with any partial view data available.
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This results in a very natural approach to generating features for MVSSL. Our approach has the

key advantages of operating as a pre-processing step which allows the subsequent application of

the most application-appropriate MVSSL algorithm to the completed data, efficient out-of-sample

extension, and the ability to make use of additional view data when available. Our comprehensive

experimental study demonstrates the utility of the CoNet method as compared to the state-of-the-

art MVSSL methods GPCR and PMC.

6.2 Related Work

Multi-view semi-supervised learning has attracted significant research interest in recent years

[47, 192, 193]. Methods for multi-view semi-supervised learning generally exploit in some way

the idea of predictive agreement on unlabeled data for ideal functions from each view, whether

explicitly or implicitly. MVSSL approaches can be roughly divided into three major categories:

pseudo-labeling approaches, which iteratively label unlabeled instances [25]; co-regularization ap-

proaches, which incorporate the agreement idea into an optimization problem via constraints or

regularization terms [65, 178, 218]; and active learning approaches, which use the agreement idea

to select unlabeled instances for labeling by a human [134].

View Generating Functions. Theoretical results were established and verified in experi-

ments showing that improved generalization error could be achieved by using pre-defined view-

generating functions mapping one view to another to fill in missing views and effectively increasing

the training set size for each view [2]. The limitation of this work is that the existence of “natural”

view mapping functions (e.g., translators for cross language text categorization) is assumed. Such

natural view mapping functions do not exist for many applications.

View Splitting for MVSLL. One extreme case of partially observed views is the case of having

only a single view. There are several approaches that aim to extend the ideas of multi-view semi-

supervised learning to single view learning, following a general idea of splitting the features of one

view into multiple sets [28, 137]. Recently, one such approach was proposed in which features are
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split into two views according to criteria that included satisfying the expansion condition for co-

training [9], by finding a split such that some unlabeled instances are labeled with confidence in one

view but not the other given the current view models [43]. However feature splitting approaches

rely on the assumption that the split sets of features will be sufficient for learning. This means they

cannot be applied to data where most of the features are needed for learning a good predictor, for

example, see Figure 6.3; splitting the features in this case would result in overlapping classes in

each new view. Secondly, even if useful redundancy is present in a single view, this redundancy

may be in the form of arbitrary linear combinations of the features or more complex functions of

the features, as opposed to the more restricted mapping of feature partitioning.

Additionally for the single view case, several approaches based on using diverse predictors have

been proposed [73, 191, 221, 222]. However, in addition to restricting the choice of algorithms,

these approaches do not have a clear way for choosing which predictors to use. For instance in one

approach co-training was performed using k-nearest-neighbor regressors with different distance

metrics and/or values of k in place of different views, but mixed results were obtained depending

on the arbitrary choices [222], and further this limits what methods can be used and diversity may

come at the cost of worse performance for the individual predictors used.

It is also worth mentioning that many latent model, multi-modal fusion methods [44, 108, 136]

might also be used to estimate missing views, but these approaches have the goal of combining

different views into one as opposed to exploiting the variability in distinct views, and as such they

do not consider the subsequent application of MVSSL algorithms.

When we say that one view is “missing” in MVSSL for a data instance, we mean that all the

feature values in that view are not recorded. In this sense we are discussing structured missing

values, which is dramatically different from handling random missing values [125].
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6.3 Background

6.3.1 Notation and Setting

We use the following notations throughout the rest of the chapter. We use lowercase letters to

represent scalar values, lower-case letters with an arrow to represent vectors (e.g., x⃗), uppercase

letters to represent matrices, and uppercase calligraphic letters to represent sets. We use ∣∣⃗a∣∣p =

(∑k
i=1 ∣ai∣p)1/p to denote the Lp norm of a k-dimensional vector a⃗. Unless stated otherwise, all

vectors are column vectors.

In MVSSL with partially observed views, we have two sets of data. One set is a set of n labeled

samples, e.g., {(⃗x1
1, x⃗

2
1, . . . , x⃗

V
1 ,y1),

. . . , (⃗x1
n, x⃗

2
n, . . . , x⃗

V
n ,yn)} ∈X 1×X 2×Y . Additionally we have a set of m unlabeled data points

from the same spaces,

{(⃗x1
n+1, x⃗

2
n+1, . . . , x⃗

V
n+1), . . . , (⃗x

1
n+m, x⃗

2
n+m), . . . , x⃗

V
n+m)}

∈X 1×X 2. V is the number of views.

For simplicity we will restrict further discussion to the case of V = 2 views, though all the

proposed methods can be extended to more than two views. We take X 1 to be ℝp1 and X 2 to

be ℝp2 for some positive integers p1 and p2, i.e., view 1 has p1 features and view 2 p2 features.

We also restrict the label space to Y = {−1,1} since all of the applications discussed and tested

in the experiments deal with binary classification. Additionally we assume that one view is al-

ways present but the other is potentially missing in some samples, for two reasons. First, this is

the scenario encountered in all data sets used in the proposed experiments, and is the most com-

monly encountered one. Second, solving this case immediately provides a solution to the case of

additional views that may also have missing view cases, simply by computing pair-wise feature

generation functions for filling in each view.
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6.3.2 View Expansion in Multi-view Learning

There has been much research on the conditions for which MVSSL may lead to improved predic-

tive performance. There are at least four directions. First originally the condition of conditional in-

dependence of views given the class label was proposed as the required condition for the success of

co-training [25]. Second for the co-regularization method [210] showed how the co-regularization

approach was equivalent to using a special data-dependent kernel for the support vector machine.

[179] simplified the theoretical analysis and established similar bounds as [158] and further pro-

posed a co-regularized alternative to manifold regularization [12] that offered significant empirical

improvement in their experiments. Following this direction [209] designed a Bayesian MVSSL

algorithm that handles missing views.

We follow a different direction of view expansion. It has been shown that an “expansion”

condition, weaker than conditional independence, is sufficient for MVSSL to improve over single

view learning [9]. This condition requires that there exist some instances whose labels are not

confidently1 known in one view but are confidently known in the other view, so that labels could

be propagated iteratively between views. One illustrative way of thinking about this is is with the

following example with two data views. Suppose an unlabeled instance x⃗1 in view 1 is in a region in

which a given predictive model is confident corresponds to label y, e.g., due to being close to many

y-labeled instances in that view. It may be reasonable to assume with confidence that the label of

x⃗1 is also y. Then the expansion condition would require that the same unlabeled instance, (⃗x1, x⃗2)

not be in such a confident region when restricted to the second view, x⃗2 in view 2, at least for some

such (⃗x1, x⃗2) in the unlabeled data. For example, x⃗2 may only be near other unlabeled instances in

view 2. If this condition always holds as confident labels are propagated between views, than all

of the instances can be labeled. This example is illustrated in Figure 6.1, where the solid rectangle

corresponds to the positive class and the dotted box shows a possible “expanded” region for the

1In the theoretical results of the cited paper “confident” means “with probability one” i.e., absolute certainty. The
authors consider particular scenarios where certain regions of the input space can be labeled with absolute certainty.
In practice this is relaxed to mean “relative confidence” for the specific model being used, for example, if a linear
model is used the unlabeled instances whose labels are considered to be the most confidently known are usually taken
as those farthest from the hyperplane defined by the linear model.

109



location of the corresponding view 2 point. This potential shuffling means that labeled points can

end up near different unlabeled points in the second view and therefore label confidence (based on

proximity) can be transferred to the unlabeled points.

Figure 6.1: An Example Illustrating View Expansion.

This condition motivates the idea proposed here of using the distances between the profiles

of the data in each view for determining if pairs of views provide sufficiently complementary

information, when evaluating candidate values for filling in missing views. Here “profile” refers to

a vector capturing the relationship between a data instance x⃗ j in view j and all of the unlabeled data

in that view, x⃗ j
n+1, . . . , x⃗

j
n+m. Specifically here the profile vector v⃗ j in view j of distances between

x⃗ j and each x⃗ j
i is given by v⃗ j

i = d(⃗x j, x⃗ j
n+i) for i = 1, . . . ,m for a distance function d. An additional

motivation for this idea comes from theoretical analysis for co-regularization [179]. In providing

a generalization error bound, Sindhwani and Rosenberg also found that the key factor that reduced

the bound was a sum of distances between the profiles of the labeled data in each view, with the

profiles calculated using a kernel function [179]. The greater these differences in profiles between

the views are, the greater the bound on generalization error is reduced.

This motivating difference in profiles idea is incorporated into the proposed approach through a

term in the objective function for a feature generation mapping that encourages the sum of squared

profile differences ∑i d̂(⃗v1
i , v⃗

2
i )

2 to be large, where v⃗2 is the profile in the second view which may

be generate and d̂ is a distance function, potentially different from d. We call this “contrasting

view regularization” and this term is described in Section 6.4.4.
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6.4 Methodology

6.4.1 CoNet Overview

The main idea behind our approach is to use random nonlinear feature functions to introduce

variability in generated views, and to fine-tune these functions to match sufficient conditions for

the success of multi-view semi-supervised learning methods and to be consistent with available

view 2 data. Matching the available view 2 data also helps to ensure the generated second view

is useful for classifying the data. To generate random nonlinear feature functions, we generate

random projection directions by iteratively sampling a vector w⃗ from a p1-dimensional spherical

Gaussian and then normalizing w⃗ to have length 1. We than choose an initial offset uniformly at

random in the range of the values taken by the projected data (both labeled and unlabeled). A

sigmoid transfer function, f (x) = 1/(1+ exp(−x)) is then applied to introduce nonlinearity.

In order to allow easy fine-tuning of the feature functions, we group functions together into a

multi-layered network, i.e., our approach fits naturally into a neural network framework. The final

layer is the feature output layer of the network, and each feature function shares all lower layers to

allow easier fine-tuning. Each layer is initially generated using the random projection procedure as

described above. In our experiments we take the approach of using a single hidden layer followed

by the feature output layer, as using a large enough number of hidden nodes can allow sufficient

expressivity [49].

In addition we consider the recent advancement from the side of neural networks and explore

the initialization strategy of deep belief networks - pre-training the network as a generative model

using contrastive divergence [89]. This alternative for initializing the feature generation network

potentially provides better performance and stability as it may capture the data manifold and pre-

vent overfitting - identifying an accurate lower-dimensional feature representation for the data

could facilitate the feature generation network learning.

Subsequently the first condition to ensure through fine-tuning is consistency with available

labeled data, which we achieve by adding an additional output node to the network and using a
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typical loss function for this output node in an overall objective function for the network. Another

term is added to the objective function penalizing the distance between generated view 2 instances

and actual view 2 instances when available. Finally, although using random nonlinear features can

already help to shuffle the distances between labeled and unlabeled points, we add a “contrasting

view regularization” (Section 6.3.2) term to the objective to help ensure this characteristic. Details

are given in the following sub-sections.

6.4.2 Proposed Feature Generation Method

A neural-network model is proposed for the feature generation network, mapping one view to

another. The general model is depicted in Figure 6.2, which shows a particular network with three

input features in view 1, three output features in view 2, and one hidden layer of three units.

Figure 6.2: Example feature generation network model, where inputs are entered at the bottom and
computations propagate through to the top.

An input x⃗1 from view 1 is presented to the network, each set of values is transformed by a

linear function at each node and passed through a nonlinear transformation f () to get the output

of the node, here we use the sigmoid transformation f (a) = 1/(1+ exp(−a)). Thus the vector of

outputs for a layer j is given by f⃗ j ≜ f⃗ (Wj f⃗ j−1 + b⃗ j) where Wj and b⃗ j corresponds to the weight

matrix and bias vector for the jth layer of the network, respectively, f⃗0 ≜ x⃗1 for j = 1, . . . ,K where

K is the number of layers in the network. The generated feature view, which corresponds to the

second view and also must have the same number of features as the second view if available, here

corresponds to the output of the second-to-last set of nodes in the network, counting from the

bottom. In order to also incorporate good performance on the labeled training data, the network’s

final output is the predicted label.
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The weights and biases are then learned from the available data by attempting to find a local

minimum of an objective function. In its most basic form, corresponding to a basic feature gen-

eration, or neural, network, the objective function is just the sum of a loss term approximating

misclassification error. The basic objective function is given by Equation 6.1, where f⃗ j,i is the

output of the jth layer on an input to the network of x⃗1
i .

argmin.W j ,⃗b j,∀ j
1
n

n

∑
i=1

log(1+ exp(−yi fK,i)) (6.1)

Since the objective function and all transfer functions are differentiable, gradients are straight-

forward to compute using the chain rule which results in backpropagation with the network struc-

ture. A gradient descent approach is then used to find a local solution.

Once the weights and biases are learned from the data, the model can be applied to each in-

stance missing another view, to generate the missing view for that instance. To ensure generated

view data is on the same scale as the available view 2 data, we first generate all view 2 data in-

stances, normalize the data, and then (optionally) fill in the available real view 2 data. Afterwards,

any desired multi-view semi-supervised learning algorithm can be applied to the completed data.

6.4.3 Incorporating Available Partial View Data

When another sufficient and contrasting view is known to exist, and is present in some cases,

ideally the training for the feature generation model should take advantage of this available second

view data, to help find a better feature generation function and ensure classification sufficiency of

the generated view 2 data. The feature generation model should be biased toward a model that

generates values close to the true second view values. This is easily accomplished in the proposed

feature generation network model by incorporating an additional penalty term in the objective

function. The penalty term is the sum of the square differences between the generated view 2

feature output and the true view 2 feature vector for an instance. Let P denote the index set of

instances for which the second view is present, and l = ∣P∣. Then the basic objective function
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including available second view data is given by Equation 6.2, where f⃗ j,i is the output of the jth

layer on an input to the network of x⃗1
i for i in a given index set and j = 1, . . . ,K, where λ1 controls

a trade-off between fitting the labeled data well and fitting the available second view data well.

argmin.W j ,⃗b j,∀ j
1
n

n

∑
i=1

log(1+ exp(−yi fK,i))

+λ1
l ∑

i∈P
∣∣ f⃗K−1,i− x⃗2

i ∣∣22
(6.2)

The new term is differentiable so standard gradient descent approaches are still applicable, and

gradient computations are accomplished succinctly with basic matrix operations.

6.4.4 Biasing the Model for Multi-View Semi-Supervised Learning

In order to incorporate the aforementioned differing profile idea in estimating the neural network

model, an additional term is added to the objective function of Equation 6.2, given in Equation 6.3.

This term biases the learning, forcing the generated view to differ more in its instances’ distances

to unlabeled data for larger values of the regularization parameter λ2.

− λ2
nmp2

n

∑
i=1

n+m

∑
j=n+1

(∣∣⃗x1
i − x⃗1

j ∣∣22−∣∣ f⃗K−1,i− f⃗K−1, j∣∣22)2 (6.3)

Again this term fits within the backpropagation framework and allows computation with basic

matrix operations.

Additionally, for huge amounts of unlabeled data a stochastic gradient approach can be used in

estimating the unlabeled data profile distances - a sample of the unlabeled data in such cases could

be used to estimate the difference in profiles, and thus a random sample could be taken at each

gradient update.

The basic training and testing procedures for multi-view semi-supervised learning approaches

combined with the proposed feature generation approach are given by Algorithms 1 and 2, respec-

tively.
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Algorithm 1 Training with the Feature Generation Network
Input: A set of data S containing (view 1, view 2, label) triplets, in which view 2 and labels
may be missing for a given instance, initial weights and offsets Wj ,⃗b j,∀ j, a multi-view semi-
supervised learning algorithm A which outputs a predictive function fA(S ) : X 1×X 2 → Y
given complete training data. Additional parameters for the feature generation network, λ1, λ2,
number of backpropagation iterations T , and whether or not to use use only the generated view 2
data.
Output: Final weights and biases for the network Wj ,⃗b j,∀ j, and the trained predictor
fA.

-Use T iterations of gradient descent to find an approximate local solution to Equation 6.2 with
Equation 6.3 added to the objective.
-Use the learned network (Wj ,⃗b j,∀ j) from the previous step to generate view 3 for all instances
in S . Normalize the generated view 3 data.
-Fill in any missing view 2 instances of S with those from the previous step, the generated view
3; optionally replace non-missing view 2 instances with the generated ones as well. Denote the
completed data Ŝ .
-Apply algorithm A to the completed multi-view semi-supervised data Ŝ to obtain fA.

Algorithm 2 Testing using the Feature Generation Network
Input: A set of data R containing (view 1, view 2) pairs, in which view 2 and may be missing for
a given instance, a trained feature generation network (Wj ,⃗b j,∀ j), and a trained predictive function
f : X 1×X 2→ Y , and whether or not to use use only the generated view 2 data.
Output: Predictions y ∈ Y for each instance of R.

-Use the trained network (Wj ,⃗b j,∀ j) to fill in any missing view instances of R and optionally
replace the available second view data; denote the completed data R̂.
-Apply f to each instance in R̂ to obtain the predicted y for that instance.

6.4.5 Connections to Modern Deep Network Approaches

The recent resurgence in interest in neural networks in the machine learning and data mining com-

munities is the result of different interpretations of / assumptions about the networks; the models

along with these new interpretations/assumptions are often referred to as “deep belief networks”

due to a different generative probabilistic (i.e., belief) perspective being assigned to the multi-layer

networks [64, 71, 88, 90, 146, 153, 162]. In general most modern approaches keep the same layered

structures, and in terms of predictions and network outputs, in general the same feed-forward ap-

proach is used to generate layer and label outputs. Additionally backpropagation is commonly still

used to fit the net to the data after pre-training. The key difference of the modern approaches are

the assumptions of the underlying probabilistic models which can result in different pre-training
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strategies [64], for example, using layer-wise contrastive divergence [88] to pre-train networks

layer-by-layer with unlabeled data. A key practical difference between past neural network meth-

ods and modern ones is in how the networks are pre-trained or initialized. Also, even standard

neural network methods that do not use pre-training and just use the backpropagation have still

been used recently to achieve state of the art performance [197]. Although our approach is for

generating an additional, complementary set of features as opposed to replacing an existing one,

this view generation problem could offer a new direction for work on deep network architectures,

and our regularization terms could be viewed as additional ways to prevent overfitting with such

architectures. An important component of our work is testing the combination of the deep belief

network approach with our method, through pre-training the feature generation network.

6.5 Experimental Study

We test our method with synthetic and real data. For each experiment we report results in terms of

test error if the data is balanced, and also Matthews Correlation Coefficient (MCC) and F1 Score

if the data is unbalanced. Let t p denote the number of true positive predictions, f p the number of

false positives, f n false negatives, and tn true negatives.

∙ Test error is given by: f p+ f n
t p+tn+ f p+ f n .

∙ MCC is given by: (t p)(tn)−( f p)( f n)√
(t p+ f p)(t p+ f n)(tn+ f p)(tn+ f n)

.

∙ F1 Score is given by: 2t p
2t p+ f n+ f p .

Note that MCC and F1 score attain their best values at 1, and test error at 0, and MCC takes into

account both false positive and false negative rates whereas F1 score does not take into account the

false negative rate.

We compare our method CoNet with two state-of-the-art methods. The first method has the

claim of being the first approach to handle missing view data in the MVSSL setting, gaussian

process co-regularization (GPCR) [209]. The second is the most recent approach to applying
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MVSSL to the single view case (completely missing second view - i.e., whatever second view data

is available is ignored) and reported state-of-the-art results - pseudo multi-view co-training (PMC)

[43]. We obtained the code for PMC from the authors, and used the “Gaussian Processes for

Machine Learning Toolbox” version 3.1 [156] to implement GPCR. Note that for our experiments

in general we cannot apply basic multi-view semi-supervised learning methods not designed to

handle missing view data, such as co-training, as baselines. This is because view 2 is missing

at random and may not be present even in the labeled data, or if it is it may only be present for

one class due to the often highly imbalanced nature of the data. Additionally we compare with

the baseline of only using the single omnipresent (first) view, using a Gaussian process classifier

with this view (View 1 GP) [157]. For all methods, we use the same logistic loss model for fair

comparison. PMC uses logistic regression models for the base classifiers, and we use logistic

likelihood models in GPCR and in a Gaussian process classifier for the view 1 only baseline (View

1 GP). For the MVSSL algorithm used by CoNet we use either GPCR with logistic likelihood or

co-training with L1 regularized logistic regression classifiers as the base models. To simplify the

experiments we choose either co-training or GPCR as the MVSSL algorithm used by CoNet based

on which gave the best MCC when no second view data is available.

Additionally to allow straight-forward comparison with the GPCR method, all of our experi-

ments are carried out in a transductive setting, i.e., the unlabeled data (or some portion of it) for a

given trial also corresponds to the test data. Note that CoNet itself is not restricted to a transduc-

tive setting. For the real data experiments, we perform experiments for CoNet with both random

initialization and the contrastive divergence pre-training and also both filling in (“fill”) and not

filling in (“no fill”) the second view with the observed second view for intances when it is avail-

able (observed). For the CoNet methods we fix the number of backpropagation gradient descent

interations to 100. For all methods we report the results for the parameters giving the best aver-

age performance, where averages are taken across 100 or more random splits of the data, which

essentially corresponds to reporting results of model selection if labels were available for some

or all of the unlabeled data. Thus we avoid the model selection issue which is common practice
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in this type of scenario (e.g., [5, 25, 118, 178, 179]), and esssentially shows the results achiev-

able given an ideal model selection method for the scenario. Since there is usually a very limited

amount of labeled training data in the MVSSL setting, standard model selection approaches like

cross-validation often fail [176], so the common procedure of reporting subsequent performance

after model selection would not be at all representative of the underlying methods’ performances

but rather of the (poor) performance of the model selection approach used. Model selection in

this scenario is still an open problem [78]. We discuss the model selection issue in more detail

and alternative model selection approaches in Chapter 8. In this chapter we propose and compare

some semi-supervised model selection approaches that are good candidate methods and demon-

strate their effectiveness for model selection for this scenario of MVSSL with very limited labeled

data.

6.5.1 Synthetic Data Experiment

We present results for an illustrative 2D data experiment, for the task of learning a function to

separate two overlapping sets of Gaussian-distributed data. Data for two views was generated

independently from the same Gaussian distribution for each class. In this way the two views

come from the same distribution, but are conditionally independent given the class label - an ideal

scenario for multi-view semi-supervised learning algorithms. We vary the mean fraction of second

view data available from 0% to the ideal case of 100%, by removing each data instance from the

second view completely at random with fixed probability corresponding to each fraction. For each

trial, 2 labeled training points and 200 unlabeled points, were generated for each class using the

two Gaussian distributions. Figure 6.3 shows a sample of the generated data in each view.

This data set demonstrates a simple case where existing single-view approaches are generally

not well-suited. In this case, feature-splitting cannot be effective since both features are needed for

sufficiency; splitting the features would result in different data classes largely overlapping in both

views. Additionally there are no clear clusters - the marginal distributions look similar to unimodal

groupings of points.
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Figure 6.3: Sample of two views of data generated for an ideal 2D test case

We choose the state-of-the-art Gaussian process co-regularization algorithm [209] as the base

algorithm to be applied after filling in the missing views with our CoNet method. In addition we

use the version of this algorithm that can handle missing views to compare our method with, as

it is the state-of-the-art approach [209]. In addition we report results for comparing with a view-

mapping approach - an approach that only directly tries to learn a mapping from view 1 to view 2

using the available data. This corresponds to using our same feature generation network approach

to generate the second view, without using the proposed bias, corresponding to Equation 6.2.

First we varied the mean fraction of second view data available from 0.0 to 1.0 in increments

of 0.05. The experiment was repeated for 200 random samples of the data, and average test error

and standard deviation is reported in Table 6.1 and Figures 6.4 and 6.4b.
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(b) Zoomed in (0.0 to 0.1)

Figure 6.4: Test error vs. mean fraction of view 2 present for the 2-Gaussian data set

The proposed feature generation approach was found to perform significantly better than using

the same base classifier with a single view of the data, or using the state-of-the-art GPCR method,

especially in two extreme ranges of having very little view 2 data, and having close to the amount
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Table 6.1: Mean ± std. dev. of test error from 200 trials for each method on the 2-Gaussian data,
for 0% second view data available.

View1 GP PMC GPCR CoNet
0.331±0.125 0.442±0.075 0.334±0.125 0.103±0.058
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Figure 6.5: Performance criteria vs. contrasting view regularization parameter and vs. number of
hidden units in hidden layer 1 for 0% second view data for the 2-Gaussian data set

of view 2 data needed to achieve the best performance. Additionally without the contrasting view

regularization (CVR) term, and with the exact same network structure and approach to initialization

and training, the feature generation approach (“CoNet CVR”) took much more view 2 data to

come close to the same level of performance as CoNet. We also show the results of repeating the

experiment zoomed in more closely on the beginning region, this time varying the mean fraction

of view 2 data present from 0.0 to 0.1 in increments of 0.01. The results are shown in Figure 6.4.

Furthermore, the results for the single view case - i.e., no view 2 data available are shown in

Table 6.1, here also compared with the state-of-the-art single view method, pseudo-multi-view co-

training (PMC). In this case PMC fails because the features cannot be partitioned in such a way

to form sufficient views - in this case both features are needed to separate the classes well. This

highlights the need for a more complex mechanism to generate the new view from the existing

ones, which CoNet provides.

6.5.2 WebKB Course Data Experiment

The WebKB Course data set is a collection of 1051 websites from four universities, belonging

to two categories: course websites or non-course websites. There are 230 websites in the course

category, and 821 in the non-course category, making the data set unbalanced. The first view

consists of text on the webpage itself, the second view consists of the link text of links from other
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webpages linking to the webpage. We use co-training as the base MVSSL algorithm to be used

after filling in the missing views with CoNet for this data set.

We obtained the webpage and link text data2 then applied standard text pre-processing using

Weka [80] to obtain 2,168 features in the text view and 338 features in the link view. As in [25],

for each experiment iteration we randomly sample 3 course and 9 non-course instances for labeled

training. The remaining instances were used for the unlabeled data and also testing - a transductive

setting so that we could compare with GPCR. We then varied the mean fraction of second view

data available from 0.0 to 1.0 in increments of 0.1. Here the second view is missing completely

at random - that is for a given fraction, each view 2 instance is present with probability given by

that fraction. We repeated the experiment 100 times for each fraction value and report the mean

results. For the base classifier for co-training we used L1 regularized logistic regression, with

the the regularization parameters set to 0.001 for view 1 and 0.01 for view 2 throughout since

these worked well for basic co-training when view 2 was completely available - though as long as

these values were not too large (less than 1) the performance stayed basically the same. For the

comparison state-of-the-art methods GPCR and PMC we varied all of the parameters by powers of

10 and report the results for the best set of parameters in each case.

6.5.3 Chemical Toxicity Data Experiment

We next evaluated these methods on a chemical toxicity prediction task using a data set from

the Environmental Protection Agency (EPA) TOXCAST program [103] (http://www.epa.

gov/ncct/toxcast/) which includes experimental results conducted on 309 unique chemical

pesticides. In vitro tests were performed with 624 different assays - we take the results of these

tests as the feature set for the second view. Since both the animal toxicity endpoints and the in

vitro second view data are time consuming and expensive to obtain (e.g the study cost millions

of dollars and took more than a year), this data set fits the MVSSL with partially observed views

2Available here: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/
co-training/data/
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scenario well. After basic pre-processing, e.g., removing duplicates and compounds with missing

or inconclusive endpoint results, the data set consists of 225 chemical compounds with 597 view

2 features. For the class label we took the toxicity endpoint of “tumors on mouse liver”, resulting

in 68 positive and 157 negative instances so this data set is also imbalanced. To obtain a large

set of related unlabeled data, we searched the PubChem database (http://pubchem.ncbi.

nlm.nih.gov/) for all compounds with the keyword “pesticide” or “herbicide,” resulting in an

additional 1262 compounds added to the data set. To obtain the common, readily-available view 1,

we extracted numerical chemical descriptors from the full set of compounds using the DRAGON

software (version 5) [187] for the atom-centered fragment descriptors, resulting in a total of 103

features in view 1. For each trial, we randomly sampled half of the labeled data to be used as

training data, and the other half to be included with all of the unlabeled data and for testing. Since

only those data instances from the original TOXCAST collection have the second view available,

the maximum obtainable fraction of view 2 data present is only approximately 0.15. Therefore

for this data set we only tested two cases: no view 2 data (labeled fraction present of 0.0) and

all available view 2 data (labeled fraction present of 0.15). For this data set we use GPCR as the

MVSSL algorithm used by CoNet.

6.5.4 Results - WebKB Course

The overall results for the Course data are shown in Figure 6.6. This plot shows CoNet with pre-

training (denoted as “CoNet”) and without pre-training (denoted as “CoNet NoP”) compared with

the other methods for varying amounts of expected fraction of view 2 data present (observed),

from no view 2 data (0.0) to all view 2 data (1.0). Again the other methods are the Gaussian

process classifier with the single view (“View 1 GP”) [157], the state-of-the-art Gaussian process

co-regularization (GPCR) [209], and the state-of-the-art single view method, pseudo-multi-view

co-training (PMC) [43]. GPCR required significantly more view 2 data to perform better than

single view learning for this data. However CoNet was able to take advantage of the available

second view data, obtaining the best performance. Also, in this case using pre-training resulted in

122



a significant improvement for CoNet when limited view 2 data was available.
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Figure 6.6: Test error vs. mean fraction of view 2 present for the WebKB Course data set

In Table 6.2 we show the effect each component of CoNet has, and also the difference between

filling in cases with available view 2 data (denoted “fill”) and using only the generated view 2 data

(denoted “no fill”). That is we correspondingly fix one or both of λ1 and λ2 to 0, i.e., “No Reg”

corresponds to both fixed to 0, “VMR Only” to λ2 = 0, and “CVR Only” to λ1 = 0. We show

results for the version of CoNet with pre-training and only for MCC, but the other performance

criteria have similar trends, and the trends for no pre-training are also similar except that using

the available view 2 data becomes the better strategy sooner, at the fraction of 0.5. Note that for

fraction present equal to 0.0, the “fill” and “no-fill” results are the same since there are no available

view 2 instances to fill in, and for 1.0 since view 2 is present for all instances all “fill” results are

the same.

From these results we observe a general trend - at first, with less view 2 data available (ob-

served), using the generated view 2 as opposed to filling in the real view is more effective, and
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further the contrasting view component is more important. As more view 2 data becomes avail-

able, so that a better mapping to view 2 can be learned, then filling in the available view 2 data

becomes the better strategy, and the view-matching component becomes more important. Usually

both components are needed for CoNet to achieve its best performance, and in most cases one or

both components have a significant effect on performance. For the case of limited view 2 data one

reason that filling in the available view 2 data does not help might be that the generated view 2

data is very different from the available view 2 data since there is not yet enough to learn a very

accurate view mapping function. Another reason using the real view 2 where available becomes a

better strategy as more view 2 data is observed is because the real view 2 data has built-in the desir-

able properties for MVSSL methods, e.g of sufficiency for classification, whereas for the generated

view we can only estimate these properties.

Table 6.2: Mean ± std. dev. of MCC from 100 trials for each method on the WebKB Course
data, for varying amounts of average second view data available in fraction of all data instances.
Comparison for the case of using pre-training and both the view-matching and contrasting view
components (“CoNet”) with neither component (“No Reg.”), just the view-matching component
(“VMR Only”) and just the contrasting view component (“CVR Only”). The first half, “fill” cor-
responds to filling in cases with available view 2 data, i.e., using whatever view 2 data is available
and “no fill” to using only the generated view 2 data.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fill

CoNet 0.850 0.791 0.761 0.747 0.717 0.764 0.811 0.879 0.912 0.938 0.950
±0.126 ±0.093 ±0.102 ±0.133 ±0.159 ±0.165 ±0.137 ±0.062 ±0.019 ±0.017 0.010

No Reg. 0.832 0.685 0.648 0.654 0.655 0.630 0.629 0.643 0.680 0.805 0.950
±0.092 ±0.169 ±0.176 ±0.188 ±0.176 ±0.186 ±0.203 ±0.182 ±0.175 ±0.083 0.010

VMR Only 0.832 0.690 0.643 0.661 0.634 0.698 0.732 0.801 0.910 0.937 0.950
±0.092 ±0.159 ±0.183 ±0.174 ±0.181 ±0.228 ±0.226 ±0.069 ±0.020 ±0.014 0.010

CVR Only 0.850 0.789 0.753 0.743 0.712 0.702 0.736 0.848 0.881 0.874 0.950
±0.126 ±0.103 ±0.122 ±0.146 ±0.173 ±0.223 ±0.235 ±0.149 ±0.095 ±0.074 0.010

no fill

CoNet 0.850 0.854 0.865 0.865 0.853 0.857 0.860 0.857 0.856 0.856 0.858
±0.126 ±0.111 ±0.066 ±0.045 ±0.120 ±0.104 ±0.099 ±0.111 ±0.109 ±0.111 0.105

No Reg. 0.832 0.838 0.837 0.834 0.835 0.834 0.834 0.832 0.834 0.832 0.835
±0.092 ±0.068 ±0.110 ±0.092 ±0.091 ±0.092 ±0.090 ±0.090 ±0.089 ±0.092 0.093

VMR Only 0.832 0.834 0.836 0.814 0.830 0.837 0.837 0.834 0.834 0.837 0.838
±0.092 ±0.094 ±0.089 ±0.102 ±0.100 ±0.065 ±0.077 ±0.085 ±0.088 ±0.085 0.083

CVR Only 0.850 0.843 0.858 0.849 0.852 0.850 0.851 0.850 0.852 0.851 0.851
±0.126 ±0.134 ±0.101 ±0.126 ±0.119 ±0.125 ±0.119 ±0.126 ±0.120 ±0.119 0.125

6.5.5 Results - Chemical Toxicity

The results for the chemical toxicity data are summarized in Table 6.3. For this data set, unlike the

text data set, using pre-training for the network (denoted as “CoNet”) was somewhat detrimental
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Table 6.3: Mean ± std. dev. of MCC, F1 score, and test error from 100 trials for each method on
the Chemical Toxicity data, for varying amounts of average second view data available in fraction
of all data instances.

MCC F1 Score Test Error
0.0 0.15 0.0 0.15 0.0 0.15

View 1 GP 0.122±0.077 0.122±0.077 0.456±0.041 0.456±0.041 0.470±0.042 0.470±0.042
PMC 0.054±0.084 0.054±0.084 0.272±0.081 0.272±0.081 0.359±0.032 0.359±0.032
GPCR 0.113±0.078 0.159±0.085 0.417±0.055 0.468±0.049 0.415±0.035 0.433±0.041
CoNet NoP 0.150±0.084 0.188±0.079 0.440±0.057 0.463±0.055 0.396±0.040 0.378±0.038
CoNet 0.114±0.081 0.132±0.074 0.425±0.055 0.426±0.053 0.425±0.044 0.389±0.034

to performance compared to the randomly initialized net (CoNet NoP). Aside from the type of data

(e.g., chemical descriptors as opposed to images or text), this may also be due to overfitting of the

generative model since there are many more features in view 2 than view 1 in this case. Further

improvement may be possible by more thorough experimentation with the pre-training approach

used.

Although PMC achieves slightly lower test error than the CoNet methods, it has significantly

worse scores under the balanced performance criteria (MCC and F1 score) which are more in-

dicative of efficacy for this data. The results indicate that essentially the method cannot detect

the positive cases well but still has low test error due to the highly imbalanced nature of the data.

On the other hand CoNet scores highly under the more balanced performance criteria, and still

manages to reach nearly the same test error in the case of the small amount of partial view data

available. This is similar when CoNet (NoP - the no pre-training version - in particular) is com-

pared with the other methods. With respect to MCC, arguably the most balanced criterion, CoNet

obtains significantly better performance compared to all other methods. With respect to F1 score,

the single view GP classifier has a slightly better score for the expected fraction of 0.0 view 2 data

present and GPCR has a slightly better score for the fraction of 0.15. However these are not signif-

icantly different from the CoNet NoP scores. To give an idea of how the methods compare under

the different criteria, we show the results of ANOVA with multi-comparison tests in Table 6.4. An

entry of “1” indicates a significant difference in the means of the given performance criterion for

the two methods at the five percent level.

Table 6.5 shows the comparison between CoNet with no pre-training (NoP) with both view
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Table 6.4: ANOVA multi-comparison test results for each of MCC, F1 score, and test error criteria
on the Chemical Toxicity data, for 0.15 fraction of view 2 data present. A “1” indicates significant
difference in mean between the two methods at the 5 percent level.
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View 1 GP 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1
PMC 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
GPCR 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1
CoNet NoP 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1
CoNet 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0

matching regularization (VMR) and contrasting view regularization (CVR) and with one or neither,

corresponding to setting the appropriate parameter/s to 0. For this data including both components

was necessary to achieve the best performance.

Table 6.5: Mean± std. dev. of MCC, F1 score, and test error from 100 trials for the CoNet method
on the chemical toxicity data. Comparison for the case of using no pre-training and both the view-
matching and contrasting view components (“CoNet”) with neither component (“No Reg.”), just
the view-matching component (“VMR Only”) and just the contrasting view component (“CVR
Only”). The first half, “fill” corresponds to filling in cases with available view 2 data, i.e., using
whatever view 2 data is available and “no fill” to using only the generated view 2 data.

MCC F1 Score Test Error
0.0 0.15 0.0 0.15 0.0 0.15

fill

CoNet NoP 0.150±0.084 0.188±0.076 0.440±0.057 0.463±0.053 0.396±0.040 0.378±0.035
No Reg. 0.091±0.079 0.157±0.079 0.405±0.055 0.436±0.057 0.426±0.038 0.382±0.035
VMR Only 0.091±0.079 0.157±0.080 0.405±0.055 0.436±0.057 0.426±0.038 0.382±0.036
CVR Only 0.150±0.084 0.171±0.079 0.440±0.057 0.458±0.054 0.396±0.040 0.394±0.035

no fill

CoNet NoP 0.150±0.084 0.168±0.073 0.440±0.057 0.451±0.053 0.396±0.040 0.387±0.033
No Reg. 0.091±0.079 0.147±0.086 0.405±0.055 0.434±0.060 0.426±0.038 0.392±0.039
VMR Only 0.091±0.079 0.137±0.087 0.405±0.055 0.427±0.062 0.426±0.038 0.397±0.039
CVR Only 0.150±0.084 0.148±0.078 0.440±0.057 0.446±0.053 0.396±0.040 0.407±0.035

6.6 Conclusion

An obstacle for multi-view semi-supervised learning approaches when applied to real world data

is the lack of complete multiple view data. For example, a common scenario is that one data view

is readily and cheaply available, but additional views may only be available in some cases and

may be costly to obtain. Current work to address such scenarios is limited and also each previous

approach has some limitations. In summary, existing approaches either are not able to incorporate
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partial view information when available or are not applicable or effective with limited amounts

of additional view data. Additionally, the previous works either make restrictive assumptions, are

method-dependent, or fail to incorporate a way of enforcing the approach to be useful for subse-

quent application of multi-view semi-supervised learning algorithms. To address these limitations,

we introduced a unified approach for multi-view semi-supervised learning with missing views that

can be applied to the full range of problems with incomplete view information. We propose a

feature-generation learning approach, based on fine-tuning random nonlinear feature functions, for

learning a mapping to fill in missing views, with a particular bias incorporated that is motivated

by theoretical results on multi-view semi-supervised learning. This is carried out using additional

terms in the objective function of a feature generation network model that encourages the data

instances in distinct views to be nearby different unlabeled instances. We demonstrated the effi-

cacy of our method with synthetic and real data experiments and for these experiments our method

achieved superior performance to two recent state-of-the-art approaches designed for the case of

MVSSL with missing views.
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Chapter 7

Active View Completion

7.1 Introduction

An active learning method is a machine learning method that actively queries data instances to

obtain additional information from an oracle about those instances, for example, the information

could be a class label and the oracle could be a human annotator. Active learning has been ex-

tensively studied, particularly for the case of active labeling, and a consistent improvement over

passive strategies, where selected instances are chosen at random according to the underlying dis-

tribution, in terms of achieving the same accuracy with fewer samples, has been clearly demon-

strated in practice [170, 171], and recently asymptotically in theory for label-querying [81, 10].

This concern for selecting useful samples is especially motivated by the consideration of costs as-

sociated with obtaining ground truth information - often there is considerable cost associated with

invoking an oracle in terms of time, resources, and money, for instance hiring human annotators.

Here we investigate a new research direction of active learning at the interface of active learning

and multi-view semi-supervised learning. Multi-view semi-supervised learning exploits the idea

of consensus for predictors in distinct sets of features called views, for instance a web-page can be

characterized by multiple views including the text on the webpage and the anchor text of the hyper-

links of pages that link to the webpage. This predictive consensus concept is specifically exploited
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for the case of semi-supervised learning. For instance co-training, one of the most widely used

multi-view learning algorithms, works by identifying unlabeled instances that can be confidently

predicted in one view but not the other, allowing these instances to be labeled and used in improv-

ing the hypothesis for the other view, so that in some cases even with very few labeled instances,

with enough unlabeled data perfect or high accuracy hypotheses can be identified [25, 9]. The

consensus idea has also been exploited for standard label-query active learning; the active learning

approach of querying those unlabeled instances for which the view specific hypotheses disagree

has been shown to generally out-perform single-view active learning methods both in theory and

practice [130, 134, 79, 192]. Here we consider a new type of active multi-view semi-supervised

learning scenario, where the instances are not queried for labels, but for missing data views, and

the goal is to find the most useful queries to complete for the purposes of performing multi-view

semi-supervised learning.

In many problems, one view of the data is readily available or relatively inexpensive to obtain,

but additional views can have a significant cost associated with them, so that we cannot just ignore

this cost and assume the additional views are ubiquitous as multi-view learning approaches gener-

ally require. Furthermore, obtaining ground truth information for the labels can be too expensive in

terms of time, cost or resources, or even be infeasible, so that it may be preferable to take advantage

of other less expensive information that can be queried in hopes of improving our learned model

for the data; in this case this information takes the form of additional view data. In many real-world

problems obtaining additional view data is expensive and time consuming, though still preferable

to obtaining ground truth label information. One area this is particularly apparent in is informatics

for the life sciences, such as the bio-, chem-, and health-informatics areas, for example, predicting

chemical toxicity, drug viability, diagnosis, pathology, etc. There are various additional profiles

or views that can be obtained with some associated expense, but obtaining true endpoints can cost

millions of dollars and take years. As a specific example, the standard chemical toxicity endpoints

are the result of extensive animal testing that require a large amount of both time and money to

obtain, but there are intermediate, potentially indicative in-vitro features that can be obtained for a
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fraction of the cost [103]. Furthermore, with multi-view learning the performance typically levels

out after a certain amount of unlabeled data is included, in other words, if we can select specifically

those most useful instances to obtain the additional views for, we may not need to waste additional

expense on completing the rest of the instances to still allow multi-view semi-supervised learning

to be successful.

Recently, this active view completion idea has been explored under the Bayesian Gaussian

process framework [209]. However there is still much remaining work for understanding active

view completion scenarios. This previous work does not consider at all when an active strategy

may or may not be useful. Additionally the methods proposed for active selection are not directly

applicable to multi-view semi-supervised learning methods in general, as they require, for example,

estimates of predictive variance, which happen to be convenient to compute under their proposed

framework. Furthermore these methods have only been tested on data of very low dimension

(3 features or less in each view) and may have trouble with data in higher dimensions, which is

more commonly encountered. A key overlooked issue with applying active selection strategies to

view completion for multi-view semi-supervised learning is that in some cases an active strategy

may not offer a benefit over a passive (i.e., random selection) one. For example, if two views are

conditionally independent given the class label, then no matter which selection strategy is used

to select an instance to complete with the second view, we have a fixed chance to obtain any

possible point in the second view belonging to the same class. This means aside from influencing

which class is selected there would be no difference in the active and passive strategies in this case

since given the class each possible value for the second view is equally likely for both selection

strategies. In other words, if two different strategies select two (possibly distinct) instances, as

long as those instances are from the same class then the completed values for the missing view are

equally likely for both strategies.

In this chapter we further explore this new research direction of active view completion, and

attempt to shed some light on the issue of when an active strategy can be beneficial. We consider

two important questions. First, are there selection strategies that can offer improved performance
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over the passive strategy for common multi-view learning approaches? Second, to what extent and

under what conditions can an active approach offer an improvement over a passive one? To help

answer these questions, we give a theorem that is essentially a bound on the expected number of

useful instances the passive strategy can find based on a measurement of the expansion between

views. This suggests that if there is less expansion between views, i.e., views are more dependent,

than an active strategy can be more effective since the passive one will have a smaller chance of

selecting useful instances, whereas an active strategy can be chosen to maximize the chance of

selecting useful instances. To more clearly answer and analyze these questions, we also propose

algorithms and run experiments on some synthetic cases that demonstrate when an active strategy

can offer improvements and to what extent these improvements depend on underlying conditions of

the data, with co-training, one of the most widely used approaches for multi-view semi-supervised

learning. These experiments confirm our theoretical analysis, that the utility of an active strategy

depends on the specific view relation of limited expansion, and in the case of large expansion (e.g.,

conditional independence of views given the labels), the passive strategy can be just as effective as

an active one. We then conduct additional experiments on two real world text classification data

sets, including comparison with the state-of-the-art approach of [209], which further supports our

hypothesis.

7.2 Background

In the field of active learning, the most closely related work to ours is that of “active feature

acquisition” [170]. This can be viewed as feature selection in reverse - we start with incomplete

sets of features and the goal is to select which features to fill in by estimating which features will

be most useful for the decision function based on some criteria such as confidence [216, 126],

or a utility function [161]. However, this is completely different from our problem, where we

consider each view as a complete feature set, and already by itself sufficient for estimating the

decision function if enough labeled instances were available - so we do not need to actively acquire
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more features, just views to exploit redundancy when we cannot afford or are unable to obtain

additional labels. Note also that the end goals are very different: the goal of the selection under

our setting is to offer as much benefit as possible to the subsequently applied multi-view semi-

supervised learning algorithms - i.e., the selection strategy should specifically take such algorithms

into account, whereas other active acquisition settings do not take multi-view semi-supervised

learning into consideration at all.

Another related line of work is on multi-view active learning, as mentioned in the introduction,

where it is assumed all views are present, and the queries are for filling in the missing labels

[130, 134, 79, 192]. Previous theoretical results for this scenario [79, 192] follow a similar α-

expansion setting as that of [9] in which the authors proved the success of the co-training algorithm

under an expansion condition on the underlying data distribution, and this is the same type of

setting we consider for our theory.

There is also some related work from the field of multi-view learning. In [2] the authors

consider multi-view learning when only some views are present in some instances, and a view

mapping function for filling in the missing views is available, and provide error bounds comparing

using the completed views and not using the completed views. However, theirs is not an active

setting, they fill in all the unlabeled data at once, whereas in our work we want to avoid this

potentially costly approach, and instead want to actively, sequentially, select instances to complete.

Furthermore their theory gives no way of distinguishing a difference in generalization error for

different orderings of filled in instances - i.e., they only consider a passive approach.

Recently, Yu et al. proposed two active strategies for view completion [209]. The first is to

use a conditional density estimate with Gaussian Mixture Models for computing an expectation of

a posterior distribution with their Gaussian process model. This is used to compute the expected

decrease in entropy if a missing view is observed according to the learned Gaussian process model,

and the instance with the greatest expected decrease is selected for completion. The second ap-

proach is to select the unlabeled instance with the greatest predictive variance. They applied their

approaches to two cancer prognosis prediction data sets and found improved learning rates for the
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active strategies as compared to a random one. This previous work has a couple of key limitations.

Outside of the proposed Gaussian process framework, these selection criteria are usually more dif-

ficult to estimate and can require making additional modeling assumptions. Secondly, there is no

analysis of when an active strategy might be useful.

7.3 Methodology

For our theoretical analysis, we consider the case of iterative co-training in the realizable case.

This is an ideal case where there is no base error rate and in which the best possible zero-error

classifiers exist in the hypothesis space for each view. This is a starting point for much theoretical

analysis in multi-view semi-supervised learning [25, 58, 9, 79], and co-training is a popular and

widely used multi-view semi-supervised learning algorithm.

7.3.1 Preliminaries and Assumptions

Our notations and setting follow those of some previous theoretical works providing sample com-

plexity bounds for co-training and multi-view active learning in the realizable case, those using

the assumption of α-expansion [9, 79]. For simplicity we consider the case of two views here, X1

and X2, and corresponding instance space X = X1×X2, and label space Y = {−1,1}, and assume

instances are drawn according to some distribution D over X . We assume labels are given by some

underlying functions h∗1 : X1→Y from hypothesis space H1 and h∗2 : X2→Y from hypothesis space

H2 and that for all x∈X with non-zero probability mass according to D h∗1(x1) = h∗2(x2). Whenever

we state probabilities, e.g., Pr(Z ⊆ X) these are always with respect to the distribution D.

In order to apply iterative co-training we need some measure of confidence for a given hypoth-

esis. Similar to [9] we assume we have a way of determining confident set Si ⊆ Xi for a given

hypothesis hi ∈ Hi, i = 1,2, for which hi(xi) = h∗i (xi). For instance in [9] the authors give an

example of the hypothesis class of axis-parallel rectangles and the algorithm that takes the small-

est enclosing rectangle of positive examples. We also use the same notation, with the boldface
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Si, i = 1,2 denoting the event that an instance (x1,x2) has xi ∈ Si. So if S1 and S2 are the confident

sets in view 1 and view 2 respectively, then Pr(S1∧S2) denotes the probability mass on instances

confident in both views, and Pr(S1⊕S2) the mass on instances confident in one and only one view.

As with general theoretical work on active learning, we assume that we have access to an un-

limited pool of unlabeled instances, and there is an initial, small, set of labeled complete instances,

However, in the active view completion case, we assume that only one view, without loss of gen-

erality X1, is present in the unlabeled data, and that we must iteratively select an instance from the

unlabeled data to obtain the second view for. We call such instances incomplete. Unlike typical

active learning, we do not obtain labels from an oracle, only missing views for selected instances.

We assume at each iteration an unlabeled view-incomplete instance is selected according to a spe-

cific selection strategy, the missing view is obtained for that instance, and the basic co-training

algorithm is run, i.e., if the new complete instance is confident in one view but not the other than

we can transfer the label and update one of the hypotheses, otherwise we cannot use the completed

instance at the current iteration, though it may become useful at a later iteration. The process is

iterated for some number T of iterations.

As in [9, 79, 192] we are interested in the set S1⊕S2, which we use as shorthand to denote those

instances for which we are confident in one and only one view. Note the underlying hypothesis is

only necessarily updated if we find an unlabeled instance x ∈ S1⊕S2 since we need confidence in

one view in order to transfer the label to the other view, and we need a lack of confidence in the

other view in order for the label transfer to provide new information. We say a selected instance

x ∈ X is useful if x ∈ S1⊕ S2 and that these instances are the ones that will cause the hypotheses

to be updated. Thus we are particularly interested in estimating how many useful instances, which

we denote by nu, will result from T iterations with a given selection strategy. Since for active

view completion we don’t have the second view present, we can only estimate if an instance will

be useful, so we are interested in E[nu] given a selection strategy. The baseline selection strategy

is that typically used in work on active learning, that of random selection, i.e., at each iteration

choosing an unlabeled, incomplete instance at random according to D. We denote this strategy
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as RAND. Since no effort is made in selecting which instance to complete, this is also called

the passive approach. As mentioned in the introduction, we are interested in exploring whether

active selection strategies can offer an improvement, i.e., an increased number of expected useful

instances, over the random (passive) selection strategy, and under which conditions we can expect

this improvement. The co-training view completion procedure is summarized in Algorithm 3.

Algorithm 3 Co-Training with View Completion
Input: Complete labeled data L = {(⃗x1i, x⃗2i,yi)}i=1,...,n, incomplete unlabeled view 1 data UI1 =
{⃗x1i}i=n+1,..., hypothesis spaces H1 and H2 and associated learning algorithms A1 and A2, number
of iterations T , and selection strategy G.
Output: Final hypotheses hT

1 ∈ H1 and hT
2 ∈ H2.

Obtain initial h0
1 and h0

2 and initial confident sets S0
1 and S0

2 using algorithms A1 and A2 with data
L
Assign unlabeled complete ordered data set UC to be the empty set
i← 0
while i < T do

Select x⃗1 ∈UI1 according to G and remove from UI1
Obtain the x⃗2 corresponding to selected x⃗1 from oracle
if (⃗x1, x⃗2) ∈ Si

1⊕Si
2 then

Set y equal to label given by hi
j for x⃗ j in the confident region

Add (⃗x1, x⃗2,y) to L
Obtain hi+1

1 , hi+1
2 , Si+1

1 , and Si+1
2 using A1 and A2 with L

Cycle through x ∈UC in order until x is found such that x ∈ Si+1
1 ⊕Si+1

2 ; if found move to L
and update hi+1

1 , hi+1
2 , Si+1

1 , and Si+1
2 as above, and repeat cycle.

else if (⃗x1, x⃗2) ∈ Si
1∧Si

2 then
Set y equal to label given by hi

j for x⃗ j (must agree by assumptions); add (⃗x1, x⃗2,y) to L.
Set hi+1

j = hi
j, Si+1

j = Si
j.

else
Add (⃗x1, x⃗2) to the end of UC
Set hi+1

j = hi
j, Si+1

j = Si
j.

end if
i← i+1

end while

7.3.2 Active Approach and Definitions

Ideally we would directly choose an instance x1 with corresponding x2 having opposite confidence;

instead we can only hope to maximize our chances of choosing an x∈ S1⊕S2 . Thus we propose to
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alternatingly choose x1 = argmaxx1∈S1
Pr(x2 ∈ S̄2∣x1) and x1 = argmaxx1∈S̄1

Pr(x2 ∈ S2∣x1), since

hypotheses in both views must be expanded. However, we do not know the conditional distribu-

tion between views in advance. The simple alternative approach we use in our experiments is to

iteratively select an instance closest to the current confident (labeled) region in view 1, followed

by selecting a confident (labeled) instance that is as far as possible from the other confident points.

We denote this simple strategy as ACTIVE.

Since in general the probability of success of an active strategy is unknown, and to avoid results

based on a particular active strategy, our results here focus on a bound on the expected number of

useful instances selected by the random strategy, as a function of the number of iterations, and

characteristics of the relationship between the views. Therefore we give the following definitions.

The first quantities of interest for characterizing this relationship are the average probability mass

of the useful region for given confident sets over sequences of T iterations, and also the maximum

mass of this region. When discussing the relationship between data views, it is helpful to think of

the expansion idea as presented by [9]. Here we use “expansion” to mean the general probabil-

ity mass associated with the useful region, i.e., Pr(S1⊕S2) for given confidence regions, which

captures how much the confident regions can expand into the rest of the data space.

Definition 1. Supremum of average probability mass of useful region Given distribution D, hypoth-

esis spaces H1, H2, and learning algorithms A1 and A2,over any initial data L from D with Pr(S0
1∨

S0
2) < ρ0, and any possible consequent sequences x0,x1, . . . ,xT , (S0

1,S
0
2),(S

1
1,S

1
2), . . . ,(S

T
1 ,S

T
2 ),

given by Algorithm 3 with Pr(ST−1
1 ∧ST−1

2 )< 1, p∗(ρ0) is defined as follows.

p∗(ρ0) = sup{ 1
T ∑

T−1
i=0 Pr(Si

1⊕Si
2)}

Definition 2. Supremum of probability mass of useful region

Under the same setting as for Definition 1, r is defined as follows.

r = sup{Pr(Si
1⊕Si

2)}

Note the dependence on the initial size of the confident region ρ0. This is done in order to avoid

stronger assumptions using maximum or minimum over all sets, since for example, we would
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generally expect the size of the useful region to start small, grow, then shrink, so though it’s

maximum size may be larger, on average it is reasonable to assume it is not too large. When

trying to match these definitions with data, these averages bounds only make sense however if

we start from an initial limited size of the confidence region, since otherwise, if applied to any

sequence, trivially they would become lower and upper bounds. In general for examples we will

usually assume ρ0 is relatively small, corresponding to a small set of initial complete labeled data,

and an associated small region of confidence. We simply denote p∗(ρ) with p∗.

For a given S1 and S2, Pr(S1⊕S2)= 1−Pr(S1∧S2∪ S̄1∧ S̄2), so that as the set of instances that

are confident in both views, denoted by S1∧ S2, grows large Pr(S1⊕S2) will eventually become

smaller. In general we would expect the most benefit from an active strategy when Pr(S1⊕S2) is

small, that is the distribution is not expanding [9] too much. A large Pr(S1⊕S2) can imply the

confident region in one view expands to most or all of the other view, which can be unrealistic for

real world data [9].

Finally, we upper bound the amount the unconfident region shrinks after each successfully

chosen instance for view completion, i.e., each time a new labeled instance is added for one of the

views, Pr(S̄1∧ S̄2), the mass of the region we are unsure of the labels for, decreases by at most β .

In general it is reasonable to expect such an upper bound to be relatively small, since otherwise a

single iteration could result in going from most of the space being unconfident to all or most of the

space being as little as a step away from becoming confident (i.e., we could finish after just a few

iterations of co-training even with a random strategy).

Definition 3. Supremum of decrease in probability mass of unconfident region

Under the same setting as for Definition 1, β is defined as follows.

β = sup{Pr(S̄1
i∧ S̄2

i
)−Pr(S̄1

i+1∧ S̄2
i+1

)}
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7.3.3 Theoretical Result

Theorem 1. Under the same setting as for Definition 1, the expected number of useful instances

selected for the passive strategy, E[nu∣RAND] is upper bounded by

p∗T + rβT (T −1)(β (T −2)+3)/6

.

This theorem says that the average probability of success of an active approach only needs to be

some term depending on T , β , and r greater than the average probability mass of the useful region

for an active strategy to offer an improvement over T iterations in terms of the number of useful

instances found. Since the probability of success of the proposed active strategy depends on how

easy it is to predict the conditional distribution, we can interpret this as saying that the predictive

structure between views must be sufficiently strong as compared to the average expansion between

views, as captured by the average size of the useful region, and there is something of a trade-off

between these two quantities since a large expansion means one point in one view could correspond

to many different points in the other view so we may not be able to estimate where the other point

will be with high confidence.

If β is sufficiently small and for smaller T , the difference needed can be quite small. However

if the number of iterations becomes very large, eventually the random strategy may catch-up if

enough of the initially selected instances that were not useful become useful in the future, and

we need greater increase in probability of success of our confidence estimation strategy to still

guarantee an increased number of useful instances selected by the active strategy. See below for

additional illustration of this bound.

Proof sketch Bounding the passive selection strategy would be trivial if we were just compar-

ing the success of selecting a useful instance at each step - which is just given by average size

of the useful region. However, the difficulty lies in the fact that a selected instance that was not
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useful may become useful in the future. At each step, if at step i we select x and x ∕∈ Si
1⊕ Si

2

then it must either be in Si
1 ∧ Si

2, in which case it will never become useful in the future, or in

S̄1
i ∧ S̄2

i, in which case it may become useful at a future step. Given T iterations, and starting

with E[nu∣RAND], ideally we would like to be able to compute the probability mass associated

with each number of useful selections, however since we only have upper bounds, we cannot do

so. Instead we can treat each selected (sampled) instance as a Bernoulli random variable with

success denoting the instance becoming useful, so that the number of useful instances is the sum

of these random variables. Then each selected instance has some chance of success throughout

the whole set of T iterations, and then we can upper bound this success. Under the same set-

ting as for Definition 1, let (S0
1,S

0
2),(S

1
1,S

1
2), . . . ,(S

T
1 ,S

T
2 ) and x0,x1, . . . ,xT−1 be any achievable

sequence of confident sets and selected instances for the given selection strategy, and let pi =

Pr(Si−1
1 ⊕ Si−1

2 ) for i = 1,2, . . . ,T . Then E[nu∣RAND] = Pr(First selection succeeds∣RAND)+

. . . + Pr(Tth selection succeeds∣RAND). For the ith step, Pr(ith succeeds∣RAND) =

pi + Pr(xi becomes useful in the future), i.e., the probability it succeeds when it is first drawn

plus the probability it fails when drawn and becomes useful later on. Then Pr(xi succeeds at (i+

j)th step) is upper bounded by rβ (1+( j− i)β ). This is because at each future step, if it failed

until that step, it will only get another chance to succeed if the sample drawn at that step is a

success (since otherwise the confident regions don’t change), and if it belongs to a region that

was previously all unconfident but became confident after an update, whose probability mass is

upper-bounded by β . Additionally it has a chance of multiple chances to succeed at that step, if

it fails again but other samples drawn after failed and then succeeded (note the set order of re-

trying previously failed instances is important for this bound to hold for any instance). Finally

each instance drawn next has one fewer future steps to succeed at, so adding everything up we get:

E[nu∣RAND]≤ p∗T + rβT (T −1)(β (T −2)+3)/6 .

As a specific example, if we have β = 0.005, T = 100, and r = 0.4, then we need 0.1152 greater

average probability of selecting a useful instance with a given active strategy than the average

probability mass of the useful region in order to guarantee that the expected number of useful
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instances produced by the active strategy is greater than that produced by the passive strategy over

the T iterations.

To help visualize what the bound in the condition means for different values of β and T here

we show a series of graphs in Figure 7.1. In all plots, we plot the difference between the average

probability that a given active strategy selects a useful instance, denoted by q, and p∗ needed for

the theorem to guarantee improvement, i.e., rβ (T − 1)(β (T − 2)+ 3)/6. We might assume the

unconfident region actually decreases by a roughly constant amount each time given by β so that

we may have no more than 1/β +1 iterations if we succeed each time, so we should not evaluate

the result for βT > 1. Therefore, for the first two plots, we fix T β = 1 and fix r = .5, a relatively

large upper bound that particularly makes sense as an upper bound if a uniform distribution is given

over the whole space X1×X2 for certain X1 and X2, e.g., if X1 = X2 = [a,b]. Then for the first two

plots, we vary T from 2 to 2000 and set β = 1/T , and plot the needed q− p∗ vs. β in the first one,

and T in the second one. For the third plot we fix T = 200 and vary β from 1
10000 to 1

200 . In the

final plot, we fix β = 1/1000 and vary T from 2 to 1000;
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Figure 7.1: Needed differences q− p∗ with r = 0.5 and βT ≤ 1 vs. β and T for different values of
β or T .

These plots show that at first, over fewer number of iterations than those needed to finish
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labeling the whole space X , i.e., when βT is significantly less than 1, we can easily expect more

useful selected instances with an active strategy versus the passive one, since the needed probability

of successes for the average strategy only needs to be slightly larger than the average probability

mass of the useful region. But as the number of iterations increases toward the number needed to

completely fill in the space X , the random selection strategy catches up - i.e., previously non-useful

selections become useful, so the active strategy must be more effective to offer a benefit.

7.3.4 Active Approach for General Classification Problems

The algorithm and active selection approach of the previous section is specifically designed for a

basic and ideal scenario - in general it may not be applicable or effective. Here we introduce a

modified algorithm and active selection approach to apply to real world classification problems.

The modified algorithm is shown in Algorithm 4. Since true confidence values cannot usually be

known, the base multi-view semi-supervised learning algorithm is called after each update to re-

learn the model from scratch given the current set of complete view data, which further allows any

multi-view semi-supervised learning algorithm to be used.

Algorithm 4 Active View Completion
Input: Complete labeled data L = {(⃗x1i, x⃗2i,yi)}i=1,...,n, complete unlabeled data Uc =
{(⃗x1i, x⃗2i)}i=n+1,...,m (possibly empty), incomplete unlabeled view 1 data UI1 = {⃗x1i}i=n+m+1,...
multi-view semi-supervised learning algorithm A, and selection strategy G, number of selection
iterations T .
Output: Hypothesis h.

Apply A to L and Uc to obtain hypothesis h
i← 0
while i < T do

Select x⃗1 ∈UI1 according to G using results of A, and remove x⃗1 from UI1
Obtain the x⃗2 corresponding to selected x⃗1 from oracle
Add (⃗x1, x⃗2) to Uc
Apply A to L and Uc to obtain hypothesis h
i← i+1

end while

There are three main issues when applying the previous active selection approach to general

data. First, in general learners require both classes to learn - this can create an issue when making
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selections, especially for unbalanced data, as one class may be preferred in the selections. This in

turn could cause an increasing bias toward selecting the same class as the algorithm progresses. To

avoid the issue of estimating/preserving class ratios we use sampling instead of selecting extreme

values for the active strategy. A “top fraction” is taken as input specifying what fraction of unla-

beled data should be used to select the next instance from. Second, unlike ideal scenarios, or the

synthetic experiment we describe in Section 7.4.1, usually confidence cannot be determined with

certainty. I.e., we can only estimate the confidence in a prediction. For this reason, we use ranking

instead of selection based on a confidence threshold. This also allows the approach to be directly

applicable to cases without probabilistic output like support vector machines, as instances can be

ranked based on distance from the decision boundary. Third, the previous approach assumes un-

limited unlabeled data, e.g., it assumes we can always select some point from the unconfident or

confident regions. However, real data is limited; even when there is much more unlabeled data

than labeled, it may be that there are no unlabeled points in a given region. To address this, aside

from the ranking criteria which directly avoids relying on a confidence threshold that may not be

met by any unlabeled instance, we fix the size of the selection set to a top number to select from,

based on a top fraction parameter. Also since we randomly select the index to complete from a set,

this modified selection strategy already has some exploration built into it.

Algorithm 5 Active Selection Strategy
Input: Incomplete unlabeled view 1 data UI1 = {⃗x1i}i=n+m+1,..., current model h, top number k,
and binary indicator s.
Output: Instance x⃗ to complete.

Use h to assign confidence scores ci to each x⃗1i ∈UI1
Rank ci in ascending order if s = 1, o.w. descending order
Choose and return an instance x⃗ at random from set corresponding to top k ranked ci

The general active selection strategy, which we use in our real data experiments, is summarized

in Algorithm 5. Given the results of training a multi-view semi-supervised learner on the current

set of complete data and labeled data, the learned hypothesis is used to assign a confidence score

to each incomplete unlabeled instance - e.g., for non-probabilistic models this could just be the

absolute distance from the decision boundary. The instances are ranked by confidence scores, and
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one in some top number of instances (with the number determined by a top fraction parameter)

is randomly selected for completion. This process is alternated between least and most confident

sets.

Another possibility for an active strategy is to try to directly estimate either the missing view

data itself, or the predicted confidences for the missing data for the associated view model. How-

ever, since most real data is of high dimension, this estimation task is very challenging, especially

since the amount of complete data to use for the estimation is very limited until much has already

been filled in.

7.4 Experimental Study

We first give results on synthetic experiments, for which we could control the expansion between

views. We follow Algorithm 3, Co-Training with View Completion, for our experiments with three

different selection strategies.

For the real world data, we use the modified algorithm, Algorithm 4 - Active View Completion,

as unlabeled data is no longer unlimited and ground truth confidence is unknown. We compare with

the active view completion approach discussed in [209] using predictive variance estimates.

In our experiments, we assume all of the labeled data is already complete. This is reasonable

since an obvious initial choice would be to fill in the missing views for the labeled instances,

especially since this set is small, and performance for most multi-view semi-supervised learning

methods is dependent on this set - e.g., with no complete labeled data most multi-view semi-

supervised learning algorithms could not even be applied at all.

7.4.1 Synthetic Data

For our synthetic experiments, we use the axis-aligned rectangle problem, where the positive class

corresponds to the interior of an axis-aligned rectangle in 2D. We fix this rectangle to have corners

(.1, .15) and (.9,85), so that about half the points are in each class. To generate the two views
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Figure 7.2: Axis-aligned rectangle, sample data generated

with controlled expansion, we alternatively sample a point uniformly at random from [0,1]× [0,1]

for each view. To generate the corresponding point in the other view, we sample from a uniform

square region centered at the starting view point, with radius (distance from the center to a side)

given by aexp, so that the larger aexp the more the greater the expansion between views, with the

further restriction that the point must belong to the same class. We automatically select small

starting rectangles by selecting two points in the center of the rectangle, separated by around 0.05

units. An example of one set of data generated for one view is shown in Figure 7.2, the large black

rectangle is the ground truth hypothesis, the smaller one the starting hypothesis. We run the three

selection strategies with the active view completion for co-training for a few thousand iterations,

and repeat 500 times with a different random data samples of 6000 points each time. We do this

for 3 increasing aexp values of 0.02, 0.04, and 0.1 - note aexp = 0.1 essentially means a point in

one view can correspond to any point in a specific region with width .2 in the other view.

7.4.1.1 Experiment Set-up: Confidence Estimation and Selection Strategy

For the active strategy, as described previously, we alternate between choosing a point that is con-

fident that we expect to be unconfident in the other view, and choosing a point that is unconfident

that we expect to be confident in the other view. In order to estimate if a point will be confident,

here we propose a simple and efficient approach for the synthetic data. We note that since con-

fident regions must agree, we can view confident (unconfident) points closest to the unconfident

(confident) region as being more likely to be unconfident (confident) in the other view. There-

fore we select the confident (unconfident), unlabeled, incomplete point closest to the unconfident
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(confident) region, and denote this strategy ACTIVE in our experiments.

Then we use three selection strategies in our experiments. The first is the passive strategy,

where unlabeled points are selected at random, denoted by RAND. The second is the active strategy

described above. Finally, we found the active strategy can be too conservative when expansion is

larger, and additionally it may be desirable to explore uncertain regions of the data space to reveal

previously-unknown connections between confident regions in different views. Therefore our final

strategy, denoted ACT+EXP, combines exploration with the active strategy, and repeats the cycle

of employing the active strategy for two round followed by randomly selecting an unconfident

point in the next round.

7.4.1.2 Experiment Results

We plot the results in terms of test accuracy vs. the number of iterations in Figure 7.3, where test

accuracy is the number of correctly predicted labels divided by the total number of predictions.

Though we collected number of useful selections vs. iteration, we do not plot these results here

due to space constraints, but describe them below. The base colors are blue for passive (random)

strategy, red for active, and green for active plus exploration. To clearly compare the results of the

500 trials, each individual trial is plotted in a lighter color shade, and the means are plotted in thick

darker lines. From these results, it is clear with small expansion between views (aexp = 0.02)

(a) aexp = 0.02 (b) aexp = 0.04 (c) aexp = 0.10

Figure 7.3: Test Accuracy vs. Iteration for 3 selection strategies on the synthetic data set, averaged
over 500 random trials

the active strategy completely out-performs the passive (random) one. The typical pattern for
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a single run of the passive strategy results in very little improvement (in terms of accuracy or

useful selections) for a long time, followed by a sharp jump in improvement, when many of the

previously non-useful selections become useful after certain updates. Also both active approaches

have significantly less variance than the passive strategy. As the expansion between views grows

larger, the number of iterations where the active strategy achieves better test accuracy than the

passive strategy decreases, and the passive strategy reaches perfect accuracy sooner on average.

However, the active plus exploration strategy clearly dominates the other two strategies in all cases

- this simple modification greatly speeds up the accuracy improvement for the case of potentially

greater expansions to the confident regions - which occur when the aexp value is larger. Since

the active strategy has a conservative approach of choosing points close to the confident region,

it is more likely to choose useful points, but at the cost of not usually choosing the points that

allow the most expansion in the confident regions when aexp is large. Thus, each useful point for

the conservative active strategy only increases the size of the confident set by a small amount as

compared to the other strategies.

7.4.2 Real World Data Sets

7.4.2.1 WebKB Course Data Set

The first data set we use is a webpage classification one. The WebKB Course data set is a collection

of 1051 websites from four universities, belonging to two categories: course websites or non-

course websites. There are 230 websites in the course category, and 821 in the non-course category,

making the data set unbalanced. The first view consists of text on the webpage itself, which is

something that is always available. The second view consists of the link text of links from other

webpages linking to the webpage; in general this view could be missing as it takes extra time

and resources to find and gather incoming links and their associated text for a given website. We

obtained the webpage and link text data1 then applied standard text pre-processing using Weka

1Available here: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/
co-training/data/
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[80] to obtain 2,168 features in the text view and 338 features in the link view.

7.4.2.2 Modified Course Data Set

The Course data set was originally used as an example of a data set for which co-training would be

successful based on a sufficient condition of view conditional independence given the class label

[25]. Therefore we would expect the expansion between views to be large, and a passive (random)

selection strategy to be effective on this data set. To see if restricting the expansion between views

effects the performance of the different selection strategies, we also modified this data set and

repeated the experiments with the modified data set. To create the modified Course data set with

restricted expansion, we assigned the view 2 data as the new view 1 data. Then we took the original

view 2 data and divided it into positive and negative classes. Next, for each class, we found the

nearest neighbor of each instance in that class. Then we swaped pairs of nearest neighbors, starting

with those farthest apart, removed the swapped pair from further consideration, and repeated, until

no pairs remain. This new set then became the new view 2 - containing the same data but in a

different order. The idea is that an instance in view 2 should still be close to its corresponding

value in view 1 since it was only swapped with a nearest neighbor - a nearby data point. In this

way within each class view 2 should be dependent on view 1. Also since the view 2 points are

shuffled around they will be near different instances so there should still be significant expansion

between views so that multi-view semi-supervised learning algorithms should still be effective.

7.4.2.3 Citeseer Data Set

In addition we evaluate the methods on the Citeseer data set. The Citeseer data set is a collection

of scientific articles split into six categories (“Agents”, “AI”, “DB”, “IR”, “ML”, and “HCI”). The

first view consists of the text from the abstract of each article, and the second view is the citation

profile, the list of papers a given paper is cited by or cites in the database. We obtained a version of

the data set2 with binary vectors for each article indicating if a word is present or not in that article,

2Available here: http://www.cs.umd.edu/ sen/lbc-proj/LBC.html
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and built binary citation vectors for each with a 1-entry for a feature indicating the paper cites or

is cited by the other paper given that corresponding index. We removed all papers with fewer than

five other papers in the collection that cite or are cited by the paper. This resulting data set contains

1164 documents with 3703 features in view 1 and 1164 features in view 2. As in [210] we take the

largest class (“DB”) as the positive class and the remainder as the negative class, resulting in 222

instances in class 1 and 942 instances in class 2.

7.4.2.4 Experiment Set-up

For the Course data set, as in [25], for each data set and each experiment iteration we randomly

sample 3 course and 9 non-course instances for labeled training data. For the Citeseer data set,

as in [209] we randomly sample 4 positive and 20 negative instances for labeled training data.

The remaining instances were used for the unlabeled data, initially missing view 2, and also for

computing performance. Since the data is imbalanced we report both test error and Matthews Cor-

relation Coefficient (MCC). If t p denotes the number of true positive predictions, f p the number

of false positives, f n false negatives, and tn true negatives, then MCC is given by

(t p)(tn)− ( f p)( f n)√
(t p+ f p)(t p+ f n)(tn+ f p)(tn+ f n)

.

Then for each experiment iteration we ran the active selection algorithm of Section 7.3.4, Algo-

rithm 4, with a given selection strategy for a few hundred iterations (until performance started

to level off). The selection strategies used were: passive (random) selection denoted Rand and

the active strategy described in Section 7.3.4 and Algorithm 5 denoted Active. The top fraction

for the Course data sets was set to 0.25, and 0.05 for the Citeseer data set, and we also report

results for varying these top fraction values. This difference is explained by the larger expansion

present in the Course data set as discussed in the Results section. Additionally we compare with

the state-of-the-art active view completion selection strategy of selecting based on estimating pre-

dictive variance in a Gaussian process co-regularization model [209]. We denote this method by
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PVar. We use co-training as the base multi-view semi-supervised learning algorithm to be used

with active view completion as it works best on these data sets when the data is complete. To stay

consistent with the Gaussian process model, which uses a logistic likelihood, we use L1 regularized

logistic regression as the base classifier for co-training.

7.4.2.5 Experiment Results
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Figure 7.4: Test error and MCC vs. iteration for the different selection strategies on the Course
data set, modified Course data set, and Citeseer data set, averaged over 100 random trials

The results are shown in Figure 7.4, for both the original Course data set, the Course data set

modified to have restricted expansion between views, and the Citeseer data set averaged across

100 random trials, for the first few hundred iterations. The results agree with our hypothesis - in

the original Course data set, the passive strategy (RAND) works just as well as an active strategy

(Active), due to the large expansion between views. For the modified data set with the restricted

expansion, the active approach starts to out-perform the passive one and it takes more iterations for

the passive strategy to catch up. The difference between the original data set and the one modified

to have restricted expansion between views can be clearly seen with respect to the difference in
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performance between the active and passive strategies. Also in both cases the state-of-the-art

method using predictive variance under a gaussian process co-regularization model (PVar), does

not achieve good performance. This is likely due to a mismatch between the model and the data

- i.e., the particular model may not be well suited for this data. For the Citeseer data set, without

modification our proposed active approach offers an improvement over the passive strategy, and

also out-performs the PVAR active approach. PVAR does improve over random selection, but not

by as much early on as our proposed approach.

The next set of plots in Figure 7.5 shows results with the experiments repeated, but with varying

top fractions used for the active strategies. Here there is a trade-off for the Course data set, a smaller

value resulted in a slightly sharper performance increase at first, but the corresponding method was

then overtaken by the passive strategy after more iterations. Also it is interesting to note that for

the Course data set, a larger fraction worked best, whereas for the Citeseer data set a much smaller

fraction was better. This is consistent with having larger expansion for the course data so more

exploration (i.e., a strategy closer to random selection) worked better.
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Figure 7.5: Test error vs. iteration for active selection for varying top fractions of data to choose
select from, on the Course data set, modified Course data set, and Citeseer data set, averaged over
100 random trials

7.5 Conclusions and Future Work

We have explored a new research direction, active view completion, and analyzed when an active

strategy can be useful, with new algorithms, theoretical results, and experimental study. One key
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observation from our study is that active view completion is different from active label acquisition

in that the benefit of the active strategy may depend on the relationship between the views. De-

signing an effective active selection strategy may be more challenging for active view completion.

Our experimental results demonstrated cases where a passive strategy is as or more effective than

active ones. We feel active view completion is an interesting new area of research that offers new

challenges and has much potential for further study. An example of one future direction is the

combination of active view completion and active label acquisition, in particular the combination

with the highly effective co-testing approach [134], which may work best with a different approach

for choosing the instances for view completion.
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Chapter 8

Model Selection for Semi-Supervised

Learning

8.1 Introduction

For every multi-view semi-supervised learning algorithm, and every general semi-supervised learn-

ing algorithm, in practice it is necessary to select the specific tuning or hyper parameters for the

method, using the available training data. This process is called model selection. Model selection

is a major issue for semi-supervised learning problems involving very limited labeled data, since

the small amount of labeled data makes it difficult to reliably estimate predictive performance of a

model.

However, in the work on multi-view semi-supervised learning, and semi-supervised learning

in general, the issue of model selection is most often avoided entirely [25, 29, 22, 137, 164, 129,

155, 30, 111, 5, 220, 53, 178, 118], for example, by reporting the best results found over a grid of

hyper-parameters, the idea being that this is the best performance a particular method could achieve

if there was some way to select that best model. However this best performance is meaningless

for real wold applications if there is not some way to select the model. Additionally, for the case

of extremely limited training data, the performance of general approaches to model selection like
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cross-validation deteriorates, and most other semi-supervised model selection methods are only de-

signed to work for specific semi-supervised learning mehods and so are not generally applicable.

A recent survey article lists model selection for semi-supervised learning as one of five open prob-

lems in model selection: “Very little has been done for model selection in semi-supervised learning

problems, in which only some training instances come with target values. Semi-supervised tasks

can be challenging for traditional model selection methods, such as cross-validation, because the

number of labeled data is often very small” [78].

This analysis leads us to propose an alternative, general approach to model selection for semi-

supervised learning with extremely limited labeled data. Like cross-validation the approach is

based on re-sampling and re-training, and also like cross-validation is already parallelized and

thus can be efficiently carried out with modern parallel computing resources. The basic idea is to

generate many data sets that are similar to the target one, by re-sampling the labeled and unlabeled

data from the given data. In each case labels are sampled using estimated conditional distributions

derived by averaging the predictions on each data instance of all models in the set of models

under consideration. In this way, if most models agree on a prediction for a label, than that label

will consistently be generated, but if models largely disagree on a label, then that label will vary

more across the generated data sets. Additionally the prior weights given to the models can be

iteratively updated, with the goal of making the generation distribution more similar to the target

data distribution. By estimating the average performance for each model across the generated

similar data sets, this provides a rough estimate of its performance on the target data. This approach

can also be seen as an alternative way of estimating the stability of a model by evaluating its

performance on many different but similar data sets. If the model does not provide stable estimates,

then its performance may vary greatly for slight changes in the data set, and this will be captured

by a larger averaged test error over the generated data sets.

We evaluate our similar data sampling approach on four data sets with different amounts of

labeled data, and compare to existing model selection approaches, including a state-of-the-art

semi-supervised model selection method, discussed in the next section. Our experimental results
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demonstrate the efficacy of the proposed approach.

8.2 Related Work

One of the most commonly used approaches to model selection is cross-validation. In k-fold

cross-validation, the labeled training data is partitioned into k roughly equal sized sets. Then

each of the k sets takes a turn as being the held-out set used for testing, and the remaining k− 1

sets are used for training each model to be evaluated. The average performance on the held-out

sets is used to estimate the models’ performance, and this can be repeated and averaged over

multiple random partitions. Cross-validation is one model selection approach commonly used for

general semi-superised learning methods [39, 214], however it has been found that its performance

can suffer when only small amounts of labeled data are available [176]. Aside from standard

supervised model selection methods like cross-validation, we can roughly break related work into

two categories: work that avoid avoids full model selection in some way, and work either focused

on the problem of semi-supervised model selection or that uses some form of semi-supervised

model selection.

8.2.1 Avoiding the Model Selection Issue

A large amount of the work on multi-view semi-supervised learning, and semi-supervised leading

in general, in the literature avoids the model selection issue in some way. Therefore we briefly men-

tion some common approaches used that essentially avoid model selection, before discussing spe-

cific model selection approaches. We can further break this category down into two sub-categories.

8.2.1.1 Reporting the Performance for Fixed Values or Best Over Hyper-parameter Grids

The work in this category trains the methods used either by arbitrarily picking fixed values for some

or all hyper-parameters or by using default or heuristic hyper-parameter values or by training the

methods over hyper-parameter grids, sets of different hyper-parameter combinations, and returns
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the best results on the test error found, sometimes with hyper-parameter sensitivity results as well

[25, 29, 22, 137, 164, 129, 155, 30, 111, 5, 220, 53, 178, 118].

8.2.1.2 Selecting using a validation set typically only available for model selection

The work in this category uses a separate validation set for model selection and selects the best

model according to performance on the validation set, e.g., [179, 160, 40, 52]. Note that this is

also an artificial scenario, since if extra labeled data were available for model selection it could also

be used for model estimation, likely making the semi-supervised learning approaches unnecessary

or at least reducing the benefit they offer and most likely changing the best model as well. For

example, in one work [179], for one data set, the semi-supervised learning method has access to

only 2 labeled instances, but 250 are used for validation - if these had been available for training

after validation, supervised learning would most likely have been sufficient.

8.2.2 Model Selection Approaches

Various approaches do exist that address the model selection issue partially or fully for the case of

semi-supervised data. However most are method-dependent - specific to the probabilistic models

and frameworks proposed for the particular learning algorithm. Here we discuss such approaches

as well as general semi-supervised approaches.

8.2.2.1 Approaches that are restricted to certain model classes

One common category of methods is the approach of estimating the marginal likelihood also called

maximum likelihood type II approaches [209] or evidence-based model selection [176]. Given spe-

cific probabilistic models, the model parameters are approximately integrated out of the data like-

lihood equation leaving the marginal likelihood as a function of the hyper-parameters. The hyper-

parameters maximizing this marginal likelihood are then typically chosen. However this requires

assuming a particular probabilistic model for the different components of the model and the data,

and is thus not applicable to general semi-supervised learning methods, for instance co-training
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with arbitrary base classifiers in each view. Additionally, depending on the model, this approach

could suffer from overfitting with limited labeled data. A different type of marginalization strategy

in which some of the hyper-parameters are marginalized when estimating the model parameters has

also been proposed [111]. In this case, for hyper-parameter selection, some hyper-parameters are

arbitrarily fixed, and the remaining hyper-parameters are treated as missing values. The conditional

probability distributions defined by the model are then used with the expectation-maximization al-

gorithm to fit the model parameters, essentially integrating out these specific hyper-parameters.

Similar to the marginal likelihood approaches with gaussian processes, Zhu, Ghahramani and Laf-

ferty proposed a Gaussian random field model with a label entropy model selection approach used

for learning some hyper-parameters [226].

Another approach is to use information criteria. For instance, Culp, Michailidis and Johnson

propose a generalized additive model with transductive smoothers for multi-view semi-supervised

learning [54]. The associated proposed model scoring uses the likelihood or error penalty on

the labeled data in combination with an estimate of degrees of freedom for the linear smoothers,

which corresponds to the trace of a smoother matrix. In addition to being method-dependent, this

approach only considers the performance on the labeled data with the unlabeled data effecting

only the trace of the smoother matrix. For very limited labeled training data, this could result

in poor solutions since many models could fit the labeled data very well so that the estimated

degrees of freedom is the determining factor, potentially resulting in overfitting for cases of many

hyper-parameters.

8.2.2.2 General Approaches

Several general approaches also exist for semi-supervised model selection. An interesting state-of-

the-art approach for semi-supervised model selection is metric-based model selection [167, 168,

169], which was generally found to out-perform previous model selection methods including cross-

validation and various information criteria. The first approach in this category uses estimated dis-

tances between hypotheses in different classes and the target hypothesis and tests a sequence of
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hypothesis classes in order until the triangle inequality is violated with some previous hypothesis

class. Since the sequence traversal can be terminated early at a sub-optimal model, a second ap-

proach with an adjusted distance estimate was proposed using ratios of function distance estimates

to score models. Bengio and Chapados consider metric-based model selection extensions to time

series data, cases without unlabeled data, and a hybrid with cross-validation [16]. However, a

major limitation for the metric-based model selection occurs with extremely limited labeled train-

ing data since many or all hypothesis classes considered could all achieve perfect training error.

This means if the first approach is used, the sequence traversal is terminated immediately, and if

the second approach is used, all methods have equal scores of zero, so there is no way to decide

between them. Additionally this method requires a nested ordering of hypothesis classes, limit-

ing its applicability for general learning methods, since the correct sequence of hypothesis classes

which should be monotonic in terms of complexity is not always clear, particularly with multiple

hyper-parameters. Schuurmans et al. addressed this issue by proposing a new model evaluator,

called ADA, as the product of the training error and a function of the ratios of the distance between

a learned function on the labeled and unlabeled data from a constant function, using Kullback-

Leibler divergence for classification [169] since the original distance approach did not work well

for classification. Collectively these metric-based model selection approaches were demonstrated

to improve over the state-of-the-art in model selection, compared against a wide variety of model

selection approaches. Like the proposed method of this thesis, this method can also be applied to

a grid of hyper-parameters for model selection. However, if class conditional probabilities for any

instances are zero the approach has a divide-by-zero problem, which can happen for some tasks

with very small amounts of labeled training data. Additionally, small amounts of labeled data

may not provide reliable enough information for the estimated labeled data function distances, and

many semi-supervised learning methods already generally enforce similarity in the learned func-

tion evaluated on labeled and unlabeled data in some way so this method may not be as useful

with semi-supervised learning algorithms. Furthermore, to our knowledge, this method has never

been analyzed in conjunction with semi-supervised learning algorithms, which is part of what is
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provided here.

Madani, Pennock, and Flake proposed a co-validation approach [124] in which two functions

are trained on different partitions of the labeled training data, and their disagreement is measured

on the unlabeled data and used along with training error to estimate test error. However this

approach requires enough labeled data to allow representative functions to be learned with half the

amount of training data, making it an unsuitable choice for very small amounts of labeled training

data. Additionally in their semi-supervised learning experiments the approach did not improve the

model selection over cross-validation (though could be helpful for active and transfer learning). A

similar approach is proposed in [104], in which cross validation is extended with a disagreement

measure on the unlabeled data; also similarly the approach did not improve over cross-validation,

but did offer more reliable generalization error guarantees. Another similar approach was proposed

called stability selection, and extended these ideas to unlabeled data for the problem of estimating

the number of clusters to use in a clustering model [113].

8.3 Methodology

We assume a set of labeled and unlabeled data instances D are generated by a fixed joint distribu-

tion PXY over X ×Y . We further make the standard assumptions that the data {Xi} is i.i.d. and

that the distribution of Yi depends only on Xi. Since typically for semi-supervised learning, a large

amount of unlabeled data is available, this means the marginal distribution PX is well characterized

by the data sample. Sampling from the marginal distribution PX can therefore be simply accom-

plished by re-sampling from the full set of labeled and unlabeled data. The intuition behind the

proposed approach is then that, given marginal samples x⃗ that are close to the true distribution, if

we can at least approximately sample associated labels, then we can come up with a way to sample

data sets that are similar to the target data set. By training different models on these synthetically

generated data sets, we can get an idea of how consistently they perform on similar tasks to the

target one by averaging their performance over many randomly generated similar tasks. Since we
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have the ground truth labels for these similar data sets, we can directly evaluate each model for

them. Intuitively, if a model works well for these similar data sets then we would expect it to work

well for the target data set as well. We hypothesize that considering model performance across

these similar data sets can result in better estimation of model performance than relying on one

particular data sample (the target data sample) with only a small amount of labeled data to perform

model selection, since with the proposed approach real performance is evaluated on similar data

sets for which the labels are known and test error can be directly computed.

8.3.1 Estimating Expected Test Error by Re-sampling

The goal can therefore be defined as estimating the expected test error for each model using a

sampling approach, and a particular loss function L(,). Typically L(,) is taken to be the 0-1 loss,

given by L(a,b) = 1 if a ∕= b, 0 o.w. Specifically, Err=E[L(Y, f̂ (X))∣D ] where f̂ () is the predictive

function estimator using D corresponding to a particular model (i.e., set of hyper-parameters), and

the expectation is over both the training data D of a particular size and the random variable X .

Each model corresponds to a distinct estimator which maps a data sample D to a function from

f̂ : X →Y and so f̂ is a random variable. We assume the goal is to evaluate a finite set of models

M of size k, with some initial prior distribution over the models PM which would usually be taken

to be uniform.

Since the expected test error is just an expectation over different data samples, we can approx-

imate it via the law of large numbers as follows

Errm ≈
1
d

d

∑
j=1

1
t

t

∑
i=1

L(y j,i, fm, j (⃗x j,i)) (8.1)

Here each Dk, for k = 1, . . . ,d, is obtained by independently sampling a data set with the same num-

ber of labeled and unlabeled instances as D and t test instances by sampling (⃗x j,i,y j,i) from PXY ,

and fm, j() is the predictive function learned for the particular model (i.e., set of hyper-parameters)

m for training set D j. Note these training sets contain both labeled and unlabeled data. In the trans-
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ductive setting, the unlabeled data is also the test data, so in this case t is the number of unlabeled

instances.

Since sampling from PX can be approximated by re-sampling (in our implementation we use

without replacement so that we can partition the data) from the full set of labeled and unlabeled

data, if the conditional distribution PY ∣X were known at least at each data instance in the training

data, then we could also sample Y given an X sample and thus sample from PXY . Furthermore since

the amount of unlabeled data is large we can estimate the test error using the generated (sampled)

unlabeled data. If we assume PY ∣X corresponds to a mixture of models in M , which are in the form

of the models that return probabilistic outputs, then PY ∣X=⃗x,D ∝ ∑PY ∣X=⃗x,M=m,DPM=m . Note also

that this mixture could correspond to a single model. Therefore if the probability of each model,

PM, were known, we could generate data sets very similar to the target data set.

Therefore we propose the following iterative procedure to estimate average test error for a set

of models, where we view the probabilities of the models as hidden variables. The procedure starts

with an initial PM usually taken to be uniform (i.e., PM=m = 1/k), and a target training data set D

with n labeled instances.

1. Step 1: For each m ∈M compute PY ∣X ,m,D and fm() by training the model on the target

training data set D . Average these conditional estimates together according to the current

estimate for PM. In particular, we define:

P̂Y=y∣X=⃗x = ∑
m

PY=y∣X=⃗x,M=m,DPM=m (8.2)

2. Step 2: For each of some number d data sets, randomly sample without replacement n

instances from D to use as labeled training data, and use the remainder as both unlabeled

training data and test data. To each instance, assign a label by sampling from conditional

distribution estimates found in the previous step, P̂Y ∣⃗xi for each i.

3. Step 3: Estimate the average test error for each model m according to Equation 8.1.
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4. (Optional) Step 4: Taking the likelihood for a given model to be the exponential of the

negative test error, multiply these by the current probability for each model PM and normalize

across all models for each data set. Average the result across data sets to obtain the new

estimates for the hidden variables PM.

5. (Optional) Step 5: Repeat for several iterations, or until convergence.

If we stop after one iteration, then the average estimated test error is computed using a condi-

tional distribution with equal weight for each model, i.e., the uniformly-weighted average, which

might be preferable, in particular for the sake of computational efficiency. In practice we found

this approach to be effective. Also note, for continuous Y , densities are used for its distribution.

8.3.2 Addressing Additional Issues

One issue with computing the conditional distributions is that, even if all of the models agree in

their label prediction, depending on the method used, the probability outputs might still be close to

0.5. In this case, the sampled data could still vary largely, with samples not too similar to the target

data. Therefore we also use the average of predicted labels to estimate the conditional probabilities:

P̂Y=y∣X=⃗x = ∑
m
1(y = fm(⃗x))PM=m, (8.3)

where 1(.) is the indicator function which returns 1 if its argument is true and 0 otherwise. Note

that this definition assumes discrete labels. For other types of target variables Y , some modification

is necessary. In particular, considering continuous Y and regression, conditional densities would

be computed instead. In order to use the fixed output predictions in this case, a one-dimensional

distribution can be fit to the set of model predictions of y for a given x⃗, using kernel density

estimation [26].

Another issue arises with the combination of limited labeled data and imbalanced data. In this

case, many instances might be predicted as belonging to the same class by most models. This can

be an issue when sampling then, since the sampled label set might be all of one class - it might
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take a much larger set of sampled data sets to get a significant number that have labeled data from

both classes. Therefore we also propose a balance modification in which we sample data sets until

each has at least one labeled instance from each class.

8.3.3 Relationship to Expectation Maximization, Bootstrapping, and Stabil-

ity Selection

If the iterative re-weighting strategy is used, and we consider the missing labels to be hidden

variables, this is in some ways similar to expectation-maximization-type approaches for learning

with hidden variables - another category of semi-supervised learning algorithms [224]. However

there are a few key differences. First the hidden variables are used mainly for evaluation of the

models, as opposed to being an integral part of the models themselves. I.e., when training the

models across the different random samples of the data and labels, instead of trying to incorporate

all of the estimates for the labels of the unlabeled data in the training process, these estimated labels

are mainly used in evaluating the trained model. The focus is on keeping the training conditions the

same as for the actual training data. Second, maximization is not performed over the expectation,

since each model is trained (maximized) over its local sample and then an expected value is taken.

This emphasizes the key point that, instead of using this procedure to try to infer likely values

for the hidden variables, i.e., the missing labels, which could be unreliable, or update a single

model, the goal is to estimate the performance of the models. In this way, if most labels cannot be

predicted with certainty, a model that most consistently achieves better performance, across all of

these sample data sets, will be preferred, even if it is not the most likely (assuming there is even

a fully defined probabilistic model). Therefore, this method may be more closely related to the

metric-based and stability selection approaches mentioned in the related work (e.g., [169, 124]),

but tries to estimate this stability by fully re-training models on similar data sets as opposed to

either data subsets or a one-dimensional stability criterion of similarity between function values on

labeled and unlabeled data.

The proposed resampling approach is also similar to bootstrapping [85], which samples from
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the labeled data with replacement to generate the similar data sets, and evaluates these on the held

out data for each set. However, in this limited labeled data setting, there is only a small set of

labeled data to resample from, e.g., in one experiment we only have 4 labeled points. In this case

most of the data sets will not be very different - there is a limited number of unique data sets that

can be sampled. Furthermore there is a risk that a sample will contain only a single class, in which

case the algorithms being evaluated might not even be applicable. If stratification is used to avoid

this issue, the possible samples are reduced further. Enumerating possible train/hold-out combina-

tions with stratification essentially amounts to nearly the same approach as cross-validation so this

approach would suffer the same limitations as mentioned for cross-validation. Also for this reason

in our experiments we only compare with cross validation as it is more widely used in this setting.

Therefore another way of looking at our approach is that it extends a bootsrapping approach by

using estimated labels with the unlabeled data instead. Data sets are resampled each time, but from

the entire set of data with our approach, which includes the large set of unlabeled data allowing

more possible data sets, and evaluation is performed on the large set of unlabeled data as well for

each sample, as opposed to a very small hold out set.

8.4 Experimental Study

Here we provide experimental study of various model selection approaches for different multi-view

semi-supervised learning (MVSSL) algorithms evaluated on 4 different data sets.

8.4.1 Data Sets

We evaluated the model selection approaches with four different data sets. The first data set is

a synthetic 2-dimensional data set, the second is a webpage classification data set, the third a

document classification data set, and the fourth an image classification one. Below we describe

these data sets, and their characteristics are summarized in Table 8.1.
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Table 8.1: Data sets, characteristics, and multi-view semi-supervised learning algorithm used.

Data Set Num. Num. Num. Num. Class Ratio MVSSL
Labeled Unlabeled View 1 View 2 num. pos. / Method

Features Features num. neg. Used
Synth 4 400 2 2 1.000 Co-Regularization [209]
WebKB 12 1039 2168 338 0.280 Co-Training [25]
Citeseer 24 1164 3703 1164 0.236 Co-Training [25]

Coil 20, 40 1420, 1400 1024 n/a 0.818 Manifold
Co-Regularization [179]

8.4.1.1 Synthetic Data Set

The synthetic data in each view was generated from two slightly overlapping 2D Gaussian distri-

butions, with the same pair of distributions used for both views. Specifically, for each class data

was sampled from a zero-mean Gaussian distribution in two-dimensions with covariance {{ 16,

0 },{ 0, 1 }}, and was then transformed with the rotation matrix {{ cos(π

4 ), −sin(π

4 ) },{ sin(π

4 ),

cos(π

4 ) }}; then the offset of {1,1} was added for the positive class, and {−1,−1} for the negative

class. To generate the data each instance was sampled from the distribution for one of the classes in

view 1, and independently from the same class distribution in view 2. This way the two views are

conditionally independent given the class label - an ideal scenario for multi-view semi-supervised

learning algorithms. The data in each view was normalized to have minimum 0 and maximum 1 af-

ter the sampling. For each trial, 2 labeled training points and 200 unlabeled points, were generated

for each class. Figure 8.1 shows a sample of the generated data in each view.
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(b) View 2

Figure 8.1: Sample of two views of data generated for 2D test case
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8.4.1.2 WebKB Course Data Set

The WebKB Course data set is a collection of 1051 websites from four universities, belonging

to two categories: course websites or non-course websites. There are 230 websites in the course

category, and 821 in the non-course category. The first view consists of text on the webpage itself,

the second view consists of the link text of links from other webpages linking to the webpage.

We obtained the webpage and link text data1 then applied standard text pre-processing using

Weka [80] to obtain 2,168 features in the text view and 338 features in the link view. As in [25],

for each experiment iteration we randomly sample 3 course and 9 non-course instances for labeled

training. The remaining instances were used for the unlabeled data.

8.4.1.3 Citeseer Data Set

The Citeseer data set is a collection of scientific articles split into six categories (“Agents”, “AI”,

“DB”, “IR”, “ML”, and “HCI”). The first view consists of the text from the abstract of each article,

and the second view is the citation profile, the list of papers a given paper is cited by or cites in the

database. We obtained a version of the data set2 with binary vectors for each article indicating if

a word is present or not in that article, and built binary citation vectors for each with a 1-entry for

a feature indicating the paper cites or is cited by the other paper given that corresponding index.

We removed all papers with fewer than five other papers in the collection that cite or are cited by

the paper. This resulting data set contains 1164 documents with 3703 features in view 1 and 1164

features in view 2.

As in [210] we take the largest class (“DB”) as the positive class and the remainder as the

negative class, resulting in 222 instances in class 1 and 942 instances in class 2. Also as in [210], for

each experiment iteration we use 4 randomly sampled class 1 instances and 20 randomly sampled

class 2 instances to make up the labeled training set, and the rest for the unlabeled data.

1Available here: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/
co-training/data/

2Available here: http://www.cs.umd.edu/ sen/lbc-proj/LBC.html
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8.4.1.4 Coil Data Set

The Coil data set is built from the Coil20 data set, commonly used as a benchmark data set for

manifold-based approaches to semi-supervised learning. The data set consists of 1440 32x32 pixel

greyscale images of 20 different objects, taken at various various angles. We obtained the data set

from the website3 of the first author of a previous work on manifold regularization [177]. We cre-

ated a binary classification task by splitting the objects into the categories of “toys,” corresponding

to 9 objects, and “other household objects,” corresponding to the remaining 11 objects. We fol-

lowed the same approach as [179] for computing the fixed kernels and adjacency matrices for the

data (using 1-nearest-neighbor and fixed kernel width). To form the labeled and unlabeled sets

we also followed the approach of [179], using stratified sampling to sample 2 images from each

category to form the labeled set and used the rest as unlabeled data, for each experiment trial.

8.4.2 Preliminary Synthetic Data Study

We first performed some preliminary study with the synthetic data to get an idea of the effect of

updating the weights in the resampling approach, and to generate plots for qualitative comparison

of the model selection methods showing how the estimated scores compare to ground truth.

For the preliminary synthetic we used the two Gaussians data set described in the previous sec-

tion, and co-regularized logistic regression. The figure showing a sample of the data in both views

is re-produced here for convenience in Figure 8.1. Here the L1 regularization hyper-parameters

for each view are fixed to be equal, so that results can be displayed in 3-D plots. Therefore,

there are two regularization hyper-parameters, the L1 regularization hyper-parameter, λ , and the

co-regularization hyper-parameter µ . The set of models to evaluate are taken to be a grid of com-

binations of these two hyper-parameters, with λ ranging from 2−20 to 23 by incremental powers of

2, and µ similarly ranging from 2−40 to 225, but multiplied by a starting value equal to the number

of labeled instances over the number of unlabeled instances.

Since other approaches are method-dependent, the state-of-the-art metric-based model selec-

3Available here: http://vikas.sindhwani.org/manifoldregularization.html
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tion approach (ADA) [169] is taken as the main competitor to the proposed model selection ap-

proach, with cross-validation used as a baseline. When computing the ADA evaluator to avoid

divide by 0 scenarios a small amount is added to probabilities of zero in the experiments.

Results are shown in Figure 8.2 for a particular training data set, as 3D meshes showing the

estimated model score for each pair of hyper-parameters. The results are shown for both 5 and

20 updates of the conditional probability estimates for the proposed re-sampling approach. The

figure shows the average score or test error estimates for each method evaluated over the grid of

hyper-parameters, with the hyper-parameters on the x and y axes and the z axis corresponding to the

estimate. The true test error is also shown in Figure 8.2(a). In this case, both the cross-validation

and metric-based model selection approaches estimate their best scores for models in a sub-optimal

region of the joint hyper-parameter space; the estimates corresponding to these methods are not

accurate for this limited amount of labeled data in this case, and choosing the models with the best

estimated performance would result in selecting sub-optimal models. The proposed re-sampling

method however is able to come quite close to correctly estimating the low test error regions of the

joint hyper-parameter space, and models with the best estimated performance result in lower test

error.

We found applying the re-weighting updates generally smoothed-out the model score plots

but did not have too much of effect on which models achieved the best scores. Therefore for the

following experiments, for simplicity, we did not perform any weight updates for our resampling

method.

8.4.3 Experiment Procedure

As mentioned in the previous section, the state-of-the-art metric-based model selection approach

(ADA) [169] is taken as the main competitor to the proposed model selection approach, which we

denote ADA. We denote cross-validation [85] as CV. For the cross-validation approach we use

leave-one-out cross-validation as the size of the labeled data is small. We compare with the .632+

bootstrap estimator [85] as well, and denote this method .632+. We also compare with the model
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(c) Metric-based approach estimate (ADA)
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(d) Proposed re-sampling approach estimate, 5 up-
dates
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(e) Proposed re-sampling approach estimate, 20 up-
dates

Figure 8.2: Ground truth and estimated test error (z-axis) vs pairs of hyper-parameters for different
model selection methods

selection approach of maximum marginal likelihood (also referred to as ML type II or evidence-

based approach) [209] when possible. In order to be able to compute a marginal likelihood we
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use the Gaussian process co-regularization model (GPCR) [209] for any data set for which we

use co-regularization. This model is a Bayesian probabilistic model and allows for approximate

computation of the marginal likelihood, see [209] and [157] for details. We implemented this

method with the “Gaussian Processes for Machine Learning Toolbox” version 3.1 [156]. For the

Coil data set, we used the manifold co-regularization approach described in [179] to compute the

kernels and used the GPCR method with the computed kernel matrices so that we could obtain

marginal likelihoods. We denote the maximum marginal likelihood method as MML. Finally we

denote the proposed Similar Data Sampling approach as SDS, and as mentioned we do not update

the weights for each model - i.e., we use uniform weighting. Furthermore, we compare with the

version of SDS that uses the average of predicted outputs for each model (Equation 8.3) as opposed

to probabilistic outputs, which we denote SDS-L. Additionally for the Citeseer data set, since it is

highly imbalanced and the lowest achievable test error is not close to 0, we use MCC as opposed

to test error with the SDS methods for scoring models. However, for CV we still used test error,

as using MCC causes significantly worse performance, due to having only a single test instance,

i.e., using MCC with CV is not really an option for limited labeled data. In addition we test the

combination of the state-of-the-art method ADA with our method and denote this combination

SDS+ADA. This combination is accomplished by ranking the models with each selection method

then adding the ranks to obtain new scores for each model - the model with the lowest score is then

selected. There are two more baselines we provide as well. First, a non-semi-supervised learning

approach using the Gaussian process classifier with both views if available. For the data sets we

tested each view individually, stacking the views together to form a single view, and taking the

average of classifiers trained on each view separately. Of the three, the averaging approach gave

the best results, or not significantly different from the best, on all data sets, so we report these

results. We denote this method as GP - No SSL. The final baseline reported is the result obtained

when fixing the hyper-parameters across trials to the best set of fixed hyper-parameters from the

grid of hyper-parameters (the hyper-parameter combination that gives the lowest test error averaged

across all of the trials). This is the ideal result obtained if we had a model selection method capable
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of exactly determining the average performance of each model. We denote this method as Best

Fixed. For each of the methods that use sampled sets (i.e., .632+, SDS, SDS+ADA, SDS-L, and

SDS-LB) we sample 100 sets. The methods used are summarized in Table 8.2.

Table 8.2: Model selection methods used.

GP - No SSL Gaussian process classifier [157] that does not do semi-supervised learning
CV Leave-one-out cross-validation [85]
.632+ The .632+ bootstrap estimator [85]
MML Maximum marginal likelihood approach [209]
ADA State-of-the-art metric-based approach [169]
SDS The proposed Similar Data Sampling approach
SDS+ADA SDS combined with ADA by adding model ranks given by the two approaches to

obtain new scores
SDS-L SDS using the average of the predicted labels with each model (Equation 8.3) as the

class conditional probability as opposed to averaging probabilistic outputs. Also ex-
cludes sampels with labeled data having only one class.

Best Fixed The fixed model corresponding to the set of hyper-parameters that gave the lowest test
error averaged across all trials.

We chose the multi-view semi-supervised learning algorithm that worked best for each data

set, and these choices are shown in Table 8.1. For all methods, we use the same logistic loss

model. We use logistic likelihood models in GPCR and in a Gaussian process classifier for the

non-semi-supervised learning baseline. For the co-training algorithm we use L1 regularized logistic

regression classifiers as the base models.

The hyper-parameter grids used for model selection are as follows. GPCR has two hyper-

parameters, σ1 and σ2 [209]. For the synthetic data σ1 and σ2 were varied on a grid of values

{102, 101, . . . , 10−5} , resulting in 64 different models to choose from. For the Coil data set we

follow the approach of [179] and vary σ1 and σ2 over {106, 104, 102, 100, 10−1, 10−2}, resulting

in 36 models to choose from. For the co-training method, there are 3 hyper-parameters to select.

The first is the ratio of the number of positive to number of negative estimated confident points to

update the labeled set with at each iteration. We varied this ratio over {1:1, 1:2, 1:3, 1:4, 1:5}, as in

all training sets the ratio for the labeled data indicates imbalance with fewer positive instances than

negative. The other hyper-parameters are L1 regularization hyper-parameters for view 1 and 2, λ1

and λ2, respectively. We varied these over {100, 10−1, . . . , 10−4}. This resulted in 125 different

models for the co-training method.
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Since GPCR is transductive, we used a transductive approach for the experiments - that is for

each trial, the data was randomly partitioned into num. labeled and num. unlabeled data instances

as described in Table 8.1, and the unlabeled data is also used as the testing data for evaluating

performance. We report results averaged over 100 random trials for each data set.

We report test error, Matthews Correlation Coefficient (MCC), and F1 Score for each data set,

described below. Let t p denote the number of true positive predictions, f p the number of false

positives, f n false negatives, and tn true negatives.

∙ Test error is given by: f p+ f n
t p+tn+ f p+ f n .

∙ MCC is given by: (t p)(tn)−( f p)( f n)√
(t p+ f p)(t p+ f n)(tn+ f p)(tn+ f n)

.

∙ F1 Score is given by: 2t p
2t p+ f n+ f p .

Note that MCC and F1 score attain their best values at 1, and test error at 0. MCC are balanced

performance measures, and MCC takes into account both false positive and false negative rates

whereas F1 score does not take into account the false negative rate.

8.4.4 Experiment Results

The experimental results are summarized in Table 8.3. Additional significance testing is provided

in Table 8.4, comparing the SDS method to other methods for each data set, in Table 8.5 for the

SDS+ADA method, and in Table 8.6 for SDS-L. The testing is performed with respect to the test

error for all data sets but the Citeseer data set, in which MCC is used instead as the data set is

highly imbalanced and test error close to 0 is not achievable.

For the synthetic data, we found that the GPCR method was more sensitive to the hyper-

parameters than the co-regularized logistic regression approach used in the preliminary study,

which is likely part of the reason why most of the methods had higher variance and were far-

ther from performing as well as the best fixed model. In order to take into account the sensitivity

of the methods to the hyper-parameters for each data set, as well as how difficult the selection task
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Table 8.3: Mean ± std. dev. of MCC, F1 score, and test error over 100 trials for each data set for
the different model selection approaches, with best scores shown in bold. The data sets are ordered
by increasing amount of labeled data.

GP - CV .632+ MML ADA SDS SDS SDS-L Best Frac.
No SSL +ADA Fixed Close

Test Error 0.298 0.217 0.191 0.294 0.168 0.171 0.164 0.040 0.030
±0.107 ±0.154 ±0.138 ±0.139 ±0.128 ±0.127 ±0.112 ±0.050 ±0.014

Synth MCC 0.403 0.566 0.619 0.412 0.664 0.659 0.671 0.921 0.941 0.078
(num. lab.=4) ±0.214 ±0.308 ±0.277 ±0.278 ±0.255 ±0.253 ±0.224 ±0.100 ±0.027 (5/64)

F1 Score 0.701 0.783 0.809 0.706 0.832 0.829 0.835 0.960 0.970
±0.107 ±0.154 ±0.139 ±0.139 ±0.128 ±0.127 ±0.113 ±0.050 ±0.013

Test Error 0.216 0.048 0.057 n/a 0.038 0.028 0.029 0.031 0.017
±0.060 ±0.043 ±0.054 ±0.021 ±0.017 ±0.008 ±0.008 ±0.003

WebKB MCC 0.559 0.881 0.840 n/a 0.891 0.917 0.914 0.909 0.950 0.352
(num. lab.=12) ±0.086 ±0.082 ±0.180 ±0.047 ±0.061 ±0.024 ±0.026 ±0.010 (44/125)

F1 Score 0.651 0.905 0.860 n/a 0.911 0.932 0.931 0.927 0.961
±0.065 ±0.069 ±0.189 ±0.040 ±0.070 ±0.020 ±0.022 ±0.008

Test Error 0.410 0.075 0.081 0.095 0.047 0.068 0.060 0.055 0.047
±0.009 ±0.047 ±0.057 ±0.066 ±0.010 ±0.034 ±0.024 ±0.010 ±0.010

Coil MCC 0.225 0.859 0.848 0.823 0.909 0.870 0.885 0.893 0.909 0.444
(num. lab.=20) ±0.028 ±0.082 ±0.100 ±0.116 ±0.019 ±0.060 ±0.043 ±0.019 ±0.019 (16/36)

F1 Score 0.164 0.906 0.895 0.874 0.945 0.916 0.928 0.935 0.945
±0.034 ±0.073 ±0.090 ±0.105 ±0.012 ±0.049 ±0.033 ±0.013 ±0.012

Test Error 0.435 0.140 0.258 n/a 0.149 0.140 0.137 0.135 0.117
±0.029 ±0.063 ±0.089 ±0.083 ±0.087 ±0.094 ±0.090 ±0.070

Citeseer MCC 0.267 0.501 0.365 n/a 0.576 0.585 0.595 0.605 0.602 0.184
(num. lab.=24) ±0.052 ±0.264 ±0.196 ±0.212 ±0.226 ±0.234 ±0.213 ±0.240 (23/125)

F1 Score 0.423 0.556 0.456 n/a 0.659 0.664 0.674 0.681 0.669
±0.027 ±0.271 ±0.202 ±0.164 ±0.180 ±0.183 ±0.167 ±0.197

Test Error 0.375 0.033 0.031 0.024 0.024 0.035 0.030 0.031 0.024
±0.010 ±0.016 ±0.016 ±0.016 ±0.016 ±0.018 ±0.017 ±0.014 ±0.016

Coil MCC 0.314 0.935 0.940 0.954 0.954 0.932 0.942 0.939 0.954 0.500
(num. lab.=40) ±0.024 ±0.031 ±0.031 ±0.031 ±0.031 ±0.035 ±0.033 ±0.027 ±0.031 (18/36)

F1 Score 0.287 0.961 0.964 0.973 0.973 0.960 0.966 0.964 0.973
±0.033 ±0.019 ±0.020 ±0.019 ±0.019 ±0.022 ±0.021 ±0.017 ±0.019

Test Error 0.347 0.103 0.123 n/a 0.085 0.088 0.084 0.058 0.047
n/aAverage MCC 0.354 0.749 0.722 n/a 0.799 0.793 0.802 0.853 0.871

F1 Score 0.445 0.822 0.797 n/a 0.864 0.860 0.867 0.893 0.903

Table 8.4: Significance testing results at the 5 percent level for paired t-tests between the proposed
approach, SDS, and other model selection approaches for MCC on the Citeseer data set and test
error on the rest. A “1” indicates a significant difference in means, “0” not significant, and a “+”
indicates SDS did better, “-” worse.

Synth WebKB Coil (n=20) Citeseer Coil (n=40)
GP- No SSL +1 +1 +1 +1 +1
CV +1 +1 0 +1 0
.632+ 0 +1 0 +1 -1
MML +1 n/a +1 n/a -1
ADA 0 +1 -1 0 -1

is for a given data set, we also report how many models out of the total number considered are

close to the best model in the set of all models (i.e., the hyper-parameter grid), including the best.

Specifically we report the fraction of models in the set considered that give test error within 0.025

of the Best Fixed Hyper-Parameters model. This corresponds to the last row of the table, with the
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Table 8.5: Significance testing results at the 5 percent level for paired t-tests between the rank sum
combined approach, SDS+ADA, and other model selection approaches for MCC on the Citeseer
data set and test error on the rest. A “1” indicates a significant difference in means, “0” not
significant, and a “+” indicates SDS+ADA did better, “-” worse.

Synth WebKB Coil (n=20) Citeseer Coil (n=40)
GP- No SSL +1 +1 +1 +1 +1
CV +1 +1 +1 +1 +1
.632+ 0 +1 +1 +1 0
MML +1 n/a +1 n/a -1
ADA 0 +1 -1 0 -1
SDS 0 0 +1 0 +1

Table 8.6: Significance testing results at the 5 percent level for paired t-tests between SDS using
label outputs, SDS-L, and other model selection approaches for MCC on the Citeseer data set and
test error on the rest. A “1” indicates a significant difference in means, “0” not significant, and a
“+” indicates SDS-L did better, “-” worse.

Synth WebKB Coil (n=20) Citeseer Coil (n=40)
GP- No SSL +1 +1 +1 +1 +1
CV +1 +1 +1 +1 +1
.632+ +1 +1 +1 +1 0
MML +1 n/a +1 n/a -1
ADA +1 +1 -1 0 -1
SDS +1 0 +1 0 +1
SDS+ADA +1 0 0 0 0

entry “Frac. Close”.

Across the first four tasks, those with the smallest amount of labeled data, the SDS method

either achieves comparable or significantly better performance than the other methods, and is only

out-performed by ADA on the Coil data set. Cross-validation (CV), the .632+ bootstrap estimator

(.632+), and maximum marginal likelihood (MML) clearly suffer performance deterioration for

very small amounts of labeled data. ADA remained competitive, but SDS-L obtained better scores

on three out of the four data sets, with ADA still giving the best results for Coil even when reducing

the number of labeled data instances to 20, though this did narrow the gap between the two meth-

ods. The combination SDS+ADA sometimes offered an improvement over SDS and ADA, but this

was usually not very significant. SDS-L had the best average performance, that is the performance

averaged across all of the tasks (corresponding to the bottom row of Table 8.3). The most drastic

difference is seen for the smallest amount of labeled data, i.e., for the Synth data SDS-L was able

to attain mean test error of 0.040, close to the mean test error of the best single model, 0.030, as

compared to 0.217 for CV, 0.294 for MML, and 0.168 for ADA.
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Additionally, all of the model selection methods performed well on the Coil data set with 40

labeled instances - coming close to achieving the same performance as the best fixed model. This

data set was particularly easy for model selection, which is also indicated to some extent by “Frac.

Close” of 0.5 meaning half of the models to select from had performance close to the best fixed

model.

A key observation is that using averaging with labels to estimate class probabilities (SDS-L), as

opposed to probabilities (SDS) generally worked better, since even if most trained models agree on

the labels exactly, the models themselves might output class probabilities close to 0.5, so that the

generated data sets would still have high variation. This could cause the SDS method to perform

more poorly when the probabilistic models are not well-calibrated, but offer some improvement

when they are. Checking the average test errors computed by the SDS method for the Coil data

set, we found they did not vary far from 0.5 (the minimum was 0.485 and the maximum 0.498),

even though the majority of models actually had low test error. A similar issue occurred with the

Synth data. SDS-L avoids this issue and also allows the similar data sampling approach to be used

with models that do not have probabilistic outputs.

8.5 Conclusion and Future Work

We have proposed a new approach to model selection for semi-supervised learning algorithms,

based on estimating performance by re-training and evaluating each model on many generated,

similar data sets, which we called SDS (Similar Data Sampling) for short. In the experimental

study on four data sets, we found the version of SDS using the average of label predictions to

estimate conditional distributions (SDS-L) to improve over the widely used cross-validation ap-

proach and the Bayesian approach of maximum marginal (type II) likelihood, for smaller amounts

of labeled data, i.e., for the tasks in our experiments with less than 40 labeled instances. We also

compared with a state-of-the-art metric-based approach to semi-supervised model selection, ADA,

which to our knowledge, has not yet been evaluated for the case of model selection for semi-
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supervised learning algorithms, and found SDS-L achieved better performance on three of the four

data sets.

A key area of future work is to apply SDS to a broader range of learning scenarios where effec-

tive model selection methods are lacking. Indeed this unique broad applicability is a key advantage

of SDS - this approach can be applied to scenarios where traditional model selection methods can-

not, because complete data sets are sampled. A particular example of interest is the active learning

scenario [170], in which an algorithm iteratively selects which instances to obtain information

about from an oracle, e.g., labels for unlabeled data. If the active selection algorithm has tuning

parameters that must be set, there is no way to do this with traditional model selection approaches

since it requires estimating the performance of the selection strategy as labels are obtained for the

unlabeled data. However this is easily accomplished with SDS as the entire active acquisition pro-

cess can be simulated using the complete data sets generated (for each actual iteration). The main

challenge for future work is extending the similar data sampling/generation approach to handle

these different scenarios, including, for example, active view completion (see Chapter 7 for details

on this scenario). Another key scenario for future work, which is also an open problem for model

selection [78], is transfer learning. This line of future work involves applying the SDS strategy to

transfer learning problems which can have no labeled target data at all.
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Chapter 9

Conclusion and Future Work

The conclusion is broken into three parts, corresponding to the three contributions of this thesis on

multi-view semi-supervised learning (MVSSL). After, key future work is discussed.

9.1 Conclusions

For the first part of the thesis on generating data for missing views, there were two main lines of

previous work: using artificially generated view 2 data only and only using the available complete

view data for MVSSL algorithms. We found that these two lines of previous work were limited.

The first method created data to approximately match conditions for the success of MVSSL meth-

ods, but failed to use the real data, which actually fulfilled these conditions, when available. The

second method failed to make effective use of the unlabeled data when both views were not present,

and so performed poorly with limited complete data. We were able to achieve the best results in

our experiments with the proposed CoNet method, an approach that is a hybrid of both cases - both

generating view 2 data and utilizing available view 2 data through learning a biased view mapping

/ feature generation function. Our method essentially finds a compromise, by using the available

view 2 data which is more reliable than artificially generated view 2 data, while also generating

useful view 2 data for that which is missing. Furthermore this generated data is made to match

the view data as more data becomes available. We found that at first, when few instances were
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complete with view 2 data, the generated data was most useful and offered the most benefit over

using the limited view 2 data. As more view 2 data became available, matching and using this data

became more important. This work allowed the gap between these two approaches for addressing

missing view data for multi-view semi-supervised learning to be bridged, and is a key step toward

making the many effective mutli-view semi-supervised learning methods more applicable to real-

world data that often is not complete for all instances. This in turn is a step in one direction for

improving the estimation of predictive models for low-quality data scenarios.

The key conclusion from the second part of the thesis is on the dependence of the benefit of

an active view completion strategy over the passive (random) one on the relationship between the

views. We demonstrated how the benefit of the active strategy is dependent on the dependence

between views, i.e., if the views are conditionally independent given class labels, the passive se-

lection strategy can be just as, if not more, effective than an active one. This work points out a

previously overlooked issue for active view completion - that an active approach may not always

help in this scenario, and the characteristics of the data should be taken into account. A key obser-

vation resulting from this work is that the case when an active strategy appears to offer the most

benefit also corresponds to the case where MVSSL is harder due to less expansion between views,

and thus may also require more complete unlabeled data to attain low test error. Though we did

also demonstrate the benefit of our proposed active approach for a few data sets, an additional con-

clusion is that even when an active approach can offer a benefit over a random one, the best active

approach can depend on the data. This highlights the potential of this area for future work, as

different data and tasks may require different active selection approaches, as well as the potential

of active view completion as a solution for addressing real world MVSSL scenarios with missing

view data.

Finally, the third component of this thesis, on model selection for semi-supervised learning,

provides a first step toward making model selection possible for limited labeled data scenarios,

an open problem that limits the applicability of semi-supervised learning methods. By addressing

this issue, this work makes it possible to apply multi-view semi-supervised learning methods, and
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semi-supervised learning methods in general, to real learning tasks with limited labeled data. In

addition we conclude that there is still much work to be done in this area of research. Even though

the proposed approaches using Similar Data Sampling (SDS) were able to improve over existing

methods for small amounts of labeled there was still a gap in performance for some data sets

between the model selection approaches and the best fixed model. Furthermore, there are many

related machine learning scenarios growing in prevalence, such as transfer learning, for which

model selection has barely been considered, if at all, so these areas are ripe for future work on

model selection.

9.2 Future Work

Overall this thesis is just the beginning of the work needed for multi-view semi-supervised learn-

ing with missing views, and more generally learning with low-quality data and related areas of

research. Below are some key directions of future work.

One key future direction is to incorporate transfer learning with multi-view semi-supervised

learning, as well as handling low-quality data issues such as missing view data, for example, ex-

tending CoNet so that it can be used for pre-processing for knowledge transfer as well. While there

is recent work on the combination of multi-view semi-supervised learning with transfer learning

[212], the conjunction with additional low-quality data aspects such as missing views has yet to be

considered. More generally, a key direction of future work is to provide comprehensive low-quality

learning approaches capable of addressing all low-quality data aspects, and, as a key goal, incor-

porating all potentially beneficial and diverse sources of information. Already there has been some

work suggesting comprehensive consideration of low-quality data aspects can be most beneficial

[17]. Exploring such approaches can also lead to new lines of work similar to that of feature selec-

tion as these approaches could suffer from information overload or useless information. Therefore

another direction in addition to information fusion is information selection.

Another key area of future work that is also related to transfer learning is model selection for
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transfer learning. Model selection becomes even more important in the typical transfer learning

setting as there is often no labeled data at all from the target domain. In this case standard model

selection methods are generally not applicable - they result in fitting models to the source domain,

and since this data comes from a different distribution than the target data distribution, the source-

fitted models usually do not work well in the target domain. While transfer learning methods are

designed to address the change in distribution, they also generally have hyper-parameters that must

be set for them to work, so that model selection is still a key issue. Since transfer learning with

little or no target data labels is a type of semi-supervised learning, the SDS approach of this thesis

is applicable and may offer a good starting point for model selection for transfer learning. In this

case, however, the sampling approach should be modified to maintain the difference in source and

target data distributions for the sampled data sets.

In general, while it is true that when enough labeled data is available standard model selection

methods like cross-validation will work well, since many applications continue to arise involving

low-quality data having very few or no labeled data, model selection in this scenario is an impor-

tant area of future study. While this thesis provides a starting point, future work, in addition to

improving the approach proposed here and providing more theoretical study, involves extending

this approach to other scenarios including transfer learning and active learning. As one example,

this approach could be applied to, as in the preliminary study, the case of small labeled sample

data with structured feature relationships, or one-class learning where there is no negative class

examples, again posing an issue for model selection. One direction for this extension to scenarios

without a large pool of unlabeled data to sample from is to instead sample from other approxima-

tions to the data distribution - in particular to approximate the marginal distribution of the data in

addition to the label (conditional) distribution, and sample from both. In general this type of sam-

pling approach may be possible to extend to all such scenarios where the ground truth has partial or

limited representation in the available data. Therefore a key direction is to generalize the method

to a more abstract scenario applicable to a variety of specific learning scenarios, and testing the

approach in these different areas.
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In addition to model selection for active learning, there is much future work possible for the

case of active view completion. This includes analyzing different types of missing view data sce-

narios (e.g., missing entire views or not at random), considering the cost-sensitive combination of

different types of active learning (e.g., active label acquisition combined with active view comple-

tion), and deriving special selection strategies for specific data sets and tasks.
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