3,123 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Two-dimensional penalized signal regression for hand written digit recognition

    Get PDF
    Many attempts have been made to achieve successful recognition of handwritten digits. We report our results of using statistical method on handwritten digit recognition. A digitized handwritten numeral can be represented by an image with grayscales. The image includes features that are mapped into two-dimensional space with row and column coordinates. Based on this structure, two-dimensional penalized signal logistic regression (PSR) is applied to the recognition of handwritten digits. The data set is taken from the USPS zip code database that contains 7219 training images and 2007 test images. All the images have been deslanted and normalized into 16 x 16 pixels with various grayscales. The PSR method constructs a coefficient surface using a rich two-dimensional tensor product B-splines basis, so that the surface is more flexible than needed. We then penalize roughness of the coefficient surface with difference penalties on each coefficient associate with the rows and columns of the tensor product B-splines. The optimal penalty weight is found in several minutes of iterative operations. A competitive overall recognition error rate of 8.97% on the test data set was achieved. We will also review an artificial neural network approach for comparison. By using PSR, it requires neither long learning time nor large memory resources. Another advantage of the PSR method is that our results are obtained on the original USPS data set without any further image preprocessing. We also found that PSR algorithm was very capable to cope with high diversity and variation that were two major features of handwritten digits

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems
    • …
    corecore