698,117 research outputs found

    Automatic imitation of biomechanically possible and impossible actions: effects of priming movements versus goals

    Get PDF
    Recent behavioral, neuroimaging, and neurophysiological research suggests a common representational code mediating the observation and execution of actions; yet, the nature of this representational code is not well understood. The authors address this question by investigating (a) whether this observation execution matching system (or mirror system) codes both the constituent movements of an action as well as its goal and (b) how such sensitivity is influenced by top-down effects of instructions. The authors tested the automatic imitation of observed finger actions while manipulating whether the movements were biomechanically possible or impossible, but holding the goal constant. When no mention was made of this difference (Experiment 1), comparable automatic imitation was elicited from possible and impossible actions, suggesting that the actions had been coded at the level of the goal. When attention was drawn to this difference (Experiment 2), however, only possible movements elicited automatic imitation. This sensitivity was specific to imitation, not affecting spatial stimulus–response compatibility (Experiment 3). These results suggest that automatic imitation is modulated by top-down influences, coding actions in terms of both movements and goals depending on the focus of attention

    Joint action goals reduce visuomotor interference effects from a partner’s incongruent actions

    Get PDF
    Joint actions often require agents to track others’ actions while planning and executing physically incongruent actions of their own. Previous research has indicated that this can lead to visuomotor interference effects when it occurs outside of joint action. How is this avoided or overcome in joint actions? We hypothesized that when joint action partners represent their actions as interrelated components of a plan to bring about a joint action goal, each partner’s movements need not be represented in relation to distinct, incongruent proximal goals. Instead they can be represented in relation to a single proximal goal – especially if the movements are, or appear to be, mechanically linked to a more distal joint action goal. To test this, we implemented a paradigm in which participants produced finger movements that were either congruent or incongruent with those of a virtual partner, and either with or without a joint action goal (the joint flipping of a switch, which turned on two light bulbs). Our findings provide partial support for the hypothesis that visuomotor interference effects can be reduced when two physically incongruent actions are represented as mechanically interdependent contributions to a joint action goal

    Do actions occur inside the body?

    Get PDF
    The paper offers a critical examination of Jennifer Hornsby's view that actions are internal to the body. It focuses on three of Hornsby's central claims: (P) many actions are bodily movements (in a special sense of the word “movement”) (Q) all actions are tryings; and (R) all actions occur inside the body. It is argued, contra Hornsby, that we may accept (P) and (Q) without accepting also the implausible (R). Two arguments are first offered in favour of the thesis (Contrary-R): that no actions occur inside the body. Three of Hornsby's arguments in favour of R are then examined. It is argued that we need to make a distinction between the causes and the causings of bodily movements (in the ordinary sense of the word “movement”) and that actions ought to be identified with the latter rather than the former. This distinction is then used to show how Hornsby's arguments for (R) may be resisted

    Attribution of intentional causation influences the perception of observed movements: behavioral evidence and neural correlates

    Get PDF
    Recent research on human agency suggests that intentional causation is associated with a subjective compression in the temporal interval between actions and their effects. That is, intentional movements and their causal effects are perceived as closer together in time than equivalent unintentional movements and their causal effects. This so-called intentional binding effect is consistently found for one's own self-generated actions. It has also been suggested that intentional binding occurs when observing intentional movements of others. However, this evidence is undermined by limitations of the paradigm used. In the current study we aimed to overcome these limitations using a more rigorous design in combination with functional Magnetic Resonance Imaging (fMRI) to explore the neural underpinnings of intentional binding of observed movements. In particular, we aimed to identify brain areas sensitive to the interaction between intentionality and causality attributed to the observed action. Our behavioral results confirmed the occurrence of intentional binding for observed movements using this more rigorous paradigm. Our fMRI results highlighted a collection of brain regions whose activity was sensitive to the interaction between intentionality and causation. Intriguingly, these brain regions have previously been implicated in the sense of agency over one's own movements. We discuss the implications of these results for intentional binding specifically, and the sense of agency more generally

    "Hiding our faces to be seen": strategies of visibility of activism

    Get PDF
    PresentaciĂłn en formato pĂłsterThis paper explores how this gesture of masking, hiding, and facial-covering is not only a liberation response to a form of oppression or a political statement against some unlawful action; but that it also works as a strategy of visibility. Following the research of Eesley, DeCelles and Lenox (2015) focusing on activist types and tactics and Bennet (2003), about global activism and networked politics, we explore the strategic communication component behind the visibility in these protests. As Ciszek states “activism is a form of strategic communication” (2017, p.702). Combining a series of quantitative and qualitative techniques for its analysis, this paper brings together recent forms of “masked activism” around the world. We elaborate a typology that helps for the understanding of the strategies and actions happening in activism and social movements with the use of masks. The question deriving from this principle would be then, to what extent those actions and strategies are ideologically grounded: can these strategies and actions differ from movements to movements? And in particular, what does the mask do, in each case? Is a mask more than a mask? Exploring these aspects should enable further research on social movements and political activism from the strategic and communicative organisation.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. Universidad de MĂĄlaga (España) - Sheffield Hallam University (Reino Unido

    Eye movements may cause motor contagion effects

    Get PDF
    When a person executes a movement, the movement is more errorful while observing another person’s actions that are incongruent rather than congruent with the executed action. This effect is known as “motor contagion”. Accounts of this effect are often grounded in simulation mechanisms: increased movement error emerges because the motor codes associated with observed actions compete with motor codes of the goal action. It is also possible, however, that the increased movement error is linked to eye movements that are executed simultaneously with the hand movement because oculomotor and manual-motor systems are highly interconnected. In the present study, participants performed a motor contagion task in which they executed horizontal arm movements while observing a model making either vertical (incongruent) or horizontal (congruent) movements under three conditions: no instruction, maintain central fixation, or track the model’s hand with the eyes. A significant motor contagion-like effect was only found in the ‘track’ condition. Thus, ‘motor contagion’ in the present task may be an artifact of simultaneously executed incongruent eye movements. These data are discussed in the context of stimulation and associative learning theories, and raise eye movements as a critical methodological consideration for future work on motor contagion

    Complementary Actions

    Get PDF
    Human beings come into the world wired for social interaction. At the fourteenth week of gestation, twin fetuses already display interactive movements specifically directed towards their co- twin. Readiness for social interaction is also clearly expressed by the newborn who imitate facial gestures, suggesting that there is a common representation mediating action observation and execution. While actions that are observed and those that are planned seem to be functionally equivalent, it is unclear if the visual representation of an observed action inevitably leads to its motor representation. This is particularly true with regard to complementary actions (from the Latin complementum ; i.e. that fills up), a specific class of movements which differ, while interacting, with observed ones. In geometry, angles are defined as complementary if they form a right angle. In art and design, complementary colors are color pairs that, when combined in the right proportions, produce white or black. As a working definition, complementary actions refer here to any form of social interaction wherein two (or more) individuals complete each other\u2019s actions in a balanced way. Successful complementary interactions are founded on the abilities:\ua0 (1)\ua0 to simulate another person\u2019s movements; (2)\ua0 to predict another person\u2019s future action/ s; (3)\ua0to produce an appropriate congruent/ incongruent response that completes the other person\u2019s action/ s; and (4)\ua0to integrate the predicted effects of one\u2019s own and another person\u2019s actions. It is the neurophysiological mechanism that underlies this process which forms the main theme of this chapte

    The quick and the dead: when reaction beats intention

    Get PDF
    Everyday behaviour involves a trade-off between planned actions and reaction to environmental events.Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a ‘reactive advantage’ in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival
    • 

    corecore