225,348 research outputs found

    Active Inference

    Get PDF
    The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning

    An active inference model of hierarchical action understanding, learning and imitation

    Get PDF
    We advance a novel active inference model of the cognitive processing that underlies the acquisition of a hierarchical action repertoire and its use for observation, understanding and imitation. We illustrate the model in four simulations of a tennis learner who observes a teacher performing tennis shots, forms hierarchical representations of the observed actions, and imitates them. Our simulations show that the agent's oculomotor activity implements an active information sampling strategy that permits inferring the kinematic aspects of the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic inference supports higher-level inferences about deeper aspects of the observed actions: proximal goals and intentions. Finally, the inferred action representations can steer imitative responses, but interfere with the execution of different actions. Our simulations show that hierarchical active inference provides a unified account of action observation, understanding, learning and imitation and helps explain the neurobiological underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms

    A deep active inference model of the rubber-hand illusion

    Full text link
    Understanding how perception and action deal with sensorimotor conflicts, such as the rubber-hand illusion (RHI), is essential to understand how the body adapts to uncertain situations. Recent results in humans have shown that the RHI not only produces a change in the perceived arm location, but also causes involuntary forces. Here, we describe a deep active inference agent in a virtual environment, which we subjected to the RHI, that is able to account for these results. We show that our model, which deals with visual high-dimensional inputs, produces similar perceptual and force patterns to those found in humans.Comment: 8 pages, 3 figures, Accepted in 1st International Workshop on Active Inference, in Conjunction with European Conference of Machine Learning 2020. The final authenticated publication is available online at https://doi.org/10.1007/978-3-030-64919-7_1

    The Two Kinds of Free Energy and the Bayesian Revolution

    Full text link
    The concept of free energy has its origins in 19th century thermodynamics, but has recently found its way into the behavioral and neural sciences, where it has been promoted for its wide applicability and has even been suggested as a fundamental principle of understanding intelligent behavior and brain function. We argue that there are essentially two different notions of free energy in current models of intelligent agency, that can both be considered as applications of Bayesian inference to the problem of action selection: one that appears when trading off accuracy and uncertainty based on a general maximum entropy principle, and one that formulates action selection in terms of minimizing an error measure that quantifies deviations of beliefs and policies from given reference models. The first approach provides a normative rule for action selection in the face of model uncertainty or when information processing capabilities are limited. The second approach directly aims to formulate the action selection problem as an inference problem in the context of Bayesian brain theories, also known as Active Inference in the literature. We elucidate the main ideas and discuss critical technical and conceptual issues revolving around these two notions of free energy that both claim to apply at all levels of decision-making, from the high-level deliberation of reasoning down to the low-level information processing of perception

    Shape of subjectivity: an active inference approach to consciousness and altered self-experience

    Get PDF
    How should we understand the place of the mind in the natural world? Can the relationship between the contents of consciousness and the underlying mechanisms be identified? This thesis approaches the question of consciousness and the self through the framework of active inference. According to predictive processing approaches to brain function, brains are essentially prediction machines. On this view, perception and action are underpinned by inferential mechanisms that implement a hierarchical generative model, constantly attempting to match incoming sensory inputs with topdown predictions or expectations. Predictive processing is thought to offer a first glimpse of a unified theory of the mind—uniting perception, action, and cognition under a single theoretical framework. In particular, active inference, under the free energy principle, has emerged as the most explanatorily powerful approach in predictive processing. In this thesis, I develop a conceptual framework within active inference for understanding consciousness and phenomenal selfhood (broadly, the ‘sense of being a self’) in terms of an “allostatic control model”. I made the case that phenomenal selfhood arises from a hierarchically deep inference about endogenous control of ‘selfevidencing’ (survival-relevant) sensory outcomes. I apply this account to develop a new understanding of the relationship between self-consciousness and consciousness. Based on the allostatic control model, I posit a novel theoretical model of how psychedelic drugs can lead to ‘selfless’ experiences. I then apply the allostatic control model to characterise the contrastingly dysphoric and euphoric selfless experiences that can arise in depersonalisation disorder and meditation practice. Based on these accounts, I consider the possibility of a theory of consciousness within this active inference, analysing whether selfless experiences pose a threat to an active inference theory of consciousness understood in terms of selfmodelling mechanisms. I argue that selfless experiences do not pose a threat to an active inference theory of consciousness, rather selfless states can be informative as to how consciousness should be understood in active inference. Consciousness emerges as fundamentally affective on this view, where (in normal experience) hierarchically deep self-modelling mechanisms function to ‘tune’ organisms to opportunities for adaptive action across multiple interlocking timescales

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    For autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical self-driving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure
    • 

    corecore