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Active Inference is a way of understanding sentient be hav ior. The very 

fact that you are reading  these lines means that you are engaging in Active 

Inference— namely, actively sampling the world—in a par tic u lar way— 

because you believe you  will learn something. You are palpating this page 

with your eyes simply  because this is the kind of action that  will resolve uncer-

tainty about what you  will see next and— indeed— what  these words convey. 

In short, Active Inference puts the action into perception, whereby perception 

is treated as perceptual inference or hypothesis testing. Active Inference goes 

even further and considers planning as inference— that is, inferring what you 

would do next to resolve uncertainty about your lived world.

To illustrate the simplicity of Active Inference— and what we are try-

ing to explain— place your fingertips  gently on your leg. Keep them  there 

motionless for a second or two. Now, does your leg feel rough or smooth? 

If you had to move your fin gers to evince a feeling of roughness or smooth-

ness, you have discovered a fundament of Active Inference. To feel is to 

palpate. To see is to look. To hear is to listen. This palpation does not neces-

sarily have to be overt—we can act covertly by directing our attention to 

this or that. In short, we are not simply trying to make sense of our sensa-

tions; we have to actively create our sensorium. In what follows, we  will 

see why this has to be the case and why every thing that we perceive, do, or 

plan is in the compass of one existential imperative— self- evidencing.

Active Inference is not just about reading or epistemic foraging. It is, on 

one view, something that all creatures and particles do, in virtue of their 

existence. This might sound like a strong claim; however, it speaks to the 

fact that Active Inference inherits from a  free energy princi ple that equates 

existence with self- evidencing and self- evidencing with an enactive sort of 

Preface

Karl Friston
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viii Preface

inference. However, this book is not concerned with the physics of sentient 

systems. Its focus is on the implications of this physics for understanding 

how the brain works.

This understanding is not an easy business, as witnessed by millennia of 

natu ral philosophy and centuries of neuroscience. Although one can find 

the roots of Active Inference in first princi ple accounts of self- organized 

be hav ior (i.e., variational princi ples akin to Hamilton’s princi ple of stationary 

action), first princi ples do not help very much when asking how a par tic u lar 

brain works and how it differs from another brain. For example, committing 

to the theory of evolution by natu ral se lection does not help in the slightest 

when it comes to understanding why I have two eyes or speak French. This 

book is about using princi ples to scaffold key questions in neuroscience and 

artificial intelligence. To do this, we have to move beyond princi ples and get 

to grips with the mechanics to which the princi ples apply.

As such, Active Inference— and its accompanying Bayesian mechanics—

is  there to frame questions about how we perceive, plan, and act. Crucially, 

it does not aim to replace other frameworks, such as behavioral psy chol ogy, 

decision theory, and reinforcement learning. Rather, it hopes to embrace 

all  those approaches that have proven so successful within a unified frame-

work. In what follows, we  will pay special attention to linking key con-

structs from psy chol ogy, cognitive neuroscience, enactivism, ethology, and 

so on to the calculus of belief updating in Active Inference— and its associ-

ated pro cess theories.

By pro cess theories, we refer to theories about how belief updating is real-

ized by neuronal (and other biophysical) pro cesses in the embodied brain 

and beyond. Work to date in Active Inference offers a fairly straightforward 

set of computational architectures and simulation tools to both model vari-

ous aspects of a functioning brain and enable  people to test hypotheses 

about dif fer ent computational architectures. However,  these tools only solve 

half the prob lem. At the heart of Active Inference lies a generative model— 

namely, a probabilistic repre sen ta tion of how unobservable  causes in the 

world out  there generate the observable consequences— our sensations. 

Getting the generative model right—as an apt explanation for the sentient 

be hav ior of any experimental subject or creature—is the big challenge.

This book tries to explain how to meet this challenge. The first part sets 

up the basic ideas and formalisms that are called on in the second part—to 

illustrate how they can be applied in practice. In short, this book is for 
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Preface ix

 people who want to use Active Inference to simulate and model sentient 

be hav ior, in the ser vice of  either scientific inquiry or, possibly, artificial 

intelligence. Thus it focuses on  those ideas and procedures that are nec-

essary to understand and implement an Active Inference scheme without 

getting distracted by the physics of sentient systems on the one hand or 

philosophy on the other.

A Note from Karl Friston

I have a confession to make. I did not write much of this book. Or, more 

precisely, I was not allowed to. This book’s agenda calls for a crisp and clear 

writing style that is beyond me. Although I was allowed to slip in a few of 

my favorite words, what follows is a testament to Thomas and Giovanni, 

their deep understanding of the issues at hand, and, importantly, their 

theory of mind—in all senses.
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Chance  favors the prepared mind.

— Louis Pasteur

1.1 Introduction

This chapter introduces the main question that Active Inference seeks 

to address: How do living organisms persist while engaging in adaptive 

exchanges with their environment? We discuss the motivation for addressing 

this question from a normative perspective, which starts from first princi ples 

and then unpacks their cognitive and biological implications. Furthermore, 

this chapter briefly introduces the structure of the book, including its sub-

division into two parts: the first of which aims to help readers understand 

Active Inference, and the second of which aims to help them use it in their 

own research.

1.2 How Do Living Organisms Persist and Act Adaptively?

Living organisms constantly engage in reciprocal interactions with their 

environment (including other organisms). They emit actions that change 

the environment and receive sensory observations from it, as schematically 

illustrated in figure 1.1.

Living organisms can only maintain their bodily integrity by exerting 

adaptive control over the action- perception loop. This means acting to solicit 

sensory observations that  either correspond to desired outcomes or goals 

(e.g., the sensations that accompany secure nutrients and shelter for  simple 

1 Overview
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4 Chapter 1

organisms, or friends and jobs for more complex ones) or help in making 

sense of the world (e.g., informing the organism about its surroundings).

Engaging in adaptive action- perception loops with the environment 

poses formidable challenges to living organisms. This is largely due to the 

recursive nature of the cycle, where each observation, solicited by the pre-

vious action, changes how we decide on the next action, to solicit the next 

observation. The possibilities for control and adaptation are plentiful, but 

very few are useful. Yet during evolution, living organisms have man-

aged to develop adaptive strategies to face the fundamental challenges of 

existence.  These strategies vary in their level of cognitive sophistication, 

with simpler and more rigid solutions in simpler organisms (e.g., follow-

ing nutrient gradients in bacteria) and more cognitively demanding and 

flexible solutions in more advanced organisms (e.g., planning to achieve 

distal goals in  humans).  These strategies also vary for the timescales at 

which they are selected and operate— ranging from  simple responses to 

environmental threats or morphological adaptations that arise at an evo-

lutionarily timescale, to behavioral patterns established during cultural 

or developmental learning, up to  those requiring cognitive pro cesses that 

operate at comparable timescales to action and perception (e.g., attention 

and memory).

Observation

Action

Figure 1.1
An action- perception cycle reciprocally connecting a creature and its environment. 

The term environment is intentionally generic. In the examples that we discuss, it can 

include the physical world, the body, the social environment, and so on.
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Overview 5

1.3 Active Inference: Be hav ior from First Princi ples

This diversity is a blessing for biology but challenging for formal theories of 

brain and mind. Broadly,  there are two perspectives we could take on this. 

One perspective is that dif fer ent biological adaptations, neural pro cesses 

(e.g., synaptic exchanges and brain networks), and cognitive mechanisms 

(e.g., perception, attention, social interaction) are highly idiosyncratic and 

require dedicated explanations. This would lead to proliferation of theo-

ries in fields like philosophy, psy chol ogy, neuroscience, ethology, biology, 

artificial intelligence, and robotics, with  little hope for their unification. 

Another perspective is that, despite their diverse manifestations, the cen-

tral aspects of be hav ior, cognition, and adaptation in living organisms are 

amenable to a coherent explanation from first princi ples.

 These two possibilities map to two dif fer ent research programs and, to 

some extent, dif fer ent attitudes  toward science: “neats” versus “scruffies” 

(terms due to Roger Shank). Neats always seek unification beyond the (appar-

ent) heterogeneity of brain and mind phenomena. This usually corresponds 

to designing top- down, normative1 models that start from first princi ples and 

try to derive as much as pos si ble about brains and minds. Scruffies instead 

embrace the heterogeneity by focusing on details that demand dedicated 

explanations. This usually corresponds to designing bottom-up models that 

start from data and use what ever works to explain complex phenomena, 

including dif fer ent explanations for dif fer ent phenomena.

Is it pos si ble to explain heterogenous biological and cognitive pheno-

mena from first princi ples, as the neats assume? Is a unified framework to 

understand brain and mind pos si ble?

This book answers  these questions affirmatively and advances Active 

Inference as a normative approach to understand brain and mind. Our 

treatment of Active Inference starts from first princi ples and unpacks their 

cognitive and biological implications.

1.4 Structure of the Book

The book comprises two parts.  These are aimed at readers who want to under-

stand Active Inference (first part) and  those who seek to use it for their own 

research (second part). The first part of the book introduces Active Inference 

both conceptually and formally, contextualizing it within current theories of 

cognition. The goal of this first part is to provide a comprehensive, formal, 
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6 Chapter 1

and self- contained introduction to Active Inference: its main constructs and 

implications for the study of brain and cognition.

The second part of the book illustrates specific examples of computa-

tional models that use Active Inference to explain cognitive phenomena, 

such as perception, attention, memory, and planning. The goal of this sec-

ond part is to help readers both understand existing computational models 

using Active Inference and design novel ones. In short, this book divides 

into theory (part 1) and practice (part 2).

1.4.1 Part 1: Active Inference in Theory

Active Inference is a normative framework to characterize Bayes- optimal2 

be hav ior and cognition in living organisms. Its normative character is 

evinced in the idea that all facets of be hav ior and cognition in living organ-

isms follow a unique imperative: minimizing the surprise of their sensory obser-

vations. Surprise has to be interpreted in a technical sense: it mea sures how 

much an agent’s current sensory observations differ from its preferred sen-

sory observations— that is,  those that preserve its integrity (e.g., for a fish, 

being in the  water). Importantly, minimizing surprise is not something that 

can be done by passively observing the environment: rather, agents must 

adaptively control their action- perception loops to solicit desired sensory 

observations. This is the active bit of Active Inference.

Minimizing surprise turns out to be a challenging prob lem for technical 

reasons that  will become apparent  later. Active Inference offers a solution 

to this prob lem. It assumes that even if living organisms cannot directly 

minimize their surprise, they can minimize a proxy— called (variational) 

 free energy. This quantity can be minimized through neural computation 

in response to (and in anticipation of ) sensory observations. This emphasis 

on  free energy minimization discloses the relation between Active Infer-

ence and the (first) princi ple that motivates it: the  free energy princi ple 

(Friston 2009).

 Free energy minimization seems a very abstract starting point to explain 

biological phenomena. However, it is pos si ble to derive a number of for-

mal and empirical implications from it and to address a number of central 

questions in cognitive and neural theory.  These include how the variables 

involved in  free energy minimization may be encoded in neuronal popu-

lations; how the computations of minimized  free energy map to specific 

cognitive pro cesses, such as perception, action se lection, and learning; and 
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what kind of be hav iors emerge when an Active Inference agent minimizes 

its  free energy.

As the above list of topics exemplifies, in this book we are mainly concerned 

with Active Inference and  free energy minimization at the level of living 

organisms— simpler (e.g., bacterial) or more complex (e.g.,  human)— and 

their behavioral, cognitive, social, and neural pro cesses. This clarification is 

necessary to contextualize our treatment of Active Inference within the more 

general  free energy princi ple (FEP), which discusses  free energy minimization 

across a much wider range of biological phenomena and timescales beyond 

neural information processing— ranging from evolutionary to cellular and 

cultural (Friston, Levin et al. 2015; Isomura and Friston 2018; Palacios, Razi 

et al. 2020; Veissière et al. 2020)— which are beyond the scope of this book.

It is pos si ble to motivate Active Inference by taking one of two roads: a 

high road and a low road; see figure 1.2.  These two roads provide two dis-

tinct but highly complementary perspectives on Active Inference:

• The high road to Active Inference starts from the question of how liv-

ing organisms persist and act adaptively in the world and motivates 

Active
Inference

Free energy
principle

 

Self-
organization

Bayes’
theorem

Predictive
coding

Bayesian
brain

Planning as
inference

Perception as
inference

Markov
blanket

Variational
Bayes

Surprise
minimization

Autopoiesis and
niche construction

Generative
model

Self-
evidencing

Predictive
processing

Figure 1.2
Two roads to Active Inference: the high road (starting from top- right) and the low 

road (starting from bottom- left).
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8 Chapter 1

Active Inference as a normative solution to  these prob lems. This high 

road perspective is useful to understand the normative nature of Active 

Inference: what living organisms must do to face their fundamental exis-

tential challenges (minimize their  free energy) and why (to vicariously 

minimize the surprise of their sensory observations).

• The low road to Active Inference starts from the notion of the Bayesian 

brain, which casts the brain as an inference engine trying to optimize 

probabilistic repre sen ta tions of the  causes of its sensory input. It then 

motivates Active Inference as a specific, variational approximation to 

the (other wise intractable) inferential prob lem, which has a degree of 

biological plausibility. This low road perspective is useful to illustrate 

how Active Inference agents minimize their  free energy— therefore illus-

trating Active Inference not just as a princi ple but also as a mechanistic 

explanation (aka pro cess theory) of cognitive functions and their neuro-

nal under pinnings.

In chapter 2, we set out the low road perspective on Active Inference. We 

start from foundational theories that cast perception as a prob lem of statis-

tical (Bayesian) inference (Helmholtz 1866) and their modern incarnation 

in the Bayesian brain hypothesis (Doya 2007). We  will see that to perform 

such (perceptual) inference, living organisms must be equipped with—or 

embody— a probabilistic generative model of how their sensory observations 

are generated, which encodes beliefs (probability distributions) about both 

observable variables (sensory observations) and nonobservable (hidden) 

variables. We  will extend this inferential view beyond perception to cover 

prob lems of action se lection, planning, and learning.

In chapter 3, we  will illustrate the complementary high road perspective 

on Active Inference. This chapter introduces the FEP and the imperative 

for biological organisms to minimize surprise. Further to this, it unpacks 

how this princi ple encompasses the dynamics of self- organization and the 

preservation of a statistical boundary or Markov blanket that maintains sepa-

ration from the environment. This is vital in maintaining the integrity of 

biological creatures, and it is central to their autopoiesis.

In chapter 4, we  will unpack Active Inference more formally. This chapter 

takes its cue from the discussion of the Bayesian brain in chapter 2 and sets 

out the mathematical relationship between the self- evidencing dynamics of 

chapter 3 and variational inference. In addition, this chapter sets out two 
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sorts of generative model used to formulate Active Inference prob lems.  These 

include the partially observed Markov decision pro cesses used for decision- 

making and planning and the continuous time dynamical models that inter-

face with sensory receptors and muscles. Fi nally, we see how  free energy 

minimization for each of  these models manifests as dynamic belief updating.

In chapter 5, we  will move from formal treatments to biological impli-

cations of Active Inference. By starting from the premise that “every thing 

that changes in the brain must minimize  free energy” (Friston 2009), we 

 will discuss how the specific quantities involved in the  free energy mini-

mization (e.g., prediction, prediction error, and precision signals) manifest 

in neuronal dynamics. This aids in mapping the abstract computational 

princi ples of Active Inference to specific neural computations that can be 

executed by physiological substrates. This is impor tant in forming hypoth-

eses  under this framework and ensures that  these are answerable to mea-

sured data. In other words, chapter 5 sets out the pro cess theory associated 

with Active Inference.

Throughout the first part of the book, we  will discuss several characteris-

tic aspects of Active Inference.  These highlight the ways in which it is dif fer-

ent from alternative frameworks that seek to explain biological regulation 

and cognition— some of which we preview  here.

•  Under Active Inference, perception and action are two complementary 

ways to fulfill the same imperative: minimization of  free energy. Percep-

tion minimizes  free energy (and surprise) by (Bayesian) belief updating 

or changing your mind, thus making your beliefs compatible with sen-

sory observations. Instead, action minimizes  free energy (and surprise) 

by changing the world to make it more compatible with your beliefs and 

goals. This unification of cognitive functions marks a fundamental dif-

ference between Active Inference and other approaches that treat action 

and perception in isolation from one another. Learning is yet another 

way to minimize  free energy. However, it is not fundamentally dif fer ent 

from perception; it simply operates at a slower timescale. The comple-

mentarity between perception and action  will be unpacked in chapter 2.

• In addition to driving action se lection in the pre sent to change currently 

available sensory data, the Active Inference framework accommodates 

planning—or the se lection of the optimal course of action (or policy) 

in the  future. Optimality  here is mea sured in relation to an expected  free 
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10 Chapter 1

energy and is distinct from the notion of variational  free energy considered 

above in the context of action and perception. Indeed, while computing 

variational  free energy depends on pre sent and past observations, com-

puting expected  free energy also requires predicted  future observations 

(hence the term expected). Interestingly, the expected  free energy of a policy 

comprises two parts. The first quantifies the extent to which the policy is 

expected to resolve uncertainty (exploration) and the second how consis-

tent the predicted outcomes are with an agent’s goals (exploitation). In 

contrast with other frameworks, policy se lection in Active Inference auto-

matically balances exploration and exploitation. The relations between 

variational and expected  free energy  will be unpacked in chapter 2.

•  Under Active Inference, all cognitive operations are conceptualized as 

inference over generative models—in keeping with the idea that the brain 

performs probabilistic computations— aka the Bayesian brain hypothesis. 

Yet, the appeal to a specific approximate form of Bayesian inference— 

that is, a variational scheme that is motivated by first princi ples— adds 

specificity to the pro cess theory. Furthermore, Active Inference extends 

the inferential approach to domains of cognition that are rarely con-

sidered and adds some specificity to the kind of models and inferential 

pro cesses that may be implemented by biological brains.  Under some 

assumptions, the dynamics that emerge from generative models used 

in Active Inference closely correspond to widespread models in compu-

tational neuroscience, such as predictive coding (Rao and Ballard 1999) 

and the Helmholtz machine (Dayan et  al. 1995). The specifics of the 

variational scheme  will be unpacked in chapter 4.

•  Under Active Inference, both perception and learning are active pro cesses, 

for two reasons. First, the brain is essentially a predictive machine, which 

constantly predicts incoming stimuli rather than passively waiting for 

them. This is impor tant as perceptual and learning pro cesses are always 

contextualized by prior predictions (e.g., expected and unexpected stim-

uli affect perception and learning in dif fer ent ways). Second, creatures 

engaging in Active Inference actively seek out salient sensory observa-

tions that resolve their uncertainty (e.g., by orienting their sensors or 

selecting learning episodes that are informative). The active character 

of perception and learning stands in contrast with most current theo-

ries that treat them as largely passive pro cesses; this  will be unpacked in 

chapter 2.
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• Action is quintessentially goal directed and purposive. It starts from 

a desired outcome or goal (analogous to the concept of a set- point in 

cybernetics), which is encoded as a prior prediction. Planning proceeds 

by inferring an action sequence that fulfills this prediction (or equiva-

lently, reduces any prediction error between prior prediction and the 

current state). The goal- directed character of action in Active Inference is 

in keeping with early cybernetic formulations but is distinct from most 

current theories that explain be hav ior in terms of stimulus- response 

mappings or state- action policies. Stimulus- response or habitual be hav-

ior then becomes a special case of a broader  family of policies in Active 

Inference. The goal- directed nature of Active Inference  will be unpacked 

in chapters 2 and 3.

• Vari ous constructs of Active Inference have plausible biological analogues 

in the brain. This implies that— once one has defined a specific genera-

tive model for a prob lem at hand— one can move from Active Inference 

as a normative theory to Active Inference as a pro cess theory, which 

makes specific empirical predictions. For example, perceptual inference 

and learning correspond to changing synaptic activity and changing 

synaptic efficacy, respectively. Precision of predictions (in predictive cod-

ing) corresponds to the synaptic gain of prediction error units. Precision 

of policies corresponds to dopaminergic activity. Some of the biological 

consequences of Active Inference  will be unpacked in chapter 5.

1.4.2 Part 2: Active Inference in Practice

While the first part of the book provides readers with the conceptual and 

formal tools to understand Active Inference, the second part focuses on 

practical issues. Specifically, we hope to provide readers with the tools to 

understand existing Active Inference models of cognitive functions (and 

dysfunctions) and to design novel ones. To this aim, we discuss specific 

examples of models using Active Inference. Importantly, models of Active 

Inference can vary along dif fer ent dimensions (e.g., with discrete or con-

tinuous time formulations, flat or hierarchical inference). The second part 

is structured as follows:

In chapter 6, we introduce a  recipe to build Active Inference models. 

The  recipe covers the essential steps to design an effective model, which 

include the identification of the system of interest, the most appropriate 
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12 Chapter 1

form of the generative model (e.g., to characterize discrete-  or continuous- 

time phenomena), and the specific variables to be included in the model. 

This chapter therefore offers an introduction to the design princi ples that 

underwrite the models discussed in the following chapters.

In chapter 7, we discuss Active Inference models that address prob lems 

formulated in discrete time; for example, as hidden Markov models (HMMs) 

or partially observable Markov decision pro cesses (POMDPs). Our examples 

include a model of perceptual pro cessing and a model of discrete foraging 

choices— that is,  whether to turn left or right at a decision point to secure 

a reward. We also introduce topics such as information seeking, learning, 

and novelty seeking, which can be treated in terms of discrete- time Active 

Inference.

In chapter 8, we discuss Active Inference models that address prob lems 

formulated in continuous time, using stochastic differential equations. 

 These include models of perception (like predictive coding), movement con-

trol, and sequential dynamics. Interestingly, it is in the continuous- time 

formulation that some of the most distinctive predictions of Active Infer-

ence appear, such as the idea that movement generation stems from the ful-

fillment of predictions and that attentional phenomena can be understood 

in terms of precision control. We also introduce hybrid models of Active 

Inference that include both discrete-  and continuous- time variables.  These 

permit simultaneous assessment of the choice among discrete options (e.g., 

targets for saccades) and the continuous movements resulting from the 

choice (e.g., oculomotor movements).

In chapter 9, we illustrate how to use Active Inference models to analyze 

data from behavioral experiments. We discuss the specific steps that are 

necessary for model- based data analy sis, from the collection of data to 

the formulation of a model and its inversion to support the analy sis of data 

from single participants or at the group level.

In chapter  10, we discuss the relations between Active Inference and 

other theories in psy chol ogy, neuroscience, AI, and philosophy. We also 

highlight the most impor tant aspects of Active Inference that distinguish it 

from the other theories.

In the appendixes, we briefly discuss the mathematical background 

required to understand the most technical parts of the book, including 

the notions of Taylor series approximation, variational Laplace, variational 
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calculus, and more. For reference we also pre sent in a concise form the most 

impor tant equations used in Active Inference.

In sum, the second part of the book illustrates a broad variety of mod-

els of biological and cognitive phenomena that can be constructed using 

Active Inference and a methodology to design novel ones. Apart from the 

interest of the specific models, we hope that our treatment clarifies the 

value of using a unified, normative framework to address biological and 

cognitive phenomena from a coherent perspective. In the end, this is the 

real appeal of normative frameworks: to provide a unified perspective and 

a guiding princi ple to reconcile apparently disconnected phenomena—in 

this case, phenomena like perception, decision- making, attention, learning, 

and movement control, each having its separate chapter in any psy chol ogy 

or neuroscience manual.

The models highlighted in the second part have been selected to illus-

trate specific points as simply as pos si ble. While we cover several models 

and domains, from discrete- time decisions to continuous- time perception 

and movement control, we are clearly disregarding many  others that are 

equally in ter est ing. Many other Active Inference models exist in the lit er-

a ture that cover domains as diverse as biological self- organization and the 

origins of life (Friston 2013), morphogenesis (Friston, Levin et al. 2015), cog-

nitive robotics (Pio- Lopez et al. 2016, Sancaktar et al. 2020), social dynam-

ics and niche construction (Bruineberg, Rietveld et al. 2018), the dynamics 

of synaptic networks (Palacios, Isomura et al. 2019), learning in biological 

networks (Friston and Herreros 2016), and psychopathological conditions, 

such as post- traumatic stress disorder (Linson et al. 2020) and panic disor-

der (Maisto, Barca et al. 2021).  These models vary along many dimensions: 

some are more directly related to biology whereas  others are less so; some 

are single- agent models whereas  others are multi- agent models; some tar-

get adaptive inference whereas other target maladaptive inference (e.g., in 

patient groups), and so on.

This growing lit er a ture exemplifies the increasing popularity of Active 

Inference and the possibility of using it in a very large variety of domains. 

The aim of this book is to provide our readers with the ability to under-

stand and use Active inference in their own research— possibly, to explore 

its unforeseen potentialities.
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1.5 Summary

This chapter briefly introduces the Active Inference approach to explain 

biological prob lems from a normative perspective— and previews some 

implications of this perspective that  will be unpacked in  later chapters. Fur-

thermore, this chapter highlights the division of the book into two parts, 

which aim to help readers understand Active Inference and use it in their 

own research, respectively. Over the next few chapters, we  will develop 

the low road and high road perspectives outlined herein, before delving 

into the structure of generative models and the resulting message passing. 

Together  these comprise Active Inference in princi ple and provide the pre-

liminaries for Active Inference in practice. We hope that  these chapters  will 

persuade readers that Active Inference offers not only a unifying princi ple 

 under which to understand be hav ior but also a tractable approach to study-

ing action and perception in autonomous systems.
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