391 research outputs found

    Deep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithms

    Get PDF
    Machine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum information improves the recognition accuracy of human activities. Therefore, this paper proposes an automatic human activity recognition system through deep fusion of multi-streams along with decision-level score optimization using evolutionary algorithms on RGB, depth maps and 3d skeleton joint information. Our proposed approach works in three phases, 1) space-time activity learning using two 3D Convolutional Neural Network (3DCNN) and a Long Sort Term Memory (LSTM) network from RGB, Depth and skeleton joint positions 2) Training of SVM using the activities learned from previous phase for each model and score generation using trained SVM 3) Score fusion and optimization using two Evolutionary algorithm such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. The proposed approach is validated on two 3D challenging datasets, MSRDailyActivity3D and UTKinectAction3D. Experiments on these two datasets achieved 85.94% and 96.5% accuracies, respectively. The experimental results show the usefulness of the proposed representation. Furthermore, the fusion of different modalities improves recognition accuracies rather than using one or two types of information and obtains the state-of-art results

    Robust 3D Action Recognition through Sampling Local Appearances and Global Distributions

    Full text link
    3D action recognition has broad applications in human-computer interaction and intelligent surveillance. However, recognizing similar actions remains challenging since previous literature fails to capture motion and shape cues effectively from noisy depth data. In this paper, we propose a novel two-layer Bag-of-Visual-Words (BoVW) model, which suppresses the noise disturbances and jointly encodes both motion and shape cues. First, background clutter is removed by a background modeling method that is designed for depth data. Then, motion and shape cues are jointly used to generate robust and distinctive spatial-temporal interest points (STIPs): motion-based STIPs and shape-based STIPs. In the first layer of our model, a multi-scale 3D local steering kernel (M3DLSK) descriptor is proposed to describe local appearances of cuboids around motion-based STIPs. In the second layer, a spatial-temporal vector (STV) descriptor is proposed to describe the spatial-temporal distributions of shape-based STIPs. Using the Bag-of-Visual-Words (BoVW) model, motion and shape cues are combined to form a fused action representation. Our model performs favorably compared with common STIP detection and description methods. Thorough experiments verify that our model is effective in distinguishing similar actions and robust to background clutter, partial occlusions and pepper noise

    Action recognition from RGB-D data

    Get PDF
    In recent years, action recognition based on RGB-D data has attracted increasing attention. Different from traditional 2D action recognition, RGB-D data contains extra depth and skeleton modalities. Different modalities have their own characteristics. This thesis presents seven novel methods to take advantages of the three modalities for action recognition. First, effective handcrafted features are designed and frequent pattern mining method is employed to mine the most discriminative, representative and nonredundant features for skeleton-based action recognition. Second, to take advantages of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent spatio-temporal information carried in 3D skeleton sequences in three 2D images by encoding the joint trajectories and their dynamics into color distribution in the images, and ConvNets are adopted to learn the discriminative features for human action recognition. Third, for depth-based action recognition, three strategies of data augmentation are proposed to apply ConvNets to small training datasets. Forth, to take full advantage of the 3D structural information offered in the depth modality and its being insensitive to illumination variations, three simple, compact yet effective images-based representations are proposed and ConvNets are adopted for feature extraction and classification. However, both of previous two methods are sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is proposed to represent a depth map sequence into three pairs of structured dynamic images at body, part and joint levels respectively through bidirectional rank pooling to deal with the issue. The structured dynamic image preserves the spatial-temporal information, enhances the structure information across both body parts/joints and different temporal scales, and takes advantages of ConvNets for action recognition. Sixth, it is proposed to extract and use scene flow for action recognition from RGB and depth data. Last, to exploit the joint information in multi-modal features arising from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a single ConvNet (referred to as c-ConvNet) on both RGB features and depth features, and deeply aggregate the two modalities to achieve robust action recognition

    A preliminary study of micro-gestures:dataset collection and analysis with multi-modal dynamic networks

    Get PDF
    Abstract. Micro-gestures (MG) are gestures that people performed spontaneously during communication situations. A preliminary exploration of Micro-Gesture is made in this thesis. By collecting recorded sequences of body gestures in a spontaneous state during games, a MG dataset is built through Kinect V2. A novel term ‘micro-gesture’ is proposed by analyzing the properties of MG dataset. Implementations of two sets of neural network architectures are achieved for micro-gestures segmentation and recognition task, which are the DBN-HMM model and the 3DCNN-HMM model for skeleton data and RGB-D data respectively. We also explore a method for extracting neutral states used in the HMM structure by detecting the activity level of the gesture sequences. The method is simple to derive and implement, and proved to be effective. The DBN-HMM and 3DCNN-HMM architectures are evaluated on MG dataset and optimized for the properties of micro-gestures. Experimental results show that we are able to achieve micro-gesture segmentation and recognition with satisfied accuracy with these two models. The work we have done about the micro-gestures in this thesis also explores a new research path for gesture recognition. Therefore, we believe that our work could be widely used as a baseline for future research on micro-gestures

    Deep Learning for Face Anti-Spoofing: A Survey

    Full text link
    Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., '0' for bonafide vs. '1' for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Enhanced Deep Learning Architectures for Face Liveness Detection for Static and Video Sequences

    Get PDF
    The major contribution of this research is the development of deep architectures for face liveness detection on a static image as well as video sequences that use a combination of texture analysis and deep Convolutional Neural Network (CNN) to classify the captured image or video as real or fake. Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that, it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph or recorded video of a valid user to the sensor. Thus, face liveness detection is a critical preprocessing step in face recognition authentication systems. The first part of our research was on face liveness detection on a static image, where we applied nonlinear diffusion based on an additive operator splitting scheme and a tri-diagonal matrix block-solver algorithm to the image, which enhances the edges and surface texture in the real image. The diffused image was then fed to a deep CNN to identify the complex and deep features for classification. We obtained high accuracy on the NUAA Photograph Impostor dataset using one of our enhanced architectures. In the second part of our research, we developed an end-to-end real-time solution for face liveness detection on static images, where instead of using a separate preprocessing step for diffusing the images, we used a combined architecture where the diffusion process and CNN were implemented in a single step. This integrated approach gave promising results with two different architectures, on the Replay-Attack and Replay-Mobile datasets. We also developed a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep CNN and Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Performance evaluation of our architecture on the Replay-Attack and Replay-Mobile datasets gave very competitive results. We performed liveness detection on video sequences using diffusion and the Two-Stream Inflated 3D ConvNet (I3D) architecture, and our experiments on the Replay-Attack and Replay-Mobile datasets gave very good results
    • …
    corecore