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ABSTRACT

On-sensor visual information inference is an emerging technology for the advance-
ment of efficient information extraction which only happens on the sensing chip of
the sensory system, providing a means of signal collection, storage, and digestion.

Vision is the primary sense of a human being, accounting for a majority of the world’s
information collection. Although numerous progresses in computer vision have been built
upon conventional camera vision systems with their associated methodologies, there
are still many constraints, such as system latency and power consumption. Latency
introduced by image digitisation, storage, and transmission is a bottleneck that inhibits
the conventional machine vision system from responding quickly to changes in their
environment. Furthermore, traditional machine vision systems with loose integration of
separate sensors and processors have high energy costs, weight and size, making them
unsuitable for portable tasks.

Considering these limitations, this thesis thus investigates a new visual information
process scheme with an emerging visual sensor: the Pixel Processor Array (PPA) by
directly processing signals where they are collected, hence avoiding the aforementioned
issues with conventional machine vision systems. In particular, this thesis establishes
mobile robotic control systems with on-sensor computed results for multiple navigation
research. Then, our work investigates novel parallel visual inference approaches, with a
particular emphasis on parallel machine vision algorithms and cutting-edge machine
learning-based algorithms. Specifically, we are motivated to perform neural networks
to extract higher-level helpful information from the analogue signals. An edge com-
puting platform can be established based on our neural network with the PPA, where
only a small quantity of extracted information is obtained, allowing for more efficient
data transmission with less bandwidth. Hence, this thesis presents a lightweight and
high-speed binary convolutional neural network on the sensor to categorise a range
of objects. With the proposed methods to implement networks, all floating-point time-
consuming multiplication operations can be replaced by efficient addition/subtraction
and bit shifting operations. The focal-plane visual inference is difficult due to hardware
resource constraints, such as limited registers and analogue noises. Hence, this work
further proposes the purely binarised convolutional neural networks with both binary
weights and activations. This thesis trains and implements neural networks with batch
normalisation and adaptive threshold to binarise activations. The binary activations on
the sensor benefit the neural network performance by alleviating the noises introduced
by using analogue signals.
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Furthermore, prior research has explored visual sensors for information collection
but not for signal processing or motion control; however, this thesis investigates the
direction of image processing on the sensing chip and servo motor control using the
sensor’s digested data directly. Thus, by merging on-sensor neural network inference
and direct servo motor control, a sensory-motor system is presented. Moreover, with our
proposed dynamic model swapping scheme, more sophisticated classification tasks than
earlier work can be achieved. Lastly, a new on-sensor neural network architecture, fully
convolutional neural networks, is presented for localisation and coarse segmentation
tasks without using the fully connected layers. To deploy this new architecture of a three-
layer neural network on the sensor, group convolution is introduced and implemented,
with both binary weights and activations, making the fully convolutional neural network
compact enough to be embedded on the sensor.
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INTRODUCTION

This chapter provides an overview of and introduction to this thesis which mainly

includes the rationale of the study, on-sensor computing, focal-plane sensor-processor

chips [8], the SCAMP vision system [9] and its PPA [10], a literature review, related

preliminary knowledge, and the study’s contributions to knowledge.

1.1 Motivation

Vision is one of the primary sensing modalities through which autonomous systems

can interpret their surroundings. However, real-time visual information processing is

complex. In great part due to the large amounts of data are involved and at the speed

required for fast reacting systems or moving robots, particularly where low mass, low

power consumption and cost of the system are of concern. The reasons for these concerns

are primarily related to the way data move through the system which is dictated by

the highly simplistic and idealised manner in which visual processing is currently

performed. In the traditional approach of visual processing, the massive amounts of

data that a sensor captures are sent verbatim from image capture to further deep

parts, such as GPU/CPUs (Figure 1.1). This only results in substantive inefficiencies as

irrelevant data for the task at hand are ferried through the entire system, which limits

the latency and power dissipation of the system. To overcome these issues, we need to

move data processing nearer the time of image capture. The role of the vision sensor

in this approach would no longer be simply to acquire the visual signal, but to digest
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it, producing meaningful, highly compressed information, instead of video frames. This

approach to efficient vision that processes on the image plane inspires our work on visual

algorithms for SCAMP Pixel Processor Arrays (PPAs, Figure 1.2).

This thesis explores the on-sensor visual signal processing with proposed machine

vision and neural network methods. Specifically, this work presents parallel machine

vision algorithms and convolutional neural network (CNN) inference on the focal plane

of an emerging and unconventional image sensor: the SCAMP Pixel Processor Array

[10–12] (Figure 1.1, 1.2) across various algorithms and applications, covering feature

extraction, robot navigation, neural network inference for classification, localisation and

segmentation in real-time.

Images 
Sequence

Camera
GPU CPU Micro-controller Servo 

Motor

SCAMP PPA

direction, speed, location of targets, etc

Figure 1.1: A comparison of the workflow between the conventional machine vision sys-
tem (top) and the SCAMP on-sensor visual computing system (bottom). With meaningful
control instructions directly computed from the SCAMP PPA, a significant reduction in
external computing units required for image processing can be seen for a vision-based
control scheme.

1.1.1 Issues with the Conventional Machine Vision Systems

As shown in Figure 1.1, a common conventional machine vision system for motion control

usually consists of a camera for image capturing, a CPU/GPU-based image processing

system for decision-making, other wired/wireless accessories for data transmission, and

actuation motors. This system is widely used in the area of machine vision and robotics

[13] based on either conventional image processing or machine learning algorithms [14].

However, this scheme is not suitable for embedded and portable devices and their appli-

cations because of its inefficiency in image capturing and transmission, its dependency
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on the CPU/GPU for both training and inference, high-power consumption (> 50 W) with

external CPU/GPU processing units, and heavy load with many components within the

machine vision system.

Although there is some work trying to implement image processing and neural

networks as close as to the sensor chip [15] or use specific acceleration module [16] on

the embedded devices to reduce the device volume, improve the efficiency, and decrease

the power consumption, the fundamental machine vision architecture remains similar to

Figure 1.1 (top). As far as we are aware, few works deploy neural networks wholly on the

sensor, which might result from the lack of suitable hardware platforms or deployment

algorithms. This thesis, however, tries to explore a novel visual information process area:

image processing directly using the analogue signals with parallelised image algorithms

and neural networks, which is to say ‘process signals where they are collected’. Thus

this thesis takes advantage of the SCAMP-5d vision system as the platform to perform

the on-sensor analogue information processing in low-level image feature extraction and

high-level neural network inference. To embed image processing and neural networks

onto the sensor and then facilitate applications on mobile platforms and portable devices,

novel image processing algorithms and methods for signal process on the emerging PPA

sensor were developed.

1.2 On-Sensor Computing

1.2.1 Background

The objective of on-sensor (same as ‘in-sensor’ as used in other papers [15, 17]) computing

is to sense, extract, analyse, store, and compute sensory signals in an in-situ manner

within sensors. Unlike the conventional digital electronics-based sensor technology

that mainly focuses on data collection with data processing externally, on-sensor signal

processing emphasises sensing, signal storage and pre-/process where the analogue

signal is collected. By the integration of the sensing, storage, and computing on the

sensing plane of the sensory chip, low-power and efficient Edge Computing is enabled

for the embedded system, which is meaningful in the area of Internet of Things (IoT)

without needing to send redundant information to the cloud, hence reduce the pressure

on central computation and data transmission bandwidth.

The idea of on-sensor visual computing is bio-inspired by the mammalian brain

and visual system, where the retina pre-processes the visual information and then
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Figure 1.2: SCAMP-5d vision system and its pixel processor array chip. SCAMP-5d con-
sists of PPA with 256×256 Processing Elements (PEs) and ARM Micro-controller where
parallel image processing is conducted on PPA by directly operating on analogue signal
(electric current from PIX, which is proportional to the light intensity) within Analogue
Register (AREG) and bit operation within in Digital Register (DREG). Hence, there is
no need for time-consuming and energy-inefficient analogue-to-digital conversion. The
PPA is designed to have highly interconnected PE and registers where information can
be shared and accessed adjacently, enabling efficient parallel machine vision computing.
ARM micro-controller is in charge of sending instructions to the PPA, receiving the pro-
cessed information from the PPA, extra post-image processing, and more fully-connected
layers for deeper CNN.

sends extracted signals to the brain through optical nerves [18]. Nowadays, this on-

sensor visual computing technology can be performed in many emerging hardware

systems based on the advanced large-scale circuit design, such as SCAMP vision system,

photodiode array [19, 20], event camera [21], and memristor [22–24]. Considering the

practicability and availability of the hardware platform, this thesis uses the SCAMP-5d

vision system as the platform to validate the proposed ideas, methods, and experiments

exploring the possibilities of on-sensor visual inference for various applications.

1.2.2 On/Near-Sensor Computing Devices

A sensor is used to collect the information relating to the environment in terms of

vision, tactics, and olfaction. and send this information to a computer processor after

digitisation. Hence, conventional sensors mainly play the role of information collectors.

4



1.2. ON-SENSOR COMPUTING

Table 1.1: List of on/near-sensor processing vision sensors.

Names resolution on/near sensor process on-sensor storage speed (FPS)
SONY IMX500 [25] 4056×3040 near-sensor (Pixel+DSP) RGB 240 (1080p)
Aistorm Mantis2 [26] 96×96 on sensor gray-scale image 50K
Eye-RIS [1] 176×144 on-sensor 7 gray + 4 binary 10K
Memristor [27] no sensing on-sensor – –
Photodiode Array[19] on-sensor on-sensor – 20M bins
SCAMP 256×256 on-sensor 7 gray + 13 binary 100K [10]
DVS [21] – on-sensor pre-processing binary events >10K

In recent years, with the development of techniques on integrated circuit design and

the edge-computing requirements, a sensor is gradually integrated with the ability of

signal processing, which is different from general-purpose computers. Before entirely

on-sensor computing, near-sensor computing was introduced to make the visual sensors

more compact by placing the processor closer to the pixels. This subsection introduces

several emerging and unconventional on/near-sensor visual computing sensors to show

the recent research development in on/near sensor computing. A comparison among

them can be seen in Table 1.1.

SONY IMX500 [25]: It is the so-called the first edge-processing intelligent vision

sensor. SONY IMX500 stacks an upper pixel layer and a lower logic layer. The pixel layer,

like normal CCD/CMOS sensors, takes charge of image capturing. The logic layer consists

of a DSP (Digital Signal Processor) and dedicated on-chip SRAM (Static Random-Access

Memory) for processing and storage, respectively. Artificial intelligence functions, such

as CNN, are embedded in the logic layer to process the pixel layer signal directly. With

this two-layer architecture of sensing and processing, only metadata results can be read

out for applications, including image classification, object detection, pose detection, and

semantic image segmentation. However, strictly speaking, SONY IMX500 is near-sensor

computing rather than on-sensor computing since the image should be captured first,

then digitised and transferred onto the DSP layer for processing.

Aistorm Mantis2 [26]: Mantis system is based on the event-driven charge domain

for analogue signal processing without digitisation and provides an ‘always on’ solution

for analogue signal processing. One of the main features claimed by Aistorm is the

noise cancelling techniques associated with the analogue signal. In addition, artificial

intelligence can also be integrated into a chip for many applications. However, the

latest Mantis product only has a resolution of 96×96, which is challenging to tasks that

normally require a higher resolution.
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Figure 1.3: Eye-RIS vision system function diagram. Figure from [1].

SCAMP Vision System: SCAMP Vision Sensors [10] (Figure 1.2) include a mas-

sively parallel Single Instruction, Multiple Data (SIMD) processor array within the

image sensor device’s pixels. In contrast to a traditional image sensor, it does not output

raw pictures but rather the results of on-sensor calculations, such as a feature map, optic

flow map, and/or address-events specifying the positions of the pixels of interest. The

sensor is programmable, allowing for the execution of a wide range of vision algorithms.

Due to the fact that early vision calculations are performed fully on-sensor, the whole

camera system operates at a fast rate and consumes little power, allowing novel em-

bedded vision applications in fields, such as robotics, virtual reality, automotive, and

surveillance. See section 1.3 for more details. Notice that other names for a similar type

of focal-plane sensor processor can be seen from [8] with names, e.g. CPA, FPSP.

SCAMP vision systems are available in a variety of configurations at the moment

(Figure 1.7). The proposed algorithms in this thesis are based on SCAMP-5, which

can also be easily extended to SCAMP-7 with the similar amount of registers and

same resolution. As for the previous version of the SCAMP, the implementation of

the algorithms should be slightly adjusted to accommodate the available hardware

resources. In addition, due to the lack of access, our proposed methods in this thesis

are not implemented on other on-sensor computing platforms yet. However, given the

similar hardware design, it is promising to deploy our algorithms on Eye-RIS using the

proper implementation techniques and libraries offered by the Eye-RIS development

environment. Because of the different hardware design of other vision sensors listed in

Table 1.1, it would be challenging to expand our methods to those systems.

Eye-RIS: [1] Eye-RIS commercial vision system on Chip (VSoC) extends CMOS

pixel functionality with image storage (7 gray-scale images and 4 binary images) and

digital/analogue signal processing ability. Specifically, a 32-bit RISC (Reduced Instruction
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Set Computer) is integrated with a vision sensor for image post-processing after the

parallel on-sensor pre-processing. The resolution of Eye-RIS vision sensor is 176×144.

Notice that Eye-RIS’s overall functional diagram (Figure 1.3) is similar to that in the

SCAMP vision system, where the counterpart of RISC is M0 micro-controller in the

SCAMP PPA. However, the most significant difference is that the Eye-RIS contains a

DICop part, a digital image coprocessor dealing with geometric transforms whose results

can be sent back to the pixel level for further processing.

Memristor-Related Devices: [27] Memristor-based hardware is a platform to de-

ploy the neural network using the programmable resistance within the integrated

circuits mimicking the synaptic connections in a human brain [22–24, 27, 28]. However,

it integrates only storage and processing function. Hence signals should be input from

sensors or other storage devices. They are thus usually integrated with other sensory

systems for information processing.

Dynamic Vision Sensor (DVS): [21] DVS produces data in the form of sparse

contrast-change events that facilitate low-latency visual processing using external com-

putational hardware [29–31]. These binary events are generated from on-sensor process-

ing according to the brightness changes. Although the pixels in a DVS have a primitive

on-sensor processing ability by binarising brightness changes, it achieves an ultra-high

speed response to the environment when working with external hardware computing

units, enabling a huge potential for robotics and computer vision in a challenging envi-

ronment [32].

Other Emerging Sensor Devices: Mennel et al. [19] use a 2D semiconductor

(WSe2) photodiode array as the vision sensor, as well as the photoresponsivity matrix

to store the connecting weights of the neural network, where both supervised and

unsupervised learning for classification is present. However, laser light and optical

systems are needed to project images onto the chip, preventing regular use. Song et
al. [20] proposed a CMOS-based PIP (Processing-in-Pixel) architecture where image

convolution (8-bit weight configuration) can be performed as the image pre-processing

before image data is readout.

1.3 The Pixel Processor Array and SCAMP Vision
System

As the name implies, the concept of Pixel Processor Array (PPA) integrates each pixel

with its own processor and then organised in a 2D array of a chip plane. The SCAMP
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vision system (Figure. 1.2) [33–37] is a representative example of the PPA which has been

invented, designed, and developed by the University of Manchester since the 1990s. The

motivation is to design a fully programmable general-purpose SIMD cellular processor

array avoiding analogue-to-digital conversion (ADC) by performing processing directly

with analogue signal for a novel world-machine interface that can sense, store, and

reason without relying on the external centralised processing units [11, 38].

In terms of hardware techniques, the core sensing and computing chip of the SCAMP

vision system, the PPA, integrates information storage on registers, image processing and

analogue information operation (arithmetic operation, shifting, et al, digital/bit operation,

and logical operations). As can be seen from Figure 1.2, as for hardware resources, for

each Processing Element (PE), there are seven ‘8-bit’ read/write AREG (A to F) which can

be used for signed value storage and computation with basic arithmetic operations, such

as addition, subtraction, division (1/2), etc. In addition, thirteen 1-bit DREG (R0 to R12)

in each PE (256×256 in total) can execute the Boolean logical operations, such as AND,

OR, XNOR, and NOT [39] with information after binary thresholding on AREG. Each

register in PE executes identical instructions synchronously, hence enabling parallel

image processing. In addition, the FLAG register can activate different areas of registers

given corresponding patterns for more flexible operation. With the neighbour access

function where each pixel is able to communicate with its four neighbours (north, west,

east, south), an efficient parallel image shifting can be implemented easily. The ARM-

based micro-controller dispatches instructions to the PPA with a Cortex M0 running at

204 MHz. The analogue operations are executed at 5 MHz and digital at 10 MHz. Other

I/O functions, such as USB2.0, GPIO, SPI, and UART, are performed on Cortex M4 Core

[39]. Figure 1.4 shows the development architecture with SCAMP vision system, where

instructions (programmed using C++ language) of the PPA are allocated by the ARM

micro-controller [39].

1.4 On-Sensor Machine Vision with the Pixel
Processor Array

This section explains the emerging notion of on-sensor computing and reviews the re-

search and applications on the machine vision using the SCAMP PPA sensor, which pro-

vides preliminary knowledge to later chapters on image processing and neural networks

with the PPA. This section focuses on reviewing the on-sensor computing algorithms

developed on the PPA, hopefully sending inspiration to other researchers and developers

8
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Figure 1.4: The SCAMP vision development platform. The processing elements execute
software programs, performing image computations on-sensor and outputting high-level
information to the rest of the system [12].

who are working with raw analogue sensory data. Figure 1.5 selects some representative

studies on the SCAMP PPA since 2006.

1.4.1 On-Sensor Analogue Computing with a PPA

On-sensor computing ([15]) is an emerging concept which means carrying out processing

on the sensing chip by directly utilising the collected analogue signal (electric current and

voltage, for example) without Analogue-Digital Conversion (ADC). On-sensor computing

is enabled by an up-to-date circuit design [15]. Nowadays, the data deluge results from

ubiquitous sensors may obscure the beneficial information, hence encouraging the edge

on-sensor computing device to extract only a small amount of useful information [41].

The PPA is such a device directly operating on the current, enabling focal-plane image

processing with the raw sensor data. Notice that on-sensor computing is not limited to

the visual information but also can be extended to other forms of a sensor system, such

as auditory, olfactory, thermal, and tactile sensor systems [15]. Figure 1.8 shows the

ability of the PPA to extract 2D localisation information with a huge superfluous data

reduction.

Efficiency and Low Latency It can be seen from Figure 1.7 that on-sensor com-
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2006

Dudek et.al.
Real-time
image
processing
(SCAMP-3)

2008

Lopez Vilarino
et. al.
Moving object
segmentation
(SCAMP-3)

2009

Lopich et. al.
Skeletonization 
Algorithm
(SCAMP-3)

2013 Carey et. al.
100,000 fps
vision sensor
(SCAMP-5)

2016 Martel et. al.
HDR
(SCAMP-5)

2017 Chen et. al.
feature
extraction
(SCAMP-5)

Greatwood
et. al.
Tracking
(SCAMP-5)

Bose et. al.
Visual Odometry
(SCAMP-5)

2018 Chen et. al.
SCAMP5d 
development
framework
(SCAMP-5)

2019 Bose et. al.
CNN (Dreg)
(SCAMP-5)

Greatwood et. al.
Drone racing (SCAMP-5)

2020
Martel et. al.
Learning
Pixel
Exposures
(SCAMP-5)

Bose et. al.
CNN (Areg)
(SCAMP-5)

Liu et. al.
High-speed
CNN
(SCAMP-5)

Liu et. al. Agile Navigation (SCAMP-5)

2021

Liu et. al. FCN (SCAMP-5) 

Castillo et. al. Mapping & Localisation 

Martel et. al.
Depth
estimation
(SCAMP-5)

Murai et. al. BIT-VO
(SCAMP-5)

Stow et. al. Cain (Automatic Code Generation) (SCAMP-5) 

Liu et. al. sensory-motor (SCAMP-5)

Debrunner et al.
(SCAMP-5)
AUKE (Automatic Kernel
Code Generation)

Figure 1.5: Milestones SCAMP PPA-based work and key SCAMP PPA studies and
applications during last 15 years.
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Figure 1.6: The development process of SCAMP series vision system from the University
of Manchester. This review mainly focuses on the SCAMP-3 and SCAMP-5 vision system
because their higher resolution and performance would enable more research and appli-
cations. Source: Piotr Dudek’s talk in Second International Workshop on Event-based
Vision and Smart Cameras (CVPRW) [40].

Pixel Processor Array

Extracted 
data

Photosensitive element

Post-
processing 

units

Analogue-
Digital
Conversion
(ADC)

image processing units

Extracted 
data

Load Post-
processing 

units

(a) in-sensor machine vision computing architecture

(b) conventional machine vision computing architecture

Figure 1.7: Machine vision computing architecture with a SCAMP PPA and a conven-
tional processing device. (a): analogue signal can be directly utilised for machine vision
task on the SCAMP PPA. (b): As for the image processing with conventional vision device,
light density needs to be firstly read out and converted to digital image which would
then be loaded into processing units (GPU/CPU) for useful information extraction.
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Figure 1.8: The information extraction capabilities with ×32,000 data reduction and a
low operation power on PPA using the proposed the FCN for 2D localisation.

puting skips signal digitisation, transmission, and storage process, hence enabling

high-speed image processing [10] and CNN inference with low latency and energy cost,

which can be integrated with agile, mobile robot platforms [42–45]. In addition, the

de-centralised PE distribution and SIMD (single instruction, multiple data) on PEs allow

efficient signal processing.

Low Power Consumption According to Figure 1.1 and Figure 1.7, there is no

external processing units or data process needed. Hence the power consumption can be

saved to a large degree. For example, the maximum power cost of the SCAMP-3 vision

system for a complex object tracking and counting system is 29 mW [46]. This feature

makes SCAMP suitable for mobile platforms, usually with short-battery life.

Data Security A unique but non-negligible feature of on-sensor analogue computing

is its inherent data security resulting from the direct processing with raw sensory data

without recording, transmission, or storage onto external units. Usually, the only output

after analogue computing is the high-level target information which is barely reversible

to get the original data. Hence, privacy can be strictly protected without source image

data leaving the focal plane.

1.4.2 On-Sensor Machine Vision with the SCAMP PPA

The algorithms of SCAMP PPA proposed earlier mainly focus on low-level image process-

ing and/or machine vision methods to enhance image quality and extract basic textures

with combinations of inherent built-in functions based on SCAMP-3 and SCAMP-5 with

a PE resolution of 128×128 and 256×256, respectively (Figure 1.6). It should be noticed

that these developed image processing methods are deeply related to the hardware

12
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Table 1.2: List of main studies with the PPA.

Tasks Study Applications
background extraction [47, 48] segmentation
contour extraction [49–51] object detection
skeleton extraction [52–54] shape simplification
HDR [49, 55–57] image enhancement
feature corner/edge extraction [58] edge/feature based VO [59, 60]
target detection/localisation [10, 61, 62] high-speed object tracking
neural network [63–68], high-level inference
depth estimation [67, 69–71] robot navigation
visual odometry [59, 60] robot navigation [43, 44]
automatic code generation [72, 73] neural network inference, face detection

Figure 1.9: Examples of two images with(left)/without(right) HDR algorithms towards
the same scene in an outdoor environment.

design of the SCAMP vision system. For example, common methods used in this period

are cellular-based algorithms, including cellular neural networks, because the SCAMP

PPA itself is a cellular processor array.

1.4.2.1 Image Enhancement

Image enhancement comes along with the imaging process on the PPA compared to the

conventional image enhancement which only happens after the image data is captured.

Later, other methods are exploited on different image processing tasks. For example,

Wang et al. [74] proposed a simple coarse grain mapping method to process bigger images

than the PPA resolution itself by temporarily storing sub-images into different registers.

HDR (Figure 1.9) is a basic low-level image pre-processing method to obtain rich

image information even facing extreme lighting conditions, such as the mixture of dim

13
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Figure 1.10: Examples of image contour and skeleton extraction using SCAMP PPA. Left:
Extracted Retinal Vascular Tree, Figure from [51]. Right: Extracted skeletons, Figure
from [48].

and strong light intensity. However, conventional image sensors rely on either a global

or rolling shutter to form an image, which limits the efficiency of HDR imaging [57, 75].

Back in 2006, Dudek [49] proposed sensor-level adaptive sensing and image processing

with SCAMP-3 [46, 76], where different exposure settings are combined for an image

with a high dynamic range. Martel et al. [56] make significant contributions in this area

using the PPA. The first HDR image generation on-sensor is from [55] where pixel-wise

exposure can be controlled to generate HDR images, followed by automotive applications

[77]. Furthermore, Bose et al., [59] take advantage of the HDR image to extract edges

as the robust input information for visual odometry estimation. However, the usage of

iterative exposure for different regions of the image slows down the image pre-processing.

To speed up the HDR imaging, Martel et al. [57] propose the learning shutter function

for PEs to expose each pixel independently with an end-to-end training strategy. They

obtain an exposure function by training a U-Net neural network and compiling these

trained functions on the sensor for inference.

1.4.2.2 Contour and Skeleton Extraction

Contour is an important feature for objects within an image, which can help to identify

different entities. Contour extraction algorithms were proposed based on a pixel-level

snake with very low latency [50]. In 2007, Alonso-Montes et al. proposed the on-sensor

automatic retinal vessel tree extraction based on the Cellular Neural Networks [51].

The shared key methods for these work [49–51] is to extract contour iteratively based

on the active contour model and Cellular Neural Networks. In 2008, [78] proposed an

image pre-processing method based on the cellular automata for a robotic scenario.

The skeleton within a binary image shows the object size, position, and simplified

14
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Figure 1.11: Top: The integration of a quadrotor and SCAMP-5 vision system for object
tracking. Bottom: a diagram of system hardware (Figure from [42]).

shape. Fast image skeletonization [52] is implemented by [53] based on the wave-trigger

propagation/collision. Examples of image contour and skeleton extraction based on the

SCAMP PPA can be seen from Figure 1.10.

1.4.2.3 Other Feature Extraction Methods

Other image processing methods, such as background extraction, is exploited by Wang

et al. [47, 48]. For higher-level feature extraction, the edge feature can be obtained by

deploying Sobel kernel filters or Laplacian filters, which are used in the later work for

focal plane visual odometry [59] and neural networks [67]. As for other features, such as

corner points extraction, Chen [58] utilised the DREG for corner points extraction based

on the FAST16 algorithm, which is used in later work on visual odometry [60]. Based

on the above-mentioned low- and mid-level image processing methods, researchers are

motivated to exploit more general high-level image processing with up-to-date techniques

by taking advantage of the earlier milestone work and the state-of-art progress, such as

neural networks.
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Figure 1.12: Quadrotor setup for the drone racing with a front-facing SCAMP. (Figure
from [2])

1.4.3 On-Sensor Visual Feature Extraction for Robots

Two major constraints that preclude mobile robots from long-term and diverse applica-

tions are their short battery life and limited load. Emerging sensors may hold the key

to solving this challenge due to their unique low-level hardware design. The portable

SCAMP-5d vision system (171g including the lens) can perform spatial AI processing

on-sensor, reducing data transfer pressure between sensing and the main processor,

hence increasing overall processing efficiency while maintaining low power consumption

[79].

1.4.3.1 SCAMP PPA on a Quadrocopter

The SCAMP-5d vision system has been integrated into quadrocopter systems for target

tracking, visual odometry and racing. Greatwood et al. perform various experiments by

integrating a SCAMP-5d vision system and a quadrotor [2, 42, 43]. Figure 1.11 shows a

flight control system in terms of hardware integration and control block diagram, where

a pre-set target can be tracked with extracted useful information on sensor even facing

short periods of target tracking loss [42]. In this application, the direct on-sensor target

position extraction releases the pressure of image capturing, transmission and processing

for the whole system. Later, Greatwood et al. proposed the on-sensor visual odometry

using perspective correction on an agile micro air vehicle based on a similar hardware

platform. After that, a drone racing 1.12 within a pre-set environment is demonstrated

by taking advantage of the efficient image processing ability on the PPA [2], where the

target position can be estimated at around 500 FPS. McConville et al. [44] apply the

on-sensor visual odometry developed by Bose et al. [59] on an unmanned aerial system

16
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a b c
Figure 1.13: Tracking pattern for the drone and ground vehicle. a) Tracking a ground
vehicle [42], b) Tracking a moving target while performing a visual odometry [44], c)
Tracking a fixed pattern with a mobile ground vehicle [45].

for real-time control purposes.

1.4.3.2 SCAMP PPA for Mobile Robot Reactive Navigation

In terms of navigation with a SCAMP PPA, Liu et al. [45] proposed reactive agile

navigation on a non-holonomic ground vehicle using PPA by robustly recognising pre-set

patterns out of complex environment background. Although very efficient and accurate,

using a pre-set fixed pattern for target tracking is difficult to expand in the generalised

environment where there are usually random features. With this in mind, Chen et al.
[67] use in-focal plane feature extraction from the environment to perform a recurrent

neural network on the M4 micro-controller using this extracted information to estimate

the proximity to the ambient objects for obstacle avoidance purposes. Similar pattern of

concentric circles was employed in [42, 44, 45] to effectively extract the dot centre in the

circles out of the complex environment.

1.4.3.3 On-Sensor Computing for Mapping and Localisation

Mapping and localisation are useful techniques for robot navigation. On-sensor mapping

and localisation is a lightweight and low power cost solution for mobile platforms. Castillo-

Elizalde et al. [7] for the first time proposed 1-D mapping and localisation by extracting

features from a sequence of images as the database first and then localising the incoming

image by comparing it with the database and the prior knowledge of the motion model.

In their work, two methods were utilised to downsample the original images: direct

resizing and local binary pattern to apply them to different localisation situations.
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1.4.3.4 Pose and Depth Estimation

For decades, egocentric state estimation has been studied using conventional cameras,

emerging DVS devices, and CPU/GPUs. In recent years, there have been some studies

utilising SCAMP PPA. For example, Bose et al. [59] for the first time, proposed in-sensor

4 Degree-of-Freedom (DoF) visual odometry wholly on the sensor by mapping the real-

time input image with the previous keyframe through image scaling, shifting, rotation

and alignment. They demonstrate the visual odometry estimation at over 1000 Hz with

around 2 W power cost. Debrunner et al. [80] use the SCAMP to estimate its global

motion with the tiling method at 60 FPS with a low power cost of 100.2 mW. After that,

Murai [60] proposed 6 DoF visual odometry based on edge and corner points extracted

on sensor and post-processing on a computer with a frame rate of 300 FPS. They take

advantage of feature edge, and corner extraction methods [58] and calculate the visual

odometry off sensor using a similar strategy with the standard Visual Odometry (VO)

systems [81]. Although they combine on-sensor feature extraction and ready-to-use VO

computing method off the sensor, it is promising to be a direction in the future to combine

the efficient image pre-processing on-sensor and high-volume post-processing with a

powerful CPU/GPU, especially when facing storage shortage and general calculation

resources for the large-scale computing.

In addition, the SCAMP vision system can also work with other accessories to

share the computation burden for more applications. For example, Martel et al. [69–71]

mounted a controllable liquid lens to generate a semi-dense map in real-time, which is

the first work on depth estimation to take advantage of external physical accessories.

With this focus-tunable lens, a vast amount of computation pressure on the sensor is re-

lieved. This on-sensor feature extraction and post-image processing on controller scheme

are also widely used in many different applications [60, 67], where the task requirement

of storage and computing resources is out of the capacity of the PPA.

1.4.4 On-Sensor Cellular Automata

The PPA itself is a cellular neural network architecture where each ‘cell’ is closely

connected with its four neighbours, hence information can be shared efficiently. With this

in mind, the author is inspired to explore the possibility to perform cellular behaviour,

such as Conway’s game of life (demonstration shown from1) and elementary cellular

1https://youtu.be/X_t4c3f-T4s
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Figure 1.14: Our demonstration of elementary cellular automata with Rule 90 on the
SCAMP PPA. This pattern is generated from top to bottom.

automata (demonstration Rule 90 seen from 2) based on the theory of cellular automata

[82]. With the rule of the game of life, all ‘cells’ can update their states (alive or dead)

on-sensor as fast as 53 microseconds for each iteration based on the bit-operation with

DREG. As can be seen from Figure 1.14, a Sierpiński triangle is efficiently generated

based on bit operation on the sensor with 730 microseconds of 255 iterations to fill the

whole chip. In the future, more image processing-related work can be potentially be

explored as long as proper update rules and associated steps are trained with neural

network methods [83, 84].

1.5 On-Sensor Neural Networks with the Pixel
Processor Array

1.5.1 Neural Network Compression for the Embedded Devices

Different from deep neural networks with millions of float-point weights and biases

on the state-of-the-art CPU/GPU, the neural networks for embedded devices should be

light-weighted in terms of compression, simplification and quantization, considering the

stretched computing and storage resources as illustrated in Section 1.3. This section

illustrates the prevalent neural network compression methods with specific hardware

platforms.

2https://youtu.be/HgPvoK5EJ_s
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1.5.1.1 Network Compression Method

Nowadays, many types of neural network compression methods are proposed to acceler-

ate the inference speed and reduce the storage requirement of the deep neural networks.

In addition, the deployment range of neural network can be expanded after compres-

sion from general-purpose GPU/CPU to specific embedded devices. These compression

methods mainly consist of parameter quantisation, pruning, low-rank factorisation, and

knowledge distillation [85].

Parameter Quantisation and Binarisation: The neural network quantization

method converts 32-bit floating-point weights and/or activations into lower-bit parame-

ters, such as 16-bit [86], 8-bit [87], 2-bit (ternary) [88] , and even 1-bit (binary) [89–91]

during training process. In the extreme case of neural network binarisation with an idea

of learning the binary neuron connections and activations during network training. The

typical and popular ones include BinaryConnect [89], XNOR-Net [91], BinaryNet [90]

and Ternary Weight Networks [88]. Although the model size and inference efficiency

can be significantly optimised for the embedded devices, quantisation’s disadvantage,

especially for binarisation, is the accuracy gap compared to the normal deep networks.

A trade-off should be made to achieve a good balance between accuracy loss and model

deployment performance.

Pruning: Network pruning [92, 93] reduces the storage requirement of deep neural

networks by getting rid of unimportant and redundant connections among neurons. In

addition, methods using sparsity regularisation is another way to directly train networks

with sparse neuron connections [94]. However, network pruning with regularisation

usually more iterations to train to converge with good high-parameter tuning. In addition,

neural network pruning decreases the size of network model, but it does not boost the

inference efficiency [85].

Low-Rank Factorisation: The idea of low-rank factorisation is to approximate

the 3D tensor in convolutional layers and fully-connected layers with the decomposed

low-rank tensors [95]. In a neural network, many filters that are low-rank matrix which

contains redundant information, hence these filters can be decomposed into two matrix

with a smaller amount of parameters. However, it is usually computationally intensive

to decompose matrix during the training process [85].

Knowledge Distillation: Knowledge distillation is another representative compres-

sion technique for transferring learned knowledge from a large neural network to a

smaller model [96]. To be more precise, a larger capacity ‘teacher’ neural network can

be distilled to train a compact ‘student’ neural network using its more comprehensive
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output information (soft target rather than hard target, for example) [97].

In conclusion, different network compression techniques may be more appropriate

for specific activities on specific deployment platforms. Given the SCAMP vision system’s

limited storage capacity and the effectiveness of employing DREG to store binary weights,

this thesis makes use of binary neural networks for inference.

1.6 Literature Review

This section reviews related work on robotic reactive navigation and neural networks

with the emerging visual sensors. We introduced our proposed methods by analysing the

connection and difference between existing literature and our work.

1.6.1 Robotic Reactive Navigation

Currently, there are lots of studies and applications related to reactive navigation.

Tobaruela et al. made a thorough analysis on robot navigation by dividing the robot

navigation into three different paradigms: deliberative, reactive and hybrid. This clas-

sification was based on how the robot processes its sensory information [98]. Then, the

reactive paradigm is further divided into the non-purely reactive navigation and purely

reactive navigation. The main difference between them is the use of the short memory, in

which the latter paradigm only uses the real-time sensor readings, while the non-purely

reactive relies on both the current and previous data collected by the sensor. And the

deliberative navigation involves the deep sensory information process and follows a

scheme of sense-plan-act. However, the reactive navigation paradigm relies on the idea of

sense-act. Li et al. [99] proposed a visual landmark-recognition system based on reactive

navigation technique and developed a fully autonomous mobile robot. Their mobile robot

system can generate corresponding motions according to different landmarks. Muhannad

et al. [100] developed a novel real-time collision avoidance method for mobile robots.

Reactive navigation is employed in their application for motion planning and mobile

robot control, which is able to detect changes in the environment and dynamically re-

routing itself. Brooks [101] claim "the world itself is the best model", which means that

all required information and intelligence can originate from the world itself and it is not

necessary to build a model of the environment. As a type of reactive navigation scheme,

the Braitenberg vehicle [3] is a classic and straightforward task-oriented mobile robot

(Figure 1.15) and it is one of the earliest reactive navigation applications. It features
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Figure 1.15: The smelling Braitenberg vehicle [3].

the direct link between the wheel motors and the smelling sensor, and the Braitenberg

vehicle can reach the odour source without environmental information. In 2011, Petres

et al. [102] applied the reactive navigation technique on their autonomous sailboat and

used the potential field to plan the path. There are studies on landmark and object

tracking using reactive navigation methods. For example, Bryan et al. [103] utilised the

reactive navigation method to track targets and avoid obstacles with a UAV. In their

scenario, the visual information extracted from the camera is used to guide the UAV to

track an object in 3D space and plan the trajectory in real-time. Although it is a good

demonstration of reactive navigation, the UAV in their scenario has to fly slowly to keep

track of the target.

Nowadays, one of the common alternatives to traditional cameras is the event camera,

such as the Dynamic Vision Sensor (DVS) (Figure 1.16, 1.17). Different from the conven-

tional frame-based visual sensor where the values of pixels are sampled repetitively even

if the images remain unchanged, the DVS is only sensitive to changes in intensity, and

each pixel responds asynchronously according to the change of its pixel value [104]. A

DVS address event is emitted when there is a luminance change that exceeds the given

threshold. The DVS has shown its performance in a variety of reactive robot applications.

[105] extracted visual features such as lines from the artifical environment to navigate a

driverless car. Mueggler et al. proposed an evasive manoeuvre with quadrotors using the

DVS [106]. Collision avoidance of fast-moving objects is achieved in this project. In terms

of robot navigation, Maqueda et al. utilised deep learning for predicting the steering

on the self-driving cars and showed a better steering performance than using standard
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Figure 1.16: DVS chip micrograph. Pic-
ture from [4]

Figure 1.17: DVS128 sensor. Picture
from [5]

Figure 1.18: The SpiNNaker robotic System, consisting of two DVS cameras [6].

cameras [107]. Galluppi et al. developed an autonomous mobile robotic platform using

two DVS sensors and a SpiNNaker computing system [6] (Figure 1.18), demonstrating a

reactive behaviour with a speed less than 0.5 m/s.

However, the DVS-based vision system still needs to transfer image data to a separate

computer to deal with image processing, such as reconstructing a whole image [108].

On the contrary, the Pixel Processor Array is able to perform all image processing on

the image plane and there is no need to transfer images. Even though a DVS [105] is

able to realise low-latency image processing and reduce redundant information transfer
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compared to a traditional frame-based camera, it is only sensitive to light change, thus it

can not be used in static scenes.

Different from these reactive navigation mentioned above, this work, for the first

time, uses the SCAMP PPA on the non-holonomic mobile platform to perform a reactive

behaviour by carrying out associated actions after recognising the specific patterns (Fig-

ure 2.7) that achieves a faster navigation performance compared to these unconventional

sensors.

1.6.2 Research Progress on Neural Networks with a SCAMP
PPA

Research on neural network inference with the SCAMP PPA has been active in recent

years. Table 1.3 lists the main research work in the area of neural networks, which covers

fully convolutional neural networks and binary convolutional neural networks using

DREG or AREG with various datasets and applications. High-level image processing,

such as object classification, localisation and segmentation on sensor, is achieved with

the neural network. The deployment of neural network onto the PPA is a breakthrough

since it enables the PPA open to more possibilities with universal methods, which is

unlike the conventional development methods with some combinations of low-level image

processing methods for specific tasks. With the use of CNN, several types of tasks, such as

classification, regression, localisation, and segmentation, can be feasible, hence enabling

more applications. Table 1.3 shows the neural network-related work based on the SCAMP

PPA vision system.

The research on CNN implementation and inference within PPA is pioneered by Bose

et al. [110] where a CNN with a single convolutional layer performed upon the PPA array

and a fully-connected layer upon its controller chip (M0). They performed 16-bit image

convolution operations using 4×4 DREG "Super Pixel" blocks and demonstrated live digit

classification based on MNIST dataset at around 200 FPS. In their work, the ternary {-1,

0, 1} kernel filters are stored on the flash (M4) of the PPA system, and are effectively

encoded in the instructions/operation sent to the PPA array, performing convolutions

sequentially. Furthermore, a mobile car localisation task is then explored using synthetic

datasets, where the pre-processed edge information is mainly the clues for network

inference. Notice that the localisation is realised by classifying the car’s position along

the x and y axis, respectively. To fully take advantage of PPA’s parallel computing

characteristics and further improve the CNN inference efficiency, Bose et al. [64], for
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CHAPTER 1. INTRODUCTION

the first time, proposed the idea of in-pixel weight storage, where the network’s weights

are directly stored within the registers of the PPA’s PEs. This enabled both parallel

computation of multiple convolutions, and implementation of a fully connected layer

upon the PPA array, resulting in a ×22 faster CNN inference (4464 FPS) on the same

digit recognition task. Based on these two works, Chapter 3 of this thesis further [65]

proposes a high-speed lightweight neural network using BinaryConnect [89] with a new

method for computing convolutions upon the PPA, allowing for varying convolutional

strides. This work demonstrated four different classification tasks with frame rates

ranging from 2,000 to 17,500 per second with different stride setups. Later, based on this

network, a direct servo control using CNN results [111] and a simulated robot tracking

from a drone [112] with on-sensor CNN computing results are exploited. In addtion,

the AnalogNet2 [68, 113] extends the earlier work in [114], implementing a CNN which

reaches 96.9% accuracy on the MNIST dataset at a speed of 2260 fps. However, their

method requires all fully connected layers to be performed externally to the PPA array

with only 3 convolutional kernel filters implemented in sequence on the PPA as the first

layer. More kernel filters would significantly slow down the inference process. Notice

that, in our work [67], a recurrent neural network is implemented on the micro-controller

with features extracted on sensor. In this manner, the fully-connected layer of a neural

network can be deployed similar with conventional embedded device. It is notable that

Martel et al. trained a neural network of exposure time for each individual pixel off the

sensor for HDR imaging and video compressive sensing [57].

Furthermore, this thesis (Chapter 4) [109] binarized CNN with batch norm both

for classification and coarse segmentation. To deal with the classifications application

with more labels and more segmentation tasks, we propose the idea of dynamic model

swapping by uploading weights of trained models in sequence or according to the last

inference result, targeting multiple sub-tasks decomposed from a more sophisticated

task. We then demonstrate a servo control directly using the CNN inference results

(Chapter 4) [111], which potentially indicates that motion control platforms, such as a

ground vehicle or drones can have a light-weight servo control system without using

external control units in the future.

Notice that the preceding neural network-related work mainly focuses on classifi-

cation or classification-based localisation, both of which require fully connected layers.

However, the parameters in fully-connected layers are typically substantially larger than

those in convolutional layers due to the dense connections of each individual neuron.

Thus, this thesis developed a fully-convolutional neural network (FCN) [66], not only
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presenting on-sensor image segmentation and localisation but also eliminating dense

layers for a smaller memory footprint (Chapter 5).

1.7 Thesis Outline, Contributions and Publications

1.7.1 Thesis Outline

The outline of the thesis is as follows:

Chapter 1 provides the motivation for the study, the introduction to the study, and

preliminary knowledge of on-sensor computer vision, neural networks, the PPA and

SCAMP vision system to this thesis.

Chapter 2 illustrates the baseline parallel computer vision algorithms for the SCAMP

PPA and applications based on the publications of [7, 45, 67], where the author made

contributions. This chapter mainly covers three types of robot navigation tasks: reactive

navigation, proximity estimation, and 1-D localisation based on the proposed image pro-

cessing algorithms on the sensor. Additionally, we detail these parallel image processing

algorithms on the SCAMP PPA and demonstrate their applications to mobile robots.

Chapter 3, 4, and 5 are the on-sensor neural network sections for high-level image

inference. Chapter 3 illustrates the on-sensor neural network with binary weights based

on the publication [65], where a new parallel and efficient method to implement the

image convolution is proposed. With this new method, the convolution stride can be

flexibly tuned for a range of tasks requiring a different level of speed. In addition, a

direct servo control system with instructions from on-sensor neural network inference is

demonstrated based on the proposed neural network with the publication of [111].

The binary neural network is then further explored, culminating in Chapter 4 ex-

hibiting a fully-binarised CNN with binary weights and activations based on work

[109]. A new neural network architecture is proposed to implement a more sophisticated

neural network than previously possible. Based on the binarised activations, a new

fully-connected layer is proposed by counting the number of bits, which is more accurate

than earlier work.

Chapter 5 introduces a new fully convolutional neural network architecture based

on the binarized neural network and then illustrates the implementation of different

convolutional layers. Finally, applications such as coarse segmentation and localisation

based on the paper [66] are demonstrated.
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Chapter 6 summarises this thesis and presents the limitations, discussions and

future directions.

Lastly, based on the proposed new binarized network, Chapter A develops a semi-

simulated platform with the publication of [112] which establishes the communication

between a real SCAMP vision system with the robot simulator in order to investigate and

evaluate the robot-related applications. In addition, other useful tools and algorithms for

SCAMP PPA are illustrated in Chapter A.

1.7.2 Contributions

The main and additional contributions of this work can be summarised as follows:

Main contributions:

1. Machine Vision Algorithms for Agile Reactive Navigation: We present a

robot reactive navigation scheme with on-sensor computing to drive a ground

vehicle run through a pre-set course of gates in a cluttered environment. No

external hardware is needed to perform image processing to detect the target as

conventional computer vision system does: perception and processing are performed

on the sensor with low energy cost and high processing efficiency. The on-sensor

image processing algorithms can run up to 200 fps indoors, enabling an average

navigation speed of 2.2 m/s of gate passing through and 3.88 m/s for reactive

obstacle avoidance.

2. On-sensor Binary CNN for High-speed Classification: We present a new im-

age convolution implementation method for the PPA, incorporating variable convo-

lution stride to allow for more efficient CNN inference, increasing the inference

speed across various tasks depending upon the task’s level of complexity. This study

demonstrates that SCAMP-5 CNN can be implemented across a broader and more

complex set of tasks, which had predominately focused upon only demonstrating

MNIST classification. We demonstrate real-time hand gesture recognition, plank-

ton classification from the National Data Science Bowl plankton dataset along with

digit recognition. PPA inference speed for our approach is extremely fast across all

tasks, ranging from 2000 to 17500 fps.

3. Binarized CNN with Batchnorm: We propose, train, and demonstrate our exper-

iment using a completely binarized network (both binary weights and activations)
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specifically for PPAs. This approach of binary activations addresses the accumu-

lation of analogue computing errors and value saturation after each layer, thus

enabling deeper networks while preserving performance.

4. Binarized FCN for Localisation and Segmentation: We present the first im-

plementation of an FCN architecture for PPAs. Our approach uses group con-

volutional layers and stores hundreds of convolutional filter weights upon the

focal plane of the PPA. Unlike earlier work, we apply batch normalisation during

training and utilise this to learn bias parameters applied during inference on the

PPA device. We provide the first demonstration of object localisation and coarse

segmentation tasks on a PPA, with previous works being only concerned with

classification tasks.

5. CNN Tree Architecture with Multiple Networks for Many Labels on-Sensor:
With the binary neuron activations as inputs, the linear layers can be implemented

by simply counting the bit number rather than using an approximate method in ear-

lier work [65]. We propose a CNN tree architecture where multiple neural networks

can be composed for more sophisticated inference tasks by dynamically uploading

neural network models onto the sensor. We explore more complicated tasks on the

PPA across 37 English letter classification and provide the first demonstration of

object localisation and coarse segmentation tasks on a PPA, with previous works

only concerned with classification tasks.

Additional contributions:

1. Semi-simulated Platform and Direct Servo Control with PPA: We devel-

oped a simulated environment and datasets (available from github3) to support

PPA developers and researchers for idea validation off and on-sensor. In addition,

we demonstrate direct visual sensory-motor control using high-speed CNN infer-

ence via a SCAMP-5 Pixel Processor Array (PPA). A binary Convolutional Neural

Network (CNN) is used for classic rock, paper, scissors classification problems at

over 8000 FPS. Control instructions are directly sent to a servo motor from the

PPA according to the CNN’s classification result without any other intermediate

hardware.

2. Collaboration work: Proximity Estimation [115] and on-sensor Mapping
& Localisation [7]: We propose to combine the on-sensor edge, blob, corner points,

3https://github.com/yananliusdu/scamp5d_interface
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motion parallax extraction and send extracted features into a recurrent neural

network for proximity estimation with an obstacle avoidance application on a

mobile ground vehicle. In addition, we present the 1-D on-sensor mapping and

localisation with a PPA. By comparing input images and database on the sensor

and the PPA motion model, the on-sensor algorithms run up to 300 Hz on large

public datasets.

1.7.3 List of Publications, Submissions, and Press

The work illustrated within this thesis has been presented in the following peer-reviewed

publications4, under-reviewing submissions, pre-print, and manuscripts. In addition,

some of our research outputs can also be seen from the press.

Publications

1. Yanan Liu, Laurie Bose, Colin Greatwood, Jianing Chen, Rui Fan, Piotr Dudek,

Thomas Richardson, Steven J. Carey, and Walterio Mayol-Cuevas, "Agile reactive

navigation for a non-holonomic mobile robot using a pixel processor array", IET
Image Processing, 2021. (Chapter 2)

2. Yanan Liu, Jianing Chen, Laurie Bose, Piotr Dudek, and Walterio Mayol-Cuevas,

“Direct servo control from in-sensorcnn inference with a pixel processor array,”

in 2021 IEEE International Conference on Robotics and Automation Workshop
(ICRA-W): On and Near-sensor Vision Processing, from Photons to Applications,
Oral presentation, IEEE, 2021. (Chapter 3)

3. Yanan Liu, Jianing Chen, Laurie Bose, Piotr Dudek, and Walterio Mayol-Cuevas,

“Bringing a robot simulator to the Scamp vision system,” in 2021 IEEE Inter-
national Conference on Robotics and Automation Workshop (ICRA-W): On and
Near-sensor Vision Processing, from Photons to Applications, Best poster/video,
IEEE, 2021. (Chapter Appendix)

4. Hector Castillo-Elizadle, Yanan Liu, Laurie Bose, and Walterio Mayol-Cuevas,

“Weighted node mapping and localisation on a pixel processor array,” in 2021
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021.

(Chapter 2, in this paper, the author acts as a co-supervisor of Hector’s MSC project

and contributes to LBP-based image feature extraction & localisation methods,

and parts of experiment.)
4https://scholar.google.com.hk/citations?user=7otPL_QAAAAJ&hl=en
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5. Yanan Liu, Laurie Bose, Jianing Chen, Steven J. Carey, Piotr Dudek, and Walterio

Mayol-Cuevas, “High-speed light-weightcnn inference via strided convolutions on

a pixel processor array,” The 31st British Machine Vision Conference (BMVC) : 7th -
10th September 2020 (Chapter 3)

6. Jianing Chen, Yanan Liu, Steven J. Carey, and Piotr Dudek, “Proximity estimation

using vision features computed on sensor,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2689–2695, IEEE, 2020. (Chapter 2, in

this paper, the author contributes to two types of feature extractions and parts of

the free-roaming experiments.)

Submissions and Manuscripts

1. Piotr Dudek, Thomas Richardson, Laurie Bose, Steven J. Carey, Jianing Chen,

Colin Greatwood, Yanan Liu, and Walterio Mayol-Cuevas, “Pixel processor array

for sensor-level computer vision on agile robots,” Science Robotics, under review. (In

this paper, the author contributes to the robot agile reactive navigation, high-speed

neural network inference, and SCAMP PPA-based sensory-motor systems.)

2. Yanan Liu, Laurie Bose, Jianing Chen, Rui Fan, Pitor Dudek, and Walterio Mayol-

Cuevas, “On-Sensor Binarized CNN Inference with Dynamic Model Swapping in

Pixel Processor Arrays,” Frontiers on Neuroscience, 2022, under review. (Chapter 4)

3. Yanan Liu, and Walterio Mayol-Cuevas, “On-sensor machine vision with a pixel

processor array: a review,” 2022, under submission. (Chapter 1)

Pre-print

1. Wen Fan, Yanan Liu, Yifan Xing, “Fully-simulated Integration of Scamp5d Vision

System and Robot Simulator,” 2021, arXiv preprint arXiv:2110.06386. (Chapter

Appendix, in this work, the author contributes to the architecture of the fully-

simulated system framework and Robot simulator interface to SCAMP simulator.)

2. Yanan Liu, Laurie Bose, Lu Yao, Pitor Dudek, and Walterio Mayol-Cuevas, “On-

sensor binarized fully convolutional neural network with a pixel processor array,”

arXiv preprint arXiv:2202.00836 (Chapter 5)

In the Press
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1. University of Bristol, University of Manchester, News and Features: Cameras
that can learn, 13 October 20205,6

2. University of Bristol, News and Features: Bristol researchers create a camera
that knows exactly where it is, 1 June 20217

3. Vision spectra: Camera-processor Chip Brings Computer Vision Closer to
Natural Perception, January 20218

Experimental Videos
All the experimental videos demonstrated in this thesis can be seen from https:

//www.youtube.com/channel/UCEawLcWSXtrxeg8jDamRApw/videos

5https://www.bristol.ac.uk/news/2020/october/scamp.html
6https://www.manchester.ac.uk/discover/news/cameras-that-can-learn/
7https://www.bristol.ac.uk/news/2021/june/camera-maps-where-it--s.html
8https://www.photonics.com/Articles/SCAMP_Brings_Computer_Vision_Closer_to_

Natural/p22/vo209/i1317/a66564
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ON-SENSOR BASELINE PARALLEL MACHINE VISION

ALGORITHMS

Conventional machine vision systems usually consist of independent hardware in charge

of sensing, storage, transmission, processing, and execution, respectively, to meet the

needs of interchangeability. The visual sensors in a conventional machine vision system

are usually used to ‘duplicate’ the world as much as possible and deliver these raw data

to processors for later processing, leading to increased latency, power consumption, and

system complexity. With these issues in mind, this chapter explores a new machine

vision system and its associated parallel algorithms by introducing SCAMP PPA, which

features low power consumption and latency by incorporating sensing, storage, and

computing. The SCAMP vision system has been developed and studied in domains

including image processing, computer vision, robotics, neural networks for around 20

years. This is because, PPA, compared to other existing conventional computer vision

systems, facilitates vision systems with on-sensor image processing hence reducing

system complexity, lowering power consumption, and boosting information processing

efficiency. There is a rich history of research on machine vision systems in hardware

platforms and their associated algorithms as introduced in the last chapter.
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2.1 Introduction

This chapter demonstrates the adaptability of the machine vision algorithms created

in this thesis for a variety of targets by exhibiting applications throughout robot agile,

reactive navigation, obstacle avoidance, and one-dimensional mapping and localisation.

First of all, the high-speed pattern recognition on the sensor is developed and then

integrated with a non-holonomic RC mobile robot system. With this hardware platform,

the RC car can be instructed by on-sensor processed results to run through ‘gates’ at high

speed. Then, to further explore the image processing on more general tasks, we extract

common image features, such as edges, corner points and blobs, to a recurrent neural

network to estimate the proximity from the environment, which enables an RC car to

navigate indoors without collisions to the ambient objects. Finally, a one-dimensional

mapping and localisation system on the sensor is presented to deal with the general

robot localisation problem. This chapter shows the various parallel image processing

algorithms across different applications. Both the proposed on-sensor image parallel

processing algorithms and applications prove the effectiveness of the SCAMP PPA on

machine vision tasks.

2.2 Machine Vision for Agile Robot Reactive
Navigation

This section is mainly based on the publication of [45], presenting an agile reactive navi-

gation strategy to drive a non-holonomic ground vehicle around a pre-set course of ‘gates’

in a cluttered environment using a low-energy-cost processor array sensor. This enables

machine vision tasks to be performed directly upon the sensor’s image plane, rather

than using an external general-purpose computing unit. This section demonstrates a

small ground vehicle running through, avoiding multiple ‘gates’, or tracking a predefined

pattern at high speed using minimal computational resources. To achieve this, parallel

image processing algorithms are developed for the PPA and captured images are then

processed directly on the vision sensor acquiring target information for controlling the

ground vehicle. The image processing algorithm can run at up to 200 fps at indoor illumi-

nation levels. Conducting image processing at the sensor level avoids the bottleneck of

image transfer encountered in conventional image sensors. The real-time performance

of on-board image processing and robustness is validated through experiments. Exper-

imental results demonstrate that the algorithm’s ability to enable a ground vehicle to
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navigate at an average speed of 2.20 m/s for passing through multiple gates and 3.88

m/s for a ‘slalom’ task in an environment featuring significant visual clutter.

2.2.1 Introduction

Vision-based mobile robot navigation technology plays a vital role in the field of intel-

ligent transportation systems and robotics, being increasingly used across many fields

of industry, such as, driverless cars [116], assisted living, logistics [117], and domestic

applications [118]. However, implementing a mobile robot to perform navigation tasks

rapidly, robustly and energy-efficiently can be challenging especially in cluttered envi-

ronments [119]. A reactive navigation methodology can possibly be a solution to this

problem that combines sensory information with robot control directly [120] through the

processing of sensor data [121].

A number of approaches for visual reactive ground navigation have been proposed in

recent and past years. In [122], Penin et al. utilised a Unmanned Aerial Vehicle (UAV)

to perform visual-based reactive navigation, track targets and keep a fixed distance

from the target at a speed of 1.00 m/s. Galluppi et al. [123] developed an autonomous

mobile robotic platform using two Dynamic Vision Sensors (DVS) and a SpiNNaker

computing system. According to their work, the average navigation speed is less than 0.5

m/s. Many of the existing platforms require expensive computation to perform reactive

navigation, which limits reaction time to changing environments and the mobile robot’s

top speed [124–126]. More recent vehicles geared for learning visual navigation, e.g.,

DeepRacer1 or Audi driving cup cars2, are slow in processing and are yet to demonstrate

agile behaviours. Dedicated sensors for car line following do allow faster operation but

are tuned for the task and thus less generic.

In agile visual reactive navigation, a vision sensor with a high frame rate is necessary

to enable the mobile robot to react to the environment quickly. Various types of visual

sensors, such as CCD/CMOS cameras [13] and RGB-D sensors [127], are widely used for

map building, robot localisation, navigation and other vision guidance applications [13,

128–130]. However, these sensors transmit entire images to a computer for processing, a

process that requires relatively significant time and power, decreasing the response time

of the robot [43].

The key contributions of this section compared to the previous work [131] includes:

a) improving iterative flooding operations to enhance its robustness when extracting

1https://aws.amazon.com/deepracer/
2https://www.audi-autonomous-driving-cup.com/
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disks;b) designing a filtering algorithm based on the neighbourhood pixel values to

denoise the image; c) exploiting the PID control to complete the navigation task and

integrating the improvements mentioned above to directly link the visual information

from the image plane to robot control instructions enabling agile reactive navigation.

Compared to a traditional visual sensor, each pixel in the Pixel Processor has storage and

processing abilities, which supports fast and lower-power parallel computation directly

on the visual sensor. The PPA is capable of performing general-purpose vision algorithms

at several thousand frames per second due to its parallel computing features [10], [108].

This section presents a novel agile reactive navigation strategy using the PPA and a

mobile robot with a low-priced single-board computer and a simple control structure. In

our applications, a car-like mobile robot self-navigates, running through multiple gates

at an average speed of 2.20 m/s according to the guidance provided by visual information

extracted from the pre-designed patterns pasted on the gates (see Figure 2.7(a)). The

control instructions for the mobile robot are generated by comparing the desired image

and the current image. The mobile robot also achieves a highest speed of 3.88 m/s during

a ‘slalom’ process (Figure 2.7(b)). In particular, the mobile robot is directly instructed by

the coordinates of feature points on the patterns themselves, hence there is no need to

perform transformation calculations among camera coordinate system, image coordinate

system and ground vehicle coordinate system.

The remaining sections of this work are organised as follows: subsection 2.2.2 de-

scribes the proposed vision system including the introduction of the SCAMP-5 vision

system and image processing algorithms. In subsection 2.2.3, we present the robot

control system which consists of hardware and software structure. Subsection 2.2.4

illustrates the agile reactive navigation method. Experimental results are illustrated

and the proposed system performance is evaluated in subsection 2.2.5. Finally, subsection

2.5 summarises this work.

2.2.2 Gate Pattern Recognition Algorithm

This subsection describes the SCAMP-5 algorithm used to detect the pre-designed pat-

terns. Patterns are a common means to give instructions to human drivers or even to

autonomous cars, such as in line following. The challenges include tolerance to noise,

clutter and fast enough processing. The patterns we use are primarily aimed at demon-

strating agile visuo-control behaviours.

For the gate’s task, each pattern contains four black disks surrounded by two black

concentric squares. The disk coordinates in the image plane are utilised to adjust the
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Source image Binary image
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Figure 2.1: Pattern extraction procedure. The four extracted dots in the final result form
a quadrangle.

T
h

resh
o

ld
in

g

S
e
c
o

n
d

 flo
o

d
in

g
 ite

ra
tio

n

F
irst flo

o
d

in
g

 itera
tio

n

Source image Binary image No object detected

NOT(Binary Image) and Load previous point

F
irst flo

o
d

in
g

 itera
tio

n

S
e
c
o

n
d

 flo
o

d
in

g
 ite

ra
tio

n

T
h
ird

  flo
o
d

in
g
 ite

ratio
n

F
o

u
rth

 flo
o

d
in

g
 itera

tio
n

L
o
ad

 p
re

v
io

u
s p

o
in

t

Load previous point

L
o

ad
 p

re
v

io
u

s p
o

in
t

Figure 2.2: Image processing procedure in which the squares are broken.

rover’s position and orientation, guiding it to go through multiple gates at high speed.

Figure 2.1 and Figure 2.2 show the image processing procedure conducted on SCAMP-5.

High-frame-rate real-time image processing is typically challenging to conduct with a

standard camera and computer setup due to the limited rate of image capture and delay
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in data transfer that such devices have. In this work the target extraction algorithm

is designed to exploit SCAMP-5’s fast image flooding ability to minimise computation

time per image and improve the image processing robustness. Iterative flooding and bit

NOT operations are used to extract centres of four disks out of the cluttered background

[131]. This method fills regions with value ‘1’s except these areas closed by value ‘0’s.

Hence those areas that are out of the closed regions would be filled with ‘1’s and with

this method, the background of the pattern is easily eliminated within several iterations.

As shown in Figure 2.1, after the first flooding iteration, the background is eliminated.

Therefore, the time cost for this kind of operation is much less than that of the traditional

camera, because this flooding operation is carried out in all Processing Elements (PEs) in

parallel and asynchronously rather than pixel by pixel for traditional image processing

pipeline.

The extraction of four points in the pattern relies on the presence of two black

concentric boundaries. However, issues, such as target occlusion, bright light reflections

or simply the target being distant from the camera, may break or merge together those

two boundaries, causing failure of the dot extraction process. For example, in Figure

2.2, the pattern in the source image is partly outside the view field and the boundaries

broken on the right hand side for demonstration. In this case, the direct flooding method

is not useful since four disks are not enclosed by ‘0’s. To improve the robustness of the

pattern extraction, the prior knowledge of where the dots were located in the previous

frame is used whenever the two black boundaries are not present. This is illustrated in

Figure 2.2, when there is no object remaining after two flooding and inversion operations.

Firstly, the inversion of the current binary image is performed. Then, a point from the

last detected disk centre is loaded into the current frame. Since the frame rate of the

SCAMP-5 is set to 200 fps or more, the shift between two consecutive frames is small,

and thus, we assume that the loaded point falls into the current corresponding disk.

Then, flooding is conducted outwards from this point using the current inverted image

as a mask. If the point from which flooding was performed existed within the disk, the

resulting image contains only that disk which can then be easily extracted. After getting

rid of the first extracted disk from the inverted image, the location of the remainder of

the disks can be obtained using the loading point and flooding method iteratively. The

detailed algorithm description can be seen in Algorithm 1.
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Figure 2.3: Image de-noising, the shrink radius is 2 pixels. Noisy pixels are circled in red.
All noisy pixels are eliminated in the third image.
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Algorithm 1: Disk extraction based on the SCAMP-5 vision system

1 INPUT:

2 Threshold // used to get binary image

3 I terations // iteration times for flooding and inversion operation

4 Disc num // pre-set number of disks

Result: Coordinates // coordinates of four disks’ centres

5 while true do
6 R5 = Scamp5 get image()
7 R6 = Scamp5 threshold(R5,Threshold)
8 for n = 0 to Iterations do
9 R7 = Scamp5 flood(R6)

10 R6 = AND(R6, NOT(R7))
11 R6 = NOT(R6)

12 end
13 Image filtering (see Algorithm 2)
14 Num = Object detect(R6)
15 if Num == Disc num then
16 Coordinates = Scamp5 scan boundingbox(R6)
17 else
18 R7 = Scamp5 load point(previous point)
19 R7 = Scamp5 flood(R6)
20 R8 = R6 XOR R7
21 R6 = R8
22 Coordinates = Scamp5 scan boundingbox(R7)

23 end
24 previous point = Coordinates returnCoordinates

25 end

Noise in an image is caused by various factors, such as overexposure, cluttered

environment and quantisation. In this scenario, the light spots caused by overexposure

or reflection are the main sources of noise. To eliminate the noise, an image filtering

method of erosion and dilation based on the neighbour communication is conducted upon

SCAMP-5. Since each processing element can communicate with its four neighbours

(north, south, west, and east), a given pixel can access its neighbours’ data directly. Four

new pictures are obtained after moving the source image into four directions with a pixel

distance Pstep. Then using ‘AND’ operator to add these four images together on the image
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Algorithm 2: Image filtering with erosion and dilation
1 INPUT: Pstep

Result: R10
2 Erosion procedure
3 R5 = Scamp5 get image()
4 R6 = Move R5 to the north with Pstep
5 R7 = Move R5 to the south with Pstep
6 R8 = Move R5 to the west with Pstep
7 R9 = Move R5 to the east with Pstep
8 R10 = R6∩R7∩R8∩R9
9 Dilation procedure

10 R5 ← R10
11 R6 = Move R5 to the north with Pstep
12 R7 = Move R5 to the south with Pstep
13 R8 = Move R5 to the west with Pstep
14 R9 = Move R5 to the east with Pstep
15 R10 = R6∪R7∪R8∪R9
16 returnR10

plane directly. In Figure 2.3, noisy area whose radius is smaller than shrink radius will

be eliminated. The pseudo codes are given in Algorithm 2.

We now discuss the way of getting each dot’s centroid in the image plane. Firstly,

an inbuilt function scan event of the SCAMP-5 is used to find the location of a white

pixel in the image. This white pixel must be located within one of the disks we wish

to extract. We then perform a flooding operation originating from this extracted point,

using current image as a mask, resulting in an image consisting of the entire disk the

point was within, as shown in the second image of Figure 2.4. The bounding box of all

white pixels in the image (which in this case are those of the disk) is then extracted using

another built-in SCAMP-5 function scan boundingbox. After that, the disk is removed

from the original binary image using a NOT operation. With this method, one white

disk can be extracted. This process is similar to that used in Figure 2.2 where squares

are not intact. The scan boundingbox function outputs the centre position of the white

region. After performing this type of operation for four iterations, all centre positions of

the disks can be extracted separately.

The image processing time of all algorithms mentioned above is recorded by the

SCAMP-5 application that receives the image processing information from the SCAMP-5

vision system through a USB cable. In this scenario, the frame rate is set to 200 fps

given the illumination conditions in the indoor arena. It is noteworthy that the proposed
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Figure 2.4: An example of getting coordinate of each dot’s centre.

Figure 2.5: Subaru RC car (1:10 scale model) and hardware used in experiments.

image processing algorithm can be easily performed at more than 2000 fps with enough

light illumination.

2.2.3 Architecture of Robot System

A model Subaru rover chassis, shown in Figure 2.5, was utilised for the agile navigation

experiment. The rover was controlled by both the visual data from the SCAMP-5 and

the remote control shown in Figure 2.6. Specifically, the visual data controls the steering

while the speed of the car is set to a fixed value using the remote control. As shown in

Figure 2.6, images are captured and processed on the vision chip and the processing
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Figure 2.6: Control architecture of the navigation system.

Hardware name Hardware configuration
Subaru RC Car SKU H94123-12344
SCAMP-5 Vision System SCAMP-5d (gray-level image, 256×256 array)
Raspberry Pi Version 3 Model B+, CPU: 1.4GHz
Subaru power unit ANSMANN, RC-Racing Pack
Raspberry Pi power unit HUAWEI Colorphon 5
Remote control TARANIS

Table 2.1: List of hardware adopted for the robot navigation system.

results are sent back to the chip controller. Finally, these coordinates are transferred to

the Raspberry Pi, which handles read-out data and performs mobile robot navigation

tasks. The detailed hardware and its hardware configurations can be seen in Table 2.1.

2.2.4 Vision-based Agile Reactive Navigation

Reactive navigation is one of the popular control paradigms in the area of mobile robotics,

which features decision making through light processing of sensory data [132]. Different

from deliberative paradigm where heavy image processing computation is needed to en-

able the mobile robot a higher level of intelligence in the complex environment, reactive

navigation is suitable for a low-cost mobile robot platform with limited computational

power and memory [132]. Mobile robot reactive navigation is useful in terms of complet-

ing tasks which do not require a map or localisation within a map. Furthermore, reactive

navigation enables the mobile robot to perform navigation tasks with low-powered hard-

ware. This type of navigation architecture generates control instructions only using the

current sensory readings of the environment. It also builds a direct link between the
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Figure 2.7: Examples of the proposed ground vehicle agile navigation. (a) Passing through
the gates. The width of the car body and the gate is 18 cm and 36 cm, respectively; (b)
the ‘slalom’ navigation.

actuator control and sensor readings. Consequently, there is no need to perform matrix

transformation among camera coordinate, robot coordinate and world coordinate to get

their relative pose. And building a complete map of the environment is not essential

[133].

2.2.4.1 Object Tracking

The SCAMP-5 PPA extracts the four disks located within any visible targets which are

then utilised to steer the mobile robot through the gate with the observed target. Controls

are generated by comparing the four disks extracted from a pattern in view against four

reference disk for a pattern at a known distance and angle. However, when carrying out

the disk extraction, the order of these four dots is unknown because the relative position

between the camera and the gate can be random. Hence, a method is developed to make

these eight points correspond to each other before making a comparison.

As shown in Figure 2.8, the centre of these four dots Pcc can be obtained by Pcc =
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Current dots

Reference dots

Pr1Pr2

Pr3 Pr4

Prc

Pc1Pc2

Pc3 Pc4

Pcc

OY

X

Dy

δy/2

(-,-)

1
st
 Quadrant

(-,+)

2
nd

 Quadrant

(+,+)

3
rd

 Quadrant
(+,-)

4
th

  Quadrant

Figure 2.8: Quadrant allocation for four current dots and its difference from the reference
dots. These dots represent the centres of extracted disks and they form a rectangle in
reference image and a quadrangle in current image respectively.

∑
Pci/4. By comparing the difference between Pcc and Pci, these four dots can be allocated

into the corresponding quadrant. The current picture is divided into four quadrants each

of which will contain a specific disk which can then be compared to the corresponding

disk in a reference pattern.

(2.1) Sign = Pciy −Pccy, i ∈ {1,2,3,4}.

Where Sign represents the sign symbol of the difference between Pccy and Pciy along

y axis.

2.2.4.2 Mobile Robot Reactive Navigation

This subsection compares the difference in both position and shape between the reference

rectangle and the currently processed quadrangle to generate instructions for the mobile

robot to run through gates vertically. The reference image is defined with an image that

was pre-set by putting the ground vehicle in front of the gate at a distance which is the

minimum distance that is in sight of the sensor. The reference rectangle is compared to

the currently processed quadrangle; from this comparison, controls are generated for

the RC rover which will bring the observed rectangle closer to the reference, guiding
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it towards the gate. As the pose of the rover gets closer to that at which the reference

image was taken, the similarity between the quadrangles correspondingly increases.

This control guides the rover through the gate without collision enabling the rover to see

the next gate.

During reactive navigation, the distance Dy between Pcc and Prc, the deformation δy
along y axis (see Figure 2.8) act as the input for the PID control.

(2.2) Dy = Pcc −Prc,

where Dy is utilised to adjust the angle of the front wheels towards the target. δy
describes the deformation of the pattern along y axis caused by the relative position

between the pattern and the rover. In this scenario, δy is the difference between top side

centre and bottom side centre in the quadrangle.

(2.3) δy= Pc3y +Pc4y − (Pc1y +Pc2y),

where δy is used as a compensation to slightly change the wheel angle and attempt to

take the rover straight through the gate rather than going through at an angle. The

adopted control method is as follows:

(2.4) Output =Output1 +Output2,

(2.5) Outputi = KPi e(k)i +K I i

k∑
j=0

e( j)i +KDi[e(k)i − e(k−1)i]

(2.6) e(k)1 = Dy,

(2.7) e(k)2 = δy.

Where, i ∈ {1,2}, KP , K I and KD are coefficients adjusted experimentally in this

paper using Ziegler-Nichols [134]. e(k)i is the error between Dy, δy and 0. As we can see

from the equation, the visual information is slightly processed before generating control

instructions for the mobile robot. The aim of this PID control is to minimise both Dy

and δy to 0. During this process, the ground vehicle is moving towards the gate while

adjusting its pose to enter the gate head on.
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Figure 2.9: Gates and clutter layout in the arena.

2.2.5 Experimental Results

Experiments are carried out to test how agile the ground vehicle would track the target

(the gate) and run through the gate in heavily cluttered environment. The mobile robot

is set at a constant speed using the remote control. In Figure 2.9, there are eight gates

placed in the robot arena taking into consideration space limitations and the vehicle’s

turning radius. Beside each gate, there are some other gates with a random or similar

pattern to the real pattern acting as a disturbance to show the robustness of this

navigation system to the cluttered environment.

The views in front of the rover are recorded by a GoPro camera. As we can see

from Figure 2.10, the images captured by the GoPro are blurred because of the high

speed and vibration of the chassis during navigation. However, the SCAMP is able to

get clear images and output effective visual data. When the mobile robot is running

through these gates, its trajectory is recorded by the VICON motion tracking system3.

Figure 2.11 shows the rover’s paths and the layout of eight gates and the disturbance.

As we can see, the rover runs though these gates, which indicates the effectiveness of

the proposed control method and the robustness of the image processing. Figure 2.12

shows the changes of the front wheel angle when the rover is approaching a gate and

the steering angle is asymptotically close to 0. The extracted dots are recorded during

the navigation and plotted. As shown in Figure 2.13, the relative position of these four

dots is changing when the rover is running towards a gate. The difference between the

reference image and the current image is used for controlling the motion of the mobile

3https://www.vicon.com/hardware/cameras/
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Figure 2.10: Image captured by the SCAMP-5 and GoPro during high-speed navigation.
The SCAMP-5 detects four disks during high-speed navigation in a cluttered environment.
Experimental video can be seen: https://youtu.be/e85q-yoBuSk

robot. Consequently, in the image plane, their difference should be getting increasingly

smaller during the navigation process. The expected phenomenon can be seen in Figure

2.13, where the current pattern shape is becoming increasingly closer to the reference

pattern, in terms of both position and shape.

Although all the patterns are designed identically, their positions on the gate are
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Figure 2.11: Trajectory in the arena.

Figure 2.12: The angle change when the rover is approaching a gate.

slightly different. In addition, the view of the SCAMP-5 is possibly not horizontal because

of its suspension system during high-speed motion. As a result, the final image when

the mobile robot is about to pass through the gate could be slightly different from the

reference image.

The agility of this reactive navigation can be seen from Figure 2.14. The average nav-
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Figure 2.13: Pattern ’trajectory’ in the image plane.

Figure 2.14: Velocity curve of the RC car during the whole navigation process.

igation speed is calculated 2.20 m/s and the maximum speed reaches 2.50 m/s according

to the VICON tracking data, which shows the rover response to the environment quickly

with the guidance of the SCAMP-5 vision system.

The time cost for each procedure of the whole control system, including that in

SCAMP-5 and Raspberry Pi, is measured and listed in Table 2.2. Our SCAMP-5 pipeline

is able to perform at over 2000 fps according to Table 2.2. This accounts for the image

and PID processing but does not include the image exposure time which will depend on

environmental illumination conditions.

To further explore the agility of the robot system based on the SCAMP-5, we then
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Processing Steps Time Cost (µs)

Image capturing and thresholding 52
Flooding method to extract dots 63
(including normal and broken squares)
Image de-noising 4
Getting coordinates of four dots’ centre 328
Coordinates transmitted to Raspberry Pi ≈ 24
PID control in Raspberry Pi ≈ 1
Total ≈ 472

Table 2.2: Time cost for different components of the system.

Figure 2.15: ‘Slalom’ pattern. (a) Turn right for certain degrees; (b) Turn left for certain
degrees.

proposed a ‘slalom’ application with some pre-designed visual patterns (see Figure 2.15)

encoding turning and angle information which are extracted using the SCAMP-5 vision

system. By placing these patterns in specific positions, the rover weaves left and right

around the patterns according to the information encoded on each, in a similar manner

to slalom skiing. The image processing method is similar to the one used for four disks

extraction.

Figure 2.16 shows the trajectory and velocity of the rover during navigation. In

Figure 2.16(a), there are eight patterns placed in the arena, six of them guide the rover

to turn right and two to turn left. The robot turns then continues towards the next

closest pattern it encounters. Figure 2.16(b) shows the average speed of 1.70 m/s for this

scenario. By placing these gates in a line, a high-speed slalom can be achieved. In Figure

2.16(c), the distance between gates are set 2.40 m apart, and the rover turns right or left

at a distance 0.80 m from the pattern. Its velocity curve (see Figure 2.16(d)) shows the

highest speed reaches 3.88 m/s which translates to 139 km/h for the real-sized car.
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Figure 2.16: Trajectory and velocity curve for the ‘slalom’ process. (a) trajectory of number
‘8’; (b) velocity curve for number ‘8’; (c) trajectory of a fast ‘slalom’; (d) velocity curve for
the fast ‘slalom’.

2.2.5.1 Mobile Car Drifting

This section illustrates briefly the phenomena of a car sliding when it approaches a gate

at high speed. If the rover is travelling at a fast rate of speed after passing one gate,

drifting is a possibility when the rover changes direction to reach the next gate. Indeed,

when the rover is sprinting toward the front gate, the following gate is invisible. When

the rover’s perspective of the next target changes quickly, the angle of the steerable
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Figure 2.17: Trajectory of drifting during an agile reactive navigation.

Figure 2.18: Speed curve during an agile reactive navigation.

wheel changes abruptly. It is impossible to regulate the rover’s direction while drifting

unless the target is always visible to the camera.

In Figure 2.17, the blue rectangle represents the position and orientation of the

mobile robot, and the robot is speeding from the left to right. It is apparent that, at

first, the robot’s moving direction is same with the tangential direction of the trajectory.

However, as the rover accelerates toward the the third gate, the car starts to skid and

out of control. Finally, it is unable to traverse the third gate. In essence, slip occurs when

lateral friction becomes smaller than centrifugal force, f < F. According to Newton’s

second law of motion F = mv2/r. A slide is more likely to occur when the velocity is higher
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Figure 2.19: Dynamic pre-set pattern tracking with a SCAMP PPA.

and the turning radius is smaller. In this scenario, when the mobile robot gets sight of

the third gate, it instructs to steer the front wheel, hence the turning radius becomes

smaller suddenly resulting in the mobile robot’s drift. The velocity curve is plotted in

Figure 2.18. According to the recorded frames in Figure 2.18, the frame number is about

1140 when the mobile robot is going to slide. The corresponding velocity in Figure 2.18

is around 3.3 m/s. Notice that the maximum speed that results in sliding caused by

many factors. Considering the different steering angle and ground contact situation, the

average navigation speed 1.871 m/s and maximum navigation speed 3.1 m/s is possible

the maximum navigation speed for this system configuration. It is worth noticing that

drifting happens when the rover changes its direction rather than it reaches the highest

speed.

Dynamic Object Tracking: We then demonstrate dynamic object tracking with

a similar configuration to further show the robustness and potential applications. An

experimenter moves the pattern randomly within the experiment arena, where the

mobile robot localises the pattern and tracking without loosing it. Experimental video

can be seen from https://youtu.be/vvzJBpuuwLM.

Lastly, we believe that the development of novel vision processing hardware architec-

tures is key to the progress of agile and responsive robotics that are required to operate in

a complex and uncertain world. This work explores the case of agile reactive navigation

and our future emphasis will include extending the capabilities beyond known target

detection and into classification and place recognition while navigating.
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Figure 2.20: A diagrammatic representation of the vision-based proximity estimate
system. The vision chip generates four distinct sorts of feature pictures. These photos
are digested using Receptive Fields into a vector of 40 scalar values. On the MCU, the
layer-recurrent neural network is used to simulate a proximity sensor by utilising just
the input vector and the output of all neurons from the previous time step (S(t)). (Figure
from [67]).

2.3 Robot Obstacle Avoidance via Proximity
Estimation Using Vision Features Extracted on
Sensor

This section is a joint work [115] as the second author, where the author contributed to

parallel feature extraction, and robot free-roaming experiments.

Section 2.2 explores the robot agile reactive navigation with pre-set fixed patterns as

the prior knowledge, which is hard to generalise to any indoor environment. In order

to take advantage of the environment feature information without relying on specific

objects, this section presents a monocular vision based proximity estimation system using

abstract features, such as corner points, blobs and edges, as inputs to a neural network.

Firstly, an experimental mobile platform was built by integrating the SCAMP-5 vision

system, a micro-controller, and an RC model car. We present a series of feature extraction

algorithms on the focal plane of the SCAMP PPA in a way that only a small amount of

sparse descriptors is filtered. Then, a small recurrent neural network is trained using

these descriptors and the groundtruth distance information collected from three infrared

proximity sensors. Finally, reactive obstacle avoidance behaviour is enabled with our
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Figure 2.21: Hardware overview. (a) The RC car chassis for experiments.(b) The hardware
block diagram. Experimental setup: (c) The environment of the systematic experiment
and the obstacle, which was in a differently building and scenario. (d) The differential
wheeled rover used in the experiment. The vision system and the proximity estimation
neural networks on the rover were same as those on the RC model car. Only the collision
avoidance controller was different, which enabled this vehicle to move fully autonomously.
(Figure from [67]).

trained neural network for a mobile robot platform. The response frequency of the robot

control system from sensing to network inference results is > 250 Hz enabling the small

ground vehicle navigate indoors at speeds of 0.64 m/s to 1.8 m/s in the experiment.

In this work, three types of features that contain monocular depth cues were specif-

ically investigated: (a) spatial frequency filtering, (b) motion parallax, and (c) corner

features. The receptive field approach [135] was used to digest these feature pictures

into a vector of scalars that could then be processed by a fully connected neural network

(Figure 2.20), the output of which was the proximity distance between the user and

any adjacent obstacles. With this technology, it is possible to take advantage of the

efficiency of on-sensor and near-sensor parallel image processing hardware while still
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Figure 2.22: Vehicle trajectories during the obstacle avoidance experiment. The blue
rectangle denotes the impediment. The speed of the vehicles in x ∈ (−1.0,1.0) were
measured. (a) The RC model car. The reactive controller using the neural network output
as the proximity input, and outputting the angle of the steering servo. The throttle was
controlled manually. The minimum, maximum and average speed of the car were 0.90
m/s, 1.87 m/s and 1.15 m/s correspondingly. (b) The fully autonomous differential wheel
vehicle. The reactive controller using the neural network output as the proximity input,
and outputting the speed of the wheels. The minimum, maximum and average speed of
the car were 0.64 m/s, 0.74 m/s and 0.71 m/s correspondingly. (Figure from [67])

maintaining the efficacy of the neural network-based approach to image processing.

Using built-in functions of the SCAMP PPA, such as Blur, EventReadout,GlobalOr,

and GlobalSum, a vector of values can be read out to the MCU from the results of image

processing algorithms performed on the sensor. This thesis contributes to following

feature extraction methods and experiments.

Spatial frequency filtering: It is usual (but not always) for a close item or surface

on an image to appear as a uniformly coloured area with a low spatial frequency. A

Difference of Gaussian (DoG) process can be used to extract patterns with a specified

spatial frequency, as [136] demonstrates. The DoG-like function can be approximately

implemented with function Blur. Then the blurred image is binarised to image with the

percentage of white area as results for the following neural network.

Motion parallax: Motion parallax contains monocular depth cue when objects mov-

ing within a camera, which is to say a closer object moving relatively faster in the field

view. Hence, wide edges more likely come from a closer object. We thus take advantage of

the edge width information calculated by subtracting two consecutive frames and then

obtain the maximum width. Details on motion parallax computation can be seen from

Algorithm 8. Details on FAST-16 corners extraction can be seen from paper [137].

Free Roaming Experiment: To assess the system’s performance in the complicated

environments, the mobile were placed in an uncontrolled area (Figure 2.21) and allowed

to travel freely while avoiding collisions (Figure 2.22) . The video of these trials can
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be found from https://youtu.be/UUrXKUTB8r8. Additionally, the video depicts several

failure mechanisms. For example, the proximity sensors utilised in the training process

have difficulty detecting chair legs, particularly swivel chairs. As a result, the trained

vision-based system was unable to recognise such structures. Additionally, the vision-

based estimating method failed to detect impediments that were intrinsically difficult to

see from the camera’s perspective, such as low steps on the floor.

2.4 Weighted Node Mapping and Localisation

This section is based on a collaborative work of paper [7] as the second author, where

the author contributed to Local Binary Pattern based mapping and localisation. Earlier

sections examined reactive navigation by mobile robots using either pre-set patterns or

global environmental information. This section further explores on-sensor topological

1-dimensional mapping and localisation which is potential to be utilised in robotics.

Our methods predict the correct node inside a topological map generated from an

image sequence by analysing image similarity, spatial coherence and taking advantage

of the PPA’s parallel nature. Our implementation operates at a frequency of +300 Hz on

big public datasets with +2K locations, consuming 2.5W at a rate of 500 GOPS/W. We

compare our method to more conventional ways and find that our method outperforms

them on F-1 performance, even in simulation. As far as we are aware, this is the first

on-sensor mapping and localisation solution.

2.4.1 A 1-D weighted node-map algorithm for visual route
recognition

The topological map, X t, in this work contains N nodes that correspond to N labelled

locations. We compare two techniques to place representation: local binary descriptors

(8×4 pixels) and low-resolution pictures (8×8 pixels) with same mapping and localisation

algorithms. Thus each node is described by either a binary descriptor or a scaled-down

image, which are stored as a ‘database’ on the SCAMP PPA’s focal plane. Additionally,

such nodes are spatially coherent, and each one can be associated with GPS coordinates.

A set of nodes x[t]
t at the time t: X t = x[1]

t , x[2]
t , ....., x[N]

t , where N is the total number

of nodes. Each of them has an associated weight value wt
[i], W t represents the set of

weights for the set of nodes X t. .

Motion model estimation
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Figure 2.23: Overview of the iterative weighted-node process using binary descriptor
method (Figure from [7]).
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Figure 2.24: The LBP descriptor extraction process.

The first step of our proposed method is initialisation on both database and register

weights and then combines two different hypotheses for localisation: image similarities

and a motion model. This one-dimensional technique makes use of the motion model in

the following manner: forward movement is associated with the notion that each weight

is travelling to the next node in the topological map. The nodes and their associated

weights are successively stored in the PE array, beginning with the rightmost upper

corner; thus, progressing entails shifting to the left and down.

Temporal weight value estimation
The motion model has been calculated and applied to the collection of nodes X t at
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this point. The following step is to estimate the temporal weights associated with the

likelihood of the current input measurement (zt, either low-resolution image or binary

descriptor approach) being at that node in the topological map. The image pre-processing

approach for Local Binary Pattern method: Hamming distance (Equation 2.8) with 32-bit

local binary descriptors which is utilised to calculate the distance between the current

input image and all those in the database [138]. Taking advantage of the powerful

parallel computing capability in the SCAMP PPA, these comparison operations can all be

performed efficiently. To achieve this on-sensor parallel computing, the image should be

placed in a specific way: consider the case where image descriptors have the dimension

of 4×8 pixels; it will occupy 32 pixels (Figure 2.24). Given the SCAMP-5d resolution,

256×256, a total of 64×32 images of 4×8 can be processed simultaneously in that DREG.

This implies that with this size of images, the maximum number of nodes N is 2048

on one DREG. Notice that the database must be loaded in the same way the images

are stored, using the snake stack pattern. At every iteration, when a new greyscale

image is captured, it is transformed to 4×8. This is done by applying local binary pattern

method, as shown in Figure 2.24, which is a simple but efficient feature operation method

by binarizing the difference between the pivotal pixel and its neighbour pixels as the

input for later processing [139]. The database is created using the snake pattern in a

different DREG. Therefore, the input image could be compared with the entire database

by performing a subtraction followed by an absolute operation between database and

input image DREG (both after LBP extraction).

(2.8) l ikelihood(zt|x[i]
t )= HammingDistance = d(I input − Idb)

where I input is the input image; Idb represents all images in the database. A HammingDistance
is obtained for each block, which then stored in AREG representing node’s weight. The

algorithms can be seen from Appendix A.2.

Updating node weight
The node weights values are updated based on the motion model and the temporal

weight estimation. The node weight shifting applies the motion model described earlier,

and the temporal weights at this point have been already calculated. α is introduced to

estimate the new weights values. Likelihood is represented by image similarity obtained

from Hamming distance. Hence, the smaller the value, the more similarity between two

images. Equation, w[i]
t = w[i]

t−1 + (α−µ[i]
t ), transforms the temporal weight values to a

better representation.
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(a) (b)

Figure 2.25: (a) Position estimated by our proposed low-resolution images approach
implemented on SCAMP-5d with Oxford dataset. (b) Position estimated by binary de-
scriptor approach when implemented in the SCAMP-5d testing with images generated
by the simulated environment. Blue points represent the locations of the input image
and red points the correctly predicted locations. (Figure from [7]).

(a) (b)

Figure 2.26: (a) Top view of the scene in CoppeliaSim which simulates a laboratory
environment. (b) Front view of the laboratory scene. (Figure from [7])

Location detection, weight adjustment, and mapping

After each estimation iteration, the result must be verified by scanning all weights

to find the one with the highest value associated with the correct position. Rather than

relying on a single image, a sequence-based method is used in this work. To prevent

saturation of the AREG storing the weights, we adjust them after every sequence of k
images as follows. The highest weight value is multiplied by a factor γ, which is within

[0−1]; this value is then subtracted from the weights. A new set of node weights is
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Table 2.3: F1-Scores and localisation time evaluation.
Dataset Baseline Our simulation Scamp-5d system

Norland
ABLE-M[142] 97%

Binary Descriptor 99.57%
Low resolution images 98.16%

Binary descriptors 93.38%
Low_resolution images 71.78%9.3 ms

SeqSLAM[144] 92% 3.168 ms

Oxford
Liu & Zhang[143] 93.04% Binary Descriptor 98.98%

Low-resolution images 97.84%

Binary descriptor 64.95%
Low-resolution images 80.4%

800 ms 2.59 ms

Coppeliasim ———-
Binary Descriptor 86.13%
Low-resolution images 95.03%

Binary descriptor 82.7%
Low-resolution images 82.6%
3.168 ms

created by applying equations w[i]
t = w[i]

t −γmax(W t) and X t = X t+ (W t). Mapping in our

approach takes the form of database creation from a sequence of input images. 32 bit

binary descriptors (Figure 2.24) are stored in a DREG in a ‘snake’ fashion (Figure 2.23).

2.4.2 Experimental Results

This section shows the results of our implementation previously presented. We perform

experiments across several publicly available datasets including Nordland dataset [140],

Oxford dataset [141], and a simulated laboratory environment. F1 score4 is adopted

to quantify the performance of the localisation methods proposed above. Localisation

tasks are shown across three datasets, two of which are from outdoor environments and

one from a simulated laboratory on a mobile robot. Table 2.3 shows a comparison of F1

scores across the different implementations and datasets. This measurement is used to

combine precision and recall information into one value which describes the accuracy of

the system. Our fully parallel algorithm takes 3.17 milliseconds (ms) (315 fps) for the

local binary pattern method and 2.59 ms (386 fps) for the low-resolution image method

respectively. Note that other methods such as [142], [143] deployed their systems on

powerful external conventional computers. But while the PPA concept and hardware

is still in development, its fundamental parallel nature surpasses their performance,

for current hardware requires low power consumption (≤ 2.5W) and performs most

computations on-sensor. More experimental results can be seen from Appendix A.4.

2.5 Conclusion

This chapter illustrates the proposed various image processing algorithms on the sensor

for multiple tasks, including pre-set pattern extraction, feature extractions for RC car
4https://en.wikipedia.org/wiki/F-score
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obstacle avoidance, and on-sensor visual feature extraction for mapping and localisation.

Firstly, this work focuses on real-time visual information processing using a Pixel

Processor Array and agile robot navigation with information derived from the visual

sensor. The SCAMP-5 is capable of processing high-frame rate visual information as

the agile navigation requires. In this section, we implemented the high-speed reactive

navigation and enable a Subaru mobile robot to run through multiple gates at an average

speed of 2.20 m/s and a highest speed of 3.88 m/s for a ‘slalom’. We proposed a direct link

between the image information and the angle of the steerable servo motor in the mobile

robot. To the best of our knowledge, the speed of the agile ground vehicle achieved is

the highest among the systems using non-conventional visual-processor pipelines. The

multi-gate test shows high-speed navigation for an agile reactive navigation system and

shows the effectiveness of the control method under motion disturbance and vibrations.

However, the navigation speed and performance is still limited by many factors including

low control frequency of the servo motor or loss of targets especially when the fast-moving

mobile robot is far from the target.

Secondly, we introduce a new parallel node weighting approach for visual route map-

ping and localisation using a dynamically programmable SCAMP PPA sensor-processor.

As far as we are aware, this is the first example of on-sensor mapping and localisation.

By embedding a dataset in the registers of the sensor’s processing array, our approach

enables the majority of computation to be performed efficiently in parallel on the sensor’s

focus plane. We introduced a map representation, in particular, local binary descriptors.

The results were demonstrated using publicly available datasets. Due to the prototype

nature of the PPA hardware deployed, we still observe a performance gap between simu-

lation and real-world PPA hardware due to implementation constraints. Nonetheless, our

node-weighted localisation algorithms outperform baseline techniques such as SeqSLAM

and ABLE-M, demonstrating the promise of such on-sensor processing. Our objective is

to show that this work sheds light on an emerging trend of unique visual architectures

that efficiently combine perception and computing, hence enabling new potential for

complicated and agile robotic tasks.

Lastly, we conceived and constructed a monocular vision-based proximity estimate

method utilising the Scamp5d edge vision system. On the focus plane, the vision chip

collected the image and used three different types of feature extraction techniques.

The vision chip’s only output was scalar data processed from the visual characteristics.

Similar to proximity sensors, the MCU in the vision system then uses three layer

recurrent neural networks to assess the proximity distance. When the automobile was
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driven manually, training data for the neural network were collected. The obstacle

avoidance experimental trials established the system’s overall efficacy. The system’s

power consumption (< 2.1 W) and latency (< 4 ms) are low because: (a) the feature

extraction algorithms take advantage of the vision chip’s hardware acceleration and

can thus be executed extremely efficiently without requiring image transfer; and (b) the

neural networks running on the MCU operate on abstract feature vectors and are thus

relatively simple.

However, all these image processing algorithms are designed for specific tasks, limit-

ing on-sensor machine vision to a broader range. The essential method used for these

three applications is feature extraction. The author has designed several different ways

to extract useful information and fuse this information for different tasks. However, fea-

ture extraction from raw data should be carefully designed, which would be unsuitable

for more sophisticated tasks, especially when combining many different types of features

are needed. With this in mind, the following chapters will focus on the emerging and

more general methods for higher-level image processing: convolutional neural network

(CNN). With on-sensor CNN inference, sensors can deal with classification, regression,

and segmentation in a more general way. Hence, kernel filers for feature extraction can

be learned automatically during the training process.
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ON-SENSOR HIGH-SPEED LIGHT-WEIGHT BINARY

CNN INFERENCE

Earlier chapters focus on specific low-level image features and their fusion for robotic

reactive scenario, navigation, and localisation. Although hand-crafted parallel image

processing methods on the SCAMP PPA are efficient and sufficient for the given tasks,

they are limited to a particular environment, hence challenging to generalise to a

broader range of applications. Therefore, in the following chapters, we start to explore

learning-based image feature extraction and combination with on-sensor quantised neu-

ral network to expand the on-sensor signal processing to more general visual inference

tasks, such as classification and coarse segmentation. The contributions of this chapter

are published in [65].

3.1 Introduction

Performance, storage, and power consumption are three major factors that restrict the

use of machine learning algorithms on embedded systems. However, new hardware

architectures designed with visual computation in mind may hold the key to solving

these bottlenecks. This work makes use of an emerging novel visual sensor device: the

pixel processor array (PPA), to embed a convolutional neural network (CNN) onto the

focal plane. We present a new high-speed implementation of strided convolutions using

binary weights for the CNN on PPA devices, allowing all multiplications to be replaced by
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more efficient addition/subtraction operations. Image convolutions, Rectified Linear Unit

(ReLU) activation functions, max-pooling and a fully-connected layer are all performed

directly on the PPA’s imaging plane using the analogue current signals, exploiting

its massive parallel computing capabilities. The author demonstrates CNN inference

across four different applications, running between 2,000 and 17,500 fps with power

consumption lower than 1.5 W. These tasks include identifying 8 classes of plankton,

hand gesture classification and digit recognition.

Convolutional neural networks (CNN) already play a significant role in modern

computer vision tasks, such as classification, localisation, and segmentation. With the

ever-increasing prevalence of mobile and embedded devices, such as smartphones and

mobile robots, there is strong motivation to enable CNNs on portable lightweight de-

vices [145–147]. However, state-of-the-art CNN-based methods are typically heavily

GPU reliant, and difficult to deploy on the embedded systems without optimisation or

modification [148]. The Three main issues associated with this are the lack of parallel

computation power, memory, and battery life, all of which are required by computation-

ally demanding CNN algorithms. Two potential solutions are (1) hardware acceleration

[149–151] and (2) data compression in terms of storage and complexity using techniques,

such as network pruning and low-bit quantization of network weights [152, 153].

Rather than using a conventional approach in which a camera streams video frames

to processing hardware, this paper focuses on implementing CNNs upon a novel, general-

purpose, Pixel Processor Array (PPA) (Figure 1.2). Our approach takes advantage of the

PPAs massively parallel architecture to efficiently execute a binary CNN. Image convolu-

tions, activation functions, max-pooling and fully-connected layer are implemented upon

the PPA. By adopting an "in-pixel" weight approach such as [64], our implementation

is significantly faster than many existing works [63, 113, 114] and does not rely on

external processing. Training is performed offline upon a standard PC while inference

experiments are performed entirely upon the PPA. This work seeks to illustrate the

potential high-speed CNN applications that can be achieved upon such PPA devices.

The main contents of this section are: (i) A new image convolution implementation

for PPAs, incorporating variable convolution stride to allow for faster inference times

compared to previous works [59, 114], increasing the inference speed across various tasks

depending upon the task’s level of complexity. (ii) The demonstration of our fast SCAMP-

5 CNN implementation across a wider and more complex set of tasks than previous

works, which had predominately focused upon only demonstrating MNIST classification.

We demonstrate real-time hand gesture recognition, plankton classification from the
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National Data Science Bowl plankton dataset [154] along with digit recognition. PPA

inference speed for our approach is extremely fast across all tasks, ranging from 2000 to

17500 fps.

3.2 Neural Networks with Other Emerging Sensors

Section 1.2.2 introduced on-device computing sensors in terms of hardware. Alternatively,

to enable high-performance CNN inference on embedded devices, a great amount of work

has been carried out on hardware accelerators and unconventional visual sensors.

3.2.1 Hardware Accelerations

The on-going work on implementing hardware accelerators for the efficient execution of

CNN on edge devices has resulted in numerous architectures and prototypes proposed

in recent years by academic groups, for example [16, 150, 151, 155–157], as well as

commercially available neural network accelerator IP blocks [158] or dedicated hardware

devices [159, 160]. The need for the co-optimisation of the architecture, from image

sensor, through image signal processing, to neural network acceleration is recognised as

an important aspect of vision system design for embedded systems [161].

3.2.2 Unconventional Visual Sensors

Recent works using unconventional visual devices for CNNs have mainly focused on

Dynamic Visual Sensors (DVS), SCAMP PPAs and other emerging intelligent sensors.

DVS sensors produce data in the form of sparse contrast-change events, that facilitate

low-latency visual processing using external computational hardware [29–31]. Then,

these pre-processed binary events need to be transferred to processing units to carry out

the inference using spiking neural networks. However, it is still challenging to perform

CNN with a DVS considering the output features of sparse event points [32]. In addition,

the development of image sensors equipped with embedded processing technologies, such

as the Sony IMX500 sensor, enables on-device processing, where a DSP is dedicated to

neural network signal processing. This on-device processing is preferable in terms of

communication burden reduction [25]. Aistorm Mantis features charge domain visual

and audio processing [26] with embedded neural network. Some simple demonstrations

have been released including hand gesture classifier, person classifier, and key word

spotting. There have been a number of studies using Eye-RIS vision system, including
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Figure 3.1: Schematic diagram of network compression scheme. (a) full-precision neural
network. (b): pruned neural network. (c): binary neural network.

Data Matrix Code Recognition [162], moving target tracking with a mobile robot [163],

and Cellular Neural Network control algorithms [164]. However, the most related neural

network research is [165] where Eye-RIS served as a pre-processor for a ConvNet. A

memory resistor (memristor) is fundamental electrical components and the resistance of

memristor can be used to mimic the synaptic connections among neurons [28]. Hence

the memristor is only in charge of computing.

As far as we know, there are no visual sensors that perform neural network inference

fully on the focal plane within these above-mentioned related works, which means

external hardware assisting the inference is essential and extra information transmission

is necessary. However, this thesis offered a number of strategies for completely deploying

neural networks over the SCAMP PPA’s focus plane with the needs of external processing

units.

3.3 Binary CNN Training for the PPA

3.3.1 Neural Network Compression

Although neural networks have proved to be highly effectively in a wide range of ap-

plications, the model size of a neural network is typically large with a great number of

float-point weights and biases resulting from many convolutional and fully-connected

layers, which needs high computational and memory costs [166]. As a consequence,

neural networks are not friendly to the embedded and portable devices with limited

computational power and stringent storage space. Hence, people are motivated to com-
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press the full-precision neural network with various methods including neural network

pruning [167] (Figure 3.1 (b)) and quantization [85, 168] to accelerate neural network

and/or embedded neural networks into portable devices.

With so many neural network compression methods, this thesis takes advantage of

neural network binary quantisation (Figure 3.1 (c)) to simplify the CNN on the focal

plane of the PPA considering the small storage requirement of the binary weights and

its feasibility to parallel implementation results from the binary weights. Binary neural

network is an extreme example of network quantization, where the weights are trained

to be -1 and 1. BinaryConnect [89] is one of the earliest research to compress the neural

network by training binary weights.

3.3.2 Binary Neural Networks

There are mainly two processes to train a binary neural network: forward propagation

and backward propagation. The following context illustrates how to obtain the binary

weights through the training processes.

Forward propagation
Binarisation function converts weights to either -1 or 1 during forward propagation

in the binary neural networks. Consequently, the comparatively time-consuming float-

point-based multiplication operations can be replaced by either additions or subtractions,

which is suitable for the SCAMP vision systems. There are two types of binarisation

functions: deterministic and stochastic binarisation.

(3.1) wb =
+1 w >= 0,

−1 otherwise

Where wb is the binarized weight and w is the full-precision weight. It is obvious to see

the binarization method of Equation 3.1 is efficient and straightforward. The alternative

binarization scheme is stochastic binarization, where weights are binarized with a

probability.

(3.2) wb =
+1 with probability p =σ(w)

−1 with probability 1− p.

where σ is the "hard sigmoid" function [90]:
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Algorithm 3: Binary neural network training. [89]
1 C is the cost function, L is the number of layers, and a is the activations.
2 Inputs:
3 a mini batch of inputs and targets
4 previous parameters weights wt−1 and biases bt−1, and learning rate η
5 Methods: update parameters weights wt and biases bt
6 1. Forward propagation:
7 wb ⇐ binarize(wt−1)
8 For k = 1 to L, compute ak knowing ak−1, wb and bt−1
9 2. Backward propagation:

10 calculate the activation gradient of output layer ∂C
∂aL

11 For k = L to 2, compute ∂C
∂ak−1

knowing ∂C
∂ak

and wb

12 3. Parameter update:
13 Calculate ∂C

∂wb
and ∂C

∂bt−1
knowing ∂C

∂ak
and ak−1

14 wt ⇐ wt−1 −η ∂C
∂wb

15 bt ⇐ bt−1 −η ∂C
∂bt−1

(3.3) σ(w)= clip(
w+1

2
,0,1)= max(0,min(1,

w+1
2

)

The reason here to use the hard sigmoid rather than the standard sigmoid function
1

1+e−x is because Equation 3.3 is far more efficient than its standard counterpart while

obtaining a good approximation to the sigmoid. This thesis uses the former function for

a more efficient training.

Backward propagation

Backward propagation’s objective is to compute the cost function C’s partial deriva-

tives ∂C
∂w and ∂C

∂b with respect to weights w and bias b. The weights update is based on

the Stochastic Gradient Descent (SGD) during backward propagation. The key idea to

train the binary neural network is to binarize the weights in the forward propagation

and update current floating-point weights based on the last full-precision weights and

calculated gradients as shown in Algorithm 3. Notice that in Algorithm 3 Line 14, we

update real-valued weights wt with computed gradient and last real-valued weights

wt−1, which is the same for the bias.
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Figure 3.2: Parallel inference process by combining different registers and operations.

3.4 Binary CNN Implementation Method on the PPA

To achieve high-speed CNN inference, both the computation and weight-storage should

be contained within the PEs of the processing array itself to fully exploit the PPA’s

parallelism and minimise data transfers. To this end, it is necessary to find a way to

train the CNN with binary weights that can fit entirely within the PPA’s array. This

section describes the network training and implementation of high-speed CNNs for the

SCAMP-5d PPA.

3.4.1 CNN with binary weights

In our work, the BinaryConnect scheme [89] is adopted and used to train binary weight

networks. This produces simplified binary neural networks, whose weights can be stored

entirely within the memory registers of the PPA array, but which still achieves acceptable

accuracy. Additionally these binary networks are trained without neuron bias, further

simplifying the CNN implementation [169].

This training scheme generates 1-bit weights representing values {−1,1} for both

convolutional layers and fully connected layers. This allows rapid inference of vari-

ous CNN layers to be performed using only native PPA arithmetic operations (addi-

tions/subtractions). The weights for convolutional and fully connected layers are directly

stored in 1-bit digital registers on the array. This in-pixel weight approach first proposed

in [64] allows for parallel and efficient implementation of CNN layers compared to

methods which sequentially read weights from the controller [63, 113, 114].

Figure 3.2 shows the inference process of a CNN on SCAMP-5, with each step executed

upon the image plane. First, input images are uploaded or directly captured into the

71



CHAPTER 3. ON-SENSOR HIGH-SPEED LIGHT-WEIGHT BINARY CNN INFERENCE

PEs of the array. To execute many convolution filters in parallel, this input image is

pre-processed at runtime on the array, being down-scaled and then replicated to fill all

256×256 processing elements. In Figure 3.2 the input image is shrunk to 32×32 and

replicated 64 times across the array. Each replicated image is associated with a different

kernel filter, with 64 kernel filters arranged in-line with the 64 replicated image blocks.

From this the convolutional layer generates 64 feature maps in parallel, followed by

parallel activation function (ReLU) and max-pooling. Weights for the fully-connected

layer are stored upon digital registers similar to that of the convolutional layer and

are multiplied in parallel with their associated activation data. Finally, approximated

sums of all pixels associated with each label are calculated by using ‘sparse global

summation’ on the SCAMP-5 array, with the largest resulting sum representing the

CNN’s understanding of the image.

3.4.2 Convolutional Layer Implementation on-Sensor

This section implements the image convolution in a way that takes full advantage

of the speed offered by the PPA parallel processing resources. Each kernel filter is

replicated to the size of each input image block (Figure 3.2). Then the source image is

"multiplied" by the corresponding kernel filters coefficients (+1 or -1) in parallel, with

the convolution result obtained by the summation of pixels in the filter block. Moreover,

strided convolutions (i.e. stride 1, 2, or 4) can be applied here for different applications to

speedup inference process. This method allows the convolutional layer to be performed

entirely on the PPA array using only native addition, subtraction, and image shifting

operations.

Referring to Figure 3.4, 4×4 binary kernel filters for the convolutional layer are

stored in 4×4 PE blocks using digital registers. Efficient multiplication of stored data by

these binary weights can then be performed. The detailed layout of the 4×4 kernel filters

is illustrated in Figure 3.3, showing how each of the 64 kernels is replicated multiple

times to fill the 32×32 block of PEs holding the image it will operate on. Following the

result of image multiplication, image convolutions (of stride 4) on the PPA are calculated

by iteratively performing image shifting and addition a total of 12 times. As shown in

Figure 3.5, the convolution results are stored in the bottom right corner of each 4×4

block. Convolutions of stride 1 and 2 can be calculated by simply repeating this process

for stride 4 multiple times (×16 for stride 1, ×4 for stride 2. The second and third rows

in Figure 3.5) illustrate this, using a different shifted copy of the kernel filter for each

iteration.
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Figure 3.3: The layout of 64 binary kernel filters in a digital register. Each filter can
extract corresponding features from the initial input images to the downstream layers.

Figure 3.4: The parallel implementation of multiplication. Each pixel of source image
either remains unchanged or becomes negative according to the binary weights stored
directly in registers.

It should be noted, for each iteration, only one pixel out of 4×4 block stores the

correct value for image convolution. Hence, some degree of power efficiency is sacrificed

compared to calculating 16 valid convolutional results for once. Despite this, even at

stride 1 our implementation is still significantly faster at performing convolutional layers

than many previous works [63, 113, 114] as multiple convolutional filters are executed

in parallel across the array rather than sequentially.
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Figure 3.5: The parallel implementation of image convolution process. Only useful
information is stored at the right bottom corner in every 4×4 block. The final result in
this example can be regarded as a CNN with a stride = 4. Stride can also be set to 1
or 2 according to the requirements of different applications considering efficiency and
accuracy.

3.4.3 Activation function and Max-pooling layer

Activation function is used in neural network for non-linearity purpose. We make use

of the rectified linear unit (ReLU) as it is both a common choice of activation function

and can be efficiently performed in parallel across the SCAMP-5d array, using a short

sequence of native operations. Max-pooling can similarly be implemented in an efficient

parallel manner on the PPA array, using simple shift and addition operations. Specifically

2×2 is achieved by comparing each PE to is north neighbour in parallel, overwriting each

PEs data with the larger of the two values. This process is then repeated for each east
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Figure 3.6: Top: 64 feature maps generated in parallel by the convolutional layer on PPA.
Bottom (left to right): input images, images after convolution, images after activation
function ReLU, images after max pooling.

neighbour, resulting in every PE containing the greatest value in its local 2×2 block.
Algorithm 4: Parallel 2×2 max-pooling.

Result: B
1 initialisation;

2 D = Move B to the north for one pixel
3 E = D - B
4 WHERE (E > 0)
5 B = D
6 D = Move B to the east for one pixel
7 E = D - B
8 WHERE (E > 0)
9 B = D

3.4.4 Parallel Fully-Connected Layer

The first step in performing a fully-connected layer is multiplication between max-pooled

image data and the fully-connected weights as shown in Figure 3.7. The image on the

right visualises the binary weights of the fully-connected layer, encoded in 1-bit digital

registers. The key to this part lies in the layout of the fully-connected weights and

max-pooled image. In this schematic diagram , the fully-connected weights for 4 labels
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Figure 3.7: The parallel implementation of fully-connected layer.

are stored in the 2×2 blocks. After multiplication, pixels that contain information for

each label are spread in a checkered pattern. The native global sum sparse function

can return the approximated summation of values from a given selection of analogue

registers. This can then be used to get the approximated sum of pixels associated with

each label. The biggest value out of these global summations gives the final prediction of

the neural network.

3.5 SCAMP-5 Inference, Experiments, and
Evaluation

This section demonstrates four experiments1: plankton classification, real-time hand-

gesture recognition, rock-paper-scissors and digit recognition. Each is demonstrated

using a different CNN network running upon SCAMP-5, using either 64 4×4 or 16 4×4

kernel filters in the convolutional layer.

3.5.1 Plankton classification

Plankton organisms are at the bottom of the food chain in the marine ecosystem, real-

time monitoring of which can be used to determine ocean health levels [170]. Due to the

1Experimental video: https://youtu.be/3Qh4ujmsh7E
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Figure 3.8: CNN inference performing plankton classification on SCAMP-5d. Plankton
images are normalised in size and centred before being input into the PPA array as
shown in the top row for each class. The second row shows the max-pooled data fed into
the following fully-connected layer. Rows three and four show the final predictions for
each class and an example image from the correct class.

capacity of the proposed neural network, we select 8 of the most numerous plankton

species (0:chaetognaths, 1:coppods, 2:echinoderm, 3:hydromedusae, 4:pelagictunicate,

5:protists, 6:siphonophores and 7:trichode-smium) from an imbalanced scale plankton

database considering the number of samples for each species2, to show the performance

of the proposed CNN.

class 0.chaetognaths 1.coppods 2.echinoderm 3.hydromedusae 4.pelagictunicate 5.protists 6.siphonophores 7.trichodesmium
0.chaetognaths 188 0 1 2 1 0 8 0
1.coppods 3 176 1 0 14 2 4 0
2.echinoderm 0 3 182 0 1 1 4 0
3.hydromedusae 1 3 5 181 0 3 7 0
4.pelagictunicate 0 26 2 1 138 10 23 0
5.protists 0 0 1 1 6 183 8 1
6.siphonophores 52 12 9 8 24 9 85 1
7.trichodesmium 0 0 17 1 0 20 2 160

Table 3.1: Confusion matrix for plankton classification with 200 samples for each label.

As shown in the Figure 3.8, we utilise 64 4×4 kernel filters, acting upon 32×32 input

images with 2×2 max-pooling. After training with binary weight neural network on a

computer, the validation accuracy is 83.6% and 80.5% on the PPA. The reason for the

accuracy gap lies in the inevitable computation error on analogue registers[171] and

approximated analogue summation used in the fully-connected layer. Moreover, Table
2Dataset available at https://www.kaggle.com/c/datasciencebowl
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1 visualises the performance of the proposed CNN in SCAMP-5 on 1600 samples. The

accuracy for siphonophores and pelagictunicate is lower due to their visual similarity

with chaetognaths and coppods respectively, which, as a whole, is in line with the bar

chart shape in Figure 3.8.

3.5.2 Real-time hand gesture recognition

Figure 3.9: Samples of eight common hand gestures for classification with PPA device.

Hand gesture recognition is increasingly used in human-computer interaction, human-

robotics interaction and computer games[172]. This section demonstrates real-time hand

gesture recognition as another potential application of the proposed CNN framework.

The experiment demonstrates real-time recognition of 8 types of hand gesture (Figure

3.9) with image capturing, pre-processing and CNN inference performed on the PPA in a

parallel manner.

3.5.2.1 Data collection and Training

We created a hand gestures dataset by capturing commonly used 8 types of hand ges-

tures3. Each hand gesture class in the dataset is collected by capturing a dynamic left

hand moving randomly within the view-field of the SCAMP-5. More than 1000 images

are captured for each class in this way. The CNN used for classification consists of a

single 4×4 kernel convolution layer using 16 filters with an input image size of 64×64,

followed by a 4×4 max-pooling layer and two fully-connected layers. The choice of two

fully connected layers was taken to boost accuracy, with the first performed upon the

PPA array and second on the ARM controller. There are 32 intermediate neurons in the

first fully-connected layer and 8 in the second. The training with the binary CNN shows

the validation result has an accuracy of 98.7% .
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Figure 3.10: Examples of high-speed hand gesture classification by CNN inference on
SCAMP-5d. From left to right for each column: (1) Experiment set up showing SCAMP-5d
capturing hand gestures while the monitor in the background displays results from the
CNN inference being performed on-board. (2) Captured images pre-processed and fed
into the CNN, (3) Convolutional layer results, (4) Feature maps after activation and
max-pooling, (5) Outputs of the first fully-connected layer and the height of each bar
represents value for each neuron, (6) Prediction of the CNN, (7) Visualisation of predicted
class.

Component Plankton Hand Gesture Roshambo 0 or 1
Image capturing and thresholding (µs) - 6 6 -
Character duplication (µs) 28 28 28 28
Image convolution(µs) 165 165 52 12
Activation function (µs) 5 5 5 5
Max pooling (µs) 4 36 12 -
First fully-connected layer (µs) 47 213 18 12
Second fully-connected layer (µs) - 24 - -
Total running time (µs) 249 478 121 57
Inference speed (fps) 4,016 2,092 8,264 17,543
Accuracy (Computer/SCAMP-5d) 83.6%/80.5% 98.7%/- 97.73%/- 99.7%/99.1%
Number of binary weights 100,608 921,664 43,264 29,056

Table 3.2: Computation time, performance and weights for different neural networks.
Notice that all the live demos are demonstrated with a fixed distance between the
SCAMP-5d and the hand.

3.5.2.2 SCAMP-5d Inference and Evaluation

Inference evaluation is performed by a hand randomly changing poses in front of a

SCAMP-5d. Figure 3.10 illustrates the prediction results of the proposed neural network.

The frame rate of the CNN inference for hand gesture recognition reaches 2092 fps (478

µs) (Table 5.2).

3Dataset available at https://github.com/yananliusdu/scamp/tree/master
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Figure 3.11: Rock-paper-scissors recognition inference process. The image at the bottom
is the real hand gesture. Image on the top left is the input for the CNN and the prediction
results can be seen at the bottom left for each 4×4 block at the top.

3.5.3 High-speed CNN inference on the PPA

To show the high-speed performance of the parallel embedded CNN on SCAMP-5, we

implemented a rock-paper-scissors recognition and digit 0/1 recognition with stride = 2

and 4 respectively.

Rock-Paper-Scissors recognition:

For this application with 3 labels, a stride = 2 (Figure 3.5) with a single convolutional

layer and a fully-connected layer is utilised to achieve a trade-off between the efficiency

and robustness. We train a binary neural network with 16 kernel filters on SCAMP-

collected hand gesture dataset and get an accuracy of 97.73% (Table 5.2). Figure 3.11

shows the inference process for 12 frames sampled from a 0.3 second period which

includes all the time of intermediate result transmission and displaying on the SCAMP-5

host interface for visualisation purpose. Our network can operate with latency of 121

microseconds (from image acquisition to classification result available in the micro-

controller), and the frame rate of over 8,200 fps.

0/1 recognition:

We trained another network to classify the digits 0 and 1 from the MNIST [173]

dataset, to explore how fast CNN inference speed could be pushed for simple tasks.

This network uses a single convolutional layer (of stride = 4) followed directly by a

fully-connected layer. This approach requires only 12 µs for convolutional layer and fully

connected layer respectively, achieving a total inference time of only 57 µs (Table 2)

equivalent to 17,543 fps, and an accuracy of 99.1%.
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3.6 Direct Servo Control with the PPA

Sensors are usually designed to collect information from the environment and then trans-

mit this information to processors. This section, however, takes advantage of the SCAMP

PPA not only to sense and digest input information, but also to send execution instruc-

tions driving the servo motors in order to construct a on-sensor ‘sense-planning-action’

scheme. With the above-mentioned on-sensor neural network, this section develops a di-

rect visual sensory-motor control system using high-speed CNN inference via a SCAMP-5

Pixel Processor Array (PPA). The author demonstrates how PPAs are able to efficiently

bridge the gap between perception and action. A binary Convolutional Neural Network

(CNN) is used for a classic rock, paper, scissors classification problem at over 8000 FPS

during inference. Control instructions are directly sent to a servo motor from the PPA

according to the CNN’s classification result without any other intermediate or external

hardware.

3.6.1 Introduction

Real-time image capture, processing, and decision making with low-power consumption

are essential for next-generation smart sensors. If a complete neural network inference

can be carried out on-sensor, it allows the sensor output to be reduced from entire images

to only a small amount of meaningful extracted information used to determine actions.

This considerably reduces the communication and energy costs with auxiliary devices.

In-sensor visual computing is an area of growing interest [15]. The SCAMP vision system

is such an in-sensor visual computing device that performs image processing while

sensing and without recording images and while using low power consumption [10, 39].

This is in contrast to a conventional vision system and other non on-sensor computing

cameras, where the understanding of the visual inputs happens only after the visual data

is transmitted to, and processed by, CPUs and or GPUs, resulting in extra latency and

power consumption. This section illustrates how the SCAMP vision system can operate

as an ‘edge AI’ sensor, enabling on-sensor CNN inference and direct action execution

with a servo motor, as shown in Figure 3.12.

3.6.2 Binary CNN on the PPA

During recent years, there have been many types of CNN binarization methods proposed

[174] to minimise CNN model size, improve inference efficiency, and reduce power cost.
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Figure 3.12: A servo motor is directly driven by the SCAMP vision system without
additional intermediate hardware. With the machine vision computing results from the
SCAMP vision system, the servo can be instructed accordingly. An Align DS425M digital
servo is used in this work.

Figure 3.13: Binary CNN inference on the PPA for hand gesture recognition with di-
rect servo control. Image convolution, ReLU activation function, max pooling and fully
connected are performed in parallel on the sensing plane.

However, embedded hardware usually has its own dedicated hardware design which

is not universally applicable to all forms of binary neural network. To deal with this

problem for PPA, this work trains and deploys a binary CNN (with kernel weights and

fully connected weights of -1, 1) onto PPA to fully take advantage of its in-sensor parallel

computing feature. Binary weights for both convolutional and fully connected layers are

stored in the digital registers (DREG) of the SCAMP processor array. The processing
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Figure 3.14: CNN inference for hand gesture recognition with a servo as the result
indicator.

scheme is illustrated in detail in Figure 3.13. Firstly, the analogue PIX registers acquire

light signals, forming the image to be passed through the network. Then the image

is binarised, resized and replicated into a dimension of 16×64×64 using on-sensor

processing. Different convolution operations are then carried out simultaneously on

these 16 replicated images. Then the activation function ReLU sets negative values to

zero. Followed by the 2×2 maxpooling, a maximum value is selected and replicated

within each 2×2 block. Lastly, the fully connected layer is implemented by activating

each label’s AREG and then using the SCAMP built-in global summation function to

obtain the approximated value for each label. The index for the biggest summation

represents the final CNN inference result [65].

3.6.3 Experiments

As for the experiment, the SCAMP-5 vision system and a digital servo motor is utilised.

Figure 3.12 and 3.14 shows the test-bed for the sensory-motor system. The USB link

from the computer is used for power supply and transmission of visualisation data. We

extended our previous work [65, 175] by adding the implementation of the direct servo

control using the binary CNN inference results. This work is based on the SCAMP-

collected hand gesture dataset which consist of gestures for ‘rock’, ‘paper’, and ‘scissors’.

The servo motor is controlled through pulse-width modulation on the ARM Cortex M0

processor embedded in the SCAMP system, where the computing results are shared

from the PPA. We perform the experiments on three types of hand gesture recognition.

This basic setup is used here as a test-bed for bridging perception to action. After the

implementation of CNN on the SCAMP, the experimental results (details can be seen
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from the video results) offer recognition accuracy of >97% with a latency of 121µs

and maximum theoretical throughput of 8264 FPS [65]. Note the data transmission to

a computer for visualisation slows down the overall FPS, which can be noticed from

the experimental video. In addition, there are additional latencies, including the servo

reaction and movement time until indicating the correct predictions with the servo motor.

The control frequency determines the servo reaction time. Our work uses a digital servo

motor with a control frequency of 333 Hz leading to approximately a 3 ms latency.

The experimental video can be seen at https: // youtu. be/ gHcuv275Qrk

with a ×20 slow motion available from https: // youtu. be/ SAMsIqqCZ7I

3.7 Discussion

The proposed new implementation of convolutions allows more flexibility (different

strides and different max-pooling setup) to modify a CNN for different tasks and achieves

higher speeds 2,000-17,000 fps. Compared to works [63, 113, 114] which only test on

MNIST, we expand to Plankton and 2 live hand gesture tasks. [63] uses ternary-weighted

CNNs and achieves 94.2% at 210 fps. [113] claimed it reaches 2260 fps and quoted

an accuracy of 96.9% on MNIST, but only uses 3 convolutional filters which may be

insufficient to generalise to other tasks. Moreover, its frame rate drops to around 1000

fps with 7 convolutional filters indicating the nature of parallelism on the PPA is not

fully exploited. [113] implemented both max-pooling and fully-connected layers in Micro-

controller and the maximum inference reaches 3000 fps with a sacrificed accuracy of

90.2%.

The bottleneck that limits further performance improvement on SCAMP-5 in terms

of accuracy and speed is due to the insufficient engineering resources available to

academic research. If the PPA is built with state-of-the-art technology (current PPA

device is manufactured with 180 nm CMOS silicon technology [10]), these limitations

will be greatly mitigated. Finer silicon process implementation will provide more digital

storage per pixel and an expanded ALU, while silicon stacking technology allows extra

advantages of analogue pixel computing to still be exploited (e.g. low power, global sum,

blur, etc).
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3.8 Conclusion

In this work the author demonstrated performing CNN inference upon a PPA sensor-

processor device across various tasks. Our implementation exploits the parallel computa-

tion of the entire PPA array, compared to various previous work which only utilised a

small area. As a result our CNN inference is shown to be significantly faster than these

works. Further our proposed convolution approach allows convolutions of stride 1,2 and 4

enabling extremely high inference speeds over 17500Hz on certain tasks to which stride

4 is applicable. The range of tasks demonstrated illustrate the potential such PPA de-

vices may hold for future embedded applications. Though the current limitations of PPA

hardware restrict us to smaller networks, it is reasonable to assume that future devices

will see a significant increases in PE memory, power efficiency, and processing speed. The

work presented here could quickly be adapted to take advantage of such improvement

and thus can be used as a stepping stone towards more complex computational vision

applications.

In addition, a visual sensory-motor scheme based on the PPA is presented in this

work, where a servo is directly controlled by the focal-plane CNN inference without

additional computing units. We believe that closing the gap between perception and

action, through in-sensor computing strategies, is essential for agile and efficient robotic

systems.
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4
ON-SENSOR BINARISED CONVOLUTIONAL NEURAL

NETWORK

The preceding chapter proposes and implements a binary neural network on the SCAMP

PPA for a variety of classification applications. The trained binary neural network, on the

other hand, just binarises the weights. There is still a large number of activations that

require at least 8 bits of storage space for each neuron. Additionally, AREG is unsuitable

for storing activations momentarily, as the analogue current within the integrated circuit

quickly becomes saturated, introducing noise. Keeping these constraints in mind, a fully

binarised neural network may hold the answer to overcoming these obstacles. As a result,

this chapter proposes a neural network with both binary weights and binary activations.

4.1 Background

Neural network quantisation is a critical technique for condensing massive floating-point

networks into much smaller networks that may be implemented on resource-constrained

mobile and portable devices. Binary neural networks are one technique for compressing a

neural network effectively for deployment on embedded systems. There is a great deal of

research being conducted on neural network binarization at the moment. To accomplish

high-performance CNN inference on embedded devices, extensive research on network

compression, hardware accelerators, and novel visual sensors has been conducted. This

thesis trains binary neural networks using an off-sensor technique in preparation for
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network deployment on the PPA device for various applications, including classification,

localisation, and segmentation.

Many types of binarised CNN training methods have been proposed in recent years,

aiming to provide an efficient and compressed neural network solution for embedded

edge devices with limited computation power and memory. However, it can be challenging

to find an optimal method to deploy such neural networks onto certain devices because

of their non-standard architecture, such as the case for Pixel Processor Arrays (PPAs)

sensors. This work attempts to enable a network solution for the PPA by training

purely binarised CNNs and deploying them on the PPA’s focal plane. We demonstrate

Convolutional Neural Network (CNN) and Fully Convolutional Network (FCN) with

tasks of classification, localisation, and coarse segmentation. Specifically, this work trains

and implements networks with batchnorm and adaptive threshold for binary activations.

Then, we convert batchnorm and binary activations into a bias matrix which can be

parallelly implemented by an add/sub operation. Considering the limited computing

and storage hardware resources of PPAs, we propose a novel dynamic model swapping

scheme to decompose applications that are beyond the capacity of PPAs into sub-tasks

that the tree networks can solve. Thus, our approach demonstrates various tasks on a

highly resource-limited PPA sensor chip without using external computing units.

4.2 Introduction

Sensing, storage, and processing integration wholly on a single chip based on analogue

signals can be a potential solution for the next-generation intelligent embedded sensors

[41], where artificial neural networks can be performed in real-time. With this all-in-

sensor scheme, a sensor can efficiently perceive the environment and generate useful

results with the raw analogue signals using low-power consumption without producing

redundant data to post-processing units. Pixel Processor Array (PPA) (Figure 1.2) [10]

is such an emerging programmable massively cellular vision the sensor that combines

imaging, information storage, and computation in-sensor. Considering the decentralised

Processor Elements (PEs, Figure 1.2) of PPA, the neural networks need to be trans-

formed to fully take advantage of its in-sensor parallel processing performance for more

complicated tasks. However, full-precision neural networks usually require huge ROM

and RAM space for weights and temporal results storage along with heavy floating-point

computation, which is adaptive with powerful CPU/GPUs but not suited for on-sensor

computing devices with only stringent storage and computation hardware resources.
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With this in mind, this paper designs and trains new purely binarised CNNs adaptive to

PPA’s hardware architecture and proposes novel methods to deploy these proposed CNNs

on the PPA across image classification, object localisation and coarse segmentation tasks.

However, here comes another problem: binarised CNN with binary weights and

activations are difficult to train and usually suffer from significant performance drop

[176] compared to full-precision CNN training. Batch norm [177] is an essential technique

in training binary neural networks to avoid gradient explosion and help the neural

network to converge [176]. As a result, we are motivated to introduce batch norm into the

purely binarised CNNs to improve both the training efficiency and performance in the

embedded vision systems with scarce storage and computing resources by adding more

layers. In this paper, to fully take advantage of PPA’s parallel computation ability on

both analogue registers (AREG) and digital registers (DREG) (Figure 1.2, [39]), we train

a purely binary convolutional network containing binarised weights and activations

with batch norm off the sensor and deploy it on the sensor for multiple tasks. We show

that the implementation of the batch norm, activation function, and adaptive activation

threshold for binarised activations is mathematically equivalent to adding a bias matrix

B which significantly simplifies the inference process on the sensor. In addition, the use

of binary activations alleviates accumulative errors introduced by analogue-signal based

computing when performing image convolution and allows an accurate bit-counting

method for the fully-connected layer, hence enabling deeper CNN on the sensor. With

this binarised CNN, the inference calculation process can be implemented with only

add/sub and shifting operations for convolution and binary bit counting for the linear

layers. This scheme benefits explicitly the SCAMP vision system because the calculation

errors are easily accumulated when using analogue current signals repetitively [171]

for storage and calculation especially for activations. It is also worth noticing that

AREG calculation is based on analogue current signals that are subject to saturate

after repetitive operations resulting in information loss. In this work, binary weights

and neuron activations can help to decrease the accumulative errors and avoid AREG

saturation issues. Furthermore, this presented neural network binarization and on-

sensor implementation architecture are generalised to CNN with linear layers and Fully

Convolutional Networks (FCN) for various tasks.

In the experiments, the architecture of the CNN tree with dynamic model swapping is

proposed to enable embedded devices with limited hardware resources to deal with more

complicated tasks by switching different network models. Specifically, we send input

images through a sequence of networks. At each stage, the output of the last network is
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used to determine which network is next, effectively allowing a more complex task to be

performed by a series of simple networks. We apply this scheme to classification, object

localisation and segmentation tasks. We implement this CNN tree architecture on the

sensor and demonstrate it with real-time 37 types of English letters classification and

objects’ localisation and different coarse segmentation. The main contents of this work

can be summarised as follows: (1) We train purely binarised CNNs (binary weights and

activations) and implement them on the PPA for the first time. This approach of binary

activation alleviates the accumulation of analogue computing errors and value saturation

after each layer, thus enabling deeper neural networks on the sensor. Furthermore, with

the binary neuron activations as inputs, the linear layers can be implemented by simply

counting the bit number accurately [65]. Unlike earlier work, we apply batch norm during

training and utilise this to learn bias parameters to be applied during inference on the

PPA device. (2) We propose a CNN tree architecture where multiple neural networks

can be composed for more sophisticated inference tasks by dynamically uploading neural

network models onto the sensor.

4.2.1 CNN with Binary Weights and Activations

BinaryConnect [89] trains neural network with binary weights during forward propaga-

tions. However, BinaryConnect is not a fully binary neural network with floating-point

neuron activations. Both the CNN and FCN presented in this work are based on the

binarised CNN [178] with both binary weights and neuron activations. Such binary

values can be stored in 1-bit DREG and processed with bit-wise operations upon the

PE array. binarised CNN reduces the intermediate memory storage required for neuron

activations and replaces most arithmetic operations with bit-wise operations. These

qualities make such fully binarised neural networks are highly suitable for PPAs. During

training we employ a simple strategy to binarise the weights and activations. All the

weights are efficiently binarised in a deterministic manner Equation 4.1.

(4.1) wb = Sign(wr)=
+1 wr > 0,

−1 otherwise

(4.2) ab = Sign(ar −α)=
+1 ar >α,

−1 otherwise
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Figure 4.1: (a) The binarised CNN forward propagation with batch norm and adaptive ac-
tivation function. (b) The simplified inference process on the PPA device by transforming
batch norm and activation function into a ‘bias’ B to be subtracted from Y. The inference
process is significantly simplified, with only addition/subtraction and sign operations
required.

where wr is floating-point weights and wb is the binarised weights. In terms of acti-

vations, we train channel-wise adaptive thresholds α to binarise the activations to obtain

more informative binary feature maps, inspired by work [179]. Additional coefficients,

introduced by channel-wise thresholds, have a low impact on the implementation effi-

ciency. In Equation 4.2, α is the trainable thresholds for binarization of each channel, ar

is the real-valued activations and ab is the binarised activations. During the training

process, the gradients are calculated with the floating-point weights using standard

backpropagation and stochastic gradient descent. The weights and activations are only

binarised during the forward pass. In our work, the binarised CNN is trained on a

PC machine, and the CNN inference process is implemented on the SCAMP-5d vision

system.

The training process for batch norm parameters can be seen from Algorithm 5 [177].

In this batch norm training algorithm, ε is used to avoid a zero denominator and the

main scaling and shifting parameters γ and β for batch norm are learned during the

training process. Then the batch norm can be applied to manipulate activations [177]. In

Figure 4.1, for a single layer of binarised CNN during the forward propagation process:

(4.3) Y =
m∑

i=0
wixi, Ŷ = γ Y −µp

σ2 +ε
+β= γp

σ2 +ε
(Y − (µ−

p
σ2 +ε
γ

β))

Considering activation function tanh does not change the sign of inputs, we have:
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Algorithm 5: Batch norm parameter training
1 Input: Mini-batch B = {x1, x2, ..., xm}
2 Output: yi = BNγ,β(xi)

1. Calculate the average for each mini-batch: µB = 1
m

∑m
i=1 xi.

2. Calculate the variance for each mini-batch: σ2
B = 1

m
∑m

i=1(X i −µB)2.

3. Normalise the inputs: x̂i = xi−µB√
σ2

B+ε
.

4. Scale and shift: Bi = γx̂i +β.

(4.4) Z = sign(A)= sign(tanh(Ŷ −α))= sign(Ŷ −α)= sign(Y − (µ−
p
σ2 +ε
γ

β)−α)

(4.5) Z = sign(Y −B)

(4.6) B =µ+α−
p
σ2 +ε
γ

β

In Equation 4.6, σ2 = 1
n

∑n
i=1(xi −µ)2,µ = 1

n
∑n

i=1 xi, where β, γ, and α are all train-

able parameters that can be obtained directly after training. Thus the ‘bias’ B can be

calculated used these parameters offline, before implementing it on the PPA.

During the inference process, the batch norm and activation reduces to a bias term, as

shown in Equation 4.5 B on Y. Hence, the inference process on the PPA can be simplified

as shown in Figure 4.1b.

4.3 Purely binarised CNN Training

The training method of binary neural network has been illustrated in Section 3.3 for

the binary neural network on the sensor. This section aims to find a neural network

training methods to generate not only binary weights but also binary activations in

order to deploy a deeper neural network on the PPA. This purely binarised CNN training

method is inspired by work [178] where bit-wise operation can replace most arithmetic

operations, which is suitable for the PPA architecture supporting parallel bit operations

on DREG.
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Figure 4.2: CNN inference process with multiple layers on the PPA by integrating image
sensing, storage and calculation using both DREG and AREG. Extra fully-connected
layers can be extended on the micro-controller for more complicated tasks.

4.3.1 Forward propagation

During the training process, forward propagation generates the inference result using

the sub-optimal weights to further compare it with the ground truth and obtain the loss.

The forward propagation is similar to Section 3.3.2 where binary weights are utilised.

The only difference in the binarised network is to binarize the activations after the

convolutional layer.

4.3.2 Gradient

The gradient is critical for backpropagation and convergent training throughout the neu-

ral network training process as the full-precision weights are updated iteratively using

the Stochastic Gradient Descent (SGD). The derivative of the binarization/threshold, on

the other hand, is 0, resulting in training failure. To address this issue, the straight-

through estimator is used to pass on the incoming gradient and treat the derivative

of the binarization function as an identity function [180]. The procedure of training

binarised neural networks was inspired by the work [178] and can be seen in Algorithm

6. Notably, we Clip the weights during training, keeping them within the range [-1,1],

which prevents the weights from becoming overlarge.
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Algorithm 6: binarised neural network training process.
1 Definitions:
2 C: cost function,
3 λ: the learning rate decay ratio,
4 L: the number of layers,
5 ◦: element-wise multiplication
6 Inputs:
7 a mini-batch inputs and targets (a0,a∗),
8 previous weights W ,
9 previous batch normalisation parameters θ,

10 weights initialisation coefficients γ,
11 previous learning rate η,
12 Ensure:
13 updated weights W t+1,
14 updated batch normalisation parameters θt+1,
15 updated learning rate ηt+1,
16 1. Forward propagation:
17 for k = 1 to L do
18 Wb

k ← Binarize(Wk)
19 sk ← ab

k−1Wb
k

20 ak ← BatchNorm(sk,θk)
21 if k < L then
22 ab

k ← BatchNorm(ak)

23 2. Backward propagation:
24 Compute gaL = ∂C

∂aL
knowing aL and a∗

25 for k = L to 1 do
26 if k < L then
27 gak ← gab

k
◦1|ak|≤1

28 (gsk, gθk)← BackBatchNorm(gak, sk,θk)
29 gab

k−1
← gskWb

k

30 gWb
k
← gT

sk
ab

k−1

31 3. Accumulating the parameters gradients:
32 for k = 1 to L do
33 θt+1

k ←U pdate(θk,η, gθk)
34 W t+1

k ← Clip(U pdate(Wk,γkη, gWb
k
),−1,1)

35 ηt+1 ←λη
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Figure 4.3: Image convolution on PPA with sign inversion, bit-shifting, and addition.

Figure 4.4: The fully-connected layer on PPA using parallel XNOR operation and bit
counting. The binary weights for labels are stored on DREG along a ‘snake’ pattern. For
example, the results for label 0 can be obtained by counting the sum of values in orange
boxes (−1−1−1+1=−2). The results for label 9 from green boxes (1+1−1+1= 2).

4.4 Purely binarised CNN Implementation Method
on the PPA

It is critical to carefully design the CNN architecture in order to maximise resource

utilisation and parallelism especially for the unique hardware design of PPA. The

overall binarised CNN architecture from sensing, storage, and computing can be seen

from Figure 4.2. Firstly, as for imaging, the photodetector (PIX) converts light into an

analogue signal which can be directly transformed and temporarily stored into AREG.

The input image on AREG is then resized and replicated to full fill the whole 256×256
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PPA for parallel processing purposes. With the binary convolutional weights stored

in DREG, the image convolution can be performed using the replicated image and

its associated weights. As illustrated in Section III, the batch norm can be efficiently

implemented by subtracting a matrix that is plotted in AREG. The binary activations

can be obtained by binarizing the full-precision activations after being subtracted by the

bias matrix. Then the binarised activations act as the inputs for the next convolutional

layer using a similar process as the first layer. The input for the fully-connected layer

is the binarised activations, with binary weights. The final prediction can be generated

by performing XNOR operation and counting the number of bits for each label. The

maximum number of bits indicates the final CNN inference result. The following sections

detail the implementation method for each layer.

4.4.1 Convolutional Layer

As shown from Figure 5.5, 4.2, and 5.3, the image convolution can be parallelly executed

on the PPA by ‘multiplications’, shifting, and add/sub. Firstly, the register which stores

the image information gets its sign inverted or remain unchanged according to the sign

of binary weights stored in another DREG (Figure 5.3). Then the convolution operation

can be performed by shifting and adding horizontally three times and vertically for

another three times. The first image convolution result (Figure 5.3 Convolution results)

can be found in the bottom-right cell out of each 4×4 block. Finally, after repeating this

process for 16 times (shown in the last plotting of Figure 5.3), an image convolution with

stride one can be obtained. Image convolution with different strides can be implemented

by different shifts [65]. Figure 5.5 shows the layout of the convolutional kernel filters

in detail. Each 4×4 kernel filter are replicated into a 64×64 block (16 blocks in total)

to extract corresponding features parallelly. This work implements a CNN with two

convolutional layers, the resolution of input images to PPA is 256×256, and after resizing

and replication, 16 64×64 images are inputs for the first convolutional layer followed by

2×2 maxpooling. For the second convolutional layer, a group convolution [181] with 16

groups, and 4×4 max-pooling is utilised to simplify the calculation, reduce the memory

requirement, and accelerate the network inference process. The input image for the

second convolutional layer (shown in Figure 4.2) contains four identical images (128×128).

In each of them, there are 16 feature maps. After an image convolution with a group of 16,

64 feature maps are generated simultaneously, acting as inputs for the next CNN layer.

With this method, there is no need to shift feature maps and add/sub them into a new one

within no matter AREG or DREG for the second convolutional layer, hence calculation
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Figure 4.5: CNN neuron values (32 neurons in the first fully-connected layer) comparison
between PPA and PyTorch simulation for the first fully-connected layer. A single image is
tested three times on SCAMP and neuron values, and their average values are recorded
to compare with ground-truth values from PyTorch.

errors based on the analogue signals can be reduced, and the inference process can be

accelerated with much less register-based operations.

4.4.2 Fully-Connected Layer by Bit Counting

As shown in Figure 4.4, the first step is to multiply input binary feature maps with 1-bit

weights, which is achieved by performing XNOR operation between the given binary

activations (Figure 4.4 top left) and weights (top right), which can be efficiently processed

with the parallel bit operation on DREG. Figure 4.4 shows the weights for 10 labels and

they are pre-stored in a ‘snake’ pattern in a 4×4 block on a DREG. Different from earlier

work [64, 65, 110] where the fully-connected layer is implemented mainly by using the

built-in scamp5_global_sum function to estimate the summation of values in AREG,

which is not accurate to fully represent the possibility of the CNN outputs. In our work,

the final CNN reference possibility can be obtained by activating each label’s position

in the bottom right (Figure 4.4) and counting the amount of positive and negative bits,

which can be more accurate than approximation summation method. The pixel counting

accuracy can be found from Figure 4.5, which shows the similarity between a simulation

on pyTorch that can be regarded as ground truth and binarised CNN on the PPA. An
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Figure 4.6: The stages of the bit counting method known as ‘sandcastle summation.’
From left to right, an example of DREG content to be summed, the stacked ‘sandcastle’
of set pixels that results, and the pixels along the top of the ‘sandcastle’ whose extracted
locations are used to determine the total number of set pixels.

average error of 10-15 is achieved between the groundtruth and values on the PPA for

each neuron.

Bit counting for fully-connected layer:

When calculating the neuron activations from the fully connected layer, counting

the number of set bits in a DREG is necessary. In this work the author make use

of the "sandcastle summation" method introduced in [64], and described in detail in

[182] 1. In brief, this method provides a fast way to calculate an exact count of the

number of set bits in a DREG. It achieves this by manipulating the DREG’s content via

efficient parallel operations into a form where the number of set pixels can be easily

determined. Specifically forming a stacked "sandcastle" of set pixels as shown in Figure

4.6 after which, the number of set pixels can be determined by calculating the area of

this "sandcastle" stack. This approach is typically two orders of magnitude faster than a

naive approach of counting set pixels individually.

4.4.3 Activation and Max-pooling

As mentioned above, the activation function tanh is simplified in the binarization pro-

cess—hence no need to implement the activation function in the binarised neural network.

Max-pooling is implemented in the same way as that in Section 3.4.3.

1https://youtu.be/a2VO3aWHnYc
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Figure 4.7: A schematic diagram: a ‘bigger’ network is directly decomposed into multiple
‘smaller’ networks.
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Figure 4.8: A schematic diagram: a ‘bigger’ network is decomposed into multiple ‘smaller’
networks with a selection network to choose which one to run next.

4.5 Dynamic Network Model Swapping on the PPA

Considering the limited AREG and DREG resources on the sensor, a dynamic model

swapping scheme can be a solution to perform multiple networks in sequence towards a

sophisticated application. Specifically, these multiple networks can be trained separately

to approximate a comparatively "large" network that is out of the storage and computing

capacity of the PPA sensor. The PPA can obtain similar or even better inference results

by sequentially running these "smaller" networks.

As shown in Figure 4.7 and 4.8, there are mainly two schemes to decompose a network

into smaller ones: the direct decomposition and decomposition with an extra selection

network. Figure 4.7 shows the direct decomposition where classes are divided into

different groups and sub-networks are executed in sequence to find the inference results.
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In terms of the inference results, it is evident that the combination of sub-networks

would not be better than the original one. Different from the direct decomposition scheme,

Figure 4.8 introduces an extra selection network to decide which neural network to carry

out next according to the inference result from the selection network. Each sub-network

is trained separately in this scheme, and the overall performance can be better than the

original network. In addition, more sub-networks are needed with more labels to classify,

for example, alphabet classification. In this case, the PPA needs to run all sub-networks

one by one to get the final inference results with the scheme shown in Figure 4.7 while

only one sub-network is needed after the selection network with Figure 4.8. Hence, this

thesis takes advantage of sub-networks with a selection neural network for many labels’

classification by dynamically swapping only two sub-networks. In addition, the neural

network models are stored in the FLASH of the SCAMP vision system. Because of the

same neural network architecture, the associated weights for models can be uploaded

into DREGs for computing after the last inference result.

4.6 Experiments

This section demonstrates experiments, classification, localisation, and segmentation,

based on the proposed binarised CNN and FCN architecture, respectively. Figure 4.2

shows the design of a binarised CNN architecture as a node of CNN tree for 37 English

letter (Figure 4.9) recognition. Figure 5.11 shows the CNN architecture for object 2D

localisation and road coarse segmentation with FCN.

4.6.1 CNN Tree on EMNIST for English Letter Classification

The EMNIST dataset [183] is a set of handwritten characters extended from MNIST

[173] dataset with the same image format. This work uses the merged class which

contains 11 lower-case classes, 11 upper-case classes and 15 mixed classes where some of

letters are difficult distinguish from upper case to lower case, such as O, X, C. Hence,

there are 37 types of labels in the merged class in total. Considering the scarcity of

hardware computing resources, especially the amount of DREG/AREG available to store

weights, temporary activations and perform convolution, this paper proposes a CNN tree

architecture consisting of 4 CNNs (Figure 4.10), each of which can be swapped simply by

loading associated weights from the flash to the DREG, as all these four networks share

the identical architecture. The overall 4 CNN structure shown in Figure 4.10. The three
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Figure 4.9: The visualisation of the average value for each letter from the EMNIST
dataset. As can be seen, several classes share lots of similarity to some degree, such
as I and L, f and F, h and n, g and q, Q and a which makes this classification task
challenging.

Input

CNN-Switch

CNN0 CNN1 CNN2

Figure 4.10: CNN tree architecture using dynamic model swapping on SCAMP in which
each CNN performs a comparatively more straightforward task using the 4-layer CNN.
These four categories are using EMNIST merged classes.

categories of these 37 letters were determined using k-means clustering via Principal

Component Analysis [184] shown in Figure 4.11.

With the proposed CNN tree where each CNN uses 2 convolutional layers + 2 fully-

connected layers, better accuracy of 86.74% is obtained compared to a single neural

network (Table 4.1). As can be seen from Figure 4.2, a third convolutional layer is

challenging to extend to improve the CNN performance because the size of feature map

is 8×8 after two max-pooling (2 and 4) which is too tiny to add another max-pooling

for the third convolutional layer. An alternative would be more fully-connected layers,
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Figure 4.11: 37 English letters are clustered into three categories with k-means clustering.
Black dots represent the centre of each category.

Table 4.1: CNN classification accuracy among different CNNs.

CNNs Accuracy parameter amounts
CNN switch 95.55% 132,873
CNN 0 94.77% 133,153
CNN 1 83.70% 133,293
CNN 2 93.77% 133,153
Overall 86.74% –
Single 4-layer CNN 84.20% 134,063
Single 4-layer CNN 84.55% 149,423
group=1

which is also limited by the hardware resources. To improve the overall classification

accuracy, a CNN tree with 4 CNNs (Figure 4.10) is proposed, where the basic idea is to

use a combination of four 4-layer neural networks uploaded into SCAMP in sequence to

get a closer accuracy with a deeper neural network that exceeds the SCAMP hardware

storage/computation capacity. It might be challenging to store all the weights for a

deeper neural network on a embedded system, but the parameters in each branch can be

uploaded into system according to the last inference result, which alleviates the storage

pressure and, in the meantime, obtains a better accuracy than a single neural network.

In terms of the CNN tree training, four CNNs are trained separately with the same

neural network structure. The accuracy for each CNN can be seen from Table 4.1. In

addition, Figure 4.12 shows the binary training process and comparison among single
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Figure 4.12: CNN tree training performance. We compared the CNN tree with a single
CNN scheme in terms of accuracy. With the same binarised CNN architecture of two
convolutions and two fully connected layers, the overall accuracy of the CNN tree is better
than a single CNN. Although CNN tree sacrifices the efficiency by running multiple
CNNs sequentially, it provides a solution to combine several networks for a comparatively
complicated task.

network and a CNN tree. Note that, CNN-1 suffers from a poorer performance compared

to its counterparts, which results from not only the number of classes (15 vs. 11) but also

the amount of similar classes, such as F and f, L and I, g, q shown in Figure 4.11.

To evaluate the CNN implementation on SCAMP, Figure 4.5 compares the first

fully-connected neuron values between SCAMP and Simulation on PC because errors

are mainly caused by analogue signal processing on the PPA, and there would be no

error introduced to the last fully-connected layer afterwards since it is implemented

on the micro-controller. As shown in Figure 4.5, the neuron values from SCAMP using

digital summation is close to the ground truth in simulation and the average absolute

errors measured is 22.6 for each neuron. Figure 4.14 shows the prediction results of the

proposed CNN tree neural network. The final measured accuracy with EMNIST datasets

on the PPA is around 82%, which sees a 4-5% accuracy gap from the groundtruth in the

PC simulation.

4.7 Conclusion

To efficiently embed artificial neural networks onto the emerging but resource-constrained

PPA sensor, we propose a series of novel deployment methods, including purely binarized
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Figure 4.13: A live demo by facing a SCAMP to the handwritten letter on a whiteboard
and screen drawing pad. Top left, facing the SCAMP to a whiteboard and the inference
results on the top right. Bottom: facing the SCAMP to a handwritten letter on a drawing
pad (bottom left). More details can be seen from the experimental video https://youtu.
be/8V9vXhXw8X8.

networks, batch norm, trainable adaptive binarization thresholding, group convolution,

fully-connected layer with digital summation, and network tree with dynamic swap-

ping scheme for classification, localisation, and segmentation tasks. By combining these

strategies, a deeper neural network with a greater capacity for inference is built on the

SCAMP, enabling the execution of more difficult tasks. We test the visual competencies

of region segmentation and target object localisation with a latency of 3.5 milliseconds

for each inference using real pixel processor array (PPA) hardware. Additionally, this

work makes use of a novel CNN tree architecture by sequentially running many neural

networks based on their outputs. Each network in the tree makes full use of the embed-

ded device’s hardware resources. This approach enables the use of a deeper and wider

CNN tree on SCAMP and other embedded devices. Two experiments demonstrating

the effectiveness of the proposed binarised CNN and implementation method on the

SCAMP vision system demonstrate the effectiveness of the proposed binarised CNN and

implementation method on 37 letter classification using a network tree architecture and

object coarse segmentation using a shared convolution layer.
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Figure 4.14: Examples of CNN tree inference on SCAMP-5d. For each letter from left
to right: (1) Real-time hand-written input image by facing the SCAMP to a writing
pad. (2) first convolutional layer. (3) convolutional layer after batch norm. (4) binary
feature maps after maxpooling and activation function. (5) second convolutional layer.
(6) convolutional layer after batch norm. (7) binary feature maps for fully-connected
layer after maxpooling and activation function. (8) prediction bar for first CNN inference
results (Category 0, 1, 2). (9) Switch CNN inference results. (10) prediction bar for the
second CNN inference results. (11) final CNN inference results. Notice that for each
letter inference process, visualisation is only for one CNN.

Table 4.2: Computation time breakdown CNN of single branch

Processing Steps Approx. Time Cost (µs)
Imaging and thresholding 35
Character resize and duplication 359
1st Image convolution 184
1st Batch norm and activation 235
2nd Group convolution 184
4×4 maxpooling 34
2nd Batch norm and activation 235
1st fully-connected layer 4318
2nd fully-connected layer 11
Total time cost 5595 (178 FPS)
number of weights ≈ 133k
power consumption < 2 W
model size ≈ 0.127 KB
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5
ON-SENSOR BINARIZED FULLY CONVOLUTIONAL

NEURAL NETWORK

Both Chapters 3 and 4 focus on the visual classification inference with binarised neural

networks on the focal plane of the SCAMP vision system. However, these proposed neural

network architecture struggles to deal with coarse segmentation or localisation problems.

In addition, object detection tasks usually require more computation and memory than

image classification. Therefore, this chapter trained binarised fully convolutional neural

networks and deployed them on the sensor for image coarse segmentation and object

localisation. Similar to Chapter 4, where dynamic neural networks are utilised, this

chapter entirely takes advantage of the hardware resources of SCAMP and its PPA for

multiple network execution on the sensor for diverse purposes.

5.1 Introduction

This chapter presents a method to implement fully convolutional neural networks (FCNs)

on Pixel Processor Array (PPA) sensors and demonstrates coarse segmentation and object

localisation tasks. We trained binarised FCN for both binary weights and activations

using batchnorm, group convolution, and learnable threshold for binarisation, producing

networks small enough to be embedded on the focal plane of the PPA, with limited

local memory resources, and using parallel elementary add/subtract, shifting, and bit

operations only. We demonstrate the first implementation of an FCN on a PPA device,
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performing three convolution layers entirely in the pixel-level processors. We use this

architecture to demonstrate inference generating heat maps for object segmentation and

localisation at over 280 FPS using the SCAMP-5 PPA vision chip.

For the first time, Liu et al [66] proposed a fully convolutional neural network based

on the binarised neural network with three convolutional layers. Their work implements

object localisation and coarse segmentation based on heat map extraction. In addition,

group convolution is utilised to simplify the computing and reduce the intermediate

parameters.

Fully convolutional neural networks (FCN) have been used across many modern com-

puter vision tasks such as object detection [185], classification [186] and segmentation

[187, 188]. However, the deployment of deep FCN usually relies on powerful GPU/CPUs,

which are typically not present in emerging embedded edge devices, where cost and en-

ergy considerations dictate stringent limits on storage and computing resources. Despite

this, there is an ever-increasing demand for artificial intelligence on such edge devices.

One promising approach to edge computing hardware is represented by Pixel Processor

Arrays (PPA). Unlike conventional vision systems, which consist of separate sensing and

computing hardware, PPA devices are emerging vision architectures, integrating sensing,

storage, and computing on a single silicon chip (Figure1.2) [10, 189]. Such integration

optimises data movements in the system, promising high performance and low-power

consumption, but requires careful algorithm implementation to efficiently utilise the

hardware resources available in an on-sensor computing device. This paper demonstrates

how to implement and deploy binarised FCNs on PPA hardware.

Networks with binary weights and activations are challenging to train and usually

suffer from performance drop compared to their floating-point equivalent. The use of

batch normalisation has been proposed to avoid gradient explosion and train binarised

neural networks successfully [176]. In this work, we introduced batch normalisation

into binarised FCNs to improve the training efficiency and inference performance on

PPA arrays. We implemented a purely binary convolutional network containing both

binarised weights and activations. The use of binary activations alleviates accumulative

errors introduced by approximate computations used to perform image convolutions upon

PPA hardware devices [171]. This error mitigation allows our approach to performing

deeper networks than previous work [64, 65, 110] wholly upon the focal plane without

encountering an increasing loss of accuracy that would occur otherwise. Furthermore,

it is noted that the implementation of the batch normalisation, the sign activation

function, and learnable activation threshold for binarised activations is equivalent to
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adding a bias matrix to the layer activations, which significantly simplifies the inference

process on the sensor. With this binarised FCN, the inference calculation process can be

implemented entirely with efficient add/subtract, threshold, and shifting operations for

all layers. This scheme benefits explicitly PPA computing devices such as the one shown

in Figure 1.2 because it matches the simple instruction set of these devices and reduces

the impact of calculation errors caused by noise accumulation when using analogue

registers (AREG) for storage and calculations, especially for activations. For experiments,

we trained binarised FCN and deployed it on the PPA for object localisation and coarse

segmentation.

The concept of on-sensor computing originates from emerging novel circuit designs

that enable direct signal processing on the sensing chip [15]. The SCAMP vision sensor

[39] used in this work is based on a PPA concept implemented using mixed-signal

analog/digital datapath (Figure 1.2), other devices such as SONY IMX5001 or Aistorm

Mantis2 integrate sensing and computing resources in a single device using alternative

strategies. Our work uses the SCAMP analogue/digital PPA to implement a binarized

FCN efficiently.

The main contents of this chapter can be summarised as we propose, train, and

demonstrate the use of a purely binarised network (both binary weights and activations)

specifically for PPAs. This approach of binary activations addresses the accumulation of

analogue computing errors and value saturation after each layer, thus enabling deeper

networks while maintaining performance. Then, we present the first implementation of

an FCN architecture for PPAs. Our approach uses group convolutional layers [181] and

stores hundreds of convolutional filter weights upon the focal plane of the PPA. Thirdly,

unlike earlier work, we applied batch normalisation during training and utilised this

to learn bias parameters applied during inference on the PPA device. Lastly, we first

demonstrate object localisation and coarse segmentation tasks on a PPA, with previous

works only concerned with classification tasks. In addition, we created a simulated

environment and datasets to support PPA developers and researchers for idea validation

off and on-sensor.

1https://developer.sony.com/develop/imx500/
2https://aistorm.ai/mantis-2/
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5.2 Related Work

Recent work for PPAs has concentrated on CNNs and demonstrated classification tasks.

However, we found no previous work on FCNs, which are essential for further tasks like

localisation and segmentation. The recent research progress of the neural network on

the SCAMP PPA has been illustrated in section 1.6.2.

FCN on other unconventional sensors: The difference between our work and

these papers mentioned above lies in our proposed new network architecture of three

on-sensor convolutional layers with binary weights and activations. Furthermore, to

train such a neural network that is highly adaptive to the PPA, batchnorm is utilised,

enabling new segmentation-related applications. There has been several work on CNN

for classification tasks [64, 65, 110] but few research or implementation of FCN on the

unconventional sensors, which might result from a higher computation and storage

demand for FCN than CNN. However, our work is the first to propose a method to

implement FCN on the PPA for segmentation tasks that can not be implemented with

earlier CNN architecture.

5.3 Binarized Fully Convolutional Neural Network
with Batch Normalisation

Neural network architectures for PPAs must be carefully designed taking into account

model size, architecture, and the feasibility of exploiting the PPA’s parallel computation

and on-sensor storage, which is essential due to the limited on-sensor resources compared

to standard computer hardware which may have access to powerful GPU/CPUs. This

section attempts to find a balance between the neural network performance and its

efficient implementation on the PPA.

5.3.1 FCN architecture on sensor

FCN is a CNN architecture providing pixel-level classification, targeting image segmen-

tation [187]. This paper proposes a 3-Conv layer FCN that can be implemented on a

PPA sensor. This work extends from previous CNN classifications that were done using

fully-connected output layers [64, 65]. This paper uses FCN for heat map generation by

adding one convolutional layer with 128 filters and replacing the final fully-connected

layer with a convolutional layer of kernel size 1×1. Figure 5.1 shows the overall FCN
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1. Convolution 
(16 4x4 filters) 
2. Batch Norm 
3. Binarization 

outputs: 16x64x64 

1. Convolution(128 4x4
filters, group = 8) 

2. Batch Norm 
3. Binarization 

outputs: 64x64x64 

1. Convolution 
(64 1x1 filters) 
2. Batch Norm 

3. ReLU 
4. Maxpooling(2x2) 
outputs:64x64x64 

feature map  
shifting and addition 

outputs:1x64x64

Figure 5.1: An overview of an on-sensor FCN architecture and inference process using a
PPA for heat map generation. A three-layer FCN architecture is used in our work. The
first convolutional layer can be seen from Figure 5.4 in detail. In the second convolutional
layer, 128 convolutional kernel filters are applied upon the 16 input binary feature maps
from the first layer, generating 64 feature maps with a convolution group setup of eight.
The fusion of intermediate extracted features is implemented by addition within each
group. The third layer uses binary filters with a size of 64×1×1, hence the final feature
maps can be obtained by ‘multiplication’ with bit operation based on DREG. The final
heat map is generated by combining these input 64 feature maps by shifting and addition
operations.

architecture with configurations for each layer. Figure 5.4 illustrates the first convolution

layer, generating 16 binary feature maps. The second layer adopts group image convo-

lution [190] of 8 on the input 16 feature maps to make a trade-off between convolution

computation complexity and network performance, where each of 64 outputs is generated

by adding two intermediate feature maps (Figure 5.8). These 64 binary feature maps

from the second convolutional layer are stored in 4 DREG. The third layer generates

the final heat map representing the prediction probability distribution, taking these 64

binary feature maps and combining them within an AREG. Each binary feature map is

multiplied by an associated weight of -1/1.
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Image shift right

addition

active area Image shift down

addition

Image shift down

addition

Image right and addition heat map

Figure 5.2: Feature map shifting and addition process: the final heat map is generated
by adding the feature maps from the third layer.

Figure 5.3: Image convolution on PPA with sign inversion, bit-shifting, and addition.

Figure 5.4: First convolutional layer of the FCN.

5.3.2 FCN deployment on the PPA

This section gives the implementation detail of the binarized FCN on-sensor. Figure 5.9

shows the layouts and operations of input 16 binary feature maps, 128 kernel filters, 64

generated feature maps.

First Layer: 16 binary filters are replicated to fill a DREG (Figure 5.5) for parallel

convolution purpose [64, 65]. Figure 5.3 shows the image convolution process on the PPA.
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Figure 5.5: The layout of 16 binarized convolutional kernels in a DREG for the 1st layer.

2 3 4

5 6 7 8

1

256x25664x64

Figure 5.6: Storage structure of filters on DREG. Left: The layout of 8 filers (128 filters
in total) in a block of size 8×32. Middle: The layout of 8 kernel filters stored in one 64×64
block after replication. Right: The layout of 128 kernel filters in a 256×256 DREG.

The image convolution on the PPA can be decomposed as ‘multiplications’, shifting and

addition and the convolution result are obtained by performing the shifting and addition

process 16 times with a stride = 1. Then the pre-calculated bias B is plotted into 4×4

grids on a AREG and is subtracted from the feature map (seen in Figure 5.4 ). Then the

output binary image is obtained by binarizing the feature map after subtracting B. In

this layer, tanh is used as the activation function. When implementing inference on the

sensor, the tanh activation function is transformed into binarisation with a sign function,

with offset computed from batch norm parameters as can be seen from Equation 4.4.

This layer shares some similarities with work [65] including the image resize, replication,

and image convolution but with an extra activation binarization process.

Second Layer:
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Activation and
replication64x64 64x64 256x256

Figure 5.7: 128 kernel filters can be used by activating and replicating different areas.
Left: A kernel filter is activated and then replicated to fulfil a 64×64 block (right). Right:
16 kernel filters in a DREG after replication.

The key to the second layer is to implement the group convolution with 16 feature

maps as inputs and 64 as outputs. By dividing them into eight groups, thus there are 128

binary filters need to be stored on the sensor. The layout of filters directly affects inference

efficiency. We design a storage structure for filters in first (Figure 5.5) and second layer.

Figure 5.6 illustrates the layout of these filters within one DREG for efficient reading out

and then performing convolution. Notice that only the right image in 5.6 is stored in one

DREG, and the filters’ layout can be generated offline. As can be seen, each time before

performing a convolution operation, the corresponding 16 kernel filters are activated

in parallel, shifted, and replicated to fill each 64×64 block in 256×256 PEs (Figure 5.7).

16 kernel filters can be replicated to be stored in a DREG each time. This filter storage

structure can also extend to store more filters, following the similar way to fill all PEs

with 16 filters.

In Figure 5.8, to implement a second convolution layer with 8 groups, the input 16

binary feature maps are first transformed by switching position of adjacent maps, which

is followed by convolution with associated 32 filters for these 32 feature maps. Then 16

gray-scale feature maps are obtained by adding each two of 32 maps. By performing

convolution for another 96 filters, 64 gray-scale feature maps can be derived. The bias

matrix is subtracted and then after binarization, 64 binary feature maps are generated.

Third Layer:

In this layer, as shown in Figure 5.1, 64 1-bit filters are plotted on a DREG, followed by

‘multiplication’ with the 1-bit feature maps from the previous layer. After 1×1 convolution,

these 64 feature maps in 4 DREG is relocated to 1 AREG after 2×2 maxpooling. The
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128 filters 128 intermediate feature maps 64 feature maps Bias matrix 64 binary feature 
 maps
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corresponding 
filters

conv results final generated 64 feature maps

transformed
feature maps

group conv for  
16 feature maps x4

Figure 5.8: Group convolution on the PPA for the second layer. Top: schematic diagram
of group convolution. Numbers within grids represent the index of feature maps and
filter layouts. Bottom: group convolution on the sensor. 128 convolutional kernel filters
are applied on 16 input binary feature maps (far left), generating 64 feature maps by
adding each two of 128 intermediate maps. Then these 64 maps are subtracted by a bias
matrix, followed by a binarization. Finally, 64 binary feature maps are obtained for the
next layer.

summation of these extracted features can be obtained by shifting and adding into one

64×64 heat map. Unlike in the previous two layers, the activation function for this

layer is ReLU to generate a gray-scale feature map as the final prediction result of the

network.
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Figure 5.9: 64 feature map generation on sensor after group convolution.

5.3.3 SCAMP-5 Inference, Experiments, and Evaluation

This section demonstrates the application of the proposed network architecture to coarse

segmentation and object 2D localisation from a bird’s eye view on a real SCAMP vision

system (Figure 5.10). We set up a realistic environment in Webots3 [191] robot simulator

(Figure 5.11) for data collection and the validation of FCN deployment on the real sensor.

Training, testing and validation datasets are collected by repeatedly taking images

from a flying drone equipped with a simulated "SCAMP" and then validation images

are sent to the real PPA for inference. Binarized FCN is trained offline based on these

datasets with the method proposed in Chapter 3. The whole neural network for both

coarse segmentation and localisation is performed on the sensor.
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Robot simulation environment

A real SCAMP  
vision system

Images captured from a flying drone

USB 

PPA

FCN being  
calculated on

sensor

Figure 5.10: Experimental setups using a robot simulator and a real SCAMP vision
system where the neural networks are fully computed on the sensor.

Task IoU
Road segmentation on computer 74.0%
Road segmentation on sensor 69.3%
Grass segmentation on computer 76.6%
Grass segmentation on sensor 72.9%

Table 5.1: IoU performance comparison between simulation and on sensor for coarse
segmentation.

5.3.4 Coarse Segmentation

In this experiment, synthetic images are collected randomly from a bird’s view of a

drone in the simulator and then stored on the computer. Then these collected images are

divided into three groups: training, testing, and validation datasets. After training on the

computer with the training and testing data, the neural network model is implemented

on the SCAMP with the trained model. Finally, the validation images are sent to the

SCAMP one by one for the inference performance evaluation. Since the image capturing

process is offline and in the absence of full-loop control like in Section A.1.2, there is no

time constraint on image capture.

Figure 5.11 shows the samples of collected datasets and their annotations for segmen-

tation of road and grass. To validate the performance of the proposed network on different

tasks, a road and grass coarse segmentation is explored in this section. As shown in

Figure 5.11, we directly use the road/grass shape as the ground truth for coarse segmen-

tation. Notice that the trees and grass areas often share similar gray-scale levels with

the road, making coarse segmentation unfeasible by simply using binary thresholding.

Tab. 5.1 shows the Intersection over Union (IoU) performance comparison between FCN
3https://cyberbotics.com/
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Figure 5.11: The data collection environment where a vehicle moves around and images
are generated from a bird’s eye view of a simulated drone. Top left: A robot simulator
for environment setup and collection of training data. Middle left: The collected images
from the drone’s camera are converted into gray-scale images for the PPA and the
segmentation annotations of the road. Right: The training and annotated datasets for
grass segmentation. Bottom left: the Gaussian distribution is used to represent the
vehicle position within an image.

inference on simulation and on sensor. Specifically, IoU is measured here by counting

the number of intersected pixels over the number of united pixels of the predictions and

groundtruth. In addition, Figure 5.13 compares the FCN training process for segmen-

tation task between using and not using batch norm, which shows the binarized FCN

dose not converge without batch norm, justifying its use here. Some of the results can be

seen from Figure 5.12. Table 5.1 compares the experimental results on sensor and its

counterpart baseline on computer with identical neural networks and validation images.

More results can be seen from the experimental video https://youtu.be/Z_ydv_0DRnM.
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Figure 5.12: FCN inference results on-sensor. The left column is sensor’s input gray-
scale image with yellow dots indicating the FCN inference localisation prediction. The
right column is the inference results for coarse segmentation on sensor. The density
and distribution of colourful points (right) represent the possibility of position of the
road (bright yellow) and grass (green) segmentation. The experimental performance for
localisation (accuracy) and segmentation (IoU) on the PPA can be seen in Figure 5.16
and Table 5.1

5.3.5 Object Detection

We also implemented an object detection task based on the heat map. As for the object

localisation, rather than using the vehicle segmentation image as the ground truth

for training, we use Gaussian position distribution (Figure 5.11) as the ground truth

since the probability distribution is adequate to represent the object 2D localisation

and the current performance of the on-sensor shallow binarized neural network is not

capable of generating grain-fine segmentation of the car. For the validation, a distance

threshold is set from 0 to 63 to count the number of predictions with a distance to the

groundtruth that falls into this threshold. A zero distance means a perfect prediction.

The final localisation is obtained by the weighted sum of all the possible positions. After

the test, within a distance of 10 pixels, the vehicle localisation accuracy for simulation
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Figure 5.13: Training process comparison for grass segmentation with and without batch
norm.

and SCAMP is around 88% and 83% respectively (Figure 5.16). Tab. 5.2 shows the FCN

performance in terms of time, power consumption and model size.

5.3.6 Pupil detection

Considering the light weight and low-power consumption of the PPA chip and the increas-

ing popularity of virtual and augmented reality (VR/AR) based on the eye movement,

it is promising to mount the PPA chip to a wearable device such as glasses in the near

future, hence we explore the pupil detection with the proposed binarized FCN based on

the public dataset of eye images: TEyeD [192]. Figure 5.14 shows some of the training

images and their annotations and Figure 5.15 shows results comparison between SCAMP

and simulation inference, where the accuracy curve is plotted according to the Euclidean

distance between simulation/scamp inference results and the groundtruth. Within a

distance of 10 pixels, the localisation accuracy for simulation and scamp is around 88%

and 83%, respectively. More experimental results can be seen from4.

Notice that there is around 5% - 6% performance gap for the experiment on sensor

compared to the simulation. This is due to noise in the convolution operation performed

on AREG because of the inherent non-idealities of analog computation [38] and some

random bit-flipping errors observed in DREG when performing massively parallel shift-

ing and replications. Mitigation of these issues requires further software or hardware
4https://youtu.be/APMixrUOT80
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Figure 5.14: Selection of pupil images (Left) and their annotations (Right) from TEyeD
datasets.

Figure 5.15: Selection of inference results comparison between FCN with off-sensor
simulation with a computer (top) and on-sensor PPA (bottom). The red dot at the bottom
left of each frame is the final position prediction calculated from the heat map on the
right.

solutions. In this work, we tried to find a balance between network complexity and

viability for deployment upon the available PPA prototype hardware. Pixel-wise accurate

segmentation, with a quality equal to one that can be obtained using a CPU/GPUs

hardware, using embedded low-power SCAMP-5d vision system, is still a challenging

task with current hardware and neural network architecture.

5.4 Shared Convolutional Layer for Multiple Tasks
with FCN

We use dynamic model swapping strategy to run these three networks on the PPA

by sharing the first convolutional layer among these networks (shown in Figure 5.17)

considering the identical testing environment and similar network structure. In that case,

less storage requirement for DREG and higher inference efficiency without uploading

extra weights from the FLASH can be obtained for three networks. Rather than train

these three networks concurrently which might result in unbalanced training process for

each task because of their different scale of loss [193]. We adopt a straightforward but
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Processing Steps Time Cost (µs)
Image replication 112
1st Image convolution 184
1st Batch norm and activation 235
kernel filter activation and replication 187
2nd Group convolution 184×4 =736
2×2 maxpooling 35×4 = 140
2nd Batch norm and activation 235×4 = 940
Third convolutional layer 966
Total time cost 3500 (285 FPS)
number of weights 2,578
power consumption ≈ 1.5W
model size ≈ 0.31 KB

Table 5.2: Computation time, performance and weights for heat map generation with the
binarized FCN on sensor.

Figure 5.16: Performance comparison between simulation and on sensor for localisation
task.

efficient method by training neural network for localisation first, locking the weights in

the first convolutional layer and then train the other segmentation networks respectively.

The reason to train these three networks is that the localisation task is more sensitive to

the final heat map prediction hence better to train separately, while segmentation for

road and grass are similar tasks which are more tolerant to the final heat map prediction.

Some selected results can be seen from Figure 5.12. And a break down of time cost within
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shared 
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Road Segmentation

Grass Localisation

PPA

Figure 5.17: A FCN tree architecture with a shared convolutional layer for three tasks.

one branch of networks for each inference step can be seen from Table 4.2. Notice that,

according to our test, it takes around 26 milliseconds to upload a CNN model from the

FLASH into a DREG. However, this issue can be solved by pre-storing the binary models

into DREGs or AREGs before the CNN inference process.

5.5 Conclusion

On-sensor computing is important for embedded and low-lag, low-power vision systems.

Due to their compactness and computational advantages, binary FCNs are increasingly

appealing. This paper proposes and implements a method that demonstrates carrying

out an inference with a binarized FCN on an on-sensor computing device. In contrast to

previous works that have mainly focused on classification with a fully-connected layer,

we, for the first time, exploit the FCN architecture design, implementation method, and

inference on the sensor. We validate, using a real pixel processor array (PPA) hardware,

on the visual competencies of region segmentation and target object localization with

a latency of 3.5 milliseconds for each inference. With the development of the future

generation of on-sensor devices in terms of image resolution, manufacturing techniques,

and local memory capacity, we believe our proposed binarized FCN can be extended with

extra layers for more challenging applications.
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CONCLUSIONS

This chapter concludes the thesis by examining the advantages and limitations of

our proposed methodologies for on-sensor visual inference for robot navigation, object

classification, coarse segmentation, and localisation. In addition, possible future research

directions are discussed.

6.1 Summary of Contribution

This thesis explores a newly but fast-growing notion of on-sensor computing with a series

of associated algorithms and potential applications. Based on the output of the research

presented in this thesis, our contributions can be summarised as follows:

6.1.1 Main Contributions

• In Chapter 2, we explored the robot reactive navigation based on the on-sensor

visual information computing guiding the ground vehicle to perform high-speed

motion according to on-sensor interpreted information from the pre-set patterns.

The RC model car (1:10) can perform reactive behaviour at an average speed of 2.2

m/s with a maximum speed 3.88 m/s. The on-sensor image processing algorithm

runs up to 200 fps indoors for this scenario.

• After performing low-level image processing on the sensor for robot-related applica-

tions, the author then re-focuses on the higher level on-sensor image inference with
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the neural network for the more general classification, localisation, and segmen-

tation tasks. Hence, in Chapter 3, the author proposed a new method for parallel

image convolution implementation. Then, a series of methods are proposed to

deploy the trained binary neural network model consisting of various layers on the

SCAMP PPA. Furthermore, the proposed binary neural network and on-sensor im-

plementation method were validated through different classification experiments,

including hand gesture recognition, plankton classification and extremely high

inference test over binary classification with speed over 17,500 Hz.

• To further deepen the neural network on the sensor and restrain the noises caused

by the analogue registers for more sophisticated applications, Chapter 4 proposed

the binarised neural network (both binary weights and binary activations). A

series of new methods were presented to implement this neural network onto

the PPA, mainly including batch normalisation, the neural fully-connected layer

with more accurate bit-counting, and the learnable binarisation threshold for

binary activations. Moreover, a dynamic neural network model swapping scheme

is proposed to deal with classification applications with much more labels. We

achieved around 82% accuracy with 178 FPS on 37 alphabet classification with the

binarised CNN and dynamic swapping method.

• Chapter 5 implemented the binarised fully convolutional neural network of three

layers for coarse segmentation and localisation on the SCAMP PPA. These methods

mainly include binarised FCN training, group convolution, and image convolution

with the kernel of size 1×1. The experiment demonstrates both coarse segmentation

and object localisation based on the heat map generation in the experiment. The

FCN is tested on both synthetic and real datasets, where the IoU performance on

the road and grass segmentation is around 70%, which sees a 5% accuracy drop

compared to the same neural network in a computer. Then, the on-sensor pupil

detection is tested, resulting in 88% and 83% localisation accuracy within 10 pixels

off the sensor and on the sensor, respectively. The FCN inference achieved around

285 FPS with an approximate power consumption of 1.5 W .

6.1.2 Additional Contributions

• This paper reviews the on-sensor works on PPA conducted in the last 15 to 20

years in Chapter 1, where key algorithms and applications reviewed, providing a

comprehensive reference to future researchers on the relevant area.
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• In Chapter 2, A proximity estimation for a ground vehicle obstacle avoidance was

explored by sending an eclectic mix of features from the focal plane into a recurrent

neural network. The non-holonomic RC model car run randomly indoors at an

average speed of 1.15 m/s. The work also contributes to the on-sensor mapping and

localisation, where the a sequence of in-coming real-time images are filtered by LBP

and then stored on the registers of the PPA as the map. By using the motion model

information of the PPA and comparing the new images in the same environment

where the map was collected with the stored map, the position of this image can

be estimated. The F1-Score performance of our proposed localisation method is

93.38% on the public Norland dataset and 82.7% on a simulated environment with

a latency of 3.168 ms for a single localisation.

• In Chapter 3, a visual sensory-motor platform was built to directly execute the

instructions from on-sensor data without the use of an intermediate control unit.

The sensor-action system establishes a direct link between sensing and action,

allowing for the complete control of a digital servo motor with a control frequency

of 333 Hz.

• A semi-simulated platform is developed where a real SCAMP vision system can be

integrated with the Coppeliasim robot simulator.

6.2 Discussion

As illustrated above, PPA is a versatile on-sensor computing device designed with the

novel electric circuit. The unique hardware design enables varying image processing al-

gorithms ranging from low- and mid-level image processing to high-level neural network

inference. These algorithms then allow a wide range of applications in the area of ma-

chine vision and robotics. Although our approaches achieve state-of-the-art performance

on the focal plane of the SCAMP PPA, the following aspects require further research.

6.2.1 Robot Navigation with a SCAMP PPA

The reactive navigation described in section 2.2 is restricted to localising a single prede-

fined object. Hence, autonomous mobile robot navigation using a SCAMP PPA is still

a long way off. Nevertheless, in Chapter 2, we proposed a series of methods for robot

localisation and navigation and took a step toward a more intelligent robot system

through the use of on-sensor computing.
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6.2.2 Deep Neural Network on the Sensor

The capacity of neural networks proposed in Chapters 3-5 is not sufficient to fit sophisti-

cated classification or fine-grained segmentation tasks like CPU/GPUs do. The reason

for this in terms of algorithms is that the proposed neural networks for the SCAMP

PPA still adopt conventional neural network architecture, which is more favourable to

the conventional CPU/GPU with rich sequential and/or parallel digital floating-point

computing supports.

6.2.3 Accuracy Drops

There are several performance gaps during the process of neural network binarisation

and deployment onto sensor. The neural network is binarised on the computer which

experiences the first accuracy loss because of the overt quantisation. In addition, the

binarised neural network needs further deployment process to the terminal, resulting in

the second performance loss.

6.2.4 Discussion on Performance Comparison with Other
Platforms

In order to measure the performance of SCAMP vision system against commonly used

CPU and GPU platforms, [72] conducted a series of experiments utilising the identical

kernel operations for SCAMP, GPU, and CPU. We applied the same SCAMP vision system

and similar kernel operations in this thesis, hence would reach the close conclusion

that SCAMP is more power-efficient than a normal CPU or GPU when performing

image convolution operations. Notice that SCAMP utilises a less advanced 180 nm
manufacturing technology and a calculation frequency of just 10 MHz in comparison to

state-of-the-art CPU/GPUs. In addition, the Vision Processing Unit (VPU)1 is a new type

of processor built primarily to accelerate convolutional neural network inference while

consuming less power (2 – 3 W) than the GPU (around 75 W). While the CPU, GPU, and

VPU are all intended to do computations, SCAMP enables the effective integration of

sensing, storage, and processing into a sensory chip with a general-purpose use. However,

due to hardware resource constraints, the current SCAMP vision system can only execute

shallow neural networks, which makes it still challenging to carry out practical neural

network tasks as the CPU/GPU/VPU did.
1https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.

html
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6.3 Future Work

We view these constraints as catalysts for research opportunities rather than as im-

pediments to future progress. Regarding these constraints, we identify the following

directions for further research as promising.

6.3.1 Unconventional Computing on the Sensor

With these above-mentioned limitations in mind, novel computing architecture and

methods for on-sensor computing need investigating. For example, some advances have

been made in unconventional computing like Neural Cellular Automata [84], Elemen-

tary Cellular Automata (Figure 1.14), Neuromorphic computing, Transformers [194],

graph neural network [195], and reservoir computing [196]. In particular, the Cellular

Automata-based reservoir computing [197] has made some headway in the sequential

information process, which mimicks the mechanism of the recurrent neural network.

6.3.2 High-Performance Neural Network Quantisation and
Deployment

Considering the issue of drop in accuracy described in Section 6.2.3, high-performance

neural network quantisation is needed. The binarisation technique is utilised in this

work. However, further network compression approaches as mentioned in Section 1.5.1

can be investigated for enhanced neural network compression performance. In addition,

associated network deployment techniques should be proposed to close the performance

gap between off-sensor simulation and on-sensor inference. Furthermore, specialised

programming tools, notably for neural networks, are required to simply download a

trained neural network model into the PPA without implementing it layer by layer.

6.3.3 Visual-servo System for Agile Robotics

This thesis has exhibited direct servo control with on-sensor visual inference using

SCAMP-5d vision system in Section 3.6, demonstrating the capability to execute high-

speed servo control with low latency and power consumption on a relatively modest

experiment platform. In addition, the newly built SCAMP-7 vision system (Figure 6.1)

by the University of Manchester enjoys more AREG computing resources with a smaller

volume and weight. As a result, it has the potential to unleash a new avenue for future
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Figure 6.1: SCAMP 5 (Left) and SCAMP 7 (Right) vision system.

research into developing a visual-servo system based on the SCAMP vision system for

agile exploration employing high-speed mobile robots, such as a fixed-wing aeroplanes.

6.3.4 Sensor Fusion

A variety of studies and applications have been proposed with a single gray-scale SCAMP

PPA. However, some research, such as stereo or SLAM that usually needs the multiple

sensors’ fusion, are tricky for a single SCAMP PPA. Hence, the fusion of multiple SCAMP

PPAs or PPA with other types of sensors can be a future direction that can further

explore the on-sensor ability of the SCAMP PPA.

6.4 Conclusion

The purpose of this thesis was to investigate on-sensor visual signal processing for robotic

applications and neural network inferences, with the goal of minimising the on-sensor

vision system’s latency and throughput. This was demonstrated by performing on-sensor

feature extraction for robotics and on-sensor neural network tasks, which are typically

performed by conventional machine vision systems using digital image processing. As

a result, the thesis has placed a strong emphasis on parallel visual signal processing

techniques and their efficient implementation.

Implementing robot vision and neural network inference systems is tough, even more

so under severe power and weight limits, due to the amount of computer power required

to make sense of the visual world. Conventional video cameras generate an enormous
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amount of raw data, which results in massive amounts of often unnecessary data being

sent and processed through the visual pipeline. This gives an opportunity for unique

vision sensor hardware that minimises this information flow by extracting features and

other high-level data at the source. Our proposed methods in this thesis based on PPA

devices enable processing to take place directly within the image sensor, extracting

important data and outputting just high-level data rather than image frames. The PPA

technique is defined by information extraction and data compression at the pixel level,

which leads to an efficient and high-speed data transfer from the sensor device to the

rest of the system.

In the near future, more advanced research outputs with a more optimised PPA is

likely. Collaboration between chip engineers, image processing researchers, and roboti-

cists are required to realise the vast potential of on-sensor processing technologies,

beginning with low-level VLSI design and progressing through fundamental algorithms

and practical applications to bring PPA out of the lab and into the real world. PPA can

be viewed as a young, interdisciplinary, and fertile research platform for the study of

analogue signal processing, fundamental parallel imaging algorithms, and innovative

concurrent perception and processing for mobile/embedded systems.
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This parts presents useful tools for image processing algorithms development, algorithms,

and robot-related application exploration and validation using the real/simulated SCAMP

vision system.

A.1 Useful Tools for the SCAMP Vision System

As an emerging novel vision sensor, it is essential to have user-friendly developing and

simulating tools both to researchers and engineers for idea validations.

A.1.1 Development Platforms and Frameworks

There are comprehensive developing tools for this emerging on-sensor computing de-

vice to aid both researchers and engineers in developing their projects. Chen et al. [39]

developed the guidance and documents, libraries (low and mid-level basic image pro-

cessing algorithms), simulation and development environment configuration based on a

computer (details can be seen from1).

1https://scamp.gitlab.io/scamp5d_doc/
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Figure A.1: Example robot simulation environment. The virtual SCAMP camera sensor is
‘mounted’ under the drone facing the ground. Real-time image can be obtained from the
sensor with a resolution of 256×256 which is set the same as that of the SCAMP vision
system. Note that the current version of SCAMP-5d only supports gray-scale images;
hence CNN inference on SCAMP only relies on gray-level features from the scene.

A.1.2 Semi-Simulated Platform Development for the Full-Loop
Robot Control

Based on the proposed neural network structure in the above-mentioned context, this

section develops and demonstrates the integration of the SCAMP-5d vision system into

the CoppeliaSim robot simulator, creating a semi-simulated environment. By configuring

a camera in the simulator and setting up communication with the SCAMP Python

host through remote API, sensor images from the simulator can be transferred to the

SCAMP vision sensor, where on-sensor image processing such as CNN inference can be

performed. SCAMP output is then fed back into CoppeliaSim. This proposed platform

integration enables rapid prototyping validations of SCAMP algorithms for robotic

systems. We demonstrate a rover localisation and tracking task using this proposed

semi-simulated platform, with a CNN inference on SCAMP to command the motion of

a robot. We made this platform available online: https://github.com/yananliusdu/

scamp5d_interface.

The SCAMP vision system [39] is a smart camera device supporting in-sensor pro-

cessing. The mixed-signal (analogue and digital), general-purpose processing circuits, in-

tegrated with image sensors in a pixel processor array (PPA), enable low-power consump-

tion, and efficient parallel computing without external hardware. With these features, it
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Figure A.2: Semi-simulated platform by integrating the SCAMP with CoppeliaSim Robot
Simulator. This platform takes advantage of the SCAMP parallel computation ability
and the rich simulation scenes in the simulator, where applications can be exploited and
validated virtually.

Figure A.3: The CNN architecture for localisation. A shared convolutional layer is used
for object 2D localisation on the SCAMP, where networks for labels indicating x and y
are using identical convolutional layers but different fully-connected layers.

is increasingly being integrated with robots for various applications [44, 45, 198, 199].

However, it is often time-consuming and difficult to prototype ideas using real robotic

platforms. To improve experimental flexibility, we integrated a comprehensive robot sim-

ulator CoppeliaSim[200] with the SCAMP hardware system, to test and validate ideas

rapidly (Figure A.1). CoppeliaSim is a robot environment simulator where each agent

can be controlled via remote API [201]. Its simulated sensor readings can be transferred

to other independent platforms written in Python, C/C++, or Matlab through several

communication protocols. We developed a Python-based interface between CoppeliaSim

and the SCAMP vision system. Based on the proposed semi-simulation platform, we

implemented a convolutional neural network (CNN) [65, 175] on the SCAMP, processing

the imported camera images for localisation purpose from the robot simulator where the

camera is mounted under a drone.
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Figure A.4: Selected images for training. The inputs for SCAMP are gray-scale im-
ages with a low resolution of 64×64 considering the network architecture for parallel
computation purpose, resulting in a challenging localisation task.

A.1.2.1 SCAMP Python Host and the Semi-Simulated Platform

The SCAMP vision system is connected to a computer via USB through scamp5d_interface

library2. SCAMP Host is a GUI executed on the computer to interact with the vi-

sion system and visualise the data sent back from the device. This work develops a

scamp_python_module for the Python GUI based on previous C/C++ host libraries, to

simplify the connection of the SCAMP host to third party software. With this method,

the host visualisation and remote API can be co-designed on the scamp_python_module.

The remote API is supported by the CoppeliaSim3.

We demonstrated an application of a CNN-based vision tracking task performed

in our environment. In the semi-simulated platform, a real (hardware) SCAMP vision

system collaborates with CoppeliaSim robotics simulation environment through the

remote API. The environment setup and sensor image collection is performed in the

simulator, while the SCAMP hardware is in charge of CNN inference with sensor images

from the simulator and outputting useful information to the simulator.

In detail, as seen in Figure A.2, the synthetic picture generated by the visual sensor

in the simulation is first delivered to the SCAMP Python Host & Interface, followed by

image transmission to SCAMP hardware via USB. Following on-sensor computation, the

rover’s location information is relayed back to the simulation environment, instructing

the drone’s movement to track the rover. This establishes a complete closed-loop control

2https://scamp.gitlab.io/scamp5d_doc/
3https://www.coppeliarobotics.com/helpFiles/en/b0RemoteApiOverview.htm
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Figure A.5: Binary activations comparison after image convolution on SCAMP and using
PyTorch simulation. White and yellow dots represent ‘1’s while the dark area is ‘-1’s.
This shows the similarity of binary activations after the first convolutional layer, but
with differences introduced due to non-idealities of analogue computing in hardware

between a real SCAMP hardware and a robot simulation environment. Note that the

whole loop’s running time depends on the computer performance for the simulator, the

synthetic image generation & transmission, and the processing time on the SCAMP

hardware.

A.1.2.2 Experiments on platform

The SCAMP vision system is suitable for mobile robot platforms due to its combination

of high performance, low power consumption and light weight. In the experiments

presented in this study, the SCAMP system is mounted on an aerial vehicle (drone), and

used to localise a mobile ground vehicle (rover) moving in the 2D simulated environment.

The location information is used to guide the drone to track the rover. We implemented

the localisation task using a neural network.

The localisation training dataset is collected from the simulation environment, by

placing the rover at a series of positions within the map, with different orientations

under the view-field of a camera. An image is recorded once there is a change in the

rover pose or camera pose. With this method, a dataset of 104,000 training images and

19,200 testing images was collected (Figure A.4). To simulate the vibration and tilting

of a flying drone, random noise is introduced into the camera pose, and this can also be

regarded as a type of data augmentation that benefits CNN training.

The localisation task is cast as a classification problem by splitting the x and the

y axes into eight labels, giving 64 possible positions to localise the rover. During the

CNN training, the training loss for backpropagation is the loss summation of x and y as
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Figure A.6: Neuron activations after the first fully connected computed using SCAMP
hardware and PyTorch simulation. Binary activations and bit counting strategies are
used to mitigate against the inherent noise of the analogue processing on SCAMP, result-
ing in similar activation values in fully-simulated and in hardware implementations.

shown in Figure A.3. We trained a binarized CNN using batch normalisation and using

both binary weights and activations to reduce the error caused by continuous analogue

electronic current computing. The final testing accuracy for localisation is around 93%,

which conservatively only counts the correct predictions of the CNN. In a practical

situation, a close prediction to the ground truth should still allow tracking to proceed

without significant difficulty. Figure A.7 visualises a sequence of 8 frames with CNN

inference on SCAMP where the prediction possibility distribution can be seen plotted as

light blue curves along x and y axes, the final prediction is obtained with two highest

possibilities from two curves along the axes. The complete localisation and tracking are

processed frame by frame, and the instructions to pilot the drone are generated using

the PID control to minimise the distance between the drone position and the predicted

rover position.

To demonstrate the CNN inference on SCAMP in terms of accuracy, Figure A.5 and
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Figure A.7: Rover localisation result visualisation, showing SCAMP CNN inference
results for several consecutive frames. The network outputs are plotted as light blue
curves along x and y axes, with the largest values for each axis (red straight line)
indicating the final 2D localisation prediction (pink circle). The full experimental video
for rover localisation and tracking can be seen from https: // youtu. be/ semthdfXH5A .

Figure A.6 compare the binary activation layer and first fully-connected layer between

PyTorch software implementation and SCAMP hardware implementation, which shows

a high degree of similarity between PyTorch and SCAMP results, but with differences re-

sulting from analogue signal processing on SCAMP. To further validate the performance

of CNN localisation on SCAMP, a chaotic trajectory is pre-set in the simulator for the

rover to move along. The drone trajectory is plotted with guidance from SCAMP CNN

inference. Figure A.8 and A.9 show the comparison among the ground truth rover course,

CNN on PyTorch guided drone course and CNN on SCAMP guided drone course. Table

A.1 shows the performance of tracking by simulation and on-sensor computing. Again, the

fully simulated results are similar, but not identical to the semi-simulated results using

SCAMP hardware. These results indicate that the methodology based on training neural

networks in software, using established frameworks such a PyTorch, and then implement-

ing them on SCAMP analogue hardware, can produce useful results. However, software

and hardware performances are not identical since the analogue hardware effects cannot

always be accurately modelled. It is useful to be able to perform hardware-in-the-loop

simulations combining the virtual environments and the SCAMP hardware, as presented

in this study. We make our SCAMP Python host, CoppeliaSim model and its configuration

available online: https: // github. com/ yananliusdu/ scamp5d_ interface .

In this work, we proposed a semi-simulated platform where a SCAMP hardware
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Figure A.8: Tracking trajectories with a drone. There are three paths: the pre-set rover
trajectory as the groundtruth, drone tracking trajectory with CNN on PyTorch guidance,
and drone tracking trajectory with guidance from SCAMP CNN inference.

Table A.1: Trajectory tracking error.

trajectory average localisation error max localisation error
Drone tracking trajectory with pyTorch 0.11 0.51
Drone tracking trajectory with PPA 0.21 0.77

interacts with the robot simulator via remote API for a rapid prototype validation. The

SCAMP CNN inference results with the simulated sensor readings can instruct the

motion of an agent in the proposed platform. Further applications related to the SCAMP

and robots integration can be easily explored based on the developed platform.

We are using simulated data on the real PPA hardware for repeatability, allowing

us to have a baseline and establish a process for evaluating and comparing against

upcoming progress on future PPA architectures. As new PPA hardware is developed,

studies will be able to baseline against our work here and benefit from the code and data

we will release after publication.
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Figure A.9: Tracking errors with pyTorch simulation and on sensor.

A.1.3 Fully-simulated Development Platform

After the semi-simulated platform, we ([202], Figure A.10) further developed a fully-

simulated environment integrating the SCAMP server and Coppeliasim robot simulator,

where both a simulated SCAMP vision system and a robot simulator (Coppeliasim) can

communicate bidirectionally through remote API. Within the platform, a monocular

vision-based mobile robot obstacle avoidance and navigation application are demon-

strated, providing an example of robot-related prototype.

A.1.4 Kernel Filter Compiler

Performing image convolution is necessary, even for middle-level image processing or

convolutional neural network. Other than the convolution with binary/ternary weights

mentioned above, approximated kernel filters for convolution is proposed by [72] with

automatic code generation. In their work, each full-precision coefficient in the kernel

filters is approximated by the combination of multiple addition/subtractions and divisions

(Equ. A.1).

(A.1) α≈
n∑

i=0
ai/2i, ai ∈ {−1,0,1}

where, n is the depth of the approximation. Their work is an effective way to approximate

the full-precision kernel filters and automatically generate codes for the unique hardware,

which is friendly to users. However, there are still some shortcomings compared to
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Figure A.10: The framework of the fully-simulated system. Once the Server is started,
the Host works via TCP link. Then the CoppeliaSim is switched on by the remote API.
After that, a closed loop of image processing from ScampSim, data transmission through
interface/API, robot simulation and sensor reading from CoppeliaSim is set up, coming
along with visualisation and parameter tuning on the Host. (Figure from [202])

binary/ternary kernel filters, including the introduced error by approximation, difficult

to perform parallel multiple convolution with many filters. This results in inaccurate and

inefficient CNN inference results when the neural network is deeper along with more

layers and kernel filters. With similar coefficient approximation strategy, Stow at al. [73,

203] automatically generated codes for PPA which outperforms earlier AUKE in terms of

simultaneous kernel optimisation, and generated more efficient codes. In addition, Stow

et al. use the 4×4 ‘Super Pixel’ method in their work [204], which was inspired by Bose’s

work [63] and their earlier compilation method to automates generation of SIMD code

for convolutions using super-pixels.

A.1.5 SCAMP-5 Registers’ Setup and Instructions

In addition to the hardware architecture described in Figure 1.2 and the development

process in Figure 1.4, the more detailed instruction sets and register resources for the

SCAMP-5 can be seen from https://scamp.gitlab.io/scamp5d_doc/_p_a_g_e__d_e_

v_i_c_e__a_p_i__c_a_t_e_g_o_r_y.html.
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A.2. WEIGHTS ESTIMATION ALGORITHM

A.2 Weights Estimation Algorithm

This section describes the weights estimation algorithms to update the node weights

during the localisation process for Chapter 2.

Algorithm 7: Weights estimation algorithm [7].
1 if (database_exists) then
2 load_database();
3 else
4 mapping();
5 end
6 t ← 0;
7 initialise X t;
8 while input_frame do
9 if (motion_model()) then

10 for all the weights i = 1, ..., N ;
11 x[i]

t = motion_model(x[i]
t−1) ;

12 µ[i]
t = l ikelihood(zt|x[i]

t );
13 X t = X t−1 + (xt,µt);
14 if (t => sequence_length) then
15 prediction = max_weight(X t) ;
16 end
17 if (t % sequence_length == 0) then
18 w[i]

t = w[i]
t −γmax(W t);

19 X t = X t + (W t);
20 end
21 t ← t+1;
22 end
23 end
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A.3 Motion Parallax Extraction

This section demonstrates the motion parallax extraction algorithms used to determine

the maximum width contained inside an input binary motion parallax image.

Algorithm 8: Motion Parallax Extraction [67]
1 A ← current input image.
2 B ← last input image.
3 t ← a threshold.
4 Rw ← receptive field window Boolean image.
5 init:
6 Ra ←|A−B| > t.
7 Rb ← Ra ∧Rw.
8 steps← 0.
9 loop:

10 if GlobalOr(Rb) then
11 Rc ←¬Rb.
12 if steps is odd then
13 Rd ←North(Rc)∨East(Rc).
14 else
15 Rd ←South(Rc)∨West(Rc).

16 if Rd = 1 then
17 Rb ← 0.

18 steps← steps+1
19 goto loop.

20 return steps

A.4 Outdoor Demonstration of Mapping and
Localisation

We took advantage of SCAMP-5d vision system in collecting both HDR and non-HDR

images as datasets4 around College Green (400 meters) to validate our proposed locali-

sation methods. The mapping procedure is conducted by mounting the SCAMP vision

system on the bike facing forward and then walking around the park for a circle. Notice

that each image collected on the map is associated with a GPS location. Figure A.11

4https://uob-my.sharepoint.com/:f:/g/personal/yl17692_bristol_ac_uk/
Eo9iA7LDLQNPgfRd6696MK4B4R1Ez05_o-v2iZEiSUw0bA?e=yS3nmQ
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Figure A.11: Demonstration of real-time on-sensor localisation outdoors. The binary
descriptor (bottom left) is generated by performing local binary pattern on the input
image (top middle).

demonstrates the real-time outdoor test on the sensor in the College Green of Bristol,

where the algorithms find the most likely image from the database by comparing image

resemblance and applying the motion model.

A.5 Rethinking a PhD during the COVID-19

Unexpectedly, two-thirds of my PhD study was conducted during the unprecedented

coronavirus shutdown or restrictions with a transition from a normal PhD research to

an unusual one with COVID-19. Nevertheless, virtual meeting platforms such as Skype

and Zoom enabled me to continue to hold remote collaboration with my supervisors and

other scholars. Furthermore, I appreciate that the University’s procedures assisted us in

safely navigating through this trying times with access to the facilities and CDT funding

which enabled me to work from home. Thus, I was able to conduct experiments from

home or at the office where possible.

As a PhD student who is supposed to carry out research in the area of robotics and

145



APPENDIX A. APPENDIX A

autonomous systems, I changed my research direction to some degree, from the initial

robotics-based research with experiments performed in the laboratory to on-sensor neural

network inference with experiments from home or in the office due to the COVID-19. As

demonstrated in Chapter 2, our primary focus is on machine vision and robotics until

the coronavirus breakout in early 2020. Facing a laboratory lockdown without sufficient

experimental facilities, I had to switch to a feasible research direction that requires

minimal laboratory resources. Hence, I started to study embedded neural networks on

the sensor as seen from Chapters 3, 4, and 5. After that, a semi-simulated robot-SCAMP

platform and a fully simulated environment (Chapter 6) were developed to test our

proposed algorithms and explore new line of research as well. With these schemes, I

managed to obtain useful data which I successfully analysed for my PhD thesis.
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