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ENHANCED DEEP LEARNING ARCHITECTURES FOR 

FACE LIVENESS DETECTION FOR STATIC AND VIDEO 

SEQUENCES 

ABSTRACT 

The major contribution of this research is the development of deep architectures 

for face liveness detection on a static image as well as video sequences that use a 

combination of texture analysis and deep Convolutional Neural Network (CNN) to 

classify the captured image or video as real or fake. Face recognition is a popular and 

efficient form of biometric authentication used in many software applications. One 

drawback of this technique is that, it is prone to face spoofing attacks, where an 

impostor can gain access to the system by presenting a photograph or recorded video of 

a valid user to the sensor. Thus, face liveness detection is a critical preprocessing step in 

face recognition authentication systems. The first part of our research was on face 

liveness detection on a static image, where we applied nonlinear diffusion based on an 

additive operator splitting scheme and a tri-diagonal matrix block-solver algorithm to 

the image, which enhances the edges and surface texture in the real image. The diffused 

image was then fed to a deep CNN to identify the complex and deep features for 

classification. We obtained high accuracy on the NUAA Photograph Impostor dataset 
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using one of our enhanced architectures. In the second part of our research, we 

developed an end-to-end real-time solution for face liveness detection on static images, 

where instead of using a separate preprocessing step for diffusing the images, we used a 

combined architecture where the diffusion process and CNN were implemented in a 

single step. This integrated approach gave promising results with two different 

architectures, on the Replay-Attack and Replay-Mobile datasets. We also developed a 

novel deep architecture for face liveness detection on video frames that uses the 

diffusion of images followed by a deep CNN and Long Short-Term Memory (LSTM) to 

classify the video sequence as real or fake. Performance evaluation of our architecture 

on the Replay-Attack and Replay-Mobile datasets gave very competitive results. We 

performed liveness detection on video sequences using diffusion and the Two-Stream 

Inflated 3D ConvNet (I3D) architecture, and our experiments on the Replay-Attack and 

Replay-Mobile datasets gave very good results. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Problem and Scope 

Face recognition is a popular and efficient form of biometric authentication that is 

extensively used for identity management and secure access control in many web and 

mobile-related software applications. However, it has the key disadvantage of being 

easily spoofed, and the security system might not be able to distinguish between a real 

person and his/her photograph. An impostor can gain access to the system as a valid user 

by presenting a copy of the image, which may be a printed photograph or a displayed 

image on a smartphone or tablet, to the camera. This drawback of face recognition 

authentication makes it necessary to determine the liveness of the face before granting 

authentication. Therefore, prior to face recognition authentication, face liveness detection 

is important in order to detect whether the captured image is live or fake. To address the 

face spoofing attacks, researchers have proposed different methods for face liveness 

detection on static images and video sequences such as motion analysis, texture analysis, 

quality of captured images, etc. and recent research has focused on using deep CNN 

architectures for face liveness detection. 

1.2 Motivation behind the proposed research 
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 Due to the growing number of web and mobile related applications and their use 

in digital computing devices, ensuring secure access to these applications is essential. 

Compared to the usage of traditional credentials as an authentication mechanism, 

biometric authentication is a much more secure form of access control.  

Traditional authentication methods like passwords and tokens only provide proof 

of knowledge and proof of ownership, whereas biometric authentication ensures that 

users are whom they claim to be. Passwords are prone to attacks such as brute-force 

attacks, dictionary attacks, and man-in-the-middle attack, and therefore do not provide a 

strong identity check. Hardware tokens can be stolen, and an attacker can try to gain 

access to the software that sends or receives a software token. A malicious user can 

authenticate and pose as the legitimate user. Therefore, passwords and tokens do not 

provide a strong identity check, whereas biometric authentication confirms a user’s 

identity.  

Biometric authentication determines the individual’s identity based on biological 

characteristics that are unique to the individual, making it more secure than the traditional 

way of authentication. Face recognition, which is a popular and efficient form of 

biometric authentication, has the added advantage of being more convenient to deploy 

and also being a non-intrusive form of interaction, compared to other biometric 

authentication traits.  

Web and mobile applications have gained widespread popularity, and therefore a 

security process such as biometric authentication is necessary for identification and 

access control. Accessing data and applications irrespective of location and time and at 
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low cost is an important benefit of mobile cloud computing [1]. Protecting these data and 

applications from unauthorized access is therefore a security issue in systems that require 

remote identity of subjects. Biometric authentication applied to cloud computing ensures 

that the rendered services are only accessible to authorized users, thus ensuring cyber 

security. 

The technological evolution of biometric authentication has led to its deployment 

in diverse environments [2], and though biometric authentication methods are more 

secure than traditional methods, they are still prone to external attacks where illegitimate 

users can spoof the biometric system by presenting forged versions of the biometric trait 

to the sensor. Face recognition, which is a preferred form of biometric authentication due 

to its convenience and non-intrusive form of interaction, is therefore prone to spoofing 

attacks where an impostor can spoof the system by presenting a photograph or recorded 

video of the valid user to the sensor. Therefore, developing an anti-spoofing technique 

such as face liveness detection is essential to ensure secure access in face recognition 

authentication systems. 

1.3 Potential contributions of the proposed research 

We developed deep CNN architectures for liveness detection on static images to 

address face spoofing attacks in biometric authentication systems that use face 

recognition for authentication, and we achieved an effective solution to the face liveness 

detection problem. We first applied nonlinear diffusion based on an additive operator 

splitting scheme and a block-solver called tri-diagonal matrix algorithm, to the captured 

images. This produced diffused images, with edge information and surface texture of real 
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images more pronounced than fake ones. These diffused images were then fed to a CNN 

to extract the complex and deep features, for classification. We conducted numerous 

experiments with three different deep architectures, which included a 5-layer CNN, a 

residual network of 50 layers, and the inception network version 4. We evaluated the 

performance of each of these architectures on the NUAA dataset to determine an 

effective solution for liveness detection. We experimented with various values of the 

parameter alpha that defines smoothness of diffusion, and observed that for a lower value 

of this parameter, better accuracy is obtained since diffusing a captured image with 

higher values of this smoothness parameter blurs out important information from the 

image. Our implementation with the deep CNN architecture Inception v4, gave high 

accuracy with diffused images created with a smoothness parameter of 15, which has not 

been reported by any previous approach for face liveness detection on the NUAA dataset. 

We also developed an end-to-end solution for face liveness detection in real-time 

on static images, by integrating the diffusion process as well as the face liveness 

classification using two deep CNN architectures, the Specialized Convolutional Neural 

Network (SCNN) and the Inception v4 into a single application. Rather than using a two-

step process of first applying nonlinear diffusion, and then using a deep network for final 

liveness decision, the end-to-end architecture performs the diffusion and the liveness 

detection in a single step. Our experiments with the two deep architectures on the Replay-

Attack and Replay-Mobile datasets gave promising results. 

We developed a deep CNN-LSTM architecture for face liveness detection on 

video sequences, by using a combination of texture analysis and an architecture 
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comprising of a Convolutional Neural Network (CNN) and Long Short-Term Memory 

(LSTM) to classify the video sequence as real or fake. As was done for static images, we 

first applied nonlinear diffusion based on an additive operator splitting scheme and a tri-

diagonal matrix block-solver algorithm to the individual frames in the sequence, which 

enhances the edges and surface texture in the real image. We then fed the diffused image 

to a deep CNN to identify the complex and deep spatial features in the frames. This was 

then fed to the LSTM which detects temporal features in the sequence for sequence 

prediction and classification. Our experiments on the Replay-Attack dataset and Replay-

Mobile dataset gave very competitive results. We further performed experiments using a 

combination of diffusion and the Two-Stream Inflated 3D ConvNet (I3D) architecture, 

for face liveness detection on video sequences, and our experiments on the Replay-Attack 

and Replay-Mobile datasets gave very good results. 
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CHAPTER 2: LITERATURE SURVEY 

2.1 Introduction 

Face recognition has become a popular and efficient means of biometric 

authentication due to advancements in the field of computer vision and image processing. 

However, with the widespread adoption of biometric technology, spoofing techniques 

have also increased, with the biometric system being forged to bypass the verification 

system [3]. Therefore, despite the advantage of face recognition as a convenient and non-

intrusive form of access, it is still vulnerable to spoofing attacks where an illegitimate 

user can spoof the system by presenting a photograph or a recorded video of a valid user 

to the sensor. Hence, researchers have proposed various techniques to counteract 

spoofing attacks by first detecting the liveness of the face, as a precursor to face 

recognition. Therefore, only if the captured image is classified as a real face by the face 

liveness detection method, will a recognized face be granted authentication to the 

respective application.  

There are two main categories of anti-spoofing methods, which are the hardware-

based methods and software-based methods. Hardware-based methods require extra 

hardware to measure the required information, in addition to the camera of the face 

recognition system. The setup cost of the additional hardware is high, and moreover, 
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some methods require user cooperation such as speaking few words or rotating the head, 

which increases the detection time [4]. Also known as sensor-level methods, these 

techniques are integrated in the biometric sensor, and they generally measure the intrinsic 

properties, or the involuntary signals, or the responses to external stimuli of a living body 

[2]. Software based methods are more widely used, and liveness detection is performed 

based on the information contained in the captured images such as texture information, 

structure information, liveness sign and image quality, without using any additional 

hardware [4]. While hardware-based techniques rely on devices to detect a particular 

biometric trait, software-based techniques which are also known as feature-level methods 

extract the features of the biometric trait.  

The software-based techniques are further categorized into static-based techniques 

and dynamic-based techniques. Static techniques are based on the analysis of a 2D static 

image, whereas dynamic techniques are based on the analysis of a sequence of input 

frames. A variety of software-based methods have been proposed to address face 

spoofing attacks to determine the liveness of a captured image, based on texture analysis, 

motion analysis, feature fusion, image quality, etc. Texture analysis, which is used by 

many static methods, is based on the fact that images from print have texture features that 

are different from real faces, and therefore analyzes the texture properties of the face 

image. Motion analysis aims at detecting the natural responses of the face, such as eye 

blinking, lip movement, and head rotation [5]. Feature fusion attempts to combine static 

and dynamic methods, by merging different texture features, or combining motion 

analysis with texture features [6]. Image quality-based approaches are based on the fact 
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that fake faces tend to be more seriously distorted by the imaging system, thereby 

yielding a lower quality image under the same capturing condition [5].  

This dissertation focuses on the software-based static and dynamic techniques. 

The static technique analyzes a 2D facial image, and extracts important features that can 

be used to classify an image as real or fake. The dynamic technique analyzes a sequence 

of video frames containing 2D facial images, and extracts important features that can be 

used to classify the sequence as real or fake. Nonlinear diffusion is first applied to the 

captured images or video frames, and the diffused images are fed to CNN architectures, 

and further to an LSTM in the dynamic technique. 

2.2 Static techniques proposed in the literature 

Many methods have been proposed to address face spoofing attacks to determine 

the liveness of a captured image, by analyzing the 2D static image. Static techniques are a 

non-intrusive form of interaction which is convenient to users. Liu et al. [6] presented the 

extraction of an Enhanced Local Binary Pattern (ELBP) of a face map that served as the 

classification features. To better capture the difference between live and fake faces, they 

derived the enhanced facial representation using the ELBP operators. The ELBP codes 

were calculated based on the circular neighborhood and by applying bilinear interpolation 

at nonlinear pixel coordinates. As shown in Figure 2.1, the client ELBP feature map 

contains more details than the impostor feature map. 
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             Figure 2.1. ELBP feature maps of a live and fake face [6]. 

These features, when fed to a Support Vector Machine (SVM) classifier, identifies 

whether the face map is real or fake. They achieved over 95% correct recognition rate on 

the NUAA dataset. Das et al. [7] described an approach based on frequency and texture 

analyses for differentiating between live and fake faces. The frequency analysis was 

performed by selecting four random images from an input image sequence, and then 

constructing a subset. The images were then transformed into the frequency domain using 

2D discrete Fourier transform and the frequency descriptor was calculated to determine 

the temporal changes in the face. The texture analysis was done using Local Binary 

Patterns (LBP) which is a grayscale invariant texture measure. The LBP assigns a code 

for each pixel and its neighbors, by considering the relative intensity, as shown in 

equation 2.1,  

  𝐿𝐵𝑃 𝑃,𝑅 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)𝑝−1
𝑝=0 2𝑝,  s(x) = {

1, 𝑥 ≥ 0
0, 𝑥 < 0

                  (2.1) 

where P corresponds to the number of neighboring pixels, R is the radius of the   
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corresponding circle, gp corresponds to the grayscale value of the p equally spaced pixels 

on the circle of radius R, gc corresponds to the grayscale value of the center pixel, and 

s(x) denotes the threshold function of x. The resulting feature vector was fed to an SVM 

classifier with a radial basis function kernel for classification.  

In the proposed method by Kim et al. [5], the key idea is that the difference in 

surface properties between live and fake faces can be efficiently estimated by using 

diffusion speed. The illumination energies on a live face tend to move faster because of 

their non-uniformity, whereas those on a 2D surface like a fake face are evenly 

distributed, and hence diffuse slowly. Therefore, the diffusion speed provides useful 

information that can be used to discriminate between live and fake faces. They computed 

the diffusion speed by utilizing the total variation flow and extracted anti-spoofing 

features based on the local patterns of diffusion speeds. These features were then fed to a 

linear SVM classifier to determine the liveness of the facial image. They first conducted 

nonlinear diffusion based on the Additive Operator Splitting (AOS) scheme. The 

diffusion speed at each pixel position (x, y), which represents the amount of difference on 

the log space between the diffused image and the original image, is given by 

       𝑠(𝑥, 𝑦) = | log(𝑢0(𝑥, 𝑦) + 1) −  log (𝑢𝐿(𝑥, 𝑦) + 1)|                                           (2.2) 

where L denotes the total number of iterations. The local speed patterns for efficiently 

capturing even small differences between live and fake faces is defined as, 

  𝑓𝐿𝑆𝑃(𝑥, 𝑦) =  ∑ 2𝑖−1𝐿𝑆𝑃𝑖
1≤𝑖≤𝑛 (𝑥, 𝑦),      (2.3) 

  𝐿𝑆𝑃𝑖(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑠(𝑥, 𝑦) > 𝑠(𝑥𝑖, 𝑦𝑖)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

,      (2.4) 
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where n is the number of sampling pixels in the neighborhood of 3 x 3 pixels, (xi, yi) 

denotes the position of the neighborhood pixels centered at (x, y). Based on the fLSP(x, y) 

values of an image block, the histogram features were built, and by concatenating the 

LSP histograms of each block, the face image was represented as a single vector which 

was then fed into the linear SVM classifier for classification. They reported a detection 

accuracy of 98.45% on the NUAA dataset.  

Yeh et al. [8] proposed an algorithm that relies on the property of digital focus 

with various depths of field (DOFs). Preprocessing was done by analyzing the nose and 

bottom right part of the cheek. The level of blurriness was shown to be different in live 

and fake images due to the effect of the depth of field. The camera was set to focus on the 

nose, and for a live image, the captured nose will be sharp and clear, and the bottom right 

part of the cheek will be blurred due to the effect of the DOF. For a 2D printed photo, 

there will not be any difference between the nose and cheek parts because there is no 

DOF effect. Classification was then done using the k-nearest-neighbor algorithm.  

A method that uses a flash against 2D spoofing attack was described by Chan et 

al. [4]. In this method, where both software and hardware techniques were used, two 

images per person were captured, one using flash and the other without using flash. 

Therefore, in addition to software techniques which consider textural and structure 

information, an additional device, flash, was used to enhance the performance. The 

textural information from the face was measured using a descriptor based on uniform 

LBP, and three other descriptors were used to capture the structural information of the 

face using the standard deviation and mean of the grayscale difference between the two 
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captured images of a person. Classification was based on the difference between the 

images with and without flash measured by the four descriptors.  

Luan et al. [9] proposed a method where three types of features were extracted, 

which are specular reflection ratio, hue channel distribution features, and blurriness. The 

specular reflection indicates the geometry of objects, and the geometry of printed photos 

being flat, the specular reflection will be distributed on a plane. On the other hand, the 

real faces being typically 3D, the specular reflection will give rise to an unsmooth and 

uneven distribution. The recaptured imaging of physical media can bring equipment 

related hue differences, and therefore the hue channel distribution features provide 

discrimination between live and fake faces. Additionally, since recapturing of images 

causes blurriness, the ratio of feature changes of gray level co-occurrence matrix was 

used as blurriness features for discriminating between live and fake images. Classification 

of the images was done based on these three features using an SVM.  

Tan et al. [10] presented a method where the anti-spoofing task was formulated as 

a binary classification problem, by considering the Lambertian reflectance to discriminate 

between live and fake faces. They analyzed the 2D Fourier spectra by Difference of 

Gaussian (DoG) filtering to remove noise and extended the sparse logistic regression 

classifier nonlinearly and spatially for classification. The DoG-based method is based on 

the idea that the fake image passes through the camera system twice, which makes it 

more distorted and of lower quality than a real image under the same imaging conditions. 

They used two Gaussian filters with different standard deviations, where the filter with 

lower value of standard deviation was used for keeping sufficient detail without noise, 
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and the filter with higher value of standard deviation was used to filter out misleading 

low spatial frequency information. The authors reported promising results on the NUAA 

dataset. 

In [11], Zhang et al. used multiple Difference of Gaussian (DoG) filters to extract 

the high frequency information from the face image. By properly setting the Gaussian , 

the low frequency information and noise were removed. Four DoG filters were used with 

values of (0.5, 1), (1, 1.5), (1.5, 2), and (1, 2) for the inner Gaussian variance and outer 

Gaussian variance (1, 2). The concatenated filtered images were then fed to an SVM 

classifier for classification. 

The authors of [12] introduced a texture descriptor known as the Dynamic Local 

Ternary Pattern (DLTP), where the textural properties of facial skin were explored using 

a dynamic threshold setting, and the support vector machine with a linear kernel was used 

for classification. The block diagram of their recommended face liveness detection 

system using the DLTP feature descriptor is shown in Figure 2.2 below.        

 

        Figure 2.2. Face liveness detection system using the DLTP feature descriptor (adapted from [12]). 
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The authors adopted Weber’s law for tuning the threshold value dynamically for 

every image pattern in the local ternary pattern, where the threshold equation for ternary 

quantization in LTP is given by equation 2.5. 

𝑎𝑖 =  {

1         𝑖𝑓 𝑝𝑖 > 𝑐 +                             
0        𝑖𝑓 𝑐 −  ≤ 𝑝𝑖 ≤ 𝑐 +           

−1       𝑖𝑓 𝑝𝑖 < 𝑐 −   ,                          
                    (2.5) 

where c is the intensity value of the center pixel, pi (i = 0, 1, …, p-1) is the intensity value 

of the neighborhood pixels, and  is the threshold value. In DLTP, an equation for 

threshold was introduced as in equation 2.6, instead of choosing a fixed value of 

threshold as in LTP. 

    
|𝑝𝑖−𝑐|

𝑐
=                     (2.6) 

Equation 2.6 was used to generate the DLTP code, in which the threshold value is 

dynamically generated and assigned the code of 1, 0, and -1 within the zone of ± 

threshold value around the central pixel value. The dynamic setting of different threshold 

values for every patch of the image is automatically supported by the value of . The 

threshold value () obtained from equation 2.6 above was used to generate DLTP code as 

shown in equation 2.7 below. 

    𝐷𝐿𝑇𝑃(𝑎𝑖) =   {
  1         𝑖𝑓 𝑝𝑖 > 𝑐 +                                         
−1      𝑖𝑓 𝑝𝑖 ≤ 𝑐 −                                        
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

     (2.7)  

As shown in Figure 2.2, the ternary code (+1, 0, -1) was generated in DLTP and 

was further divided into its corresponding positive and negative parts. These were treated 
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as two separate binary patterns, the histograms were computed separately, and the results 

were then combined at the end of computation. The support vector machine with linear 

kernel was used for classifying the live and fake images. Performance evaluation of the 

proposed method on the NUAA dataset, Replay-Attack dataset, and CASIA dataset 

showed that, due to the dynamic values of threshold in DLTP as opposed to fixed values 

in LTP, the DLTP outperforms LTP giving higher accuracy and lower error rates. Table 

2.1 shows the performance comparison of DLTP with other approaches based on texture 

analysis. 

            Table 2.1. Performance comparison on NUAA dataset [12].   

  

   

 

 

 

Maatta et al. [13] analyzed the texture of facial images using Multiscale Local 

Binary Patterns (MLBP). Their proposed method adopted the local binary patterns for 

describing not only the micro-textures, but also the spatial information. The micro-texture 

patterns were then encoded into an enhanced feature histogram, which was fed to an 

SVM classifier. The authors suggest that micro-texture details needed for discriminating 

between live and fake faces can best be detected using a combination of different LBP 

operators. Therefore, they derived an enhanced facial representation using multi-scale 

LBP operators.  

              Techniques          HTER (%) 

Local Binary Pattern Variance (LBPV) 11.97 and 13.05 

Local Binary Pattern (LBP) 18.32, 19.03 and 13.17 

Local Ternary Pattern (LTP) 7.4 

Dynamic Local Ternary Pattern (DLTP) 3.5 
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       Figure 2.3. The proposed approach by Maatta et al. [13]. 

As depicted in Figure 2.3, the LBP operator, 𝐿𝐵𝑃8,1  
𝑢2 , was applied to the 

normalized face image and the resulting image was divided into 3x3 overlapping regions. 

The local histograms from each region were computed and aggregated into a single 

histogram. Two other histograms from the whole face image were then computed using 

𝐿𝐵𝑃8,2  
𝑢2 and 𝐿𝐵𝑃16,2  

𝑢2 operators, and these two histograms were added to the previously 

computed histogram. Finally, a nonlinear SVM classifier with radial basis function kernel 

was used for classifying the image as real or fake. The authors reported a classification 

accuracy of 98% on the NUAA dataset. 

 Chingovska et al. [14] addressed the problem of detecting face spoofing attacks 

using texture features based on Local Binary Patterns (LBP), and their variations as well. 

For the basic LBP method, they calculated the LBP histogram in two different ways. In 

the first method, they calculated the LBP features for all pixels in the image and 

distributed them in one histogram, and in the second method, they divided the image into 

3x3 blocks, calculated the LBP histogram for each block, and concatenated these 

histograms to form the final feature vector. Their experiments with variations of LBP 
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include transitional LBP, direction-coded LBP, and modified LBP. With the transitional 

LBP operator, the binary patterns were formed by comparing two consecutive 

neighboring pixels of the central pixel circularly in the clockwise direction. For the 

directional LBP, the intensity variation along the four base directions through the central 

pixel was encoded in two bits. For the modified LBP operator, the values of the 

neighboring pixels were compared with the average of the intensity values in a 3x3 

neighborhood. They also examined two different classifiers, which included the Linear 

Discriminant Analysis (LDA) and the Support Vector Machine (SVM) with radial kernel 

basis function. Their experiments on the Replay-Attack dataset gave lowest HTER for the 

modified LBP followed by the 𝐿𝐵𝑃3𝑥3  
𝑢2 . Gragnaniello et al. [15] proposed a domain-

aware CNN architecture by adding appropriate regularization terms to the loss function, 

with which they obtained satisfactory results on the Replay-Attack dataset. 

Recent work in face liveness detection has been based on the use of deep CNN 

architectures [16]-[17] as these provide better liveness detection accuracy than the 

previously mentioned approaches. The work proposed in [16] focused on training deep 

CNNs for liveness detection by employing data randomization techniques similar to 

bootstrapping. Here, the training data was continuously randomized before applying to 

the CNN, in a form of single small mini-batches. Therefore, rather than randomly 

arranging the training set once, they continuously picked random mini-batches from the 

whole dataset at each training epoch, thereby reducing the training time. Their proposed 

approach gave satisfactory results in intra-database and cross-database face liveness 

detection tests.  
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The research proposed in [17] utilized a combination of diffusion of the input face 

followed by only a three-layer CNN architecture, to detect face spoofing attacks that 

utilize a single frame of sequenced frames. They applied an AOS-based schema with a 

large time step size to generate the speed-diffused image. The large time step parameter 

helps in extracting the sharp edges and texture features in the input image, and the CNN 

extracts the local and complex features from the diffused image. Experiments performed 

by using a single frame of each video from the Replay-Attack dataset which consists of 

1200 short videos of real-access and spoofing attacks, gave an HTER of 10%. The same 

CNN architecture as mentioned in [17] when applied to the NUAA dataset gave an 

accuracy of 99% [18]. Their proposed CNN architecture extracts not only the depth 

information but also the texture surface of the face, as shown in Figure 2.4 below. The 

output of the first convolutional layer shows that the real face has more edges and distinct 

corners around the eyes, nose, lips, and cheek region, whereas the fake face has fewer 

edges. 

    

Figure 2.4. Nonlinear diffusion followed by CNN applied to the NUAA dataset [18]. 
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2.3 Dynamic techniques proposed in the literature 

In addition to static techniques, many dynamic techniques for face liveness 

detection have been proposed. However, since the dynamic approach is based on 

analyzing the temporal and spatial features of a sequence of input frames as opposed to a 

single image in the static approach, it is computationally expensive [18]. Some methods 

involve user cooperation in following certain instructions, which is inconvenient for the 

user. 

 In [19], Kim et al. proposed a method by using the focus function of the camera, 

for face liveness detection. Their approach made use of the variation of pixel values by 

focusing between two images sequentially taken in different focuses. The camera can be 

controlled to take pictures focused on facial features such as nose and ears. For a real 

face, the focused region will be clear and the rest blurred due to depth information, 

whereas there will be little difference between images taken in different focuses from a 

printed copy of a face. As the first step, two sequential pictures were taken, where in one 

the camera was focused on the nose which is nearest to the lens, and in the other, the 

camera was focused on the ear which is farthest from the lens. The Sum Modified 

Laplacian (SML) was utilized as the focus value measurement. After obtaining SMLs of 

each image, the sum of the difference in SML in each column of both images was 

computed. For a real face, this sum showed similar patterns consistently, whereas for a 

fake face, it did not. The differences in these patterns between real and fake faces were 

used as features for liveness detection.  
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In [20], the authors proposed three liveness clues, with two in temporal domain, 

and one in spatial domain, which were then fused to give the final decision. The first of 

these clues is the non-rigid motion clue, since real faces can exhibit non-rigid facial 

motions compared to fake faces. The second is the face-background consistency, which is 

based on the fact that, since fake faces always reside on certain displaying medium, fake 

facial motion is consistent with the background motion. The third is the banding effect 

which exists in only fake images due to the degradation of quality in reproduction. 

 Wang et al. [21] proposed a face liveness detection approach where the sparse 

structure information in 3D space was analyzed. Facial landmarks were detected from the 

given face video, and key frames were selected. Then, the sparse 3D facial structure was 

recovered from these selected key frames. After recovering the sparse 3D structure, the 

structures were aligned and the structure features were extracted for classification. 

Following alignment, the 3D coordinates of sparse structure were concatenated to form a 

feature vector. An SVM classifier was then trained based on the features to distinguish 

between the real and fake faces.  

Pereira et al. [22] presented a counter measure against face spoofing attacks based 

on the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) operator 

combining both space and time information into a single multiresolution texture 

descriptor. The concept of Volume Local Binary Patterns (VLBP) extends LBP to image 

sequences, exploring both space and time information. VLBP considers the frame 

sequence as a parallel sequence, in order to capture inter-frame patterns in textures. The 
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VLBP output is defined as in equation 2.8, by considering a 3x3 kernel and thresholding 

the surroundings of each pixel with the central pixel of the frame sequence. 

      𝑉𝐿𝐵𝑃 𝐿,𝑃,𝑅 = ∑ 𝑓(𝑖𝑐 − 𝑖𝑞)3𝑃+1
𝑞=0 2𝑞,   𝑓(𝑥) = {

0 𝑖𝑓  𝑥 < 0
1 𝑖𝑓  𝑥 ≥ 0

      (2.8) 

where L is the number of predecessor and successor frames, P is the number of neighbors 

of 𝑖𝑐 that corresponds to the gray intensity of the evaluated pixel, 𝑖𝑞 corresponds to the 

gray intensity of a specific neighbor of 𝑖𝑐, and R is the radius of the neighborhood. 

However, the histogram of this descriptor contains 23P+1 elements, and the number of bins 

in such a histogram is not computationally tractable. Therefore, the LBP-TOP operator, 

which is a simplification of the VLBP operator, was used. In LBP-TOP, instead of 

considering the frame sequence as three parallel planes, three orthogonal planes 

intersecting the center of a pixel in the XY, XT, and YT directions were considered, 

where T is the time axis. Each frame of the original frame sequence was grayscaled and 

passed through a face detector, and then geometrically normalized to 64x64 pixels. The 

LBP operators were then calculated for each plane (XY, XT, and YT), and the histograms 

were computed and concatenated. Classification was done using both LDA and SVM 

with radial basis function kernel. Better results were obtained with the SVM classifier, 

and performance evaluation on the Replay-Attack dataset gave satisfactory results with 

an HTER of 7.60%.  

Bharadwaj et al. [23] presented an approach for spoofing detection in face videos 

using motion magnification. They used LBP and a motion estimation approach using 

Histogram of Oriented Optical Flow (HOOF) descriptor for feature extraction, and LDA 
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and nearest neighbor for classification. Tang et al. [24] proposed a liveness detection 

protocol called face flashing that flashes randomly generated colors and verifies the 

reflected light. It is a challenge-response protocol, where the challenge is a picture 

displayed on a screen and light is emitted by the screen onto the subject’s face. The 

response is the light that is reflected immediately by the subject’s face. This challenge-

response was repeated many times, so that sufficiently enough responses could be 

collected to ensure security. Their proposed method proved effective, and gave high 

accuracy in various environments.  

Anjos et al. [25] proposed a technique that is based on foreground and 

background motion correlation using optical flow. As shown in Figure 2.5, the video was 

first converted to grayscale before being fed to the face detector, and eventually to the 

optical flow estimator unit. The grayscaled video, the face detector output and the 

estimated flow were fed to the counter-measure that outputs scores on which the 

sequence was finally evaluated. 

        

               Figure 2.5. Outline of the proposed approach (adapted from [25]).  
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The proposed algorithm tried to detect motion correlations between the head of 

the user who is trying to authenticate and the background of the scene. It used fine-

grained motion direction for deriving the correlation between these two regions. The 

direction of objects in the scene was estimated using optical flow techniques, which 

provides precise information of motion parameters between the regions of interest. The 

extracted features were then fed to a binary classifier to classify the sequence as real or 

fake.  

Wen et al. [26] proposed a detection algorithm based on Image Distortion 

Analysis (IDA). They extracted four different features namely specular reflection, 

chromatic moment, blurriness, and color diversity to form the feature vector, which was 

then fed to an SVM classifier. Yeh at al. [27] proposed an approach against face spoofing 

attacks based on perpetual image quality assessment with multi-scale analysis. They used 

a combination of an image quality evaluator and a quality assessment model for selecting 

effective pixels to create the image quality features for liveness detection. Pan et al. [28] 

presented a time-based presentation attack detection algorithm for capturing the texture 

changes in a frame sequence. They used a Motion History Image (MHI) descriptor to get 

the primary features, and used LBP and a pre-trained CNN to get the secondary feature 

vectors, which were then fed to a classifier network. In the work proposed in [29], LBP-

TOP is cascaded with a CNN to extract spatio-temporal features from video sequences, 

followed by SVM with RBF kernel for classification. 

Xu et al. [30] proved that a deep architecture combining LSTM with CNN can be 

used for face anti-spoofing in videos. Local and dense features were extracted by the 
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CNN, while the LSTM captured the temporal relationships in the input sequences. The 

authors of [31] also proposed a joint CNN-LSTM network for face anti-spoofing in video 

sequences, by focusing on the motion cues across video frames. They used the Eulerian 

motion magnification as preprocessing to enhance the facial expressions of individuals. 

Then the CNN was used for extracting the high discriminative features of video frames, 

and the LSTM was used to capture the temporal dynamics in the videos. 

 Costa-Pazo et al. [32] introduced the Replay-Mobile database, and they describe 

two face presentation attack detection methods that were applied to the database. In one 

method, Image Quality Measures (IQM) were used as features, and in the other, a 

texture-based approach using Gabor-jets were used. Classification was done using the 

support vector machine with a radial basis function kernel. In the work proposed in [33], 

hand-crafted features and deep features were extracted by using a combination of Local 

Binary Patterns (LBP) and a pre-trained CNN model based on the VGG-16 network 

architecture for the liveness detection on single frames of the Replay-Mobile dataset.  

 Nikisins et al. [34] proposed an anomaly detection, or a one-class classifier-based 

face presentation attack detection system having better generalization properties against 

unseen types of attacks. They used an aggregated database consisting of three publicly 

available datasets, which includes the Replay-Attack dataset and Replay-Mobile dataset, 

for their experiments. Their system consisted of a preprocessor, feature extractor, and 

one-class classifier. They also evaluated and reported the results of some of the 

successful, previously published face liveness detection systems on the Replay-Attack 

and Replay-Mobile datasets, such as the LBP-based system in [14], the IQM-based 
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system where feature vector of a frame is a concatenation of quality measures introduced 

in [26] and [35], and the motion-based approach in [36]. Evaluation using the LBP-based 

system and IQM-based system were done on the frame-level, whereas the motion-based 

approach was done on video sequences.  

Fatemifar et al. [37] adopted the anomaly detection approach where the detector is 

trained on genuine accesses only, using one-class classifiers built using representations 

obtained from deep pre-trained CNN models. Each frame in a video clip was 

photometrically normalized based on the retina method for reducing the impact of various 

lighting conditions before they were fed to pre-trained networks. They used different 

CNN architectures and anomaly detectors of which the class-specific Mahalanobis 

distance with GoogleNet features achieved better performance on the Replay-Mobile 

dataset. Arashloo [38] presented a one-class novelty detection approach based on kernel 

regression using the Replay-Mobile dataset in which only bona fide samples were used in 

the training process, as in [37]. A projection function defined in terms of kernel 

regression maps bona fide samples onto a compact cluster of target samples, and provides 

the best separability of normal samples from outliers with classification based on the 

Fisher criterion. Other mechanisms, which include a multiple kernel fusion approach, 

sparse regularization, and client-specific and probabilistic modeling were also 

incorporated to improve performance. 

2.4 Conclusion 

Face liveness detection is a necessary step in biometric authentication systems 

that use face recognition as the means of authentication. There are several methods that 
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have been proposed in the literature for face liveness detection. We provided a 

comprehensive review of these face liveness detection techniques, which can be 

classified into static techniques and dynamic techniques. The static techniques analyze a 

2D static image for detecting spoofing attacks that present a printed photograph or an 

image displayed on a smartphone or tablet to the camera, while dynamic techniques 

analyze a sequence of input frames for detecting spoofing attacks that present a recorded 

video to the sensor.  

Static techniques generally use texture analysis, frequency analysis, and image 

quality analysis in detecting the liveness of the captured image. In many of the static 

techniques, texture analysis is a preferred method, which is generally based on the Local 

Binary Patterns (LBP) or variations of it, such as ELBP, DLTP, MLBP, etc. These 

techniques have given promising results, however, advancements in printing technology 

can make some of the texture analysis methods less reliable. Other techniques include 

analysis of the 2D Fourier spectra using DoG filtering, using deep CNNs with data 

randomization, combination of diffusion and a CNN, etc. Compared to the above-

mentioned static methods, our proposed method achieved higher accuracy on the NUAA 

dataset, using the Inception network version 4 architecture. In addition to the texture 

analysis, we also used a deep CNN architecture to identify the complex and deep features 

for classification. None of the existing works have employed deep architectures such as 

the ResNet50 and the Inception v4 that we employed in our research. The end-to-end 

solution we proposed has the advantage of detecting the liveness of a static image in real-

time without having to go through a preprocessing step.  
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Dynamic techniques analyze the temporal and spatial features of a sequence of 

input frames. Some of these techniques include texture analysis using a variation of the 

local binary pattern such as VLBP, while other techniques rely on the 3D structure 

information, detection of motion over the frames in the sequence, etc. Compared to some 

of the methods described above that made use of hand-crafted feature extraction, we used 

a CNN that does the feature extraction by itself, thus eliminating hand-engineered feature 

extraction. The work proposed in [31] used 13 convolutional layers of the VGG-16, while 

we used a 4-layer CNN as the front-end of our architecture with which we got 

competitive results. The work presented in [37] and [38] used pre-trained models such as 

GoogleNet and ResNet50, while we designed a CNN-LSTM architecture with which we 

obtained better results on the Replay-Mobile dataset. The enhancement in our work is to 

apply nonlinear diffusion to the frames in the sequence to obtain the sharp edges and 

preserve the boundary locations, and then feed the diffused frames to the CNN-LSTM, 

and the Two-Stream Inflated 3D ConvNet (I3D). 
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CHAPTER 3: FACE LIVENESS DETECTION 

In the case of face liveness detection of a captured static image, we first apply 

nonlinear diffusion to the image, and then feed the diffused image to CNN architectures. 

In the case of face liveness detection of video sequences, we first apply nonlinear 

diffusion to the frames in the sequence, and then feed the diffused frames to a CNN 

architecture for capturing the spatial features. The CNN output is then fed to an LSTM 

for capturing the temporal dynamics in the sequence. We also feed the diffused frames to 

a Two-Stream Inflated 3D ConvNet architecture. 

3.1 Nonlinear Diffusion 

In linear diffusion, the input image is smoothened at a constant rate in all 

directions to remove noise. Therefore, the smoothing process does not consider 

information regarding important image features such as edges [39]. The solution of the 

linear diffusion equation is given by: 

𝜕𝐼/𝜕𝑡 =  𝑑𝑖𝑣 (𝑑𝛻𝐼),                                                                                          (3.1)                       

where I is the image, d is the scalar diffusivity, and div is the divergence operator. This is 

somewhat equivalent to convolving the image with a Gaussian kernel, and hence linear 

diffusion can be regarded as a low pass filtering process. 
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Nonlinear diffusion is a denoising technique which denoises the image by 

preserving the edges.  The edge-preserving capability of nonlinear diffusion makes it a 

powerful denoising technique, as the information contained in high spatial frequency 

components is preserved [40]. The denoised image is a solution of the diffusion equation 

with a diffusion coefficient that varies spatially. Nonlinear diffusion applied to face 

liveness detection helps in distinguishing a fake image from a real image, as the edges 

obtained from a fake image will be faded, while those obtained from a real image will 

remain clear. Anisotropic diffusion, which is nonlinear diffusion based on a partial 

differential equation, prevents the blurring and localization issues associated with linear 

diffusion, and focuses on reducing the image noise without reducing significant parts of 

the image content such as edges. It improves the scale-space technique, enhances the 

boundaries, and preserves the edges [41]. The diffusion coefficient is locally adapted and 

is chosen as a function of the image gradient, which varies with both the edge location 

and its orientation in order to preserve the edges. The nonlinear diffusion process is 

defined by the equation. 

𝜕𝐼/𝜕𝑡 =  𝑑𝑖𝑣 (𝑔(|∇𝐼|)∇𝐼),                                                                              (3.2)  

where ∇𝐼 is the gradient, and the diffusivity 𝑔 is a function of the gradient ∇𝐼. 

During the diffusion process, the nonlinear diffusion filter detects the edges and 

preserves the locations using explicit schemes. The Additive Operator Splitting (AOS) 

scheme is a semi-implicit scheme which addresses the problem of regularization 

associated with anisotropic diffusion [42]. This scheme is stable for all time steps, and 

ensures that all co-ordinate axes are treated equally, as defined by equation (3.3) [43]. 
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AOS enables fast diffusion, resulting in smoothing of the edges in fake images while the 

edges in real images will be preserved. Image information inside objects will be blended, 

while image information along edges will be left intact. The iterative solution in AOS is 

given in equation (3.3). 

(𝐼𝑘)𝑡+1 = ∑ (𝑚𝐼 − 𝜏𝑚2𝐴𝑙)−1𝑚
𝑙=1  𝐼𝑘

𝑡 ,                                                                 (3.3)  

where Ik is the diffused image, m is the number of dimensions, k represents the channel, I 

is the identity matrix, 𝐴𝑙 is the diffusion, and τ is the time steps (referred to as param. 

alpha in our implementation). In the two-dimensional case, m = 2, and the equation then 

becomes: 

(𝐼𝑘)𝑡+1 = (2𝐼 − 4𝜏𝐴1)−1𝐼𝑘
𝑡 +  (2𝐼 − 4𝜏𝐴2)−1𝐼𝑘

𝑡 ,                                            (3.4)  

where 𝐴1 and 𝐴2 denote the diffusion in the horizontal and vertical directions. The 

equation is split into two parts in the operator splitting scheme. The solution to each is 

computed separately and results are then combined. 

The block-solver Tri-Diagonal Matrix Algorithm (TDMA) is a simplified form of 

Gaussian elimination, useful in solving tri-diagonal systems of equations. The AOS 

scheme, together with TDMA can, therefore, be used to efficiently solve the nonlinear, 

scalar-valued diffusion equation [43]. We implement the AOS scheme in the first layer of 

our implementations. 

3.2 Convolutional Neural Networks 
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The Convolutional Neural Network (CNN), introduced by Lecun et al. [44], 

combines three architectural concepts of local receptive fields, shared weights, and 

spatial or temporal subsampling in order to ensure some degree of shift, scale, and 

distortion invariance. They eliminate the need for hand-crafted feature extraction and 

extract local features by restricting the receptive fields of hidden units to be local. CNNs 

have proved successful in many machine learning tasks such as handwriting recognition 

[44], natural language processing [45], text classification [46], image classification [44], 

face recognition [47], face detection [48], object detection [49], video classification [50], 

object tracking [51], super resolution [52], human pose estimation [53], and so forth.  

The CNN architecture takes an image as input, performs the required number of 

convolutions and subsampling, and then feeds the outputs obtained to the required 

number of fully connected layers. 

3.3 Long Short-Term Memory (LSTM) 

The LSTM was introduced by Hochreiter et al. [54], and the constant error 

backpropagation within memory cells in the LSTM results in its ability to bridge very 

large time lags. LSTMs have been used successfully in video captioning [55], video 

object detection [56], intrusion detection in computer networks [57], hand gesture 

recognition [58], speech recognition, language modeling, sentiment analysis, text 

prediction, etc. The LSTM model resembles a standard Recurrent Neural Network 

(RNN), with the difference being that each node in the hidden layer is replaced by a 

memory cell (Figure 3.1). The self-connected recurrent edge of fixed weight one in each 

node ensures that the gradient can pass across many time steps without vanishing or 
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exploding [59]. Each cell consists of multiplicative units called gates (input, output, 

forget) that provide continuous analogues of write, read, and reset operations [60]. The 

multiplicative gate units learn to open and close access to the constant error flow through 

internal states of the cells [54].  

LSTMs in combination with CNNs have proven successful in person 

identification using lip texture analysis [61], 3D gait recognition [62], image-to-video 

person re-identification [63], action recognition in video sequences [64], text 

classification [65], identification of pedestrian attributes in video sequences [66], etc. 

   

       Figure 3.1. LSTM memory cell (adapted from [59]). 
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CHAPTER 4: FACE LIVENESS DETECTION ON A SINGLE 

STATIC IMAGE 

For face liveness detection on a single image, we first applied nonlinear diffusion 

based on the Additive Operator Splitting (AOS) scheme and the block-solver Tri-

Diagonal Matrix Algorithm (TDMA) to the captured image, in order to enhance the edges 

and preserve the boundary locations of the image. These diffused input images were then 

fed to the CNN architecture to extract the complex and deep features, and finally classify 

the image as real or fake. We used three different CNN architectures, and performed a 

comparative evaluation on their performance, thus gaining insight into why a particular 

architecture is better suited for face liveness detection. The CNN architectures we used in 

our experiments are described below: 

4.1 CNN-5 

This architecture consists of a total of five layers, which includes two 

convolutional layers, one subsampling layer, and two fully connected layers. The inputs 

to the network are the 64 × 64 size nonlinear diffused counterparts of the captured 

original images. The first layer is a convolutional layer C1 that consists of 12 feature 

maps, each of size 56 × 56, where each unit in a feature map is the result of the 

convolution of the local receptive field of the input image with a 9 × 9 kernel. The kernel 
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used in the convolution is the set of connection weights used by the units in the feature 

map. Each unit in a feature map shares the same set of weights and bias, so they detect 

the same feature at all possible locations in the input. Other feature maps in the layer use 

different sets of weights and biases, extracting different local features [44]. The next 

layer is also a convolutional layer, C2, consisting of 18 feature maps, each of size 50 × 

50, obtained by the convolution of the feature maps in C1 with 7 × 7 kernels. C2 is 

followed by a subsampling layer S2 of 18 feature maps, each of size 25 × 25, obtained by 

applying average pooling of size (2, 2) to the corresponding C2 layer feature maps, 

thereby reducing the resolution of the feature maps in the C2 layer by half. The next layer 

is a fully connected hidden layer of 50 neurons, followed by a fully connected output 

layer of 2 neurons, and dropouts of probability 0.25 and 0.4 are applied to the pooling 

layer and hidden layer respectively. The complete architecture is illustrated in Figure 4.1. 

 

    Figure 4.1. Convolutional Neural Network (CNN-5) architecture. 
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To introduce nonlinearity into the model, the Rectified Linear Unit (ReLU) 

activation function is applied to the outputs of C1, C2, and the hidden layer of 50 

neurons, restricting the outputs of these layers to be 0 or x, where x is the output of the 

neuron before the activation function is applied. The sigmoid activation function is 

applied to the output layer, giving an output in the range of 0 to 1. The network was 

trained by backpropagation using the Adam optimization algorithm, with mean squared 

error as the loss function. The diffusion block was implemented via direct 

implementation of the diffusion equations. 

4.2 ResNet50 

As the depth of a deep network increases, the accuracy becomes saturated and the 

network degrades rapidly. The deep residual learning framework improves the 

degradation problem and eases the training of the network [67]. In a residual network, 

there are shortcut connections which skip one or more layers. To the standard CNN, skip 

connections are added that bypass a few convolution layers. Each bypass produces a 

residual block where the convolution layers predict a residual that is added to the block’s 

input. Therefore, these shortcut connections simply perform identity mapping, and their 

outputs are added to the outputs of the stacked layers. This gives rise to a shallower 

architecture, and the entire network can still be trained end-to-end. The identity 

connections add neither extra parameters nor computational complexity to the network. 

Residual networks have been used successfully in age and gender estimation [68], for 

hyperspectral image classification [69], and other classification tasks. Even though very 
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deep residual networks (152 layers) have been used, in this work, we only used 50 layers, 

as our focus was on a comparative evaluation of architectures. 

The ResNet50 is a residual network of 50 layers, which consists of identity 

residual blocks and convolutional residual blocks stacked together. The shortcut 

connections allow the gradient to be backpropagated to earlier layers, preventing the 

vanishing gradient problem associated with very deep networks. The central idea of 

residual networks (ResNets) is to learn the additive residual function, using an identity 

mapping realized through identity skip connections [70]. The shortcut connections 

parallel to the main path of convolutional layers allow the gradient to backpropagate 

through them, resulting in faster training. Figure 4.2 shows the basic residual block, and 

Figure 4.3 shows the ResNet50 architecture used in our research. 

    

         Figure 4.2. Basic residual block (adapted from [67]). 

  

           Figure 4.3. ResNet50 architecture. 
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The architecture consists of identity blocks and convolutional blocks stacked 

together in stages 2–5. The identity residual block is used when the input and output 

dimensions are same before the addition, whereas the convolutional residual block is 

used when the input and output dimensions are different before the addition.  

The inputs to the network are the 64 × 64 nonlinear diffused images. The network 

was trained using the Adam optimization algorithm, with categorical cross-entropy as the 

loss function and softmax as the classifier. Cross-entropy measures the performance of a 

classification model where the output is a probability distribution, giving a value between 

0 and 1. Since our targets are in categorical format with two classes (fake, real), we used 

the categorical cross-entropy as the loss function. 

4.3 Inception v4 

Inception architectures have shown to achieve very good performance at 

relatively low computational cost [71]. The inception network’s architecture provides 

improved utilization of the computing resources inside the network through a design that 

increases the depth and width of the network while keeping the computational budget 

constant. The network consists of inception modules stacked upon each other, with 

occasional pooling layers to reduce the resolution of the grid. Information is processed at 

various scales by applying filters of different sizes to the same layer, which are then 

aggregated so that the following stage can abstract features from different scales 

simultaneously [72]. 

The basic inception module (Figure 4.4) used filter sizes 1 × 1, 3 × 3, and 5 × 5, 

the convolution outputs and a max pooling output of which were concatenated into a 
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single output vector forming the input to the next stage. Instead of using a filter of an 

appropriate size at a level, filters of multiple sizes were used, making the network wider 

than deeper, so that features at different scales could be recognized. The resulting feature 

maps were then concatenated before going to the next layer. This was further refined by 

incorporating dimensionality reductions by applying 1 × 1 convolutions before the 3 × 3 

and 5 × 5 convolutions. Auxiliary classifiers were also included to prevent the vanishing 

gradient problem.  

Later versions incorporated factorization of filters into smaller convolutions by 

replacing the 5 × 5 filters with two 3 × 3 filters [73]. This reduced the computational cost, 

resulting in a reduced number of parameters and faster training. Additionally, the n x n 

convolutions were replaced by a 1 x n convolution followed by an n x 1 convolution, 

which further increased the computational cost savings. Also, filter banks were expanded 

to avoid representational bottleneck. Batch normalization was applied to the fully 

connected layer of auxiliary classifiers for additional regularization, and label smoothing 

was added as regularization to the loss formula to make the model more adaptable and 

prevent overfitting. Deep CNN with inception modules has been used for person re-

identification [74], inception network version 3 has been used for Next Generation 

Sequencing (NGS) – based pathogen detection [75], and a residual inception network has 

been used in multimedia classification [76]. 
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      Figure 4.4. Basic inception module (adapted from [72]). 

   

  Figure 4.5. Inception v4 network (adapted from [71]). 

In our experiments, we used the Inception v4 architecture, which is a more 

uniform simplified structure compared with the earlier versions. This model consists of 

three different inception blocks where each is used repeatedly a certain number of times, 
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and two reduction blocks for changing the width and height of the grid. The inputs to the 

network are the 64 × 64 nonlinear diffused images. The complete network (Figure 4.5) 

consists of an inception stem, 4 x inception A blocks, 1 x reduction A block, 7 x 

inception B blocks, 1 x reduction B block, and 3 x inception C blocks, followed by 

average pooling, dropout, and softmax layers. The network was trained using the Adam 

optimization algorithm, with categorical cross-entropy as the loss function and softmax as 

the classifier. 
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CHAPTER 5: END-TO-END REAL-TIME FACE LIVENESS 

DETECTION USING ANISOTROPIC DIFFUSION AND 

CONVOLUTIONAL NEURAL NETWORK 

For the end-to-end real-time solution for liveness detection on static images, 

instead of using a preprocessing step (via Matlab code) for diffusing the images and 

feeding them to the deep CNN network as described in Chapter 4, we developed an end-

to-end framework with diffusion as well as deep CNNs. We used a combined architecture 

where the diffusion process and deep CNN are implemented in a single step. We used 

two different methods for the end-to-end solution. In the first method, we used an alpha 

trainable network that computes the smoothness of diffusion parameter (alpha), and the 

diffused image was then created using this computed alpha. This diffused image was then 

fed to a pre-trained three-layer CNN model (CNN layers with Batch Normalization) that 

gave 97.50% accuracy on the Replay-Attack dataset, and 99.62% accuracy on the 

Replay-Mobile dataset, respectively. In the second method, we fixed a value for the 

smoothness of diffusion parameter (alpha) using which we created the diffused image, 

and then fed the diffused image to an Inception v4 network. 

In either case, we fed the original captured images to the framework, where the 

first layer computed the nonlinear diffusion based on the Additive Operator Splitting 
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(AOS) scheme and the efficient block-solver, Tri-Diagonal Matrix Algorithm (TDMA). 

This enhances the edges and preserves the boundary locations of the real image. The 

diffused input image was then fed to the deep CNN architecture or the Inception v4 

network to extract the complex and deep features, and to classify the image as real or 

fake. Our integrated implementation results in real-time detection of liveness. 

5.1 Specialized Convolutional Neural Network (SCNN) 

In this architecture, the original image is first fed to an alpha network to compute 

the value of the smoothness of diffusion parameter (alpha). This is a neural network 

comprising of a hidden layer of 15 neurons followed by a dense layer of one neuron, 

which outputs the alpha. The Rectified Linear Unit (ReLU) activation function is applied 

to the neurons in these layers. The SCNN model consists of three convolutional layers 

C1, C2, and C3 with 16, 32, and 64 feature maps respectively, where kernel sizes of 15 × 

15, 7 × 7, and 5 × 5 are used in the convolutions. Each convolution is followed by batch 

normalization, and max pooling is applied to the C1 and C2 layers after batch 

normalization for reducing the resolution. The higher filter size in the C1 layer is 

important to extract the diffusion enhanced features for liveness detection. The C3 layer 

batch normalization is followed by a dense layer of 64 neurons, and a dense output layer 

of one neuron. The ReLU activation function is applied to the convolution layers and the 

hidden layer, and the sigmoid activation function is applied to the output layer. The 

SCNN was trained using the binary cross-entropy loss function, and the Adam optimizer 

with an initial learning rate set to 0.001. 
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Figure 5.1 below shows the proposed architecture. The nonlinear diffusion code 

implemented in TensorFlow converts the original image to diffused form with the 

parameter alpha determined from the alpha network (bottom left in Figure 5.1). During 

backpropagation, the weights in the alpha network will be updated, and the updated 

weights are used in the computation of the output of the single neuron in the dense layer 

(parameter alpha) on the next forward pass. 

 

Figure 5.1. End-to-end Specialized Convolutional Neural Network (SCNN) architecture (alpha is learned 

by the network). 

5.2 Inception v4 

In this framework, the CNN part in Figure 5.1 is replaced with the Inception v4 

network. However, instead of using an alpha network that computes the smoothness of 

diffusion (alpha), we fix the value of alpha in order to improve the real-time performance. 

The first stage is the nonlinear diffusion stage, whose input is the original 64 × 64 input 

image captured through the webcam, which is followed by the Inception network v4 

architecture described in section 4.3. The complete architecture is illustrated in Figure 
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5.2. The network was trained by using the Adam optimization algorithm. Since our 

targets are in a categorical format with two classes of fake and real, we used categorical 

cross-entropy as the loss function. The diffusion block was implemented via direct 

implementation of the diffusion equations. 

 

   Figure 5.2. End-to-end architecture using the Inception v4 network. 
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CHAPTER 6: FACE LIVENESS DETECTION ON VIDEO 

SEQUENCES 

For the liveness detection on video sequences, we first applied the nonlinear 

diffusion based on the AOS scheme and TDMA to the individual frames of the video 

sequence, as done for the static images. This enhances the edges and preserves the 

boundary locations of the real image. These diffused input images were then fed to two 

different architectures. 

6.1 CNN-LSTM 

This architecture consists of a CNN as the front-end, followed by an LSTM. The 

diffused images were fed one-by-one to the CNN, which extracts the complex and deep 

features. The output of the CNN was then fed to the LSTM, which detects the temporal 

information in the sequence. The input gate of the LSTM cell indicates how much of the 

new information must be stored in the cell state, the forget gate indicates how much of 

the internal state can be removed, and the output gate indicates how much of the cell state 

can be sent as output to the next time-step. Finally, the output dense neural network layer 

classifies the sequence as real or fake. 

The CNN part in our CNN-LSTM network has convolutional layers C1 and C2, 

one subsampling layer, and a fully connected layer of 50 neurons (adapted from the 
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CNN-5 in section 4.1). This is followed by the LSTM layer, which consists of 60 cells, 

and a feedforward output layer of two neurons. The sigmoid activation function is applied 

to the output layer, giving an output in the range 0 to 1. Nonlinear diffusion is first 

applied to the frames in each input sequence, and the diffused frames are fed to the CNN. 

The CNN captures the spatial information in the sequence by extracting the 

complex and deep discriminative features, and the hidden layer of CNN produces an 

output of 50 features per frame. The input to the LSTM layer is three-dimensional, where 

the three dimensions are samples, time steps, and features (i.e., batch size, 20, 50), where 

20 is the number of frames (time steps) per sequence. The LSTM layer captures the long-

term temporal dependencies across frames in the sequence, and the 60 features obtained 

from the LSTM layer are fed to the output layer, which then classifies the 20-frame 

sequence as real or fake. The complete architecture is illustrated in Figure 6.1 below. 

 

          Figure 6.1. Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM). 
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6.2 Two-Stream Inflated 3D ConvNet (I3D) architecture 

This architecture [77] consists of two 3D ConvNets in which the filters and 

pooling kernels are inflated into 3D by adding an additional temporal dimension, which 

leads to very deep naturally spatio-temporal classifiers. The CNN used is the ImageNet 

pre-trained Inception v1 network with batch normalization, and a two-stream 

configuration is adopted. Nonlinear diffusion is first applied to the frames in each input 

sequence, and the diffused frames are fed to the network. 

The inputs to one 3D ConvNet are the diffused RGB frames, and the inputs to the 

other 3D ConvNet are the corresponding optical flow frames. While 3D ConvNets may 

directly learn about the temporal information from an RGB stream, their performance is 

greatly enhanced with the addition of an optical flow stream. The figure below (Figure 

6.2) shows the Two-Stream Inflated 3D ConvNet (I3D) architecture.  

 

  Figure 6.2. Two-Stream Inflated 3D ConvNet (I3D) architecture (adapted from [77]). 
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As shown in figure, one 3D ConvNet is trained on diffused RGB inputs, while the 

other is trained on optical flow inputs which carry optimized smooth flow information. 

The two networks are trained separately and their predictions are averaged at test time. 
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CHAPTER 7: IMPLEMENTATION AND RESULTS 

7.1 Face Liveness Detection on a static image 

For face liveness detection on a single static image using the three architectures 

CNN-5, ResNet50, and Inception v4, we used NUAA as the dataset. The NUAA 

Photograph Impostor database [10] consists of images of 15 subjects and is publicly 

available. It contains both live and photographed faces of the subjects, captured using a 

webcam in three sessions, with each session at a different place with different 

illumination conditions. There is a total of 12,614 images in the dataset, with 3491 

training images and 9123 test images, as shown in Table 7.1. Each image is 64×64 in size 

and in grayscaled representation. There is no overlap between the training set and test set 

images. The training set images were taken during sessions 1 and 2, and the test images 

were taken during session 3. The training set contains images of subjects 1–9, whereas 

the test set contains images of subjects 1–15.          

           Table 7.1. NUAA dataset. 

   

                

                  

 Training Images Test Images Total 

Real 

(Client) 

1743 3362 5105 

Fake 

(Impostor) 

1748 5761 7509 

Total 3491 9123 12614 
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For all the images in the training set and test set of the NUAA dataset, we created 

the corresponding nonlinear diffused images using the MATLAB implementation code 

by the author of [43]. We created five sets of diffused images for our experiments, with 

different values (15, 25, 50, 75, and 100) of the parameter param. alpha that defines the 

smoothness of diffusion. Figure 7.1 shows some samples from the NUAA dataset, and 

the corresponding diffused images. 

  
                       (a)              (b)   

Figure 7.1. Samples from the NUAA database. The first row in (a) shows non-diffused real images in the 

database, and the first row in (b) shows non-diffused fake images. Each row below shows the 

corresponding diffused images created with value of param. alpha set to 15, 25, 50, 75, and 100 

respectively. 

Most of our experiments were implemented on a 32GB RAM PC. The code was 

written in Python, using the Keras library with TensorFlow backend, for all the three 

architectures. We tested the CNN architectures with each set of diffused images, i.e. with 

diffused images created by setting the smoothness of diffusion parameter param. alpha to 

15, 25, 50, 75, 100. We conducted numerous experiments with the three CNN 
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architectures on the NUAA dataset. We performed several tests by changing the hyper-

parameters during the learning phase for improving the test accuracy. We compared the 

three architectures in terms of performance and, further compared their performance with 

other existing liveness detection methods. For each of the CNN architectures we used, we 

computed the test accuracy after training for various epochs. 

7.1.1 CNN-5 

With the CNN-5 architecture, using the diffused images created by setting the 

value of the parameter that defines smoothness of diffusion (param. alpha) to 25, we 

obtained a test accuracy of 95.99% after training for 30 epochs using the Adam optimizer 

and mean-squared-error loss function. The learning rate was set to 0.001, which is the 

default of the Adam optimizer, and the batch size was set to 32. The activation functions 

used were ReLU for the convolutional layers and hidden layer, and sigmoid for the 

output layer. Average pooling was applied to the C2 layer for down-sampling. Table 7.2 

shows the test accuracies obtained with CNN-5 after training for various epochs. 

        Table 7.2. Test results obtained with the CNN-5 architecture. 

 

 

We obtained a slightly less accuracy of 94.78% when max pooling was used after 

the C2 layer, categorical cross-entropy as the loss function, and softmax as the classifier. 

This accuracy was obtained after training for 35 epochs, with Adadelta as optimizer and 

learning rate of 0.1 which is its default, and with batch size set to 32. 

Epochs 10 15 20 25 30 35 40 

% Test 

Accuracy 

62.30 69.04 65.77 79.14 95.99 81.15 76.47 
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7.1.2 ResNet50 

 With the ResNet50 architecture, various combinations of kernel initialization, loss 

functions, activation functions, and classifiers, were experimented. With the diffused 

images created by setting the smoothness of diffusion (param. alpha) to 25, we obtained a 

test accuracy of 95.85% after training for 20 epochs, with the Adam optimizer, 

categorical cross-entropy loss function, and softmax classifier. The learning rate was kept 

at the default of Adam optimizer, which is 0.001, and batch size was set to 32. The table 

below (Table 7.3) shows the accuracies obtained with ResNet50 after training for various 

epochs. 

       Table 7.3. Test results obtained with the ResNet50 architecture. 

 

 

We also tested for liveness detection by reducing the number of feature maps in 

the convolutions by a quarter. In addition to the Adam optimizer, we also experimented 

with Adadelta, RMSprop, SGD optimizers, but the best results were obtained with Adam 

optimizer. We also experimented with two different kernel intitializers, the glorot-

uniform() initializer and the random-uniform() initializer. It was observed that, on 

average, glorot-uniform() initializer gives better results than random-uniform() initializer. 

We further observed that the network with the original number of feature maps in the 

convolutions gives better results than the network with reduced number of feature maps. 

Epochs 10 15 20 25 30 35 40 

% Test 

Accuracy 

86.75 73.21 95.85 76.25 82.96 75.32 88.61 
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7.1.3 Inception v4 

With the Inception v4 architecture, we achieved test accuracy of 100%  that has 

not been reported by any previous approach for face liveness detection on the NUAA 

dataset. This high accuracy was obtained with diffused images created by setting the 

smoothness of diffusion parameter (param. alpha) to 15, after training for various epochs 

ranging from 10 to 40, using the Adam optimizer, categorical cross-entropy loss function, 

and softmax classifier. The learning rate used was the default of Adam optimizer, which 

is 0.001, and batch size was set to 32. The table below (Table 7.4) shows the summary of 

the results obtained with Inception v4 after training for various epochs. 

     Table 7.4. Test results obtained with the Inception v4 architecture. 

 

 

We initially used diffused images created by setting the smoothness of diffusion 

(param. alpha) to 25, and experimented with different combinations of the number of 

inception A blocks, inception B blocks, and inception C blocks, with batch size set to 32. 

It was observed that the default of 4 inception A blocks, 7 inception B blocks, 3 inception 

C blocks gives better results. The results obtained are summarized in Table 7.5. 

Table 7.5. Evaluation with various numbers of Inception-A, Inception-B, Inception-C blocks (param. 

alpha=25).  

 

Epochs 10 15 20 25 30 35 40 

% Test 

Accuracy 

100 100 100 100 100 100 100 

Number of blocks 

used 

Epochs Test 

Accuracy 

4A, 7B, 3C 10 95.04% 

3A, 5B, 2C 10 74.29% 

7A, 9B, 5C 10 86.53% 
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We also conducted experiments keeping only parts of the architecture. We 

experimented with using only the inception stem, the inception A blocks, and reduction A 

block, eliminating blocks B and C. We further tried using only the inception stem 

followed by blocks A and B, leaving out block C, and also inception stem followed by 

blocks A and C, leaving out block B. The results in these cases were not as accurate. By 

using only the inception stem, inception A blocks, and reduction A block, the test 

accuracies obtained with various numbers of inception A blocks are summarized in Table 

7.6 below. 

Table 7.6. Evaluation using only Inception-stem, Inception-A blocks, Reduction-A block (param. 

  alpha=25). 

  

 

With the diffused images created by setting the smoothness parameter (param. 

alpha) to 15, we also performed experiments by using a sample of the training images as 

validation dataset. Out of the 3491 training images, we used 3000 images for training, 

and 491 images for validation. After each epoch during the training process, the model 

was evaluated on the validation set, and this gives an estimate of the skill of the model. 

Table 7.7 shows the validation accuracy after each epoch, when the inception v4 network 

was trained for 25 epochs, and Figure 7.2 shows the corresponding plot of epoch versus 

validation accuracy. 

               

Number of Inception 

A blocks 

Epochs Test Accuracy 

4 10 89.07% 

5 10 91.17% 

6 10 90.91% 

7 10 91.59% 
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             Table 7.7. Validation accuracy (%) obtained after each epoch (param. alpha=15). 

Epoch Accuracy Epoch Accuracy Epoch Accuracy 

1 85.13 11 99.39 21 99.19 

2 97.76 12 99.19 22 98.17 

3 97.15 13 98.98 23 98.37 

4 96.74 14 99.19 24 99.59 

5 99.19 15 98.98 25 99.19 

6 99.19 16 99.59   

7 98.57 17 99.39   

8 99.19 18 98.57   

9 99.19 19 98.98   

10 98.57 20 98.78   

 

       

              Figure 7.2. Plot showing epoch vs validation accuracy for Inception v4. 

7.1.4 Comparison of the three architectures 

An overall comparison of the three architectures showed that the Inception v4 had 

superior performance for face liveness detection compared with ResNet50 and CNN-5. 

The accuracies of ResNet50 and CNN-5 differed only by a slight amount, and though 

their accuracies were not as high as the Inception v4 network, they still provided 

competitive results, showing that they too can be used for face liveness detection of 

anisotropic diffused captured images. Table 7.8 shows the summary of the obtained 

results. 
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    Table 7.8. Comparison of the three architectures.  

 

 

 

 

Figure 7.3 shows the plot of epochs versus accuracy for the CNN architectures, using the 

results in Tables 7.2, 7.3, 7.4. 

     

                   Figure 7.3. Plot showing epochs vs accuracy for each architecture. 

We further observed from our experiments using the three networks that the best 

optimizer was the Adam optimizer. We tried various values of learning rates for this 

optimizer to see if increasing or decreasing the learning rate from the default value of 

0.001 would improve the test accuracy, but it was observed that the default learning rate 

gave higher accuracy for ResNet50 and CNN-5. The Inception v4 still had 100% 

accuracy despite changing the learning rate. Table 7.9 summarizes the observations 

made.           

 

Architecture Epochs Optimizer Loss function Test 

Accuracy 

CNN-5 30 Adam mean-squared- 

error 

95.99% 

ResNet50 20 Adam categorical-

crossentropy 

95.85% 

Inception v4 10 Adam categorical- 

crossentropy  

100% 
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          Table 7.9. Accuracies obtained for various values of learning rates. 

Architecure Learning 

rate 

Epochs Accuracy 

 

CNN-5 
0.001 30 95.99% 

0.002 30 88.97% 

0.005 30 63.14% 

0.0008 30 72.83% 

 

ResNet50 
0.001 20 95.85% 

0.002 20 62.74% 

0.005 20 64.80% 

0.0008 20 66.76% 

 

Inception v4 
0.001 10 100% 

0.002 10 100% 

0.005 10 100% 

0.0008 10 100% 

 

We tested each of the CNN architectures with each of the five sets of diffused 

images that we created with various values of the parameter alpha. We determined that 

the level of smoothness of the diffused images played a significant role in determining the 

liveness of the captured images. Table 7.10 summarizes the results obtained with each 

architecture using each set of diffused images. The entries in parentheses indicate the 

number of epochs we trained the network to achieve that accuracy. Figure 7.4 shows the 

corresponding plot of param. alpha of the diffused images versus the test accuracies 

obtained with each architecture. 

Table 7.10. Accuracies obtained with each set of diffused images (the epochs are shown in parentheses).  

   

 

 

 

param. 

alpha 

CNN-5 ResNet50 Inception 

v4 

15 88.69% (25) 78.76% (40) 100% (10) 

25 95.99% (30) 95.85% (20) 95.04% (10) 

50 79.41% (20) 70.21% (30) 91.76% (5) 

75 76.35% (20) 78.77% (30) 87.56% (1) 

100 75.77% (30) 74.47% (30) 86.04% (5) 
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                            Figure 7.4.  Plot showing param. alpha vs accuracy for each architecture. 

As we have mentioned in our experimental results, with a lower value of the 

smoothness of diffusion parameter (param. alpha = 15), Inception v4 had superior 

performance compared with CNN-5 and ResNet50. Since filters of multiple sizes operate 

at a level in an inception network, features at different scales can be recognized. 

Therefore, even with a smoothness parameter of 15, Inception v4 recognized the 

important features that highlighted the edges and boundary locations to differentiate 

between a live and fake image. With a higher value of the smoothness parameter (param. 

alpha = 25), CNN-5 and ResNet50 performed slightly better than the Inception v4 

network. However, for still higher values of param. alpha (50, 75, and 100), Inception v4 

outperformed CNN-5 and ResNet50. 

In terms of computation speed, ResNet50 was faster than Inceptionv4 due to the 

skip connections that allow propagation of the gradients through the shortcut paths by 

skipping a few convolutional layers. Inception v4 took approximately 20 minutes to 

achieve 100% accuracy in 15 epochs, whereas ResNet50 took 20 minutes to achieve 

95.85% accuracy in 20 epochs. CNN-5 took approximately 5 minutes to achieve the 
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95.99% accuracy after 30 epochs. This CNN, being only five layers deep and with the 

added advantage of a reduced number of parameters due to the shared weights concept in 

CNNs, achieved faster training. 

7.1.5 Comparison with state-of-the-art methods 

We compared the performance of our approach with other state-of-the-art 

approaches on the NUAA dataset, such as methods that make use of enhanced local 

binary patterns [6], dynamic local ternary patterns [12], difference of Gaussian filtered 

images [10], local speed patterns [5], multiscale local binary patterns [13], and a deep 

CNN proposed in [18]. Compared with these methods, our Inception v4 model achieved 

100% accuracy on the test set, making it highly suitable for the classification of a two-

dimensional image as being real or fake. 

Table 7.11. Comparison of our proposed methods with other state-of-the-art methods on the NUAA dataset. 

          

 

    

 

 

The Inception v4 network outperformed other state-of-the-art methods, proving 

that it is indeed a successful method for use in face recognition applications that use 

liveness detection as a precursor. The ResNet50 and CNN-5 networks did not achieve 

accuracies as high as the Inception v4 network, but these architectures still gave 

Method Test accuracy 

ELBP [6] 95.1% 

DLTP [12] 94.5% 

DoG [10] 87.5% 

LSP [5] 98.5% 

MLBP [13] 98% 

CNN [18] 99% 

CNN-5 (proposed method) 95.99% 

ResNet50 (proposed method) 95.85% 

Inception v4 (proposed method) 100% 
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competitive results when compared to the rest of the methods. Table 7.11 and Figure 7.5 

confirm these findings.        

 

     Figure 7.5. Performance comparison on the NUAA dataset. 

7.2 End-to-end real-time face liveness detection using anisotropic 

diffusion and convolutional neural network 

For the end-to-end real-time face liveness detection on a static image, we used the 

Replay-Attack dataset and the Replay-Mobile dataset. We describe the experimental 

results, and the hyperparameter settings used in the experiments. We also do a 

performance comparison with other existing liveness detection methods on static images. 

The Replay-Attack database [14] is a 2D face spoofing attack database that 

consists of 1200 short video recordings of real-access and attack attempts of 50 different 

subjects. The frames in the video clip have a resolution of 320 × 240 pixels. As shown in 

Table 7.12, the data is divided into three sub-groups comprising of training, development, 

and test sets. Clients that appear in one dataset do not appear in any other dataset. Both 

real and attack videos were taken under two different lighting conditions, controlled and 
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adverse. There are 4 real and 20 attack videos per subject. The attack videos include four 

mobile attacks using an iPhone screen, four screen attacks using an iPad screen, and two 

hard-copy print attacks with each captured in two different modes, hand-based attacks, 

and fixed-support attacks. The training set consists of 15 subjects and 360 video clips, the 

development set consists of 15 subjects and 360 video clips, and the testing set consists of 

20 subjects and 480 video clips. 

Table 7.12. Replay-Attack dataset.  

 

 

 

 

The Replay-Mobile dataset [32] consists of 1030 video clips of photo and video 

attacks of 40 clients. The videos were recorded under different lighting conditions with 

an iPad Mini2 (running iOS) and an LG-G4 smartphone (running Android), and the 

frames in the video clips are of a 720 × 1080 resolution. The videos are grouped into 

training set, development set, and test set. These sets are disjoint, and therefore clients in 

one set do not appear in the other sets. The real-access videos were taken under five 

different lighting conditions (controlled, adverse, direct, lateral, diffuse). In order to 

produce the attacks, high-resolution photos and videos from each client were used under 

similar conditions as in their authentication sessions (light on and light off). 

 Number of 
Subjects 

Real-access 
Videos 

Attack 
Videos 

Total 

Training set 15 60 300 360 

Development set 15 60 300 360 

Testing set 20 80 400 480 

Total 50 200 1000 1200 
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For the real-access, each client recorded 10 videos, with two videos in each of the 

five lighting conditions. Two kinds of attacks were performed, which include matte-

screen attacks and print attacks. Each client recorded 16 attack videos, which include four 

mobile attacks and four tablet attacks using a mattescreen. Two print attacks each were 

captured by fixed-support and hand-held smartphone. Two print attacks each were 

captured by fixed-support and hand-held tablet. There are 12 subjects in the training set 

with 120 real-access and 192 attack videos, 16 subjects in the development set with 160 

real-access and 256 attack videos, and 12 subjects in the test set with 110 real-access 

videos (since one subject was not available) and 192 attack videos (Table 7.13). 

   Table 7.13. Replay-Mobile dataset.   

 

 

 

 

Our experiments were implemented on an Intel Xeon E3-1271 @3.60GHz with 

32GB RAM PC. For diffusing the captured image in the end-to-end real-time liveness 

detection of a static image, we implemented the diffusion equations, as described in 

section 3.1 to integrate with the TensorFlow. The SCNN and Inception v4 code were also 

written using TensorFlow. The complete code implements the framework by doing the 

implementation and classification in a single step. 

 Number of 
Subjects 

Real-access 
Videos 

Attack 
Videos 

Total 

Training set 12 120 192 312 

Development set 16 160 256 416 

Testing set 12 110 192 302 

Total 40 390 640 1030 



 
 

63 

For our experiments using the end-to-end solution, the original images of the 

Replay-Attack dataset and Replay-Mobile dataset read from folders were grayscaled and 

then fed to the end-to-end architectures. Figure 7.6 shows some samples from the Replay-

Attack dataset and the Replay-Mobile dataset, and the corresponding diffused images. 

The first row in both (a) and (b) shows real images from the Replay-Attack and Replay-

Mobile datasets respectively, and the second row in (a) and (b) shows fake images. The 

first column in (a) and (b) are original non-diffused images, and the remaining columns 

are their diffused versions created with parameter alpha set to 15, 25, 50, 75, and 100 

respectively. It can be observed that a value below 50 produces better diffused images 

with highlighted edges and enhanced boundaries in the real image, whereas a high value 

of 75/100 for the smoothness parameter alpha blurs out important edges from the images. 

 

          (a) 

 

         (b) 

Figure 7.6. Sample images from the datasets and their corresponding diffused versions. (a) Images from the 

Replay-Attack dataset. (b) Images from the Replay-Mobile dataset. The images in the first row of both (a) 

and (b) are real, and the images in the second row of both (a) and (b) are fake. 
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We conducted numerous experiments individually on the grayscaled images of 

the Replay-Attack dataset and the Replay-Mobile dataset. We tuned the hyperparameters 

by validating on the validation (development) set during training, and the best model 

obtained was evaluated on the test set. We computed the test accuracy, and the Half Total 

Error Rate (HTER), which is defined as: 

HTER = (FAR + FRR)/2,        

where FAR is the False Acceptance Rate, and FRR is the False Rejection Rate. 

FAR = False Acceptance/Number of Impostor images             

FRR = False Rejection/Number of Real images  

We used 20 frames of each video clip in the training, development, and testing 

sets, which were resized to size 64 × 64. Thus, a total of 7200 training images, 7200 

development set (validation) images, and 9600 testing images were used from the 

Replay-Attack dataset, and 6240 training images, 8320 development set images, and 

6040 test set images were used from the Replay-Mobile dataset. 

7.2.1 Specialized Convolutional Neural Network (SCNN) 

Using the Specialized Convolutional Neural Network (SCNN), our experiments 

on the Replay-Attack dataset gave test accuracy of 96.03% and HTER of 7.53%, and 

gave 96.21% test accuracy and 4.96% HTER on the Replay-Mobile dataset. We first 

trained the three-layer CNN on diffused training images created with an alpha parameter 

of 15 for 100 epochs by validating on the diffused validation images created with the 

same alpha, for tuning the hyperparameters. We experimented with various learning 
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rates, and the best model obtained gave an accuracy of 97.50% at a learning rate of 0.005 

for the Replay-Attack dataset, and 99.62% accuracy at a learning rate of 0.0005 for the 

Replay-Mobile dataset. We used these pre-trained models in the CNN part of the end-to-

end SCNN architecture.  

We trained the SCNN network on the original training images for 30 epochs 

while validating on the original images of the validation set. We used the Adam 

optimizer, binary cross-entropy loss function, batch size of 32, and sigmoid activation 

function in the output layer. The training was done by setting the learning rate of the 

optimizer to its default value (0.001), and also using the learning rates which gave the 

best model of the pre-trained CNN-3, which were 0.005 for the Replay-Attack dataset, 

and 0.0005 for the Replay-Mobile dataset. The smoothness of diffusion (alpha) was 

learned by the network each time. The original image fed to the network was diffused 

with this learned alpha, and the diffused image was then fed to the pre-trained 3-layer 

CNN. The weights of the better model were saved during the 30 epochs of training. 

Following training, the best model weights obtained during validation were loaded, and 

the network model was compiled and evaluated on the test set.  

Table 7.14. Highest validation accuracy (best model) obtained during validation, and the test results 

obtained by evaluating the best model on the test set, for the SCNN. 

 

   

 

 Replay-Attack Replay-Mobile 

Best model (%) 95.04 98.56 

Test Accuracy (%) 96.03 96.21 

HTER (%) 7.53 4.96 
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The experimental results are summarized in Table 7.14. The real-time evaluation of a test 

image on a trained SCNN network takes approximately 0.021s for the Replay-Attack 

dataset, and 0.016s for the Replay-Mobile dataset. 

7.2.2 Inception v4 

For the end-to-end solution using Inception v4 network, we trained the network 

on the original images of the training set for 30 epochs using a fixed value for the 

smoothness of diffusion parameter (alpha), while validating on the original images of the 

validation (development) set for tuning the hyperparameters and selecting the best model 

for evaluation. We repeated the training process for various values of alpha and learning 

rates of the optimizer used. The best model obtained was then evaluated on the test set. 

We used the Adam optimizer, categorical cross-entropy loss function, and softmax 

classifier in the last stage with a batch size set to 32. The tables and plots below 

summarize the results obtained. 

7.2.2.1 Results obtained with the Replay-Attack dataset 

Table 7.15 shows the best model (highest validation accuracy) results obtained for 

various values of alpha with the Replay-Attack dataset when validating on the validation 

set during training for 30 epochs, for tuning the hyperparameters. The overall best model 

obtained was for alpha of 15, at the default learning rate of 0.001. The results of 

evaluation of the best models for each alpha (Table 7.15), on the test set of the Replay-

Attack dataset, are shown in Table 7.16. It can be observed that the best results obtained 

are test accuracy of 94.77%, and HTER of 13.54% for alpha of 15. The plots of alpha vs. 
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test accuracy and alpha vs. HTER, according to results in Table 7.16, are shown in 

Figures 7.7 and 7.8. 

Table 7.15. Best model obtained for each alpha while validating on the development set during training, 

with the Replay-Attack dataset, in Inception v4. 

   

  

Table 7.16. Test results obtained with the Replay-Attack dataset by evaluating the best model obtained for 

each alpha (in Table 7.15) on the test set, in Inception v4. 

  

 

 

   

Figure 7.7. Plot showing parameter alpha vs. test accuracy (Table 7.16). 

90

91

92

93

94

95

96

97

98

99

100

0 20 40 60 80 100

%
 T

e
st

 A
cc

u
ra

cy

param. alpha

param. alpha vs Test Accuracy

Alpha 15 25 50 75 100 

Val. Accuracy (%) 94.81 94.25 93.40 93.44 93.31 
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HTER (%) 13.54 15.01 16.25 17.31 16.01 



 
 

68 

  

    Figure 7.8. Plot showing parameter alpha vs. HTER (Table 7.16). 

On a trained Inception v4 network, real-time evaluation of a test image takes 

approximately 0.022s for the Replay-Attack dataset. 

7.2.2.2 Results obtained with the Replay-Mobile dataset 

Table 7.17 shows the best model (highest validation accuracy) results obtained for 

various values of alpha with the Replay-Mobile dataset when validating on the validation 

set during training for 30 epochs, for tuning the hyperparameters. The overall best model 

obtained was for alpha of 15, at the default learning rate of 0.001. The results of 

evaluation of the best models for each alpha (Table 7.17) on the test set of the Replay-

Mobile dataset are shown in Table 7.18. The best results obtained are test accuracy of 

95.53%, and HTER of 5.94% for alpha of 15. The plots of alpha vs. test accuracy and 

alpha vs. HTER, according to results in Table 7.18, are shown in Figures 7.9 and 7.10.  
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Table 7.17. Best model obtained for each alpha while validating on the development set during training, 

with the Replay-Mobile dataset, in Inception v4.  

   

 

Table 7.18. Test results obtained with the Replay-Mobile dataset by evaluating the best model obtained for 

each alpha (in Table 7.17) on the test set, in Inception v4. 

   

  

 

 

           Figure 7.9. Plot showing parameter alpha vs. test accuracy (Table 7.18). 
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Test Accuracy (%) 95.53 93.29 91.09 91.26 92.55 
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 Figure 7.10. Plot showing parameter alpha vs. HTER (Table 7.18). 

On a trained Inception v4 network, real-time evaluation of a test image takes 

approximately 0.019s for the Replay-Mobile dataset. 

7.2.3 Comparison with state-of-the-art methods 

The performance of our end-to-end approaches using the SCNN and Inception v4 

were compared with other proposed methods on the Replay-Attack dataset and Replay-

Mobile dataset, as shown in Tables 7.19 and 7.20, and Figures 7.11–7.14. 

    Table 7.19. Comparison with state-of-the-art methods on the Replay-Attack dataset. 

 

  

  

 

 

0

2

4

6

8

10

12

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Method Test Accuracy HTER 

DLTP [12]  4.8% 

Diffusion speed [5]  12.50% 

Diffusion-CNN [18]  10% 

LiveNet [16]  5.74% 

CNN [15] 97.83%  

CNN-LBP [33] 75.25%  

LBP [34]  15.6% 

IQM [34]  4.6% 

SCNN (proposed method) 96.03% 7.53% 

Inception v4 (proposed method) 94.77% 13.54% 
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    Table 7.20. Comparison with state-of-the-art methods on the Replay-Mobile dataset. 

    

 

 

In Tables 7.19 and 7.20, some of the entries are blank because the test accuracy and 

HTER were not reported by the authors. 

   

Figure 7.11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack 

dataset (Table 7.19). 

   

Figure 7.12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack dataset 

(Table 7.19). 
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Figure 7.13. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Mobile 

dataset (Table 7.20). 

   

Figure 7.14. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile dataset 

(Table 7.20). 

Unlike the other methods, our proposed method is an end-to-end solution capable 

of liveness detection in real-time. Even though the accuracy and HTER are slightly below 

the best reported model, the tradeoff of real-time performance is an important goal. 

Therefore, these architectures are capable of providing an end-to-end solution with the 

advantage of being real-time for use in face recognition applications. 

7.3 Face Liveness Detection on video sequences 
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For face liveness detection on video sequences using the CNN-LSTM architecture 

and the I3D architecture, we used the Replay-Attack dataset and Replay-Mobile dataset. 

We present the experimental results, and the hyperparameter settings used in the 

experiments. We further do a performance comparison with other existing liveness 

detection methods on video sequences that use these two datasets. 

As was done for the end-to-end solution, our experiments were implemented on 

an Intel Xeon E3-1271 @3.60GHz with 32GB RAM PC. The diffusion equations were 

implemented using the Matlab code (version 9.8, R2020a) by the author of [43], and the 

implementations of the CNN-LSTM and I3D were carried out in Python using Keras 

library with TensorFlow backend. 

We used 20 frames of each video clip in the training, development, and test sets. 

We resized the frames to a size of 64 × 64, and created five sets of diffused images for 

our experiments with different values (15, 25, 50, 75, and 100) of the parameter param. 

alpha that defines the smoothness of diffusion. Figure 7.15 below shows some samples 

from the Replay-Attack and Replay-Mobile datasets, and their corresponding diffused 

versions. The first two rows in both (a) and (b) show real images from the Replay-Attack 

and Replay-Mobile datasets respectively, and the second and third rows in (a) and (b) 

show fake images in the datasets. The images in the first column in (a) and (b) are 

original non-diffused images, and the images in the remaining columns are their diffused 

versions created with the parameter alpha set to 15, 25, 50, 75, and 100, respectively. We 

tested our proposed framework with each of these sets of diffused images. We conducted 

numerous experiments on the Replay-Attack dataset and Replay-Mobile dataset by 
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changing the hyperparameters during the learning phase. 

   

                                        (a)          

   

                                   (b)                                                                                                                                                

Figure 7.15. Sample images from the datasets and their corresponding diffused versions. (a) 

Replay-Attack dataset. (b) Replay-Mobile dataset. The images in the first two rows of both (a) and 

(b) are real, and the images in the third and fourth rows of both (a) and (b) are fake. 
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7.3.1 CNN-LSTM 

We computed the test accuracy and HTER of the CNN-LSTM architecture after 

training for various cases using diffused images created with param. alpha set to 15, 25, 

50, 75, 100. We used the Adam optimizer, mean-squared-error loss function, and batch 

size was set to 32. The activation functions used were ReLU for the convolutional layers 

and hidden layer, and sigmoid for the output layer. The number of neurons in the hidden 

layer of the CNN was set to 50, and the number of cells in the LSTM was set to 60. We 

trained the CNN-LSTM network for 100 epochs on the training set, while validating on 

the validation (development) set for tuning the hyperparameters. During each epoch of 

training, if a better validation accuracy was obtained, the model was saved. We repeated 

this process for various values of learning rates. At the end of training, the saved model 

(i.e., the one that gave the highest validation accuracy) was loaded, and then evaluated on 

the test set for the test accuracy and HTER. We obtained 98.71% test accuracy and 2.77% 

HTER on the Replay-Attack dataset, and 95.41% test accuracy and 5.28% HTER on the 

Replay-Mobile dataset. The tables and plots below summarize our results. 

7.3.1.1 Results obtained with the Replay-Attack dataset 

Table 7.21 shows the best model (highest validation accuracy) results obtained 

with the Replay-Attack dataset when validating on the validation set during training for 

100 epochs, for tuning the hyperparameters. The results of evaluation of the best model 

for each alpha in Table 7.21, on the test set of the Replay-Attack dataset, are shown in 

Table 7.22. It can be observed that the best results obtained are test accuracy of 98.71% 

and HTER of 2.77% with diffused images created with alpha of 15.  



 
 

76 

Table 7.21. Highest validation accuracy (best model) obtained for different values of learning rate by 

validating on diffused validation images created with each alpha, during training, with Replay-Attack 

dataset, in CNN-LSTM (the best model for each alpha, and without diffusion, is highlighted in bold).  

Alpha                        Learning rate 

0.001 0.002 0.005 0.0008 0.0005 

15 98.22 98.90 95.24 97.46 97.18 

25 99.13 95.56 94.74 98.89 97.78 

50 96.00 98.58 96.71 98.07 97.51 

75 97.56 96.11 96.53 96.17 97.50 

100 96.94 95.04 95.53 98.61 98.33 

w/o diffusion 97.28 95.46 96.67 97.94 97.54 

 

Table 7.22. Test accuracies and HTER obtained by evaluating the best model of each alpha (highlighted in 

Table 7.21) on the test set (the highest test accuracy and lowest HTER are indicated in bold).  

 

 

 

 

 

             Figure 7.16. Plot showing parameter alpha vs. test accuracy (Table 7.22). 

Alpha 15 25 50 75 100 Without 

diffusion 

Test Accuracy (%) 98.71 97.35 97.65 95.54 96.77 96.27 

HTER (%) 2.77 5.09 4.41 11.29 6.21 8.31 
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        Figure 7.17. Plot showing parameter alpha vs. HTER (Table 7.22). 

The plots of alpha vs. test accuracy and alpha vs. HTER, according to the results in Table 

7.22, are shown in Figures 7.16 and 7.17. 

We performed experiments without diffusion, i.e., by feeding the original non-

diffused images directly to the network. The best validation accuracy obtained while 

validating on the validation set during training was 97.94%, as shown in Table 7.21. This 

model, when loaded and evaluated on the non-diffused original images of the test set, 

gave 96.27% test accuracy and 8.31% HTER (Table 7.22). Therefore, by applying 

diffusion, there is a significant improvement in accuracy and HTER by 2.44% and 

5.54%, respectively. 

We also computed test results by training the network on the train set, and 

validating on the testing set instead of the validation set. Tables 7.23, 7.24, and Figure 

7.18 show the results obtained. 
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Table 7.23. Highest validation accuracy (best model) obtained for different values of learning rate by 

validating on diffused test images created with each alpha, during training, with Replay-Attack dataset, in 

CNN-LSTM (the best model for each alpha, and without diffusion, is highlighted in bold).  

 

 

 

 

Table 7.24. HTER obtained by evaluating the best model of each alpha (in Table 7.23) on the test set (the 

overall lowest HTER is highlighted in bold).  

 

 

 

 

   Figure 7.18. Plot showing parameter alpha vs. HTER (Table 7.24). 
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Alpha                        Learning rate 

0.001 0.002 0.005 0.0008 0.0005 

15 97.92 97.05 97.47 96.56 97.25 

25 98.40 97.34 92.73 98.78 98.65 

50 96.65 95.50 89.49 97.09 99.17 

75 94.82 96.07 94.30 96.75 95.76 

100 96.67 96.18 97.33 96.68 98.51 

w/o diffusion 98.42 94.36 83.33 98.75 97.39 

Alpha 15 25 50 75 100 Without Diffusion 

HTER (%) 6.25 1.73 2.0 6.97 2.97 3.75 
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7.3.1.2 Results obtained with the Replay-Mobile dataset 

Table 7.25 shows the best model (highest validation accuracy) results obtained 

with the Replay-Mobile dataset when validating on the validation set during training for 

100 epochs, for tuning the hyperparameters. The results of evaluation of the best model 

for each alpha (Table 7.25) on the test set of the Replay-Mobile dataset, are shown in 

Table 7.26, and the corresponding plots are shown in Figures 7.19 and 7.20. The best 

results obtained are test accuracy of 95.41%, and HTER of 5.28%, for alpha of 100 and 

75. 

Table 7.25. Highest validation accuracy (best model) obtained for different values of learning rate by 

validating on diffused validation images created with each alpha, during training, with Replay-Mobile 

dataset, in CNN-LSTM (the best model for each alpha, and without diffusion, is highlighted in bold).  

Alpha                        Learning rate 

0.001 0.002 0.005 0.0008 0.0005 

15 97.81 95.89 96.83 96.57 97.73 

25 98.26 95.91 97.00 97.34 97.40 

50 97.40 95.04 93.31 97.27 98.08 

75 98.59 96.39 97.31 98.03 97.34 

100 98.91 96.71 95.11 97.70 97.01 

w/o diffusion 98.97 97.08 88.95 97.88 97.42 

 

Table 7.26. Test accuracies and HTER obtained by evaluating the best model of each alpha (highlighted in 

Table 7.25) on the test set (the highest test accuracy and lowest HTER are indicated in bold). 

 

  

 

Alpha 15 25 50 75 100 Without 

diffusion 

Test Accuracy (%) 91.87 92.76 94.29 94.39 95.41 95.20 

HTER (%) 8.33 7.90 6.41 5.28 5.55 5.91 
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           Figure 7.19. Plot showing parameter alpha vs. test accuracy (Table 7.26). 

 

       Figure 7.20. Plot showing parameter alpha vs. HTER (Table 7.26). 

In the experiments performed without diffusion, i.e., by feeding the original non-

diffused images directly to the network, the best validation accuracy obtained while 

validating on the validation set during training was 98.97%, as shown in Table 7.25. This 
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model, when loaded and evaluated on the original non-diffused test set images, gave 

95.20% test accuracy and 5.91% HTER (Table 7.26). In this case, by applying diffusion, 

though there is no significant improvement as obtained with the Replay-Attack dataset, 

there is still a slight improvement in accuracy and HTER. 

We also computed test results by training the network on the train set, and 

validating on the testing set. Tables 7.27, 7.28, and Figure 7.21 show the results obtained. 

Table 7.27. Highest validation accuracy (best model) obtained for different values of learning rate by 

validating on diffused test images created with each alpha, during training, with Replay-Mobile dataset, in 

CNN-LSTM (the best model for each alpha, and without diffusion, is highlighted in bold).   

Alpha                        Learning rate 

0.001 0.002 0.005 0.0008 0.0005 

15 93.69 97.07 94.40 94.50 95.50 

25 93.69 95.28 92.33 95.33 94.69 

50 93.16 94.67 95.43 93.71 92.67 

75 95.28 92.67 90.23 96.01 94.88 

100 93.71 94.95 90.78 94.74 94.17 

w/o diffusion 93.26 94.04 92.38 92.76 95.53 

 

Table 7.28. HTER obtained by evaluating the best model of each alpha (in Table 7.27) on the test set (the 

overall lowest HTER is highlighted in bold). 

  

 

 

 

 

Alpha 15 25 50 75 100 Without Diffusion 

HTER (%) 3.47 5.83 4.97 4.68 5.77 5.06 
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         Figure 7.21. Plot showing parameter alpha vs. HTER (Table 7.28). 

7.3.1.3 Comparison of results with and without diffusion 

The charts below (Figures 7.22 and 7.23) show the best results with diffusion and 

the results without diffusion for both the Replay-Attack dataset (Table 7.22) and the 

Replay-Mobile dataset (Table 7.26). 

 

                        Figure 7.22. Test accuracy (%) obtained with and without diffusion. 
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   Figure 7.23. HTER (%) obtained with and without diffusion. 

The training of the CNN-LSTM framework is very fast, as it takes only about 15 min for 

the Replay-Attack dataset, and 14 min for the Replay-Mobile dataset. Evaluation takes 

about 5s for the Replay-Attack dataset, and 4.1s for the Replay-Mobile dataset. 

7.3.1.4 Comparison with state-of-the-art methods  

The performance of our proposed approach was compared with state-of-the-art 

methods for liveness detection on the Replay-Attack dataset, as shown in Table 7.29, and 

Figures 7.24 and 7.25. In [22], an HTER of 7.60% was achieved, and in [23], they 

achieved HTER of 6.62% using LBP and SVM, and HTER of 1.25% using HOOF and 

LDA. In [27], 5.38% HTER was achieved using the multi-scale analysis, and in [28], the 

MHI-LBP gave HTER of 3.9% and MHI-CNN gave HTER of 4.5%. The CNN LBP-TOP 

method proposed in [29] gave HTER of 4.7%. In the work proposed in [31] that makes 

use of motion cues for face anti-spoofing, 100% and 96.47% accuracy were achieved 

when tested separately on Replay-Attack (controlled) and Replay-Attack (adverse) test 
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sets. The work proposed in [34] reported HTER of 13.2%. We achieved 98.71% accuracy 

and 2.77% HTER when we tested our proposed framework on the entire testing set of the 

Replay-Attack database. 

    Table 7.29. Comparison with state-of-the-art methods on the Replay-Attack dataset. 

 

 

 

 

 

 

          

            Figure 7.24. Performance comparison (HTER) on the Replay-Attack dataset (Table 7.29). 
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   Figure 7.25. Performance comparison (Test Accuracy) on the Replay-Attack dataset (Table 7.29). 

Table 7.30 and Figure 7.26 below shows the comparison of our method with 

state-of-the-art methods on the Replay-Mobile dataset. In [32], HTER of 7.80% was 

achieved for IQM, and HTER of 9.13% was achieved for Gabor-jets. In the work 

proposed in [34], HTER of 10.4% was achieved. The anomaly detection approach 

proposed in [37] gave HTER of 13.70%, and the one-class multiple kernel fusion 

regression approach proposed in [38] gave 13.64% HTER. 

    Table 7.30. Comparison with state-of-the-art methods on the Replay-Mobile dataset. 
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   Figure 7.26. Performance comparison (HTER) on the Replay-Mobile dataset (Table 7.30). 

In tables 7.29 and 7.30, some of the entries are blank because the test accuracy 

and HTER were not reported by the authors. As shown in Tables 7.29 and 7.30, our 

architecture gave very competitive results when compared to other state-of-the-art 

methods in the literature for the Replay-Attack dataset, and gave the lowest HTER when 

compared to state-of-the-art methods for the Replay-Mobile dataset. This proves that it is 

an efficient solution for use in face recognition applications that require liveness 

detection on video frames for anti-spoofing. 

7.3.2 Two-Stream Inflated 3D ConvNet (I3D) 

We experimented with the I3D architecture [77] on the Replay-Attack dataset and 

Replay-Mobile dataset. As was done for face liveness detection using the CNN-LSTM 

architecture, we performed experiments on the five sets of diffused images that were 

created with various values of the parameter alpha. We present the experimental results in 

tables 7.31 and 7.32.  
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          Table 7.31. Test accuracy and HTER obtained with the Replay-Attack dataset. 

 

 

 

 

         Table 7.32. Test accuracy and HTER obtained with the Replay-Mobile dataset. 

 

 

 

We obtained 100% accuracy and 0.12% HTER with the Replay-Attack dataset, and 

99.67% accuracy and 0.45% HTER with the Replay-Mobile dataset. 

The graphs below shows the performance comparison of the I3D architecture with the 

CNN-LSTM. 

   

        Figure 7.27. Comparison of test accuracies obtained with I3D and CNN-LSTM. 

Alpha 15 25 50 75 100 

Test Accuracy (%) 100 99.17 99.79 98.75 98.12 

HTER (%) 0.12 0.99 1.88 2.12 11.75 

Alpha 15 25 50 75 100 

Test Accuracy (%) 99.34 97.35 99.67 99.67 99.67 

HTER (%) 0.91 5.00 2.34 1.04 0.45 
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Figure 7.28. Comparison of HTER obtained with I3D and CNN-LSTM. 
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CHAPTER 8: CONCLUSION 

We have developed face liveness detection architectures for static as well as video 

sequences. For static images, we first applied nonlinear diffusion based on an additive 

operator splitting scheme and a block-solver tri-diagonal matrix algorithm, to the 

captured images. This generates diffused images, with edge information and surface 

texture of real images more pronounced than fake ones. These diffused images were then 

fed to a CNN to extract the complex and deep features, for classifying the images as real 

or fake. Our implementation with the deep CNN architecture, Inception v4, on the NUAA 

dataset gave 100% accuracy, showing that it can efficiently classify a two-dimensional 

diffused image as real or fake.  An analysis of the various test results obtained showed 

that the smoothness of the diffusion is an important factor in determining the livelihood 

of the captured image. We determined that better results are obtained with lower values 

of the smoothness parameter since higher values of this parameter blur out important 

information from the image. For static images, we also developed an end-to-end real-time 

solution to the face liveness detection problem. Previous best approaches relied on a 

separate preprocessing step for creating diffused images whereas our work has integrated 

the diffusion process as well as the face liveness classification into a single TensorFlow 

application. We used a Specialized CNN (SCNN) and the Inception v4 network in 

conjunction with the anisotropic diffusion for liveness classification. Our proposed 
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framework for both the end-to-end solutions produced promising results on the Replay-

Attack and Replay-Mobile datasets, compared favourably to other state-of-the-art 

methods in the literature, and it has the added advantage of accomplishing face liveness 

detection in real-time. 

We also proposed a solution for face liveness detection on video sequences using 

a combination of diffusion, CNN, and LSTM. We first applied nonlinear diffusion to 

each frame in the sequence, which makes the edge information and surface texture of a 

real image more pronounced than that of a fake image. The CNN extracts the complex 

and deep spatial features of each frame, and the LSTM captures the temporal dynamics in 

the sequence in order to classify the video sequence as real or fake. Our architecture 

produced competitive results compared to other state-of-the-art methods in the literature. 

Our experiments with the Replay-Attack dataset produced 98.71% test accuracy and an 

HTER of 2.77%, and our experiments on the Replay-Mobile dataset gave test accuracy of 

95.41% and HTER of 5.28%, proving that it is a successful method for liveness detection 

of sequences. Our experiments using the Two-Stream Inflated 3D ConvNet (I3D) 

architecture for liveness detection on video sequences gave 100% test accuracy and 

0.12% HTER on the Replay-Attack dataset, and 99.67% test accuracy and 0.45% HTER 

on the Replay-Mobile dataset. 
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