6,810 research outputs found

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Uncertainties in classification system conversion and an analysis of inconsistencies in global land cover products

    Get PDF
    In this study, using the common classification systems of IGBP-17, IGBP-9, IPCC-5 and TC (vegetation, wetlands and others only), we studied spatial and areal inconsistencies in the three most recent multi-resource land cover products in a complex mountain-oasis-desert system and quantitatively discussed the uncertainties in classification system conversion. This is the first study to compare these products based on terrain and to quantitatively study the uncertainties in classification system conversion. The inconsistencies and uncertainties decreased from high to low levels of aggregation (IGBP-17 to TC) and from mountain to desert areas, indicating that the inconsistencies are not only influenced by the level of thematic detail and landscape complexity but also related to the conversion uncertainties. The overall areal inconsistency in the comparison of the FROM-GLC and GlobCover 2009 datasets is the smallest among the three pairs, but the smallest overall spatial inconsistency was observed between the FROM-GLC and MODISLC. The GlobCover 2009 had the largest conversion uncertainties due to mosaic land cover definition, with values up to 23.9%, 9.68% and 0.11% in mountainous, oasis and desert areas, respectively. The FROM-GLC had the smallest inconsistency, with values less than 4.58%, 1.89% and 1.2% in corresponding areas. Because the FROM-GLC dataset uses a hierarchical classification scheme with explicit attribution from the second level to the first, this system is suggested for producers of map land cover products in the future

    The VLA Galactic Plane Survey

    Get PDF
    The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum emission in the Galactic plane between longitude 18 degrees 67 degr. with latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was observed with the Very Large Array (VLA) in 990 pointings. Short-spacing information for the HI line emission was obtained by additional observations with the Green Bank Telescope (GBT). HI spectral line images are presented with a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per 0.824 km/s channel. Continuum images made from channels without HI line emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane Survey (SGPS). In general, the agreement between these surveys is impressive, considering the differences in instrumentation and image processing techniques used for each survey. The differences between VGPS and CGPS images are small, < 6 K (rms) in channels where the mean HI brightness temperature in the field exceeds 80 K. A similar degree of consistency is found between the VGPS and SGPS. The agreement we find between arcminute resolution surveys of the Galactic plane is a crucial step towards combining these surveys into a single uniform dataset which covers 90% of the Galactic disk: the International Galactic Plane Survey (IGPS). The VGPS data will be made available on the World Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13 figures. For information on data release, colour images etc. see http://www.ras.ucalgary.ca/VGP

    Three-Dimensional Thermal Mapping from IRT Images for Rapid Architectural Heritage NDT

    Get PDF
    Thermal infrared imaging is fundamental to architectural heritage non-destructive diagnostics. However, thermal sensors&rsquo; low spatial resolution allows capturing only very localized phenomena. At the same time, thermal images are commonly collected with independence of geometry, meaning that no measurements can be performed on them. Occasionally, these issues have been solved with various approaches integrating multi-sensor instrumentation, resulting in high costs and computational times. The presented work aims at tackling these problems by proposing a workflow for cost-effective three-dimensional thermographic modeling using a thermal camera and a consumer-grade RGB camera. The discussed approach exploits the RGB spectrum images captured with the optical sensor of the thermal camera and image-based multi-view stereo techniques to reconstruct architectural features&rsquo; geometry. The thermal and optical sensors are calibrated employing custom-made low-cost targets. Subsequently, the necessary geometric transformations between undistorted thermal infrared and optical images are calculated to replace them in the photogrammetric scene and map the models with thermal texture. The method&rsquo;s metric accuracy is evaluated by conducting comparisons with different sensors and the efficiency by assessing how the results can assist the better interpretation of the present thermal phenomena. The conducted application demonstrates the metric and radiometric performance of the proposed approach and the straightforward implementability for thermographic surveys, as well as its usefulness for cost-effective historical building assessments

    Three-dimensional thermal mapping from IRT images for rapid architectural heritage NDT

    Get PDF
    Thermal infrared imaging is fundamental to architectural heritage non-destructive diagnostics. However, thermal sensors’ low spatial resolution allows capturing only very localized phenomena. At the same time, thermal images are commonly collected with independence of geometry, meaning that no measurements can be performed on them. Occasionally, these issues have been solved with various approaches integrating multi-sensor instrumentation, resulting in high costs and computational times. The presented work aims at tackling these problems by proposing a workflow for cost-effective three-dimensional thermographic modeling using a thermal camera and a consumer-grade RGB camera. The discussed approach exploits the RGB spectrum images captured with the optical sensor of the thermal camera and image-based multi-view stereo techniques to reconstruct architectural features’ geometry. The thermal and optical sensors are calibrated employing custom-made low-cost targets. Subsequently, the necessary geometric transformations between undistorted thermal infrared and optical images are calculated to replace them in the photogrammetric scene and map the models with thermal texture. The method’s metric accuracy is evaluated by conducting comparisons with different sensors and the efficiency by assessing how the results can assist the better interpretation of the present thermal phenomena. The conducted application demonstrates the metric and radiometric performance of the proposed approach and the straightforward implementability for thermographic surveys, as well as its usefulness for cost-effective historical building assessments

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    Advances in flexible manipulation through the application of AI-based techniques

    Get PDF
    282 p.Objektuak hartu eta uztea oinarrizko bi eragiketa dira ia edozein aplikazio robotikotan. Gaur egun, "pick and place" aplikazioetarako erabiltzen diren robot industrialek zeregin sinpleak eta errepikakorrak egiteko duten eraginkortasuna dute ezaugarri. Hala ere, sistema horiek oso zurrunak dira, erabat kontrolatutako inguruneetan lan egiten dute, eta oso kostu handia dakarte beste zeregin batzuk egiteko birprogramatzeak. Gaur egun, industria-ingurune desberdinetako zereginak daude (adibidez, logistika-ingurune batean eskaerak prestatzea), zeinak objektuak malgutasunez manipulatzea eskatzen duten, eta oraindik ezin izan dira automatizatu beren izaera dela-eta. Automatizazioa zailtzen duten botila-lepo nagusiak manipulatu beharreko objektuen aniztasuna, roboten trebetasun falta eta kontrolatu gabeko ingurune dinamikoen ziurgabetasuna dira.Adimen artifizialak (AA) gero eta paper garrantzitsuagoa betetzen du robotikaren barruan, robotei zeregin konplexuak betetzeko beharrezko adimena ematen baitie. Gainera, AAk benetako esperientzia erabiliz portaera konplexuak ikasteko aukera ematen du, programazioaren kostua nabarmen murriztuz. Objektuak manipulatzeko egungo sistema robotikoen mugak ikusita, lan honen helburu nagusia manipulazio-sistemen malgutasuna handitzea da AAn oinarritutako algoritmoak erabiliz, birprogramatu beharrik gabe ingurune dinamikoetara egokitzeko beharrezko gaitasunak emanez
    • 

    corecore