688 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Semiautomated Skeletonization of the Pulmonary Arterial Tree in Micro-CT Images

    Get PDF
    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel\u27s axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized

    Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images

    Get PDF
    AbstractObjectiveTo detect and segment cerebral saccular aneurysms (CSAs) in 2D Digital Subtraction Angiography (DSA) images.Patients and methodsTen patients underwent Intra-arterial DSA procedures. Patients were injected with Iodine-containing radiopaque material. A scheme for semi-automatic detection and segmentation of intracranial aneurysms is proposed in this study. The algorithm consisted of three major image processing stages: image enhancement, image segmentation and image classification. Applied to the 2D Digital Subtraction Angiography (DSA) images, the algorithm was evaluated in 19 scene files to detect 10 CSAs.ResultsAneurysms were identified by the proposed detection and segmentation algorithm with 89.47% sensitivity and 80.95% positive predictive value (PPV) after executing the algorithm on 19 DSA images of 10 aneurysms. Results have been verified by specialized radiologists. However, 4 false positive aneurysms were detected when aneurysms’ location is at Anterior Communicating Artery (ACA).ConclusionThe suggested algorithm is a promising method for detection and segmentation of saccular aneurysms; it provides a diagnostic tool for CSAs

    Segmentation-based blood flow parameter refinement in cerebrovascular structures using 4D arterial spin labeling MRA

    Get PDF
    Objective: Cerebrovascular diseases are one of the main global causes of death and disability in the adult population. The preferred imaging modality for the diagnostic routine is digital subtraction angiography, an invasive modality. Time-resolved three-dimensional arterial spin labeling magnetic resonance angiography (4D ASL MRA) is an alternative non-invasive modality, which captures morphological and blood flow data of the cerebrovascular system, with high spatial and temporal resolution. This work proposes advanced medical image processing methods that extract the anatomical and hemodynamic information contained in 4D ASL MRA datasets. Methods: A previously published segmentation method, which uses blood flow data to improve its accuracy, is extended to estimate blood flow parameters by fitting a mathematical model to the measured vascular signal. The estimated values are then refined using regression techniques within the cerebrovascular segmentation. The proposed method was evaluated using fifteen 4D ASL MRA phantoms, with ground-truth morphological and hemodynamic data, fifteen 4D ASL MRA datasets acquired from healthy volunteers, and two 4D ASL MRA datasets from patients with a stenosis. Results: The proposed method reached an average Dice similarity coefficient of 0.957 and 0.938 in the phantom and real dataset segmentation evaluations, respectively. The estimated blood flow parameter values are more similar to the ground-truth values after the refinement step, when using phantoms. A qualitative analysis showed that the refined blood flow estimation is more realistic compared to the raw hemodynamic parameters. Conclusion: The proposed method can provide accurate segmentations and blood flow parameter estimations in the cerebrovascular system using 4D ASL MRA datasets. Significance: The information obtained with the proposed method can help clinicians and researchers to study the cerebrovascular system non-invasively

    Innovative MRI techniques in neuroimaging approaches for cerebrovascular diseases and vascular cognitive impairment

    Get PDF
    Cognitive impairment and dementia are recognized as major threats to public health. Many studies have shown the important role played by challenges to the cerebral vasculature and the neurovascular unit. To investigate the structural and functional characteristics of the brain, MRI has proven an invaluable tool for visualizing the internal organs of patients and analyzing the parameters related to neuronal activation and blood flow in vivo. Different strategies of imaging can be combined to obtain various parameters: (i) measures of cortical and subcortical structures (cortical thickness, subcortical structures volume); (ii) evaluation of microstructural characteristics of the white matter (fractional anisotropy, mean diffusivity); (iii) neuronal activation and synchronicity to identify functional networks across different regions (functional connectivity between specific regions, graph measures of specific nodes); and (iv) structure of the cerebral vasculature and its efficacy in irrorating the brain (main vessel diameter, cerebral perfusion). The high amount of data obtainable from multi-modal sources calls for methods of advanced analysis, like machine-learning algorithms that allow the discrimination of the most informative features, to comprehensively characterize the cerebrovascular network into specific and sensitive biomarkers. By using the same techniques of human imaging in pre-clinical research, we can also investigate the mechanisms underlying the pathophysiological alterations identified in patients by imaging, with the chance of looking for molecular mechanisms to recover the pathology or hamper its progression

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Cerebrovascular segmentation from MRA images

    Get PDF
    There is provided a method of processing a cerebrovascular medical image, the method comprising receiving magnetic resonance angiography (MRA) image associated with a cerebrovascular tissue comprising blood vessels and brain tissues other than blood vessels; segmenting MRA image using a prior appearance model for generating first prior appearance features representing a first-order prior appearance model and second appearance features representing a second-order prior appearance model of the cerebrovascular tissue, wherein current appearance model comprises a 3D Markov-Gibbs Random Field (MGRF) having a 2D rotational and translational symmetry such that MGRF model is 2D rotation and translation invariant; segmenting MRA image using current appearance model for generating current appearance features distinguishing blood vessels from other brain tissues; adjusting MRA image using first and second prior appearance features and current appearance futures; and generating an enhanced MRA image based on said adjustment. There is also provided a system for doing the same. Application US16/159,790 events 2018-10-15 Application filed by Zayed University 2018-10-15 Priority to US16/159,790 2018-10-15 Assigned to Zayed University 2020-04-16 Publication of US20200116808A1 2020-09-08 Application granted 2020-09-08 Publication of US10768259B2 Status Active 2039-03-02 Adjusted expiratio

    Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction

    Get PDF
    Hypertension is a major cause of mortality of millions of people worldwide. Cerebral vascular changes are clinically observed to precede the onset of hypertension. The early detection and quantification of these cerebral changes would help greatly in the early prediction of the disease. Hence, preparing appropriate medical plans to avoid the disease and mitigate any adverse events. This study aims to investigate whether studying the cerebral changes in specific regions of human brains (specifically, the anterior, and the posterior compartments) separately, would increase the accuracy of hypertension prediction compared to studying the vascular changes occurring over the entire brain’s vasculature. This was achieved by proposing a computer-aided diagnosis system (CAD) to predict hypertension based on cerebral vascular changes that occur at the anterior compartment, the posterior compartment, and the whole brain separately, and comparing corresponding prediction accuracy. The proposed CAD system works in the following sequence: (1) an MRA dataset of 72 subjects was preprocessed to enhance MRA image quality, increase homogeneity, and remove noise artifacts. (2) each MRA scan was then segmented using an automatic adaptive local segmentation algorithm. (3) the segmented vascular tree was then processed to extract and quantify hypertension descriptive vascular features (blood vessels’ diameters and tortuosity indices) the change of which has been recorded over the time span of the 2-year study. (4) a classification module used these descriptive features along with corresponding differences in blood pressure readings for each subject, to analyze the accuracy of predicting hypertension by examining vascular changes in the anterior, the posterior, and the whole brain separately. Experimental results presented evidence that studying the vascular changes that take place in specific regions of the brain, specifically the anterior compartment reported promising accuracy percentages of up to 90%. However, studying the vascular changes occurring over the entire brain still achieve the best accuracy (of up to 100%) in hypertension prediction compared to studying specific compartments

    Doctor of Philosophy

    Get PDF
    dissertationHigh arterial tortuosity, or twistedness, is a sign of many vascular diseases. Some ocular diseases are clinically diagnosed in part by assessment of increased tortuosity of ocular blood vessels. Increased arterial tortuosity is seen in other vascular diseases but is not commonly used for clinical diagnosis. This study develops the use of existing magnetic resonance angiography (MRA) image data to study arterial tortuosity in a range of arteries of hypertensive and intracranial aneurysm patients. The accuracy of several centerline extraction algorithms based on Dijkstra's algorithm was measured in numeric phantoms. The stability of the algorithms was measured in brain arteries. A centerline extraction algorithm was selected based on its accuracy. A centerline tortuosity metric was developed using a curve of tortuosity scores. This tortuosity metric was tested on phantoms and compared to observer-based tortuosity rankings on a test data set. The tortuosity metric was then used to measure and compare with negative controls the tortuosity of brain arteries from intracranial aneurysm and hypertension patients. A Dijkstra based centerline extraction algorithm employing a distance-from-edge weighted center of mass (DFE-COM) cost function of the segmented arteries was selected based on generating 15/16 anatomically correct centerlines in a looping artery iv compared to 15/16 for the center of mass (COM) cost function and 7/16 for the inverse modified distance from edge cost function. The DFE-COM cost function had a lower root mean square error in a lopsided phantom (0.413) than the COM cost function (0.879). The tortuosity metric successfully ordered electronic phantoms of arteries by tortuosity. The tortuosity metric detected an increase in arterial tortuosity in hypertensive patients in 13/13 (10/13 significant at α = 0.05). The metric detected increased tortuosity in a subset of the aneurysm patients with Loeys-Dietz syndrome (LDS) in 7/7 (three significant at α = 0.001). The tortuosity measurement combination of the centerline algorithm and the distance factor metric tortuosity curve was able to detect increases in arterial tortuosity in hypertensives and LDS patients. Therefore the methods validated here can be used to study arterial tortuosity in other hypertensive population samples and in genetic subsets related to LDS
    • …
    corecore