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Abstract—Objective: Cerebrovascular diseases are one of the
main global causes of death and disability in the adult population.
The preferred imaging modality for the diagnostic routine is
digital subtraction angiography, an invasive modality. Time-
resolved three-dimensional arterial spin labeling magnetic reso-
nance angiography (4D ASL MRA) is an alternative non-invasive
modality, which captures morphological and blood flow data
of the cerebrovascular system, with high spatial and temporal
resolution. This work proposes advanced medical image pro-
cessing methods that extract the anatomical and hemodynamic
information contained in 4D ASL MRA datasets. Methods: A
previously published segmentation method, which uses blood flow
data to improve its accuracy, is extended to estimate blood flow
parameters by fitting a mathematical model to the measured
vascular signal. The estimated values are then refined using
regression techniques within the cerebrovascular segmentation.
The proposed method was evaluated using fifteen 4D ASL MRA
phantoms, with ground-truth morphological and hemodynamic
data, fifteen 4D ASL MRA datasets acquired from healthy
volunteers, and two 4D ASL MRA datasets from patients with
a stenosis. Results: The proposed method reached an average
Dice similarity coefficient of 0.957 and 0.938 in the phantom
and real dataset segmentation evaluations, respectively. The
estimated blood flow parameter values are more similar to
the ground-truth values after the refinement step, when using
phantoms. A qualitative analysis showed that the refined blood
flow estimation is more realistic compared to the raw hemody-
namic parameters. Conclusion: The proposed method can provide
accurate segmentations and blood flow parameter estimations
in the cerebrovascular system using 4D ASL MRA datasets.
Significance: The information obtained with the proposed method
can help clinicians and researchers to study the cerebrovascular
system non-invasively.

Index Terms—Angiography, vascular segmentation, hemody-
namic analysis, magnetic resonance angiography.
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I. INTRODUCTION

Cerebrovascular diseases are one of the main global causes
of death and disability in the adult population [1]. Currently,
the preferred medical imaging modality used to diagnose,
study, and plan how to treat these diseases is X-ray digital
subtraction angiography (DSA) as it can be acquired with high
temporal resolution, which is needed for the analysis of cere-
bral blood flow dynamics [2]. Nevertheless, due to its invasive
nature during the catheterization process, administration of a
contrast agent, and the exposure of the patient to ionizing ra-
diation, DSA is associated with various complications, such as
reversible or permanent neurologic deficits, thromboembolism,
arterial dissection, allergic reactions to contrast agent, and
increased risk of cancer [3]. It is important to mention that
the probability of occurrence of those complications is below
six percent according to different studies [3], [4]. However,
their undesirable effects turn them into a considerable risk that
should be avoided, if possible. Moreover, DSA is essentially a
bi-dimensional projection technique, which might miss impor-
tant anatomical information, noticeable in three dimensions.

An emerging non-invasive alternative to DSA is time-
resolved three-dimensional (i.e. 4D) arterial spin labeling
magnetic resonance angiography (ASL MRA) [2]. 4D ASL
MRA is less invasive than DSA because it uses MR imaging
to magnetically label the patient’s blood as an intrinsic contrast
agent flowing through the brain. Thus, no ionizing radiation,
catheterization, or administration of an external contrast media
is required. Additionally, 4D ASL MRA can simultaneously
capture blood flow and morphological data of the cerebrovas-
cular system, which is not possible with other commonly used
imaging modalities, such as time-of-flight magnetic resonance
angiography (TOF MRA). Finally, 4D ASL MRA is capable
of achieving higher spatial and temporal resolution [2] when
compared to other common contrast agent-based 4D MRA
modalities, such as 4D Time-Resolved MRA with Keyhole
(4D-TRAK) [5], Time-Resolved Imaging of Contrast Kinetics
(TRICKS) [6], and Time-resolved Angiography with Inter-
leaved Stochastic Trajectories (TWIST) [7].

However, 4D ASL MRA generates a considerable amount
of data, which is tedious to analyze by direct visual analysis.
In this case, medical image processing methods can be used to
extract the morphological and blood flow data contained in 4D
ASL MRA datasets and present it in a more useful format to
clinicians and researchers. For example, the information can be
presented as geometric measurements of the density, tortuosity,
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and thickness of vessels, globally as well as regionally, or
as color-coded three-dimensional visualizations of the relative
blood volume A, transit time δt, blood dispersion sharpness
s, and time-to-peak p along the vessels (see Figure 1). These
measurements and visualizations have proven to be useful for
clinical and research purposes [8]–[10].

Many different vascular segmentation methods have been
developed to extract the morphological data contained in
medical images [11]. However, only a few of them take
advantage of both, morphological and blood flow data, in
order to increase the accuracy of the final result. Deschamps
et al. [12] developed a level-set method for segmentation
of the brain vessels from 3D MRA datasets, whereas the
resulting segmentation was then used as the basis for blood
flow simulation. Mordang et al. [13] developed a method
for the analysis of 4D computed tomography angiography
(CTA datasets), acquired after the administration of a con-
trast agent to the patient. Their method extracts a set of
features for each voxel of the series of images, and uses
those features to train a linear discriminant classifier able to
differentiate between vessels and other tissues present in the
medical images. Pathwardan et al. [14] proposed a 4D vessel
segmentation for ultrasound images. The algorithm requires an
initial seed point inside the vessel, which is manually defined.
The initial seed point is used to detect and track the vessel
centerline in a time sequence of 3D ultrasound images. Once
the centerline is identified, an active contour model is used
to track the vessel surface. 4D flow MRI is another medical
imaging modality, with a spatial resolution similar to 4D ASL
MRA, that captures morphological and blood flow data of the
cerebrovascular system [15], [16]. Dunås et al. [15] recently
optimized and evaluated three different methods to extract
the vascular system from this image modality based on k-
means clustering, and global and local thresholding to identify
major cerebral arteries, which are then used to measure the
blood flow velocity. In contrast to 4D ASL MRA, 4D flow
MRI does not display the passage of a magnetically labeled
bolus through vessels but measures the blood flow velocity at
different stages of the cardiac circle directly. Finally, Phellan
et al. [17] developed a segmentation method, without an ex-
plicit hemodynamic analysis, specifically designed for vascular
segmentation of 4D ASL MRA, which reaches considerable
high accuracies by using both, morphological and blood flow
data. It is important to note that in all cases described above,
the hemodynamic analysis is applied to each voxel containing
vascular signal in an isolated manner, consequently neglecting
the spatial dependency of blood flow parameters, which is
important because the blood flow is not expected to change
dramatically for neighbouring voxels. However, the spatial
information provided by the vascular segmentation can be used
to refine and improve the hemodynamic analysis.

The objective of this work is to extend the cerebrovascular
segmentation method developed by Phellan et al. [17], to
extract and refine the hemodynamic parameters included in 4D
ASL MRA datasets. More precisely, the morphological data
is used to refine the estimated blood flow parameter values,
considering their spatial dependency. This new method would
allow clinicians and researchers to fully leverage the data con-

tained in 4D ASL MRA datasets to study the cerebrovascular
system in a non-invasive way.

II. MATERIALS

Fifteen 4D ASL MRA datasets from healthy volunteers
are used in this work. The datasets were acquired with ap-
proval of a local institutional ethics committee (Ärztekammer
Schleswig-Holstein and Calgary Health Regional Ethic Board)
and all subjects provided written informed consent consistent
with the Declaration of Helsinki to participate in this study.
Each 4D ASL MRA dataset was acquired as a set of six con-
trol/labeled volumetric image pairs, with a temporal resolution
of 120 ms, on a Philips Achieva 3T MRI device (Philips
Healthcare, Best, The Netherlands). Blood was magnetically
labeled for 300 ms using pseudo-continuous arterial spin
labeling (PCASL) [18] and a delay of 20 ms was used before
starting the image acquisition. Each volumetric image in a 4D
ASL MRA dataset has a voxel size of 0.94 × 0.94 × 1.0 mm3

and contains 120 slices, with 224 × 224 voxels. Additional
image acquisition parameters include: T1-Turbo Field Echo
(TFE) scan with a TFE factor of 16, SENSitivity Encoding
(SENSE) factor: 3, TR/TE: 7.7/3.7 ms, flip angle: 10◦, half
scan factor: 0.7. The total acquisition time of a dataset was 5
minutes.

In order to obtain reference cerebrovascular segmentations
for the 4D ASL MRA datasets, time-of-flight magnetic reso-
nance angiography (TOF MRA) volumetric images were also
acquired from the same fifteen volunteers. The size of the TOF
MRA 3D images is 171 slices with 512 × 512 voxels and
voxel size 0.41 × 0.41 × 0.70 mm3. Other image acquisition
parameters include: SENSE factor: 2, TR/TE: 20/3.45 ms, flip
angle: 20◦, 3 slabs, and flow compensated readout. The total
acquisition time was 6:40 minutes.

Additionally, two 4D ASL MRA datasets from patients
with a stenosis in the carotid arteries are included in the
experiments as a proof-of-principle that the proposed method
can be applied to datasets of patients with a vascular pathol-
ogy. The datasets were acquired with approval of the lo-
cal institutional ethics committee and all subjects provided
written informed consent consistent with the Declaration of
Helsinki. In this case, the 4D ASL MRA datasets contain
ten control/labeled volumetric image pairs, acquired with a
temporal resolution of 120 ms using a Philips Achieva 3T
MRI device (Philips Healthcare, Best, The Netherlands). A
pulsed arterial spin labeling (PASL) [19] acquisition method
was used and a delay of 60 ms was employed before starting
the image acquisition. Each volumetric image in these 4D ASL
MRA datasets consists of 75 slices with 256 × 256 voxels,
exhibiting a spatial resolution of 0.82 × 0.82 × 0.8 mm3.
Additional image acquisition parameters include: Turbo-Field
Echo Planar Imaging (TFEPI) scan with a TFE/EPI factor of
7/7, SENSE factor: 2.5, TR/TE: 13/4.7 ms, flip angle: 10◦.
The total acquisition time of a dataset was 2:07 minutes.

III. METHODS

The pipeline of the proposed segmentation-based hemody-
namic analysis and refinement method is presented in Figure 1.
Each step is described in the following subsections.
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Fig. 1. Pipeline of the proposed segmentation-based blood flow parameter refinement method. The input of the pipeline is a 4D ASL MRA dataset and the
output is the segmented cerebrovascular system with estimated blood flow parameters: relative blood volume A, transit time δt, blood dispersion sharpness
s, and time-to-peak p along the vessels.

A. Segmentation

In the first step of the proposed method, the vascular system
is extracted from the 4D ASL MRA dataset using the method
described in [17], which is summarized in the following. This
method starts by filtering each control/labeled pair of a 4D
ASL MRA dataset using a denoising algorithm [20] to reduce
the noise, without blurring edges and thin vascular structures.
The labeled image is then subtracted from the control image
to remove the signal of non-vascular tissues, but some residual
noise can still be observed, even after subtraction, particularly
in the last images of the 4D ASL MRA sequence. As a last
preprocessing step, the subtracted images are filtered using
the multiscale vesselness filter designed by Erdt et al. [21],
which enhances the intensity of vessels in the images and
has been shown to help to increase the accuracy of the final
segmentation [22].

After pair-wise subtraction of the control and label images,
followed by vessel enhancement filtering, the first two images
of the 4D ASL MRA datasets usually contain only large ves-
sels, with high vascular signal intensities and low background
noise. Therefore, a simple k-means algorithm is used to extract
the arteries from the first two timepoints. These initial segmen-
tations are refined using a level-set segmentation algorithm in
order to include possible missing voxels that contain vascular
signal. Therefore, the level-set approach proposed by Lankton
et al. [23] is used, which considers neighboring voxels within
a sphere of a predefined radius to be added or removed from
the initial segmentation depending on whether they increase
or reduce the inter-class distance between vascular and non-
vascular tissues. After vessel segmentation in the first two
images of a 4D ASL MRA dataset, the two corresponding
segmentations are combined using an OR operator.

Starting with the third image of a 4D ASL MRA dataset, the
signal of magnetically labeled blood tends to be considerably
affected by phenomena such as dispersion of labeled blood
and magnetic signal decay. These phenomena lead to artifacts
in the k-means segmentation, such as gaps with low intensity
values in the middle of vessels, and reduce the signal of small
vessels to values similar to noise. Consequently, additional
sophisticated segmentation strategies are required to segment
the later timepoints of a 4D ASL MRA dataset.

As described in [17], the image foresting transform (IFT)

algorithm [24] is used to fill the gaps present in the k-means
vessel segmentation results of the later time points. The IFT
algorithm is particularly useful for this application, because
it can always find an optimal path between two disconnected
segments of a vessel, according to a connectivity function. The
function can be modeled so that the optimal connecting path
contains neighboring voxels with the highest signal intensity.
Here, it is assumed that the optimal path with the highest av-
erage signal intensity is the most reasonable choice to connect
two segments of the same vessel. The thickness of the optimal
connecting path is calculated by linear interpolation between
the values of the thickness of the segments it connects.

Additionally, the reduced signal of small vessels, with
values similar to noise, can considerably affect the initial
segmentation obtained using the k-means algorithm. The first
strategy to overcome this problem is to refine the initial
segmentation with the same level-set segmentation algorithm
used to refine the segmentation of the first two frames of the
dataset [23]. The second strategy to remove noise adjacent
to vascular structures, with similar intensity values, is to
continuously follow magnetically labeled blood as it flows
through the arteries. In particular, only new segmented sections
of the cerebrovascular system visible at one timepoint that are
connected to arteries already segmented in the two previous
timepoints are added to the final segmentation.

B. Blood flow parameter estimation

After the vascular system is segmented in a 4D ASL MRA
dataset, an hemodynamic analysis is performed to calculate
relevant blood flow parameters. This hemodynamic analysis is
essentially restricted to vessels segmented in the previous step.
Considering that 4D ASL MRA provides only discrete values
of the signal evolution curve of a voxel with a fixed temporal
resolution, a continuously defined mathematical model is fitted
to the discrete time curve, which enables the calculation of
hemodynamic parameters with higher accuracy. Additionally,
fitting a mathematical model helps to mitigate the influence of
noise in the estimation of blood flow parameters [25].

The mathematical model selected for the purpose in this
work was specifically designed to describe the concentration
time curve in 4D ASL MRA images [26]. It is the only
model available for this modality that considers blood flow
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of magnetically labeled blood through the arteries of the
cerebrovascular system, before reaching capillaries that are
responsible for perfusion of the brain tissue. The mathematical
function of the model is shown in Equation 1.

S(v, t) =

∫ t−δt

t−δt−τ
A(v)D(v, td)T (δt, td)R(t)dtd (1)

D(v, td) =

{ s
Γ(1+ps)estd

(std)
ps if std > 0, ps > −1

0 otherwise
(2)

T (δt, td) = e−(δt+td)/T1b (3)
R(t) = cos(α)(t−t0)/TR sin(α) (4)

In this model, the 4D ASL MRA signal S(v, t) of a voxel
v at timepoint t depends on four main phenomena, which
comprise the relative volume of magnetically labeled blood
flowing through that voxel A(v), the dispersion D(v, td) that
labeled blood experiences before reaching the voxel v, the
signal attenuation T (δt, td) due to T1 decay of the magnetic
label, and the signal attenuation R(t) caused by the imaging
radiofrequency pulses applied to the labeled blood in previous
timepoints. Additionally, S(v, t) depends on the blood transit
time δt from the labeling plane to voxel v and the duration
used to magnetically label blood τ .

Each of the previously mentioned phenomena depends on
additional parameters, described in the following. First, the
dispersion of blood D(v, td) is modeled by a distribution
defined by the blood flow parameters s and p (see Equa-
tion 2), which control the distribution’s sharpness and time
to peak, respectively, normalized using the gamma function
(Γ). The signal attenuation due to T1 decay T (δt, td), defined
in Equation 3, requires the parameter T1b, which represents
the longitudinal relaxation time of arterial blood. The value
of T1b at 3T is 1664 ± 14 ms, according to Lu et al. [27].
Finally, in the term R(t) (see Equation 4), the parameter α
corresponds to the flip angle used to acquire the 4D ASL
MRA dataset, t0 is the time at which the first imaging pulse
is applied, and TR is the repetition time. The model assumes
that all transverse magnetization is spoiled at the end of every
TR, so that the longitudinal magnetization is reduced by a
factor of cos(α) with every pulse. The factor sin(α) accounts
for the amount of transverse magnetization generated from a
given longitudinal magnetization. In this work, the simplified
version of the term R(t), proposed by Okell et al. [26], is used
assuming that the imaging region comprises only anatomical
structures distal to the labeling plane, which is a reasonable
assumption for brain arteries.

Most of the parameters required in the blood flow model
are acquisition parameters and their values can be obtained
directly from the 4D ASL MRA imaging protocol. However,
the blood flow parameters A(v), δt, s, and p have to be
estimated using the signal of magnetically labeled blood
flowing through the cerebrovascular system over time acquired
in a 4D ASL MRA dataset.

The multi-scale parameter search (MSPS) algorithm is used
in this work to fit the mathematical model described above
to the discrete 4D ASL MRA signal curve of each voxel in
the segmented vascular system as it ranks well in different

benchmarks when compared to other algorithms designed for
parameter optimization [28]. The metric used for optimization
by the MSPS algorithm is to minimize the average absolute
error (AAE) between the observed 4D ASL MRA signal in
a voxel and corresponding values of the fitted hemodynamic
model as defined by the optimization parameters in each
iteration. The AAE was selected instead of the sum of squared
differences because it was observed that the fitting error could
lead to values considerably smaller than 1. When squared,
those values may be too small to be represented accurately in
the hardware used for the experiments, which could misguide
the exhaustive search.

C. Blood flow parameter refinement

At this stage, each 4D ASL MRA dataset is segmented
and the blood flow parameters A(v), δt, s, and p have been
calculated for every voxel included in each binary segmen-
tation of the cerebrovascular system. However, the extracted
blood flow parameters show many physiologically impossible
discontinuities along the vessel (see top row of Figure 2),
which is not only a result of noise, but also a result of
the independent analysis of each voxel. In order to mitigate
this problem, it is proposed in this work to apply advanced
heuristics in a post-processing step.

Therefore, the blood flow data estimated in the binary
segmentations of 4D ASL MRA datasets of healthy subjects
was analyzed in order to identify patterns that can be used
to define heuristics. More precisely, the binary segmentations
were skeletonized using an algorithm available as an extension
to the Insight Toolkit (ITK) [29], [30], because the most
relevant blood flow information in 4D ASL MRA datasets
is located along the centerline of the cerebrovascular sys-
tem [8]. The selected algorithm has been successfully used to
skeletonize the hepatic vasculature in various datasets, without
creating any disconnected regions and locating the skeleton
lines in the center of the structure.

There are three main arteries that supply blood to the brain:
the left and right internal carotid arteries (LICA and RICA),
and the basilar artery (BA). For each of these arteries, the
longest main artery path within the skeletonized segmentation,
considering all vessel ends in the skeletonized segmentation,
is identified using the image foresting transform (IFT) algo-
rithm [24].

The IFT interprets the skeleton of the vascular system
as a weighted graph, where every voxel represents a vertex
and an edge is drawn between any two neighboring vertices,
considering a 26-neighborhood. The weight W (u, v) assigned
to any edge is the physical distance between its vertices, the
voxels u and v. Then, the function l, defined in Equation 5, is
used to assign a value l(πv) to any path πv in the graph, which
represents the total length of the path. The IFT algorithm
considers two types of paths during its execution: trivial paths
consisting of a single voxel πv = 〈v〉 and non-trivial paths with
more than one voxel πv = 〈v1, v2, . . . , vn = v〉. Additionally,
the IFT requires a set of seed voxels v ∈ S that define one
of the extremes of any path. In this case, each final section
of an artery is considered in the set. The seed voxels can be
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Fig. 2. Axial, coronal, and sagittal bi-dimensional views of the values estimated for the parameter δt, without and with the refinement step.

automatically identified as the voxels in the skeleton with only
one adjacent neighbor, considering a 26-neighborhood.

l(〈v〉) =

{
0 if v ∈ S,
−∞ otherwise,

l(πu · 〈u, v〉) = l(πu) +W (u, v). (5)

The IFT algorithm starts by assigning trivial paths to all
vertices. Then, in each iteration, a vertex u with minimum
path length l(πu) is found and offers extended paths πu ·〈u, v〉
to its adjacent nodes v. As the objective of this algorithm is
to maximize the average path length of all paths, if l(πu ·
〈u, v〉) > l(πv), the algorithm substitutes πv by the extended
path πu · 〈u, v〉. The number of iterations the IFT algorithm
requires is equal to the number of vertices in the skeleton and
it outputs an optimal set of paths of maximum length.

Once the skeletonized cerebrovascular system is split into
paths of maximum length, the estimated blood flow parameter
values of the voxels along each path, in relation to the distance
from the main artery seeds, were plotted and visually analyzed
for all healthy subjects. Here, it was noticed that the transit
time δt, sharpness s, and time-to-peak p of the distribution
that models the blood flow dispersion follow an approximately
linear distribution, with respect to its trajectory along the
vascular tree, starting at the labeling plane. The relative blood
volume A, however, appears to be better approximated by a
quadratic distribution. This can be explained by the fact that
A is proportional to the cross-sectional area of the vessel that
contains the voxel analyzed. This area is proportional to the
square of its radius and the radius follows an approximately
linear distribution along the vascular tree. Based on the iden-
tified patterns, a regression analysis was performed for each
longest path.

Figure 3 shows the plotted values of each blood flow

parameter along the centerline of the path of maximum length
in the skeleton of one selected segmented cerebrovascular
system, which shows a linear pattern in case of the transit
time δt, sharpness s, and time-to-peak p, and the quadratic
pattern of the relative blood volume A.

Table I shows the average and range of the correlation val-
ues (r) when applying the corresponding regression analysis
comparing each blood flow parameter estimated to the corre-
sponding vessel distance in the fifteen 4D ASL MRA datasets
from healthy volunteers used in this work. The average value
of r was calculated using the method proposed by Corey et
al. [31], which was proven to be a less biased estimate of the
population correlation coefficient when correlation coefficients
from a small sample are averaged. The average r is greater or
equal than 0.7 in all cases, which suggests a strong correlation
of the corresponding model, either linear or quadratic. Despite
the fact that the datasets share similar patterns for each blood
flow parameter, either linear or quadratic, does not imply that
the regression coefficients and constants are the same across
subjects.

Parameter r average and range
A 0.846 [0.683, 0.925]
δt 0.863 [0.748, 0.949]
s 0.700 [0.578, 0.824]
p 0.736 [0.648, 0.808]

TABLE I
CORRELATION COEFFICIENT (r) AVERAGE AND RANGE FOR EACH

ESTIMATED BLOOD FLOW PARAMETER VALUE IN RELATION TO THE
VESSEL DISTANCE, OBTAINED WHEN APPLYING REGRESSION ANALYSIS

TO THE FIFTEEN 4D ASL MRA DATASETS FROM HEALTHY VOLUNTEERS
ACQUIRED FOR THIS WORK.

Based on the findings described above, the proposed re-
finement of the blood flow parameter values estimated in the
cerebrovascular system starts with the skeletonization and sub-
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Fig. 3. Plotted values of each blood flow parameter (relative blood volume A, transit time δt, sharpness s, and time-to-peak p of the distribution that models
the blood flow dispersion) along the centerline of the path of maximum length in the entire skeleton of a segmented cerebrovascular system, as a function of
the distance from the seed of the corresponding main feeding artery.

division into maximum length paths of the binary segmen-
tation. Then, the values of δt, s, and p along the skeleton
are refined using a linear regression, while the values of A
are approximated with a quadratic polynomial as a function
of the distance from the seed of the corresponding main
feeding artery. The refinement of the blood flow parameters is
performed iteratively starting with the longest path identified
in each skeleton until reaching the shortest one. The reason
to start with the longest paths is that they contain the largest
number of voxels with data, which is expected to lead to a
better fit of the regression function. In case a path is connected
to a longer path, the regression is restricted to fit to the value
of the longest path at the bifurcation under the assumption that
initial refinements lead to a better fit with more available data.
Finally, the values of each voxel of the skeleton are copied
back to the initial segmentation by considering the Voronoi
region of influence. It is expected that this refinement reduces
the AAE between the estimated and ground-truth blood flow
parameter values.

D. Evaluation method

In this work, the proposed hemodynamic refinement method
is evaluated in three different scenarios. First, virtual 4D
ASL MRA phantoms with ground-truth binary segmentations
and blood flow parameter values are used for quantitative
evaluation of the segmentation results and hemodynamic anal-
ysis, before and after the blood flow parameter refinement

step. Second, real 4D ASL MRA datasets are also used for
quantitative evaluation of the segmentation results but the
hemodynamic refinement method is evaluated qualitatively by
a neurologist as no ground-truth blood flow parameter values
are available in this scenario. Third, the results of applying the
proposed hemodynamic refinement method to 4D ASL MRA
datasets of patients with a stenosis in the carotid arteries are
also included and discussed in this work.

The 4D ASL MRA phantoms were generated using the
methodology proposed by Phellan et al. [32], briefly described
in the following. First, an automatic and validated method [33]
is used to segment the vessels in the TOF MRA images,
which present higher spatial resolution than 4D ASL MRA
images, but contain no hemodynamic data. Then, blood flow
parameter values are assigned to each voxel in this high
resolution space according to flow patterns and blood flow
measurements derived from healthy subjects [34], [35]. Next,
the same formula used for the blood flow parameter estimation
described in Section III-B (see Equation 1) is used to generate
a 4D ASL MRA phantom with a time series of images in TOF
MRA space. After that, the hemodynamic parameter images
and corresponding 4D ASL MRA images are downsampled
to 4D ASL MRA space using linear interpolation. In doing
so, partial volume effects are added to the simulated 4D ASL
MRA datasets. The ground-truth binary segmentations of the
cerebrovascular system in 4D ASL MRA space are generated
by thresholding a temporal maximum intensity projection of
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the corresponding resampled 4D ASL MRA images, using a
low threshold value, such as 0.0001. Finally, noise is added to
the phantoms following an homomorphic approach [36], which
can accurately replicate the noise with local image variation
that results as a consequence of multi-coil acquisitions, such
as 4D ASL MRA.

For quantitative evaluation of the segmentation results using
the annotated phantoms and the real 4D ASL MRA datasets,
the accuracy of the vascular segmentation is measured using
the Dice similarity coefficient (DSC), defined in equation 6,
in terms of the number of true positives (TP), false positives
(FP), and false negatives (FN). The DSC [37] measures the
overlap between the ground-truth and automatically extracted
segmentations, and it is commonly used for evaluation of
the segmentation of thin structures [11]. However, the DSC
penalizes even slight differences between voxels at the border
of the structures, which represent a small percentage of the
total score in the case of blob-like structures but a considerable
percentage in case of thin structures, such as vessels. In order
to compensate for this penalization, a tolerance margin of one
voxel was added to the computation of the DSC. The tolerance
margin is implemented by dilating and eroding the ground-
truth and reference segmentation using a spherical structuring
element with a radius of 1 voxel. False positives inside the
dilated region are counted as true positives and false negatives
outside the eroded region are counted as true negatives.

DSC =
2TP

2TP + FP + FN
(6)

It should be noted that, in case of the real 4D ASL MRA
datasets, the calculated segmentations are compared to refer-
ence segmentations obtained by an automatic validated method
in TOF MRA images [33] with higher spatial resolution but
not containing blood flow data. In order to transform the
TOF MRA segmentations into 4D ASL MRA space, each
volumetric TOF MRA image is registered to a temporal maxi-
mum intensity projection of the corresponding 4D ASL MRA
dataset of the same subject using the Elastix software [38],
configured for rigid transformation, b-spline interpolation, and
mutual information as similarity criterion. After that, the
obtained transformation is applied to the TOF MRA binary
vessel segmentation using a nearest-neighbor interpolation.
The reference segmentations, in 4D ASL MRA space, were
revised and manually corrected to mitigate possible errors, if
necessary.

The blood flow parameter values estimated for the phantoms
and their corresponding ground-truth are compared using
the AAE metric, which was also used to guide the MSPS
search used to optimize the fitting of the hemodynamic model
function for the blood flow parameter estimation. The AAE
was determined to be normally distributed, according to a
Kolmogorov-Smirnov test of normality. Consequently, in order
to evaluate the improvement in terms of AAE obtained with
the blood flow refinement step, a standard one-way analysis of
variance (ANOVA), followed by the Tukey’s honest significant
difference procedure is used to test for significant differences
between the AAE of each estimated blood flow parameter

(A(v), δt, s, and p), before and after refinement. The Statistical
Package for the Social Sciences version 16.0 (SPSS Inc.,
Chicago, IL, USA) was used for the statistical analysis, and
the criterion of statistical significance was set at p-value <
0.05.

The qualitative evaluation of the estimated blood flow
parameters, using the real clinical datasets, was performed
by a neurologist with more than 20 years of experience
working in brain image analysis. In a first step, the neurologist
reviewed 15 image sequences, each containing renderings of
the color-coded surface visualizations of the relative blood
volume and transit time hemodynamic parameters from the
three orthogonal views (axial, coronal, and sagittal). For each
subject dataset, the raw or refined hemodynamic parameters
(see Figure 2) were randomly selected for the qualitative
analysis of the visualization. Then, 30 days later, the neu-
rologist performed the same qualitative evaluation again, but
using the raw or refined hemodynamic parameter versions of
the visualizations not used in the first evaluation. In doing
so, the visualization using the raw and refined hemodynamic
parameters were qualitatively evaluated for each subject, thus
allowing a comparison of both. The 30 days break between
the rating was used to prevent a potential memory bias.

For qualitative evaluation, the medical expert was asked to
rate every visualization based on the three orthogonal views
regarding the physiological plausibility on a scale from 0 to 6.
Here, 0 indicates that a visualization is not plausible regarding
the expected hemodynamic physiology, while 6 indicates high
plausibility. The blood volume and transit time parameters
were used for this evaluation only as these are considered
important parameters for the analysis of the cerebrovascular
system [39], while the sharpness and time-to-peak are con-
sidered less intuitive for this hemodynamic model. Regarding
the datasets of patients with a stenosis, a visual assessment
was used to evaluate if the proposed method can be used in
patients with vascular pathologies.

IV. RESULTS

The segmentation accuracy obtained with the proposed
approach in the scenarios with phantoms and real datasets is
presented in Table II. It can be seen that the proposed method
reaches high average DSC values of 0.957 ± 0.014 and 0.938
± 0.015, in each scenario, respectively.

The good quantitative results can also be confirmed visually.
More precisely, it was noted that almost all vessels are
correctly segmented in all cases, while only a few small
vessels are lost during the segmentation process. The left
side of Figure 4 shows 3D representations of the binary
ground-truth and the segmentation obtained with the proposed
method applied to the 4D ASL MRA dataset of subject 6. The
blue circles indicate regions where the proposed segmentation
method missed some small vessels. The right side of Figure 4
shows the maximum intensity projection of the 4D ASL
MRA dataset of subject 6, with the ground-truth and resulting
segmentations overlaid to complement the 3D visualization of
the results.

Table III shows the average absolute error (AAE) for each
estimated blood flow parameter (A(v), δt, s, and p) in the

Authorized licensed use limited to: University College London. Downloaded on March 31,2020 at 18:32:44 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2951082, IEEE
Transactions on Biomedical Engineering

TBME 8

Fig. 4. Binary ground-truth and segmentation obtained with the proposed method using real 4D ASL MRA datasets of subject 6, presented as 3D representations
(left) and overlaid on top of the maximum intensity projection of the 4D ASL MRA dataset (right). The circles in blue indicate areas where small vessels
were not correctly identified.

Subject DSC phantoms DSC real
1 0.972 0.936
2 0.950 0.922
3 0.973 0.919
4 0.948 0.949
5 0.941 0.938
6 0.936 0.957
7 0.939 0.917
8 0.952 0.967
9 0.943 0.948
10 0.964 0.941
11 0.968 0.919
12 0.975 0.943
13 0.970 0.935
14 0.958 0.929
15 0.972 0.953

Average 0.957 0.938
SD 0.014 0.015

TABLE II
DICE SIMILARITY COEFFICIENT (DSC) ACCURACY VALUES AND
STANDARD DEVIATION (SD) FOR THE PROPOSED SEGMENTATION

METHOD, USING PHANTOMS AND REAL DATASETS.

phantoms scenario, before and after the blood flow parameter
refinement step, respectively. The ANOVA analysis and post-
hoc Tukey test indicate that the AAE between the estimated
values and their corresponding ground-truth for A(v) and δt is
significantly improved after the refinement step. On the other
hand, the AAEs of s and p are only improved by 1.81% and
8.22% after the refinement step, respectively. The resulting p-
values for A(v), δt, s, and p are 0.01, 0.01, 0.73, and 0.07,
respectively.

On average, the refinement step seems to reduce the AAE
of the estimated blood flow parameters. Nevertheless, some
exceptions are present for each parameter. In case of A(v),
the refinement step increased the AAE for subjects 3 and 12.
The same effect was observed for δt, in subject 10; for s in
subjects 1, 6, 11, 12, and 15; and for p in subjects 1, 3, 7, 9,
10, and 12.

Figure 5 contains 3D representations of all estimated blood
flow parameters in the 4D ASL MRA dataset of subject 6.
A visual improvement can be noted in all cases, comparing

the top and middle row, as the refinement step generates
images with an smoother appearance. The absolute differences
between the uncorrected and corrected blood flow parameter
images are shown in the bottom row.

Table IV shows the results of the qualitative evaluation
of the estimated blood flow parameters A(v) and δt in real
datasets. The visualizations of the refined blood flow param-
eters were judged superior or equal to the raw hemodynamic
parameters in all cases. It can also be noted that significantly
higher scores are assigned to sets of images of both blood flow
parameters after the refinent step, according to the ANOVA
and post-hoc Tukey test. The p-values for A(v) and δt are
lower than 0.001 in both cases.

Finally, Figure 6 shows the result of applying the
segmentation-based blood flow parameter refinement method
to 4D ASL MRA datasets of patients with a stenosis in
the carotid arteries. The 3D representations correspond to
estimations of the transit time δt, with and without refinement,
for the two patients. It can be noted that one side of the
cerebrovascular system of patient 1 presents longer transit
times compared to the corresponding vessel territory in the
contralateral hemisphere, which corresponds well with the
diagnosis of 80% occlusion of the LICA and 20% occlusion of
the RICA for this patient. Consequently, the signal of labeled
blood could not be imaged as far in one region. Overall, the
effects of the presence of stenosis can be clearly seen in
the refined blood flow parameter image while this effect is
less obvious in the unrefined parameter image. For patient 2,
there is no evident difference between the two sides of the
cerebrovascular system, which is also in line with the clinical
diagnosis of a bilateral stenosis of 30%. Again, the refined
blood flow parameter visualization is less noisy compared to
the unrefined blood flow parameter visualization, highlighting
the utility of the proposed method in patients with a stenosis.

The correlation coefficient was also calculated for the blood
flow parameter estimations using 4D ASL MRA datasets of
patients with a stenosis in the carotid arteries. The correlation
coefficient values for the relative blood volume A, transit time
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Fig. 5. 3D representations of the estimated blood flow parameters: relative blood volume A, transit time δt, blood dispersion sharpness s, and time-to-peak
p along the vessels. The top row shows the hemodynamic parameters obtained from real 4D ASL MRA datasets without refinement, the middle row shows
them after the refinement step, and the bottom row shows the absolute difference between both results.

Fig. 6. 3D representations of the estimated transit time δt along the vessels for patients 1 and 2, without and with the refinement step. Both patients were
diagnosed with carotid stenosis.
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Subject A(v) (a.u.) A(v) refined (a.u.) δt (ms) δt refined (ms) s (s−1) s refined (s−1) p (ms) p refined (ms)
1 6.06 5.94 79.51 57.85 2.51 3.32 2.71 2.80
2 5.85 5.11 71.79 65.78 3.12 2.97 3.27 2.39
3 6.32 6.37 51.72 50.89 3.50 3.39 2.97 3.17
4 7.09 5.52 68.55 45.41 3.57 3.48 3.20 2.61
5 7.14 4.40 62.16 52.50 3.59 3.47 3.34 2.55
6 7.90 6.27 80.91 59.02 3.18 3.19 2.91 2.09
7 5.63 4.70 106.35 51.97 2.88 2.82 2.96 3.04
8 5.86 4.95 51.44 43.79 3.83 3.49 2.94 2.73
9 6.96 6.33 58.69 56.42 3.50 3.13 2.87 2.99
10 5.48 4.33 44.09 66.74 3.73 3.45 3.00 3.06
11 5.75 5.67 92.95 75.33 1.72 2.31 2.42 2.25
12 4.52 5.21 114.85 75.37 2.71 2.99 2.54 3.18
13 6.50 4.99 117.60 69.37 3.34 2.49 3.84 3.26
14 6.65 5.61 91.57 52.27 3.14 2.88 3.46 3.24
15 5.42 5.24 88.67 71.89 2.64 2.68 3.22 2.56

Average 6.21 5.37 78.72 59.64 3.13 3.07 3.04 2.79
SD 0.85 0.66 23.10 10.47 0.56 0.38 0.36 0.38

TABLE III
AVERAGE ABSOLUTE ERROR AND STANDARD DEVIATION (SD) OF EACH ESTIMATED BLOOD FLOW PARAMETER (A(v), δt , s, AND p) IN THE PHANTOMS

SCENARIO, BEFORE AND AFTER THE BLOOD FLOW PARAMETER REFINEMENT STEP. SIGNIFICANT DIFFERENCES ARE INDICATED IN BOLD.

Sub. A(v) (a.u.) A(v) ref. (a.u.) δt (ms) δt ref. (ms)
1 1 6 4 6
2 2 4 5 6
3 2 3 4 4
4 3 4 5 6
5 3 5 2 6
6 2 6 3 5
7 3 4 2 5
8 3 5 5 6
9 3 5 3 4
10 4 5 3 5
11 1 5 2 6
12 3 4 5 5
13 1 5 2 5
14 3 5 3 4
15 3 4 1 5

Avg. 2.47 4.67 3.27 5.20
SD 0.92 0.82 1.34 0.78

TABLE IV
GRADE ASSIGNED TO EACH ESTIMATED BLOOD FLOW PARAMETER (A(v),
δt IN THE REAL DATASETS SCENARIO, BEFORE AND AFTER BLOOD FLOW

PARAMETER REFINEMENT. SIGNIFICANT DIFFERENCES ARE IN BOLD.

δt, sharpness s, and time-to-peak p were 0.706, 0.787, 0.649,
and 0.591 for patient 1, and 0.755, 0.832, 0.635, and 0.674
for patient 2, respectively. These values are within the ranges
calculated for healthy subjects, showing that the refinement
assumptions can also be applied to datasets of patients with
this cerebrovascular disorder.

V. DISCUSSION

This work presented a novel method for the segmentation-
based refinement of hemodynamic parameters extracted from
4D ASL MRA datasets. 4D ASL MRA is an imaging modality
that can capture morphological and hemodynamic data of the
cerebrovascular system at the same time, with high spatio-
temporal resolution, when compared to other modalities [2].
The proposed method uses the morphological information
contained in the segmented cerebrovascular system to refine
the estimated blood flow parameter values, by considering
their spatial dependency while the segmentation makes use
of the hemodynamic information to improve the accuracy of
the final vessel segmentation.

The results of the experiments shown in this paper suggest
that the method generated accurate segmentations, reaching
DSC values of 0.957 and 0.938 when using phantoms and
real datasets, respectively. On the other hand, the results of this
work indicate that the blood flow parameters estimated using
the model proposed by Okell et al. [26] can be significantly
improved by making use of the morphological information
of the cerebrovascular system. In particular, the centerline of
the resulting segmentation contains the most relevant blood
flow information, which was used to model each blood flow
parameter [8].

The quantitative evaluation using 15 4D ASL MRA phan-
tom datasets, showed that a significant improvement can be
achieved for the estimation of blood flow parameters A(v)
and δt, and a non-significant improvement in case of s and
p. Some individual exceptions were observed, where the
refinement step increased the AAE. One of the main reasons
for these exceptions is that the estimated blood flow parameters
contained a considerable amount of outliers, which could not
be handled by the regression method used. In this case, an
outlier removal algorithm could improve the refinement step.
Additionally, the qualitative evaluation of the proposed method
showed that the refined blood flow parameter images are more
physiologically reasonable than the non-refined ones.

It should be noted that even though the 4D ASL MRA
phantoms were generated with the same mathematical model
used to estimate the blood flow parameter values (see Equa-
tion 1), there are many factors that can potentially contribute
to errors in the results and make the phantom datasets suitable
for quantitative comparison. More specifically, these factors in-
clude the presence of partial volume effects and homomorphic
noise [36], the accuracy of the cerebrovascular segmentation
that is used for refinement of the blood flow parameter
estimations, and the algorithm used to fit the mathematical
model to the observed vascular signal.

The method described in this work can support the transla-
tion of 4D ASL MRA from research to clinical practice, as a
non-invasive alternative to DSA to study the cerebrovascular
system, by simultaneously providing morphological and hemo-
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dynamic information. To the best of our knowledge, this is the
first method that refines the estimated blood flow parameters
along the segmented vascular tree so that more physiologically
reasonable measurements and visualizations can be provided
to the user.

Considering that 4D ASL MRA is a non-invasive modality,
this method can potentially be used to study healthy subjects
and define criteria of normality in terms of vascular mor-
phology and hemodynamics and to image and follow-up with
patients after treatment. Additionally, given its modular design,
the proposed method could also be adapted to process other 4D
angiography datasets, such as CTA or other 4D MRA image
sequences. This adaptation would essentially require the use of
a different mathematical model to describe the signal generated
by the contrast agent used in the selected modality.

Regarding the limitations of the proposed method, it can be
argued that 4D ASL MRA typically requires reasonably high
arterial velocities. Consequently, it might not be suitable for
visualization of vessels with severe stenoses. Although it is
true that some vessels might not be displayed properly, the
effects of stenoses can be noticed by the presence of longer
transit times and absence of signal in vascular regions with
larger transit times than the acquisition time (see Figure 6).

It should also be noted that the datasets of patients with a
stenosis used in the experiments of this work were acquired
with a slightly different labeling strategy than the datasets
of healthy subjects, PASL and PCASL, respectively. Conse-
quently, further improvement of the method would include
accounting for slight differences between both strategies. In
particular, Equation 1 could be modified to consider the
additional relaxation that the labeled blood signal of PASL
experiences between the start and end of the bolus [40].

Additionally, the refinement step corrects the parameters
assuming a forward flow direction, which might not hold true
in some cases, such as in aneurysms that present turbulent flow.
In order to highlight these anomalies, it would be possible to
generate an image indicating the difference between the refined
parameters and the original estimated value (see Figure 5).

Additional improvement to the refinement step could be
achieved by implementing alternative skeletonization algo-
rithms of the segmentation of the brain vascular system.
However, a visual analysis of our results confirmed that the
skeletons were not disconnected and well centered in the mid-
dle of the vascular system so that the improvement applying
other centerline extraction methods might be rather minor.
Nevertheless, recent skeletonization algorithms can achieve
faster processing times by using parallel computing [41].

The refinement step used in this work basically assumes
the continuity of the hemodynamic parameters along the cere-
brovascular system. Further improvement might be achieved
by adding more physical and physiological constraints. How-
ever, this work has purposefully not included any tight con-
straints such as Murray’s Law or the conservation of mass of
blood for the blood flow parameter refinement but proposes an
assumption-light data-driven regression approach. The reason
for doing so is that cerebrovascular diseases such as stenoses or
moyamoya disease may be associated with a violation of these
assumptions, while the purely data-driven approach suggested

in this work is theoretically more robust in these cases. Within
this context, it might also be beneficial to use non-parametric
regression methods in case of severe pathologies, such as a
b-spline interpolation.

Finally, it is important to mention that other imaging modal-
ities can also be used to measure blood flow parameters in the
brain. In particular, 4D flow MRI can acquire images of the
whole cerebrovascular system, with similar resolution to 4D
ASL MRA, in reasonable acquisition times of approximately 9
minutes [15], [16]. Within this context, it would be interesting
to compare and evaluate both image sequences together in
healthy subjects and patients with cerebrovascular diseases as
similar blood flow parameters can be calculated from both
sequences. In contrast to 4D ASL MRA, which displays the
passage of magnetically labeled blood, 4D flow MRI measures
the flow velocity directly. Thus, both imaging modalities might
really complement each other. Unfortunately, 4D flow MRI
datasets were not available for the subjects and patients in
this study so that this question needs to be addressed in detail
in future studies. Apart from this, it should also be mentioned
that the segmentation-based blood flow parameter refinement
could also be applied to the velocity measurements in single
frames of 4D flow MRI datasets.

VI. CONCLUSION

The present paper describes a new segmentation-based
method to refine hemodynamic parameter maps computed
from 4D ASL MRA datasets. The cerebrovascular segmen-
tation is used to refine relevant blood flow parameter data
contained in the centerline of the vessels, which can improve
the accuracy of the estimated parameter value, and its visual
representation, by considering its spatial dependency. This
method should allow clinicians and researchers to analyze
and study the cerebrovascular system non-invasively, thus,
avoiding the costs and risks associated to ionizing radiation
exposure and contrast agent administration.
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