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ABSTRACT

High arterial tortuosity, or twistedness, is a sign of many vascuksaisiis. Some
ocular diseases are clinically diagnosed in part by assessment o$@tcteduosity of
ocular blood vessels. Increased arterial tortuosity is seen in other vassedesed but is
not commonly used for clinical diagnosis. This study develops the use of existing
magnetic resonance angiography (MRA) image data to study attetiadsity in a range
of arteries of hypertensive and intracranial aneurysm patients.

The accuracy of several centerline extraction algorithms based orr®gkst
algorithm was measured in numeric phantoms. The stability of the algoritasns w
measured in brain arteries. A centerline extraction algorithm wadegklegsed on its
accuracy. A centerline tortuosity metric was developed using a curve of ityrscuses.

This tortuosity metric was tested on phantoms and compared to observer-basedytortuosit
rankings on a test data set. The tortuosity metric was then used to measure anel compar
with negative controls the tortuosity of brain arteries from intracraniairgsi® and
hypertension patients.

A Dijkstra based centerline extraction algorithm employing audcs-from-edge
weighted center of mass (DFE-COM) cost function of the segmentecsners

selected based on generating 15/16 anatomically correct centerlines jping kaxery



compared to 15/16 for the center of mass (COM) cost function and 7/16 for the inverse
modified distance from edge cost function. The DFE-COM cost function had a lmoter r
mean square error in a lopsided phantom (0.413) than the COM cost function (0.879).
The tortuosity metric successfully ordered electronic phantoms ofeartgyitortuosity.

The tortuosity metric detected an increase in arterial tortuosity erteysive patients in
13/13 (10/13 significant at = 0.05). The metric detected increased tortuosity in a subset
of the aneurysm patients with Loeys-Dietz syndrome (LDS) in 7/7 (thyadisant ata
=0.001).

The tortuosity measurement combination of the centerline algorithm and the
distance factor metric tortuosity curve was able to detect increaaegiial tortuosity in
hypertensives and LDS patients. Therefore the methods validated here cadh toe use
study arterial tortuosity in other hypertensive population samples and in garietets

related to LDS.
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CHAPTER 1

INTRODUCTION

Objective
Many vascular diseases affect arteries altering lumen ceanvessel wall
thickness and shape. One method used to quantify the shape of arteries is to méasure the
tortuosity or twistedness. Diseased arteries may have increaseal &ottuosity
compared to healthy arteriéshis research devel oped software for quantitatively
measuring and comparing tortuosities of arteries from disease and negative control

popul ations to determine which diseases are associated with arterial tortuosity.

Arterial tortuosity

Clinical diagnosis by arterial tortuosity
Some vascular diseases are known to correlate with increased arteraditpr
Arterial tortuosity is included in diagnosis before venous tortuosity becausesaere
under higher pressure than veins and will be affected by pressure more. Avezges
found in vitro to exhibit increased tortuosity with increasing pressure [1].iéstare
afflicted by aneurysms more often than veins. Autopsy studies have showramahcr
aneurysm rates of 0.2 to 9.9 (mean 5%) percent in the general population [2], whereas a

retrospective study at Walter Reed Army Medical Center found venous amsuny80



of 2000 patients (1.5%) and this hospital population may be an overestimate of the
frequency in the general population [3]. Ophthalmologists and other cliniciarsgls
tortuosity of the retinal blood vessels seen in fundus photographs of the dilated pupil to
diagnose retinal diseases such as retinopathy of prematurity [4]. Higbsitytis also

used to diagnose retinitis pigmentosa and diabetic retinopathy, and low tgrisiosied

to identify retinal vasculitis [5]. Rapidly growing cancer tumors recrew highly

tortuous arteries by angiogenesis [6]. Genetic syndromes such &4 toterosity

syndrome [7] and Loeys-Dietz syndrome (LDS) [8, 9] are known to increasalarteri
tortuosity.

Arterial tortuosity is one of the differentiating characterishiesveen the rare and
newly described LDS and the more common (occurring in 2-3 per 10000 individuals) and
better known Marfan syndrome (MFS) [10] [11-15]. In addition patients with LDS have
also been misdiagnosed with Ehlers-Danlos syndrome type IV, which is caused by
mutation in the COL3A1 gene and is not known for high arterial tortuosity [7]. In a study
of 25 LDS patients all 25 were visually assessed as having high arterial tgrfu6ki
LDS causes aneurysms in a wider anatomical area than MFS requiringgmsagr a
wider range of anatomy, making the correct LDS diagnosis important [té}iah
tortuosity may be a distinguishing characteristic between LDS anddealeteases.

Distinguishing between MFS and LDS is important. LDS is a highly aggeess
disease. Twenty per cent of LDS patients have aneurysms of the head (@] nelelan
age at death for LDS type | (TGFBR1 mutation) was 22.6 versus 31.8 for type Il

(TGFBR2 mutation) [9]. The clinical presentation of LDS type | and lli@dpparent



differences [9]. MFS and LDS have many overlapping clinical charaatermaking
misdiagnosis possible [14]. MFS patients are only followed with aortic archnghag
whereas LDS patients need more comprehensive imaging to detect aneargsmes i
parts of the body [12, 17]. MFS patients get aortic arch aneurysms that can ruptire. MF
patients show no abnormal risk of nonaortic arch aneurysms while 92% of LDSgatient
develop other aneurysms [8].

Currently the clinical diagnosis of retinal diseases and LDS includesl vis
gualitative assessment of blood vessel tortuosity. Validation of quantitativesibyt
measurements is needed to develop quantitative tortuosity measurement fair clinic

diagnosis.

Medical implications of tortuosity

Tortuosity of blood vessels has medical implications. Highly tortuous arterioles
may require high blood pressure (hypertension) to push blood cells through sntedl twis
arterioles [18]. Highly twisted arteries have physically preventedis¢efi9]. High
arterial tortuosity may also be a sign of weakened arterial walleddnysdefects in
proteins such as elastin [1]. The force of blood moving parallel with the blood vessels
may stretch them increasing length causing tortuosity [1]. Blood pressces for
perpendicular to the blood vessels may stretch the walls out resulting in are[frj/sm
Thus high arterial tortuosity could be a sign of existing vascular disedsevearning of

future disease.



Tortuosity types
Vascular diseases cause different types of tortuosity. Tortuositye®an
characterized in three types [20]. In type | tortuosity arteries exiritdtd meandering
curves. High type Il tortuosity arteries have dense nests of curved atnchyréwisting
vessels of a variety of lengths. The final type Il tortuosity artdrave high frequency
low amplitude coils or sinusoidal curves [20]. Type | tortuosity broadly affeidses’
complete structure and is likely caused by underlying systemic diseasdl Ton@osity
has been associated with arteriovenous malformations and Ill tortuosity has bee

associated with tumor angiogenesis [20].

Tortuosity measures

Several methods to measure arterial tortuosity have been developed. Most
tortuosity measurements are made on centerlines through the middle ofrilks.arte
Centerlines simplify the arteries to a single line passing throughititdenof the artery
making measurement of length possible. The distance factor metric (DE&sunes the
ratio of the length. along arterial centerlines divided by the straight distaroetween
two end-points [4, 20-25]. The inflection count metric (ICM) multiplies the number of
direction changes by the DFM to factor in the number of changes in direction [20, 26]
The sum of angles metric (SOAM) measures a sum of angles along théree 26
26]. The tortuosity measure used on arterioles in microscopy slides measuasot of
the length of the largest twist in the blood vessel to the largest diameterbtddlde

vessel [27]. Other tortuosity measurement methods use the integral of thédeava



second derivative of the centerline that is sensitive to abrupt changes alongt¢niaee
[22, 28]. The different tortuosity measures vary in which types of arterial tayttiosy

detect.

Relationship between tortuosity types and measures
Different existing measures of tortuosity work better for differendsyqf
tortuosity. The most commonly used measure has been the DFM partly due to its
simplicity of implementation. The DFM performs well detecting high tyfoetuosity
arteries but not well detecting high type Il and type Il [20]. The SOAM padrwell
on type Ill but not on type | or Il. The inflection count metric (ICM) [20] workedl we
detecting type | and type Il tortuosity. The SOAM and ICM measurenaents

developed to measure small areas of local tortuosity seen in tumor argisdeo, 28].

Quantitatively measured vascular diseases
Previous research has correlated several vascular diseases wittaoneant
tortuosity metrics. DFM based methods detected increased arterial tyrtnostinal
blood vessels with retinopathy of prematurity [1]. Measurements based on thaliaofegr
second derivative of the centerline measured increases in retinal bloodtoassity
with retinitis pigmentosa and diabetic retinopathy and decreased tortudhityasculitis
compared to normal controls [2]. The ratio of the diameter of the largest loogédstlar

vascular diameter measure detected an increase in arteriolar tgriidsain blood



vessels from autopsy in hypertensive patients [27]. The SOAM measured aséncre
arterial tortuosity with aging in magnetic resonance angiography (MR#ges while

the ICM measurement did not in the same data set [29]. The ICM found a decrease in
tortuosity of the middle cerebral arteries from MRA images with inctease
cardiovascular exercise which was not seen with the SOAM measuremeii¢@@ver
many diseases, even some known to increase arterial tortuosity visually, havemot be
guantitatively investigated and clinical use of quantitative measuremaritwadespread

and only appears to be used consistently with retinal arteries.

Arterial tortuosity measurement method

This study is concerned with the relationship between blood vessel tortuosity and
vascular disease. The study started with the DFM tortuosity measure thiakiity to
detect type | tortuosity and simplicity of implementation. Tortuosity onealsy
curvature of the centerline was also implemented by numeric integrationsedtied
derivative along the centerline. The curvature required specificationrof ma
implementation parameters that change the measures. The DFM tortuessiyrenwas
free of implementation parameters. The study started with the DFM toytutessisure to
detect arterial tortuosity. When and if the DFM tortuosity measure proveddtied
modifications were made to the measure. The tortuosity measurement safevaloped

can substitute alternative measures of tortuosity if the DFM is inagequat



Imaging blood vessels

Blood vessels can be imaged for tortuosity measurement by severahdiffere
modalities. Retinal blood vessels are routinely imaged in two dimensions in fundus
photography by ophthalmologists [21, 31]. Small arterioles are imaged in two-
dimensional histological photomicrographs but only in autopsies [27, 32]. Digital
subtraction angiography (DSA) with contrast agents creates high readlub-
dimensional projection images that can display small arteries and veins [33Wwi@TA
contrast agents images both arteries and veins in three dimensions. And MR#agan i
both arteries and veins or arteries only in three dimensions. MRA'’s abilitylédeis
arteries (Figure 1.1 A) from veins simplifies measurement of astf8# since veins can

obscure the arteries (Figure 1.1 B).

Risks of ionizing radiation in imaging
DSA and CTA expose the patients to ionizing radiation and contrast agents.
lonizing radiation potentially increases the risk of cancer in a linear no taveshold
manner [35]. No lower threshold means that when large numbers of patients are exposed
to even small radiation doses, cancers are generated by the imagsgj.[@@ntrast
agents used in DSA and CTA can have side effects. Patients can be allergicaist cont

agents [34]. Nonionizing, noncontrast MRA imaging is preferred for safety [39, 40].



Nuclear magnetic resonance imaging safety

Nuclear magnetic resonance (NMR) is the basis of magnetic resonagegm
(MRI) and MRA which can image blood vessels without ionizing radiation or contrast.
MRI scanners typically measure the collective signal from the protonarthite nuclei
of hydrogen atoms from water and lipids and other hydrocarbons in the body. Ténerefor
the magnetic resonance (MR) signal comes from the subject themséheegalMRI
scanners emit nonionizing radiation waves to image subjects. Added ionizirtgpradia
contrast agents are not required. Contrast agents do exist that can be injecehse |
image contrast between different tissues, but are not always neca@samyRI has no

known long term side effects [39, 41].

Nuclear magnetic resonance basics

The following provides a classical physics description of NMR. The NIgRasi
employed in MRI typically comes from the hydrogen proton nuclei. Imagingllmasée
nuclei of other atoms exists but is less common. The protons have nuclear magnetic
momentsu that in the absence of an applied magnetic field are oriented in random
directions and sum to produce zero net bulk magnetizatiorEi,— O. In the presence
of a magnetic field B, any given magnetic momemtill precess about the direction of
the applied field B with a frequency known as the Larmor frequemneyyB. The type of
atom determines the gyromagnetic ratiovhich is 42.58 MHz/Tesla (T) for hydrogen.
The magnetic momengswill not produce a measurable signal until they come into

alignment with each other. When the protons of a subject are exposed to a largd exter



magnetic field vector § after a short time through a process known as relaxation, the
magnetic moments have a tendency to align parallel with the field to sum to@edat
longitudinal bulk magnetization M Eu, > 0. The bulk magnetization M is then
manipulated to produce the measured NMR signal that is used to reconstruct the
anatomical image.

An additional electromagnetic radio frequency (RF) pulsadplied
perpendicular to the Hield at the resonance frequenay,tips the bulk magnetization M
out of alignment with B At this point, the bulk magnetization vector M has a
longitudinal component Mand transverse componenfMvith a tip anglex between the
vector of M and the vector ofgFigure 1.2). Like the underlying magnetic moments
M precesses or wobbles around thevBctor axis like a spinning top or dreidle in a cone
pattern with a transverseyybulk magnetization component perpendicular to the B
field. The M, component of the magnetization forms the basis of the detected NMR
signal. After tipping, through a process of relaxation the bulk magnetizatioms to
alignment with B recovering the Mcomponent while reducing the,component.

The recovery of Mand M,y to equilibrium is known as relaxation. The speed of
relaxation is tissue dependent. Two forms of relaxation exist governing thergof
M. and the destruction of )yl Each specific tissue has a longitudinalr&élated to the
recovery of M, and transverse;Irelated to the loss of W Tissue specific differences in
T, and T, and the proton density (PD) (increased proton density increases signal)dare use
to create contrast between tissues and highlight and suppress desired tissapMiR|

scanner.
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MRI hardware components
An MRI scanner has three main hardware components: a main magnet, a
magnetic field gradient system, and a radio frequency (RF) sy3&nirhe main
magnet creates a static homogeneous magnetic fielthB subject is placed in the
magnetic field and the bulk magnetization M of the subject aligns withgfiel& The
gradient system alters the local magnetic environment to allow lotatizstthe bulk
magnetization. The RF system tips the magnetization away feaandBreceives signals

produced by the precessing transverse bulk magnetizatipf8®] 41].

Main magnet

The main magnet is typically a cooled superconducting magnet that creates
strong nearly uniform static field)BGood image quality requires homogeneity of the
magnetic field B, which the main magnet is usually not capable of alone. Shim coils add
magnetic field to even out the Beld of the main magnet. The magnets are contained in
a long hollow cylindrical shaped case with a hollow bore. The subject lies on a movable
table that slides into the hollow bore for imaging.

MRI scanners now typically come in 1.5 T, 3.0 T and 7.0 T field strengths. A
Tesla (T) is the Systeme international d'unités (Sl) unit of magmeiticstrength. For
comparison the Earth’s magnetic field at the equator |sT3dnd a refrigerator magnet is
around 5 mT. MRI scanners at 1.5 T and 3.0 T are FDA approved and are commonly
used in clinical imaging. Scanners at 7.0 T are not FDA approved for clinechutisan

be used with institutional review board (IRB) approval for research purposes only.
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Higher field strengths have increased signal to noise ratios which can be ednjloy

acquire images at higher resolutions making imaging of smaller artersblpd42-44].

Gradient fields

A gradient in the main gfield is needed for signal localization to create the three-
dimensional image. Without the gradient the scanner could detect tissue signals but
would not know where the tissues are located and would not be able to reconstruct the
image. Gradients GG, and G are created by coil systems positioned around the bore
and each modify the z-component of the main field along the spatial x, y and dggect
respectively. The field due to the gradientgs=G;, + yG, +zG, changes the magnetic
field B = By + By making the resonance frequeney y(Bo + XG, + YG, + zG,) a
function of position. In practice the gradients are seldom all turned on at thdissn

but are turned on and off as part of the image acquisition process.

Radio frequency system

The radio frequency (RF) system has transmitter and receiver coils.systems
use a combined transceiver coil. The transmitter applies unifpmmaBnetic fields
perpendicular to Bat specific resonance frequency to the subject. MRI scanners come
with whole body coils inside the case of the main magnet and speciallpeisigrface
coils which may be placed close to anatomy of interest [39]. Surface coisl glaor

close to the subject to increase signal to noise ratio in a small field of vipuntaging
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small structures such as narrow diameter arteries [45]. After thenittets B, RF ends,

the receiver coils detect the precession of the transverse bulk magnetizgtion M

Generation of MRI image

The MR image is acquired by sampling NMR signals from the transvelise b
magnetization N, of the subject. The RF system and gradients are used to manipulate
and sample signals of the bulk magnetization M throughout the spatial frequency or
Fourier domain also known as k-space described below. Successive manipulations
measure sample frequencies throughout k-space. When k-space has beetelgomple
sampled the anatomical spatial domain is recovered by an inverse FouriertngdB9,
41].

First, the gradient coils are used to select a slab for excitationgla@ient alters
the resonance frequency linearly of the protons along the Z axis pard&lshtcording
to o(z) =y(Bo + zG,). The transmission RF coils apply Berpendicular to 8in a pulse
at a narrow band width of resonance frequencies exciting a slab perpendicuylantio B
known Z location. The g&gradient and BRF pulse are ended. Localization of the signal
along the Y and X directions is imposed with phase and frequency encoding by gradients
Gy and G. The G gradient phase encodes the signal by applying gradient in B parallel to
Bo but varying along Y for a time-durationelchanging the resonance frequencies
linearly along the Y axis according égy) = y(Bo + yGy). After the G gradient ends the
resonance frequencies all return to the previous resonance frequbuotyhe relative

phase of magnetization now varies linearly along the Y axis phgsn¢oding the
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signal according ta!(y) = «v y G Tpe The G gradient turns on to frequency encode the
signal by changing the resonance frequencies linearly along the caxisling tan(x)
=v(Bo +XGy). The gradient encoding along the X axis and phase encoding along the Y
axis of signal frequencies form the frequency domain of the image known asek-spac
The k-space frequency signals of the image are sampled with the MRéstgn
manipulating the gradients, RF-pulses to guide the scanner through k-space. The
frequency signals are converted with an analog to digital converter (ADGigftal
recording. When sufficient frequencies of k-space are sampled and retteeded
frequency signals are inverse Fourier transformed in two dimensions oditegsions
into image space creating the image.

The image acquisition can be in two dimensions or three dimensions. In the two-
dimensional acquisition the; RF pulse excites a narrow slab determining the Z position.
In three dimensional imaging the BF pulse excites a wide slab and then a secgnd G
gradient is used to phase the spins to encode location on the Z axis. The choice of two- or
three-dimensional acquisition depends on the imaging application.

Repeated (sphase encoding gradients at different magnitugar@/or duration
Toe Selectively encode the k-Y axis rows of k-space. Thgr@dient frequency encodes
the k-X axis columns of k-space and the ADC receiver samples the magnitudes of
frequencies at time intervals while the frequency encodingr&lient is turned on. The
gradients are manipulated to sample k-space in patterns to collect dasufficient

phase and frequency signals to reconstruct the image.
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The combination of RF pulses, gradients and receiver listening periods are
collectively known as a pulse sequence. The pulse sequence specifiesritge timi
magnitude, duration and order of RF pulses, gradients and signal sampling (turning on
the receiver). The timing between repetitions of th&B pulse is repetition timegland
the time between the;BRF pulse and the peak signal of the echo is echo timulse
sequences use differences in longitudinal€élaxation times, transverse relaxation
times and proton density of the tissues to create contrast that make tissuesibdahge

image visible and selectively highlight or suppress tissues types.

Time-of-flight magnetic resonance angiography

Time-of-flight (TOF) magnetic resonance angiography (MRA)@skguences
have the ability to distinguish moving blood from immobile background tissues. MRA
even takes advantage of arterial blood moving faster than venous blood to highlight
arterial blood while suppressing venous blood [46]. MRA uses thick s|&B
excitation pulses and three-dimensional data acquisition. MRA pulse sequences use
repeated BRF slab selection excitation pulses and gradient echoes with small tip angle
spaced close together in time with shagtahd short F that saturates the excited tissues.
The saturated background tissues are not able to recover their longitudinatizzdgm
[47, 48]. The blood within the excited volume is continuously replaced by fresh blood
flowing into the volume. As a result, the blood does not experience the signal saturation
and appears as bright tissue in the image. [40, 46, 49]. By keeping tinee$ very short

TOF-MRA can even saturate and suppress signal from slower venous blood [58] leavi
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fast moving arterial blood brightest [47]. Even the arterial walls will berdinthan the
moving blood [47]. Diseased arteries with low blood flow may also appear dim or not be
visible at all [45]. Thus MRA is showing physiology and not just anatomy [49]. TOF-
MRA images are not free of background tissues due to signal recovery by stesti@és

[48]. These background tissues may have intensities as high as the arteriadibjood [
requiring extra image postprocessing steps to segment the arterial blodtiésam
background tissues. The amplification of the flowing blood by the pulse sequence allows

this procedure to be done without contrast, thereby increasing patient safety [34]

Filling a gap in research

Quantitative arterial tortuosity measurements are rarely usedatiyniMore
research is needed to validate quantitative arterial tortuosity meastifemainical use.
Arterial tortuosity of only a limited numbers of vascular diseases hasshaedied.
Arterial tortuosity due to tumors is a local phenomenon but it is not known if systemic
vascular diseases such as hypertension correlate with increasidl tarteiosity in all or
only limited arteries. Tortuosity measurements are needed for maiesanmemore
vascular diseased populations to build evidence for clinical use of quantitative tgrtuosit
measurements.

One major obstacle to studying arterial tortuosity is the cost of imagwg
subjects and corresponding negative controls. MRA images already exist for many

subjects with vascular diseases. Studying the effects of vascularediseaarterial
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tortuosity in these existing images opens up a low cost and quick method to study the
effects of many vascular diseases.

There are many challenges to studying arterial tortuosity usisnexMRA
images. The existing images from clinical scans and previous resaatigs stere often
acquired with different scanners and parameters, covering differemesudeparts of
arteries at different resolutions. Corresponding negative controls are lectexblfor
clinical scans. The challenges of correlating arterial tortuostty weiscular diseases in
existing MRA are studied in three experimental papers submitted for pulniicatpeer

reviewed journals and duplicated here in Chapters 2, 3 and 4.

Tortuosity measurement and analysis system

The experiments to correlate arterial tortuosity with vascular dsease
conducted with an arterial tortuosity measurement and comparison system dévelope
the course of this research. The system included plugins to ImageJ [51], an imag
processing tool. The plugins handled image processing tasks such as filtering,
segmenting, calculating the centerline and selecting arteries tioogty measurement.
Arterial tortuosity measures were computed from centerline data lemhipithe
database and analyzed using the statistical environment, R [52]. Thecatatisdlysis
environment and relational database were also used to organize data by case@lnd contr
group for comparison between groups. This system was used in all of the expérimenta

papers.
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Experimental papers

In Chapter 2 the first paper “Comparing Performance of Centerline Algwsi
for Quantitative Assessment of Brain Vascular Anatomy” tackles thesisggenerating
centerlines for all arteries of interest. Centerlines are negdssdhe tortuosity
measurements. To measure tortuosity in a large range of differerdsartenterline
algorithms must be able to consistently make centerlines that accuegedgent the
anatomy of the arteries. In this experiment different Dijkstra basedloeat@gorithms
are compared for their ability to create accurate and stable asggan numeric
phantoms of different shapes and in MRA brain images. One of the most challenging
arteries to calculate centerlines for is the internal carotid gitéa) in the brain.
Anatomically, the ICA has a looping structure where distant inferior (siregm) and
superior (or downstream) portions of the vessel are nearly adjacent. Duringnsatgon
of the ICA from the background, the adjacent portions of vessel are often erroneously
connected, resulting in a shortcut or “kiss” which subsequently affectsiiterine
extraction. The study measures and selects a centerline algorithrarttthtiar
centerlines around the difficult loop of the ICA without taking the kissing shortcut.

In Chapter 3 the paper “Validation of an Arterial Tortuosity Measure wit
Application to Hypertension” further refined the centerline algorithm and oles® and
tested a tortuosity measurement method. Tortuosity was measured bgtocayddFM
tortuosity curves rather than single DFM tortuosity measurements aed tes
underlying DFM tortuosity measurement on numeric phantoms and on hypertensive and

control populations. This paper deals with many of the challenges of reusing existing
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image data. The images in this study truncated arteries at differerg p@king direct
comparison at the same end-points impossible. The study uses DFM tortupsaty to
compare truncated arteries. The study also has image data for theutgaets acquired
at different resolutions making it possible to measure the effect of resotutithe DFM
tortuosity metric and develop a strategy to reduce the resolution effectutigeaso
compares negative controls collected with different methodologies.

Hypertension was an interesting vascular disease for arterial tortuos
measurement. Hypertension had been correlated with increased tortuosiiy afiditar
arterioles from autopsy photomicrographs [27]. Large arteries observed in ¥ivo wi
MRA images of living subjects have not been correlated with increased tortoefite
this study. The study included a set of hypertension data acquired at 7.0 T whieh is
The 7.0 T data set contained images of large diameter arteries like the |@Addthe
small diameter lenticulostriate arteries not seen at lower fieldgtn.

In Chapter 4 the paper “Medical Record and Imaging Evaluation To Identify
Arterial Tortuosity Phenotype in Populations At Risk For Intracranial Arseosy
examines the relationship between arterial tortuosity and intracranialyanes. In a
previous study on the mechanisms of arterial and aneurysmal tortuosity, time elas
protein of extracted arteries was degraishedtro weakening the arterial walls causing
increased arterial tortuosity and aneurysmal dilations [1]. There werevioys studies
on patients with intracranial aneurysms. This study looked for increasddldaguosity
in populations with familial intracranial aneurysms, unaffected memberstof hig

intracranial aneurysm risk pedigrees and in other patients with intralcazeurysms.
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Figure 1.1Arterial imaging modalitite: (Left) Maximum intensity projectiol
(MIP) image of TOFMRA image displays flowing arterial blood. (RighBpth
veins and Heries appear in the computed tomography angidyyg@TA) seg-
mented blood vessel image making arteries diffitaldistinguish
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Figure 1.2.The bulk magnetization vector M precesses abousthéc magnetit
field vector B at resonance frequeneywith longitudinal component , and
transverse componentat tip angleo.
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Abstract

Attributes like length, diameter and tortuosity of tubular anatomicaltates
such as blood vessels seen in medical images can be measured from centesdines. Thi
study develops methods for comparing the performance of centerline algo®bwvesal
centerline algorithms exist but there are challenges to calcutamgrlines. The starting
point of a vascular tree can affect calculated centerlines. Vessetsogalack touching
or kissing themselves causing problems for centerline algorithms. Thisostuelpps
methods for evaluating the accuracy and stability of centerline algorithms.

Images of human brain arteries were acquired with time of flight (FiO&jynetic
resonance angiography (MRA) and the arteries were segmented. Dghtesst paths
based centerline algorithms were developed with different cost functibesobt
functions were the inverse modified distance from edge (MPD#Ehe segmentation, the
center of mass (COM) of the segmentation, the binary thinned (BT)-M&feEhe BT-
COM. The algorithms generated centerlines trees of simulated numenidatase
phantoms and of segmented brain arteries. The accuracy of the centgdmtbrak
were measured by the Root Mean Square Error from known centerlines adretectr
phantoms. The stability of the centerlines was measured by starting tediceritee
from multiple points and measuring the differences between the centexbseThe

accuracy and stability of the centerlines were visualized by oveglagnterlines on the
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vasculature images. The visualization was used to assess algorithm pecona
kissing vessel in human brain arteries.

The BT-COM cost function centerline was the most stable in numeric phantoms
and human brain arteries. The MOFEsed centerline was most accurate in the numeric
phantoms. The COM based centerline handled the kissing artery in the human brain in 16
out of 16 cases whereas the BT-COM was correct in 10 out of 16 and;MiaEEorrect
in 6 out 16.

The COM based centerline algorithm handled the kissing arteries of the brain
images and will be used for quantitative assessment of vascular morpholagy in la
studies. The highest stability did not correspond with the highest accuracy in numeric
phantoms. The highest stability and accuracy in numeric phantoms also did not
correspond to the best centerlines in subject data. The centerline visualizzttaasn
were critical for assessing centerlines in subject data.

Key words: Centerline, MRA, stability, vascular.

Introduction
Vascular diseases can be diagnosed and characterized by abnormdiitesl i
vessel morphology observed with three-dimensional medical imaging technighesssu
magnetic resonance angiography (MRA). An example of this includes tte¢ation of
the severity of hypertension with tortuosity or twistedness of arterieskjHit al., 2002).
Currently, nearly all medical evaluation of 3D images is performed quaditaby

visual assessment by specialists. Quantitative assessment of vags®logy including
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radius, length and tortuosity (twistedness) measurements by computer softved
make comparison of measurements across medical centers, tracking dwangise,
and automated screening for vascular disease possible. Quantitative assessmery
morphology can be made from centerlines of arteries (O’'Flynn et al., 2007; lets#ge
2009). Arterial centerlines have also been used to measure the tortuosity of bletsl vess
(Bullitt et al., 2003). Centerlines can be used to measure artery lengtredarsd r
Change of radius in arterial centerlines can potentially detect stemasaseurysms
(Frangi et al., 1999; Kang et al., 2009; Lesage et al., 2009). Centerlines can log used f
many tasks involving the quantitative analysis of blood vessels.

Stable and accurate centerline algorithms are needed to quantitateasyre
and investigate the blood vessels and the effects of disease on blood vesselyg.@tabilit
the centerline is the ability of an algorithm to create the same ¢eatfent the same
image data with different input parameters, primarily the starting pbihie centerline
tree. Accuracy refers to how close a calculated centerline is to an edéadlime for a
numeric phantom. Centerline accuracy and stability measurement methodgded to
select the best algorithms for generating centerlines for a quanttegkieAccuracy and
stability visualization methods are needed to know where centerlines areg@ocura
inaccurate, stable or unstable. Different studies will have different are#srefst; the
researcher will want to know if the centerline is accurate and stable irethefanterest.
For example intracranial aneurysms typically occur in the circle disVdrteries, which
experience higher blood pressure and pressure variations than the peripherahiatracr

arteries (Arimura et al., 2004). Thus, for the purpose of aneurysm detecisomoite
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important that the circle of Willis arterial centerlines are stalilereas the stability of
the peripheral arterial centerlines is less important to aneurysmrassess

The purpose of this study is to develop methods for measuring and visualizing the
accuracy and stability of centerline algorithms and select the lakttdg algorithm for
creating centerlines in central arteries of human brain MRA image=iartenterlines
have the potential for developing diagnostic and descriptive measures oavascul
diseases. The methods developed here may also be used to quantify tubular structures in

any three-dimensional image.

Materials and methods

Source images

In this study we collected images: a computer generated helical algghisline
phantom (Fig. 2.1 A, B), two computer generated branching phantoms with background
noise from Aylward (Aylward and Bullitt, 2002) (Fig. 2.2 A, B) and eight human brain
Time of Flight (TOF)-MRA images (Fig. 2.3). The helical phantom was gesteiat
calculating points on a helical and straight lines then rolling a ball with a & raakes
along the points. The eight MRA image data sets were selected from our ongoing
intracranial aneurysm study approved by the University of Utah InetialtReview

Board. Additional information on the data set is in the Source Images supplememnt. secti
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Tools
Image processing tools for this study were developed in Java with the ImageJ
toolkit (Rasband, 1997; Burger and Burge, 2007). Results were stored in the MySQL
database (available at http://www.mysqgl.com/). Graphing results arsisghtinalysis

were performed with R (R Development Core Team, 2009) .

Segmentation

The unsegmented computer generated branching phantoms and the eight human
brain MRA images were segmented from the background noise and brain tissog leavi
the simulated arterial tissue (Fig. 2. 4 A, B) or the human brain artesia¢ {Eig. 2.5)
with a z-buffer segmentation (ZBS) algorithm (Parker et al., 2000; Chapmian2€04).
The point where the three branches of the branching phantoms meet is narrow so that the
region growing threshold employed during the ZBS segmentation had to be lowered in
order to keep the segmented branches all in one connected component (Fig. 2.4 B).
Additional details of the segmentation process are covered in the Segmentation

supplement section. The result of segmentation is the extracted aréerial tr

Cost function segmentation preprocessing
To generate a centerline through the segmented arteries a cossigas@to
every voxel (a three-dimensional pixel) in the extracted arterial toeg.dHferent costs

functions were: MDFE COM, BT-COM and BT-MDFE
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The MDFE cost function calculates a value for each voxel that is higher for
voxels closer to the edge of the arteries and lower for voxels closer to the mittdle of
arteries by first calculating the distance from edge (DFE), wyiodithe DFE (MDFE) to
break ties and inverting to make the costs higher on the outside and lower on the inside
(Zhang et al., 2005) (Fig. 2.6).

The center of mass cost function loops through every voxel in the segmentation
and calculates the average X, Y and Z positions of each voxel and up to 26 three-
dimensional neighbors as the center of mass, recording each voxel's centss afhioha
cumulative distance moved from the original position to each subsequent center of mass
through multiple iterations. At each iteration, the center of mass dabcutlepends on
the positions of the previous iteration. The center of mass calculation is cepealtall
voxels have been moved a minimum of 30 times. Increasing iterations increadéy sta
only minimally after 30 iterations. The cumulative distances moved are dividée by t
minimum nonzero distance moved in the entire segmentation and the result is cubed.
Voxels at the segmentation edge begin moving with the earliest iterationsdrd te
move the farthest, generating high cost scores. Voxels near the center ithdagew
iterations and for short distances, generating low cost scores (Fig. 2.7).

The BT centerline algorithm (Homman, 2007) eroded the segmentations to single
voxel-width skeletons (Fig. 2.8 A, B and Fig. 2.9). The brain artery skeletons ar¢oclose
centerlines but have short segments running across wide arteries (Figh2.8keletons
were used as inputs into the MDFE COM cost functions to utilize the existing

software program developed for the inverse MDFE and COM centerlines. TheiDFE
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always be one for every voxel and not change the skeleton. The voxels will typically only
have 1, 2 or 3 neighbors in the COM reducing the amount of movement compared to the
earlier algorithms.

The result of preprocessing are cost values for every voxel in the exadetieal
tree. The costs will be higher at the edge and lower in the middle. The binary thinned
arteries will only have one cost value. The centerline of the arteries wiledewest

cost path through the cost function.

Centerline algorithms

To calculate the centerline the precomputed arterial tree costs werentopghe
Dijkstra shortest paths algorithm (Dijkstra, 1959). Dijkstra’s algoritafoutated the
lowest cost centerlines from every voxel back to a selected starting r@bdt Vogn the
paths less than 30 voxels long were removed leaving a skeleton centerline adrthke art
tree (Zhang et al., 2005). The root of the MDB&sed centerline trees was the maximum
MDFE, the thickest point in the arterial tree (Zhang et al., 2005). The root offithe B
MDFE; based centerline tree was the most central voxel in the arterial tre@oTloé r
the COM based centerline tree and binary thinning-center of mass (BT-G&xg)
centerline trees are voxels with the lowest center of mass score. Iretii@gtied
starting root points the root closest to the center of the image was seldsed. T
centerlines tend toward the lower cost middle voxels of the preprocessed séignenta
(Fig. 2.10 A, B). Shortest paths centerline generation on the binary thinned input has the

effect of pruning off short branches that are running across artery width2 (Fig The
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results of the centerline algorithms were single voxel width centerlinetske of the

arterial trees.

Stability measure

Stability of the centerline was measured by generating the ceateftir the same
segmentation starting at different root points. The first centerlingstiegiated from the
root as described for the centerline algorithms. The arterial tree etglpbthe largest
connected centerline tree were used as roots for a second round of centerlaties. Sm
centerline trees of segmented arteries not connected to the largest sectiaisearded.

To measure and identify stable and unstable centerlines, the first round and all
second round centerlines were accumulated in one image. The most stableeenter
points occur in the same voxel for all N centerline root points. The stability racfasur
an image was the percentage of centerline voxels in the accumulated inhedje cal
centerline for all of the centerline roots.

To visualize the accumulated centerlines the inverse of the accumulation was
plotted in 3-D with the surrounding segmentation. This makes unstable voxels that are
called centerline by fewer than N roots brighter than their neighbors andtieezatily

visible (Fig. 2.12 left column).
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Accuracy

Accuracy of the centerlines of the phantoms is measured by the root mean square
error (RMSE) of Euclidean distances from the algorithm generated ceatgdints to
the nearest known centerline point for a phantom. The centerline points used to generate
the helix line phantom were known. The known centerline points for the helix line
phantom were sparse (Fig. 2.1B); the algorithm-derived centerlines had muee poi
because the centerlines extend out to last voxel at the end while the known ceitger poi
used to generate the phantom stop at one radius distance from the edge of the phantom as
seen in Fig. 2.1B. Therefore, the RMSE was computed only over the set of known points
and their nearest centerline determined neighbors. Aylward and Bulliwwgfd/and
Bullitt, 2002) provided ideal subvoxel accuracy positive control centerline coordinates
available in a text file, for the branching phantoms with noise. The RMSE of these
phantoms was calculated between each centerline point determined bjkstr@ D
algorithm and the closest subvoxel positive control point. The accuracy of the helix line
phantom was visualized by plotting each algorithm centerline coordinate in red
accumulating for each starting root and plotting the positive centerlineotpaints in
green. The red and green color together made yellow showing where thinial gord

positive control points were the same and where they differed (Fig. 2.12 right column).
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Results
Phantom centerline stability and accuracy

The centerline tree of first helix line phantom (Fig. 2.1B) had seven ends. The
first starting point in the thickest point of the phantom followed by starting poitite at
seven ends made total of eight centerline trees for the stabilitysemdiythis case, the
inverse MDFEcost function was the least stable with the lowest stability score (Table
2.1). Instability occurred throughout the helix at bifurcations and at line ergig¢f.12
A). The binary thinning skeleton only left one possible highly stable centerlineonté s
instability occurring at ends when the skeleton was passed to either the Mixd#Eeor
COM programs. The COM based centerline was more stable (higher staioitgy than
the inverse MDFBEbased centerline (Table 2.1).

The MDFE cost function was the most accurate (lowest RMSE) despite being the
most unstable (lowest stability score) (Table 2.1). The accuracy istiah shows the
positive control green, algorithm red and overlapping yellow centerlines (Fig.i@t2 r
column). The inaccuracies occur at ends and bifurcations and in the helix portion of the
phantom. The locations of the inaccuracies are similar to the locations oflitys(&m.

2.12). The COM based centerline lost more accuracy than the other algorithms bending
around bifurcations as seen by the green color in Fig. 2.12 D. The binary thinning
algorithms were frequently a few voxels off as seen by the green in theFhgli2.(.2 F,

H) accounting for the high RMSE of accuracy.
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Stability and accuracy on phantoms with noise

The MDFE based centerline algorithm had the lowest stability and best accuracy
(lower RMSE) for the lower SD 10 noise phantom. For the higher SD 20 noise phantom
the COM and binary thinning paired with COM had lower RMSE. Binary thinning
followed by the COM based algorithm consistently outperformed binary thinning
followed by the MDFEbased algorithm with higher stability scores and lower RMSE of
accuracy. Therefore the rest of the trials on MRA data used the binary thintaugetbl
only by the COM based algorithm for centerline generation. The number cfrgriome)
plus secondary starting root points was three for most algorithms and four for tlye binar
thinning followed by the COM based algorithm because the initial start poirefdirst
round centerline was near an end of the branching object for the tests with thireg start
roots. The binary thinning followed by COM had the highest stability besides having the
extra centerline tree (Table 2.2). The bright end of the lower right branct.ig.E38 B
shows that much of COM based algorithm instability happens at the end of the branch
because one of the starting roots occurred here, shortening the centerline. When the
centerline was rooted at another branch end the centerline extended longdsrantthis

end. This was an example of how the starting point alters the centerline tree.

Artery centerline stability
The running time for calculating COM costs for arterial trees was under 60
seconds for a total time of 3 to 5 minutes to generate the centerlines for alhtisice

algorithms. Stability images from the segmentation are shown in Fig. 2.&4jid% rof
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instability was seen in the left internal carotid artery in Fig. 2.14 A. Ingksel
segmentation, the internal carotid artery siphon frequently loops back and toudhes itse
creating a shortcut for the centerline to pass through. The Mi#sSEd centerlines pass
through the kissing point (Fig. 2.15 A and Fig. 2.16 B). Dijkstra's shortest paths on the
segmentation cost functions of the MQEEEd COM based algorithms produce only
nonlooping branches. In the MDHRBased algorithm, the first centerline passes through
the kissing point and subsequently two centerlines extend out from the kissing point to
end on the distant edges of the siphon arterial wall (Fig. 2.14 A and B and Fig. 2.16 B).
The COM based algorithm produced high scores near the kissing point, even though the
scores in the kissing point are low (Fig. 2.15 B), causing the first centerline townda
the siphon loop (Fig. 2.14 C, D and Fig. 2.16 B). Shorter centerlines are subsequently
generated by Dijkstra's algorithm (Dijkstra, 1959) from the kissing point totehd a
longer centerline. However, these shorter centerlines fall below the 30lengt
threshold and are removed leaving the final centerline tree (Fig. 2.16 B). Th@BIT-C
based centerline consistently forms a loop with one part of the centerline gassugh
the narrow kissing point (Fig. 2.14 E, F and Fig. 2.16 C). Failing to pass a centerline
through the internal carotid artery (ICA) siphon loop is a common centerline fardre
is used as a measure of centerline accuracy in the MRI images simcis theigold
standard centerline for computing the RMSE as with the earlier phantoms.

As with the phantoms the COM and BT-COM based centerline had higher
stability than the MDFBEbased centerlines. We recorded when the centerline succeeded

and failed to pass through the ICA siphon (Table 2.3). Success meant that the centerline
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passed through the ICA without touching the edge of the segmentation for all rgots; an
failure of one tree was counted as a failure. The M&Bed centerline would

frequently pass through the ICA siphon correctly for some starting root lochtionst
others leading to its lower mean stability measure.

A one-way analysis of variance (ANOVA), using thecommand from R (R
Development Core Team, 2009), of the centerline accuracy in the 16 ICA siphons by
algorithm (MDFE, COM, BT-COM) showed a significant difference p-value = 3.62e-04.
The COM was significantly more accurate than BT-COM, p-value = 1.26e-02.@W
was more accurate than MDHARut not significantly different, p-value = 9.01e-02.

One-way ANOVA showed the algorithm significantly affects the staibibt
value = 1.63e-06. As the centerline stability box and whiskers plot shows the BT-COM
based algorithm and COM algorithm are very close in stability, p-value = 0.846
indicating no significant difference. The MDF&Egorithm produces a significantly less
stable centerline than the BT-COM based algorithm, p-value < 0.0001 (Fig. 2.17 A and
Table 2.4).

The first run of different centerline algorithms can produce differing ntsrdie
tree ends for roots of following centerline trees generated to measuli¢ystslore ends
and more centerline trees create more opportunity for instability. Theloente
algorithms did not produce significantly different numbers of tree ends (p-vallB62).

The number of tree ends used as roots does not account for the instability of the MDFE
centerline algorithm as seen in Fig. 2.17 B and Table 2.4. Table 2.4 summarizes the

centerline stability data by algorithm recorded in Table 2.5.
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Discussion

Our study showed the COM based centerline algorithm was more stable and
correctly calculated more centerlines around the kissing ICA loops tharh#re ot
algorithms tested using the newly developed centerline stability mesasdire
visualization of ICA loop centerline. The stability measurement styategnonstrated
the consistency of the COM based centerline algorithm in the kissing ICA loops. The
stability measurement strategy of starting the centerline treffeaedt points can be
reused to test other centerline algorithms for use on any tubular structussafihgy,
and phantom accuracy, visualization methods developed here identified whereaicyaccur
and instability were occurring. These methods are also usable for a ngdeafa
centerline algorithms and applications of centerlines to anatomical studies

This study is a first attempt to address the problem of kissing vesselagKissi
blood vessels are common in the segmentations of the brain and other anatomy. The
method of having the centerline follow the middle of the mass of the artery solved the
kissing vessel problem in the ICA loop in this study. Using mass in the centerline
algorithm will be useful in any anatomical case where the true anatioreitterline is in
the largest mass and noise creates smaller adjacent structures gs#ie ve

The measure of stability from multiple starting points was able to detethe
COM based algorithm handled the ICA kissing siphon from all starting endsrenthei
stability of the algorithm. It would be computationally impractical to $ésbility by
starting the stability measure from every point in the segmentation orrevev¥ery

point in the first centerline tree. By starting the centerline frees all ends of the first
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centerline tree the centerline algorithm will approach the regions obilitstsuch as
kissing ICA loop and all bifurcations from all directions thus testing the ahgorfitom
all directions. The visualization of stability and accuracy allowed us tthaethe
instabilities and inaccuracies are mainly occurring at kissing vesses poidt
bifurcations.

The COM based centerline algorithm generates correct centerlineseswhere
the artery is much larger than the kissing points and is resistant to adjiegem@ntation
noise as long as the noise is smaller than the artery. The COM based centavrliateg
toward the center of the largest mass and in the case of the ICA siphon teenag®eis
in the loop and kissing section is smaller contributing less to the center of the mass.

All the cost functions had inaccuracies in the loop of the helix. The curve of the
helix in the phantom is approximated to the nearest voxel and the centerline algorithms
also have to approximate voxel positions causing the inaccuracies and instability
frequently seen in curving centerlines. Curved centerlines often have stepged
appearance. Some applications of the centerline may require subvoxel smoothing of the
centerline to obtain smooth curves.

A limitation of comparing centerline algorithms by stability is tiet most
accurate centerline algorithm was not always the most stable lalgofihe BT
algorithm was inherently stable because it erodes the segmentation fouts@eé points
simultaneously to a single skeleton line. The BT cost functions, paired with MIDFE
COM, had consistently high stability while not having the highest accuracy in the

phantom or in the count of correct ICA siphon centerlines in the brain images. The BT
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algorithm removed most voxels of the segmentation in the skeletonization stey l@avi
limited path for the centerline generation from the skeleton allowing the Bfithlgs to
maintain high stability.

Highest stability also did not correspond to highest accuracy in the no noise and
low noise phantoms where the MDHtased algorithm was least stable but most
accurate. In the brain images the COM based algorithm was clearlyaccosate in the
ICA siphon and was not significantly less stable than the most stable BT-C&2id ba
algorithm, while having the lowest stability in all phantoms and brain images ti&EMD
based centerlines were the most accurate in the no added noise helix line phajucen (Fi
2.1 A, B) and low SD 10 noise (Figure 2.2 A) phantoms. The RMSE of accuracy of the
MDFE; centerlines increased from 0.393 in the SD 10 noise phantom to 0.674 in the SD
20 noise phantom (Table 2.2), a greater increase than the other more stableTGOM, B
MDFE; and BT-COM based algorithms. It makes sense that the least stabtéreente
would lose accuracy the fastest as noise increases. As noise indneagabitity of the
algorithm becomes increasingly important to maintaining accuracy. The MiaB&d
centerlines were the least accurate in the ICA siphons of the brain ithagesentain the
noise of the MRI.

The current study tested a limited number of centerline algorithms both liyterna
and externally developed. The stability measure and visualization of invagdeysare
usable by researchers testing algorithms for particular centexliraeton applications
of tubular anatomy. There may not be an ultimate singular centerline algsuttable

for all applications. The COM based algorithm which was best in this studytfactxg
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the ICA siphon loop is prone to missing small dim arteries near larger bragteages.

An application looking at a small dim artery would have to use another algorithm making
the availability of comparison methods important. Tubular structures occur frgguent
anatomy. In addition to the arteries studied here other anatomical strutidred svith
centerlines include veins, lung bronchioles, large and small intestine, nervesahdne

any other tubular anatomical structures.

Conclusion

Centerlines can be used to measure features of tubular anatomical estruihis
study expands the range of structures that can have a centerline calctiatkidsihg
ICA siphon loops could not have a centerline made with the existing MIZR&ng et
al., 2005) and BT (Homman, 2007) algorithms. The COM algorithm developed here
made a centerline possible in the ICA siphon loop. The centerline stability measur
showed that the COM algorithm handled the kissing ICA siphon starting from any
direction showing that the COM algorithm is stable in this case. The stabdasure
can be reused to test centerline algorithms when evaluating centerlinthaigdor

other tubular anatomical structures.
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Figure 2.1. Electronic phantoms. (A) Shaded surering of phantom. (B)
Maximum intensity projection of phantom with cerliee points used to generate
the phantom.

Figure 2.2. Aylward phantoms with background iniénp400 and tubular objects
with cross-sectional intensities in a parabolicfgeoranging from 150 at the
edge to 200 at the middle of the object with insieg Gaussian noise. (A) Phan-
tom with Standard Deviation (SD) 10 noise added. PBantom with SD 20

noise added.
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Figure 2.3. Magnetic resonance angiography (MRAagms of patient from 3 T
MRI scanner viewed from the top with backgroundibriassue.

5 5

Figure 2.4. MIP projects of the segmented compugtmnerated branching phan-
toms. (A) SD 10 segmentation with the seed histogragion growing threshold
set at 0.15. (B) SD 20 segmentation with the semstogram region growing
threshold set at 0.13.
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tion in 3D.

Figure 2.6. Brain artery segmentation inverse MedifDistance From Edge
(MDFE;) cost function score cross section. Brighter ighl®r cost, darker is
lower cost.
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Figure 2.7.Brain artery segmentation Center Of Mass (COM) dasttion score
cross section. Brighter is higher cost, darkerowwdr cost

Figure 2.8 Binary thinned phantoms. (A) SD 10 binary thinrealeton. (B) SC
20 binary thinned skeleto
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Figure 2.9 Maximum intensity transverse projection of binahynned arteries
Binary thinning of segmeted artery data produces a skeleton of the seca-
tion with lines running frequently across the aisi
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i,
Figure 2.10Cross sections of centerlines in artery segmematmst functions
The centerlines line in the low cost darker midddéshe segmented arteries. (.
COM cost function. (BMDFE; cost function.



51

L1 l| )
Figure 2.11. Maximunintensity transverse projection of binary thinneteaes.
The skeleton is turned into a centerline by prooesshe skeleton with Dijkstra
shortest paths algorithm and removing lines less1tBO voxels long. The fin:
centerline is shown bright witthe removed short lines shown in the ding-
mentation background intensi

1
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Figure 2.12 Phantom stability and accuracy-H) Phantom stability and au-
racy visualization. A,C,E,G maximum intensity projen (MIP) of stabiity im-
ages. B, D,F,H shows zoomed in and rotated MIP esagf accuracy images
show where the known green centerlines differ fittwa red algorithm cenr-
lines and were they overlap in yellow- B is the MDFE algorithm, (-D is the
COM algorithm, E-F$ the BT-MDFE; algorithm, G-H is the BTGOM alco-
rithm.
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Figure 2.13 Stability images showing the inverted stabilignterlines of the
branching phantom with SD 20 Gaussian noise. (A)R\&; stability lines on the
segmented imge. (B) COM stability lines on the segmented ima@®). BT-
MDFE; stability on the skeleton. (D) E-COM on the skeleton.
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Figure 2.14 Maximum intensity projections of stability imagelsosv the centr-
line instability brightly. &) MDFE; algorithm centerline transverse MIP. (
MDFE; cost scoring the centerline passes through thengsiCA siphon. (C)
COM algorithm centerline transverse MIP. (D) COMstagcoring the centerlin
takes the larger wider loop around the ICA siphastead of the narrow kissir
point. (E) BT-COM centerline transverse MIP. (F) -COM centerline shortcut
through kissing vessel loc
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Figure 2.15 Cost function cross sectic (A) The MDFE cost function score
showing a kising ICA siphon loop with the centerline passingotigh. (B) The
COM cost function scores showing a kissing ICA siptwith no centerline pis-
ing through.
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Figure 2.16. StabilityMIP images of segmented kissing ICA siphon loop)
Shaded surface depth image of ICA loop shows tlésikg point. (B) MDFI;
centerline passes through narrow kissing point. COM centerline draws lin
around low scoring siphon loop. A centerline iade through the narrow kissit
point but is removed by thresholding to eliminab® centerline lines segmen:
The COM centerline appears to come closer to tsadgedge than the out
edge of the bend. (D) The F-COM centerline passes through thenoar kissing
point.
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A Centerline stability B Centerline tree roots
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Figure 2.17 Algorithm stability (A) Box and whiskers plot showing the grea
instability of the MDFE (labeled DFE) centerline algorithm compared to Ct
and BT-COM centerline algorithms. (B) The threenterline algorithms produc
a similar number of centerline tree ends used @s toots for the centerlinea-
bility analysis.
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Table 2.1. Helix line phantom stability and accurac

Algorithm Stability RMSE of Accuracy
MDFE; 0.880 0.240
COM 0.980 0.610
BT-MDFE; 1.000 1.833
BT-COM 1.000 1.830

Table 2.2. Comparison of algorithm stability and¢d@acy on phantoms

Phantom Algorithm  Number of Stability RMSE of Accuracy
trees
SD 10 MDFE 3 0.930 0.393
SD 10 COM 3 0.960 0.463
SD 10 BT-MDFE 3 0.910 0.438
SD 10 BT-COM 4 1.000 0.437
SD 20 MDFE 3 0.946 0.674
SD 20 COM 3 0.950 0.528
SD 20 BT-MDFE 3 0.920 0.519
SD 20 BT-COM 4 1.000 0.457

Stability and accuracy comparison of the MODFEOM, BT-MDFE and BT-
COM algorithms on branching tubular phantoms witdhnslard deviation (SD) 10
and 20 distributed Gaussian noise.

Table 2.3. Comparison of centerline algorithms oRMbrain images

S 03 v, <.E S o S - TS
£ <58 5458955 588 I5% £ S2=
5 053 Eostccef 229 cEo 28 cf3
> =238 9T2g9BE5E ZE5S gS5 =8 838
< 9 c m o 2 " 9 Z nov
MDFE; 6/16 0.375 1/8 38.875 14.672 0.677 0.076
COM 16/16  1.000  8/8 35125  13.314 0.877  0.042
BT-COM 10/16 _ 0.625 __ 4/8 37500  13.617  0.883 _ 0.068

Comparison of centerline stability, number of cehte tree roots and correct-
ness of the centerline through the internal caratigry (ICA) siphon between
centerline algorithms on 8 brain artery MRA images.
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Algorithm Mean stability Mean number of trees
BT-COM 0.88275 37.50000
COM 0.87650 35.12500
MDFE; 0.67737 38.87500




Table 2.5. Algorithm centerline stability measuretse
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Sample DFE DFE COM COM Thinning Thinning
Trees stability Trees Stability Trees Stability
445 40 0.692 38 0.867 38 0.903
443 53 0.644 41 0.909 41 0.937
136 41 0.641 37 0.886 39 0.842
20 34 0.673 28 0.924 30 0.882
49 65 0.529 62 0.848 65 0.740
807 19 0.762 18 0.793 23 0.953
788 33 0.713 33 0.879 42 0.877
656 26 0.765 24 0.906 22 0.928
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Supplementary materials

Source images

The sample objects used for testing segmentation and centerline algorithm
stability and accuracy included artificial phantom data and eight Timegbit FTOF)

MRA image data sets. A binary valued helix line phantom was created by atiogaa
sphere along a path defined by straight lines and helices. Two computetagnera
branching gray-scale phantoms with background intensity 100 and tubular objects with
cross-sectional parabolic intensity profiles ranging from 150 at the edge toth@0 at
middle of the artery with added Gaussian noise of standard deviation 10 and 20 were
obtained from (Aylward and Bullitt, 2002).

The eight MRA image data sets were selected from our ongoing intrdcrania
aneurysm study approved by the University of Utah Institutional Review Boarele Df
the eight subjects were selected from high aneurysm risk family ped(§aetam et
al., 2004). Six subjects have intracranial aneurysms, including the three kigh-ris
subjects. The patients were imaged with TOF-MRA on a Siemens TIM Trio 3.0 T MRI
scanner. The images were acquired with anisotropic voxels (0.3 X 0.3 X ?).amuin
were zero fill interpolated by a factor of 2 in all directions for finale&hsions of 0.15 X

0.15 X 0.3 mm.

Segmentation
Each artery segmentation takes approximately 3 to 5 minutes on a 2.83 GHz Intel

Core 2 Quad CPU running Linux. The branching phantoms and the arterial blood vessels
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were segmented from the background using a Z-buffer segmentation and regiowggr
method (Parker et al., 2000). In the Z-buffer segmentation (ZBS) algotilerZ-buffer
stores the location (Z) along the project direction of the brightest point in tige ahang
each ray. In a Z-buffer image formed by displaying the locations of the btigbtesds,
voxels that project from arteries appear smoothly connected becausea téigh
probability that the high intensity vessel voxels will project and that adjaceetponis
will select voxels in close axial proximity. In extended regions of unifogmasiwhere
voxels project from background and other nonvessel tissues the Z-buffer imagetends t
appear noisy because there is little probability that voxels in adjacent jonagesihare
similar axial positions in the source image volume. Seed voxels for regiomgrave
obtained by joining smoothly connected voxels in the Z-buffer. The smaller phantoms
used seeds of 10 connected voxels and the larger brain images used seeds of 30
connected voxels. The 3D segmentations are completed by intensity-based reg
growing in the source images starting from the ZBS seed and iteratoaityg voxels
with intensity over a threshold. For the brain MRA images the region-growing trateshol
is determined from a histogram of the seed intensities as the maximumtynbéise
bottom 15 percentile of the seed intensities. The seed threshold was selectéalge fill
aneurysms in our image collection.

The resulting vessel segmentations often contained internal holes in regions of
low signal intensity in the source images caused by slow or recircukdtiad flow.
Holes were filled by finding empty bubbles completely surrounded by anerials as

determined by connected component analysis (Cormen et al., 2009). After this large hol
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filling step, individual voxels were filled in that had 21 of 26 neighboring arteriallsoxe
within a radius of 3 voxels as in (Zhang et al., 2005). This hole filling was repeated|
applied 3 times and then completely surrounded bubbles were filled once more. The hole
filling parameters were selected to completely fill aneurysms iretited subjects.

To eliminate small kissing arteries in the brain image segmentatioredsvess
than 0.3 mm from the external surface of the segmented vessels were deletib@ from
segmentation. The voxel size is this study is 0.15 X 0.15 X 0.3 fitmerefore all voxels
less than 0.3 mm from the edge of the segmentation were removed, meaning that one
voxel in the transverse x, y plane is removed. This reduced segmentation noise and only
resulted in the loss of smaller peripheral blood vessels. This was acceptalischaar

study focused on the performance of centerlines in the region of the carotid siphon.
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Abstract
Background
Hypertension may increase tortuosity or twistedness of arteries. Wedaapl
centerline extraction algorithm and tortuosity metric to magnetansexe angiography
(MRA) brain images to quantitatively measure the tortuosity of artexgsel centerlines.
The most commonly used arterial tortuosity measure is the distance fattar (DFM).
This study tested a DFM based measurement’s ability to detect ircneasterial
tortuosity of hypertensives using existing images. Existing imagesresschallenges
such as different resolutions which may affect the tortuosity measureméserdif

depths of the area imaged, and different artifacts of imaging that rétjanag.

Methods

The stability and accuracy of alternative centerline algorithasswalidated in
numerically generated models and test brain MRA data. Existing imagegatbezed
from previous studies and clinical medical systems by manually reaeictgoglic
medical records to identify hypertensives and negatives. Images of mliffeselutions
were interpolated to similar resolutions. Arterial tortuosity in MRA imagas measured
from a DFM curve and tested on numerically generated models as well asnégés
from two hypertensive and three negative control populations. Comparisons were mad
between different resolutions, different filters, hypertensives versusvesyand

different negative controls.
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Results
In tests using numerical models of a simple helix, the measured tortuosity
increased as expected with more tightly coiled helices. Interpolation redsmédtion-
dependent differences in measured tortuosity. The Korean hypertensive pophgati
significantly higher arterial tortuosity than its corresponding negatimg@ population
across multiple arteries. In addition one negative control population of differentigthni

had significantly less arterial tortuosity than the other two.

Conclusions
Tortuosity can be compared between images of different resolutions by
interpolating from lower to higher resolutions. Use of a universal negativeobosats
not possible in this study. The method described here detected elevatatitartensity
in a hypertensive population compared to the negative control population and can be used

to study this relation in other populations.

Background

There is evidence that hypertension can affect blood vessel morphology.
Increasing stage of hypertension has been shown to correlate with increasesityoor
twistedness of white matter arterioles in autopsy photomicrographs [1{rdrstudies
on extracted dog arteries showed increasing blood pressure caused snoréaseosity

[2]. In contrast, one study in Korea found that while the number and branches of
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lenticulostriate arteries visible in Magnetic Resonance AngiogrédRA) images
decreased in hypertensive subjects compared to negative controls, an imcrease i
tortuosity was not seen in tortuosity measurements made on 2D projections of the 3D
data [3].

Tortuosity measurement has the potential to quantify morphological changes in
arteries due to hypertension. Tortuosity can be measured from MRA imagesieta
The process starts with MRA imaging of arteries, segmentation ofeartealculation of
centerlines, and calculation of tortuosity from the centerlines. Centesiimesfy
arteries and other tubular structures to a single line passing through the aofitha
artery making measurement of length and position possible. Measurements on the
centerlines can be used to calculate tortuosity scores.

The most commonly used tortuosity measure is the distance factor metrig¢ (DFM
that requires two end-points to measure the ratio of the léngibng the centerline and
the distancel between two end-points [4-10]. The DFM suffers some weaknesses. Some
arteries only have one anatomical end-point in an image volume and localitprtuos
scores can rise and fall along an artery. The DFM can miss local tortdegapding on
the selection of the two end-points. Furthermore, the comparison of DFM tortuosity
between multiple subjects can be challenging when the image volumes do not all share
the same two anatomical centerline end-points.

Centerlines can be calculated by Dijkstra's algorithm [11] which flmelshortest
or lowest cost path from any given point in the arterial segmentation tactedai@al

point or node. Each voxel (three-dimensional pixel) of the arterial segmentation is
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assigned a cost based on its position with respect to the goal. The longsstlmste

paths from the distal ends of the arteries back to a central goal node arg¢hees

[12]. The selection of the central goal node and cost function can affect the path of the
centerline.

Existing images from previous studies and clinical scans provide a large set of
data for analysis that saves the time and cost of acquiring new images. Raisting
images for comparison studies may present difficulties if the imayeslbeen acquired
with different parameters including the field strength of the magnetoaese imaging
(MRI) scanner, resolution, and field of view (FOV) placement. FOV placemgnt ma
affect whether the same artery segments are seen in both views. Ddterenesolution
may affect the tortuosity measure. Some vessels visible in MRA imagedigh 7.0 T
field strengths may not be seen at lower resolution and the high field may cawese phas
flow artifacts [13, 14] that can be mistaken for arteries by centerlgoeiddms, requiring
pre- or postprocessing for removal. Filtering can cause data loss andftectithe
tortuosity measure. Negative controls may be obtained from existing images fr
patients with nonvascular diseases but proof of being truly negative is needed.

Testing of centerline and tortuosity measurement algorithms can be cahdncte
numeric phantoms. Numeric phantoms are three-dimensional shapes generated by
equations in computer software with known morphology and centerlines. Algorithm
calculated centerlines can be compared to known centerlines to assessyaaudira

tortuosity measures can be tested on different shapes with known tortuosity.
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In this study we first test the stability and accuracy of our Dijkstredstast path
centerline algorithms by using different cost functions and goal node voxels enieium
phantoms and a sample of brain MRA images. We modified the classical DFM tyrtuosi
measurement to create a tortuosity curve that provides additional informatiostaxad te
the measurement on numeric phantoms. We applied the DFM tortuosity curve
measurement to existing brain MRA images. The images included data on &he sam
subjects filtered for noise with different filters and at differendlkggons to test the
effects of filtering and resolution on tortuosity. Hypertension data from thealkor
hypertension study [3] and clinical hypertension data from Utah weré testietermine
if the method can detect a correlation between hypertension and tortuosity ¢éties ar
visible in MRA images. Tortuosity was also compared between three negatitvels to

test similarity and determine if universal negative controls can be used.

Methods
Image analysis flow
The image data are analyzed by interpolation, filtering, segmentatioatlcent
extraction, tortuosity curve calculation, and reading of the tortuosity score. The
interpolation and filtering were optional steps. Segmentation was not needed ircnumer

phantoms without background noise. Details on the analysis steps are described below.
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Centerline cost functions

Cost functions for input into Dijsktra’s shortest path centerline algorithraded|
the modified distance from edge (MDFE) cost, center of mass (COM) andcgistam
edge (DFE)-COM. The DFE measures the distance of each segmentea\bgel t
nearest edge of the artery. The DFE exhibits a degeneracy which céarénteth
centerline extraction: adjacent voxels may be equally distant fronmibaiest respective
edges. The DFE is essentially a one-dimensional measure, ignoring atadeer
locations but one in its calculation. The MDFE was developed [12] to use local spatial
information to break ties between adjacent voxels with the same DFE values.

The COM function is computed by iteratively moving each voxel toward the
current COM of its adjacent neighbor voxels, effectively collapsing the dhjeatd.
For the objects considered in this study, 30 iterations of motion toward the centesof mas
were sufficient. Each iteration uses the previous iteration’s mean posiidiisea
cumulative distance moved by each voxel is recorded. To calculate the COM cost for
each voxel, the cumulative distances moved were divided by the minimum nonzero
distance moved in the entire segmentation and the result was cubed. Voxels at the
segmentation edge moved farther, generating higher cost and voxels neaté¢he c
moved shorter distances, generating lower costs. Because the COM icedadéaends
on the relationship between each voxel and its neighbors, it is highly sensitive to the
shape of the object, eliminating most of the degeneracies encountered with the DFE

algorithm.
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The DFE-COM cost function combines the two cost functions. During the
iterations of the COM algorithm, rather than assigning uniform weights to neighbor
voxels, a weighted center of mass was computed using the DFE values as weights.
Weighting gave more influence to the voxels with higher DFE in the middle okarter

when calculating the COM cost function.

Numeric phantom generation
Numeric phantoms were generated by beginning with defined single point width
centerlines. The centerlines were then discretized and placed withinetelistage
volume. All voxels within a predefined radius of the centerline voxels were igehti§
object voxels, simulating imaged arteries. A subset of the discretelicenkecations
were then used as positive controls for comparison with subsequent centerlicigoextra

(Figure 3.1).

Centerline stability and accuracy
The stability and accuracy of the DFE-COM cost-function centerlgaighm
was measured and compared to the separate MDFE and COM cost function centerline
algorithms on a set of numeric phantoms. The first numeric phantom considered was a
comb phantom with a three voxel radius. A second series of branching phantoms with

increasing image noise as designed by Aylward et al. [15] was alsadsteithally, the
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stability and ability of each algorithm to calculate centerlines ardwnahternal carotid

artery (ICA) siphon loop were tested with eight 3.0 T brain MRA image volumes.

Tortuosity measurement
Tortuosity was determined at every point along the selected centerlthabevi
DFM [5, 8] creating tortuosity curves. A single tortuosity measure akaentfrom each
tortuosity curve either at the end of centerline or where the DFM wasienomax
Selection of the DFM value depended upon properties of the arteries being maasured

is described in detail later.

Tortuosity measurement of phantoms

The DFM tortuosity measurement was tested on 3-D numeric helix phantoms of
increasing pitch with the DFE-COM centerline tortuosity measuremeath@lix
phantoms were generated by drawing a line with the equatipn frfcos(), r*sin(t),
(p*t)/(2n)] wherer was the helix radius anmwas the pitch of the helix and the radius of
the simulated arterial width was 6 voxels. The helix radiwas fixed at 100 and four
helices were generated with pitches®(20(2t), 20(2r) and 40(2) (Figure 3.2). The
guantitative DFM tortuosity scores were taken at the highest peak of thesttrt

curves.
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Segmentation

The arteries in the MRA images were segmented from background (Biglire
using the Z-buffer segmentation (ZBS) algorithm [IABS algorithm works based on
the assumption that arteries are the brightest structures in the imagaretisparsely
represented in the image volume, and that bright artery voxels will be gpelsk
together. The algorithm casts rays in the Z axis through the 3D image vohdimg fihe
z-position of the brightest voxel in each ray. The z-positions of clusters of btightes
voxels are then used as seeds for region growing and artery segmet@jtidmé¢ artery
segmentation is grown from the seed voxels by iteratively adding allbweigh voxels
with intensities over a predetermined intensity threshold. The intensity threstmkety
as the 28 percentile of all intensities of the seed voxels. Bubbles in the segmentation
caused by low intensity slow moving or recirculating blood were filled using ctethe
component analysis [17]. Small holes at the edges of the segmentation lee teyfil
iterative reclassification. In three iterations, hole voxels weedfivhen they were
surrounded by arterial voxels within 8 voxel steps along rays in 24 of 26 directions [12]

Finally connected component bubble filling was repeated.

Human source images for hypertension tortuosity study
The hypertensive subjects were drawn from two populations. Twenty
hypertensive subjects were identified by measurement of blood pressure at the
Neuroscience Research Institute (NRI), Gachon University of MedatideScience in

Incheon, South Korea [3] and twenty negative controls were collected in thestsaiype
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under approval from the Gachon University institutional review board and the Korean
Food and Drug Administration.

For the second population, MRA images were selected from existing brain MRA
images acquired from clinical hypertensive patients between 2008 and 2010 at the
University of Utah Medical Center. The selection of subjects and thepettoge study
of previously acquired images were performed with approval from the Universitglof U
institutional review board. All the Utah hypertensives (N =21) had a history of
hypertension in the medical record demonstrating that they were under tloé @are
physician, making this a controlled hypertensive population. Diagnoses coynmonl
associated with hypertension were allowed in the Utah hypertensivpaagdation
including transient ischemic attack, ischemic stroke, arterial diseead disease, sleep
apnea and atrial fibrillation. Other diseases that may independently\aftattiature
were excluded from the Utah hypertensive case population. These weregjiabater
[18], intracranial aneurysm, and genetic syndromes: hereditary hemorrhagic
telangiectasia, Marfan syndrome and Loeys-Dietz syndrome [19, 20]. The Utdlvaeg
control population was collected with IRB approval from clinical brain MRA irmage
acquired from 2008 to 2010 (N = 45). The Utah negative control population had the
following traits: subjects with headache, trigeminal neuralgia or haath#; available
brain MRA head images; no vascular pathology recorded in the radiology report; and no
indication of the above listed diseases associated with hypertension in thessubject

medical records.
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A third negative control population was obtained from a study on healthy aging
conducted in North Carolina, U.S.A. [21]. Vascular and psychological diseases were

screened out in this sample.

MRI scanners
The data were acquired on different MRI scanners. The NRI data set was@cquir
with a 7.0 T MRI scanner (Magnetom, Siemens Medical Systems, Erlangen,ng@erma
[22, 23]. The North Carolina data were acquired with a 3.0 T MRI scanner (Allegra,
Siemens Medical Systems). The Utah images were clinical scan®étbm.5 T (GE)

and 3.0 T (Siemens) MRI scanners at a range of image resolutions.

Arteries measured

The arteries measured, the start and end points of the centerlines consiikred, a
the points along the tortuosity curve selected for tortuosity measuremelatsaréoed in
Table 3.1. Examples of artery selection are shown in Figure 3.4. The measar@ment
the lenticulostriate arteries (LSA) were for the left-most, riglustimand a mean of up to
four prominent LSAs. Figure 3.5 demonstrates the tortuosity curves created for a
internal carotid artery (ICA) with the DFM measurement taken from takspef the
curves (Figure 3.5 top) and the left anterior cerebral artery (ACA) #i@nte
communicating artery (Acom)- right ACA (Figure 3.5 bottom) measurerakentfrom

the ends of the curves.
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Filtering the images

The NRI data required filtering before segmentation. The image datanveglian
filtered; then the filtered image was subtracted from the origireénThe arteries were
segmented from the subtracted image. The effect of filtering on tortuasstyested by
measuring tortuosity of the Korean hypertensive population treated withediffdters:
no median filter, 5x5 median filter and an 11x11 median filter. After the comparison the
5x5 median filter was selected and used for treating the NRI data beforendatiom.
An exception was made where no filtering step used on segmentations used for

measuring the small LSAs.

Resolution and interpolation

The images were acquired at several different resolutions. Lower resolut
images were sinc interpolated to higher resolutions [24]. For each subjeetNiRt
population, two MRA data sets were acquired: a thicker resolution (low 0.8x0.8x0.8 mm)
set and a thinner and higher resolution (0.23x0.23x0.36 mm) set. The lower resolution
data were interpolated to resolutions of 0.4x0.4x0.4 mm and 0.2x0.2x 0.2mm. The
clinical Utah data were acquired from 0.38x0.38x1.6 mm (and interpolated on the
scanner to 0.19x0.19x0.8) to 0.52x0.52x1.0 mm resolution and the lower resolution
images were 2X interpolated to higher resolution (0.52x0.52x1.0 to 0.26x0.26x0.5 mm).
The North Carolina data were acquired at 0.5x0.5x0.8 mm resolution and interpolated to

0.25x0.25x0.4 mm.
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The effect of resolution and interpolation were measured in the NRI data set by
measuring tortuosities of the same arteries for the same subjects0ad X044 mm,
0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm resolutions. The 0.4x0.4x0.4 mm, 0.2x0.2x0.2
mm were interpolated from the same data acquisition and the 0.23x0.23x0.36 mm were
acquired separately. The ICA arteries are only in the thicker transeerseresolution
volume limiting the testing of resolution effects to between the 4X (0.2x0.2x0.2 mm) and

2X (0.4x0.4x.4 mm) interpolations of the lower resolution image.

Tortuosity comparisons
Arterial tortuosity was measured and compared between different datadet
sub sets. Sample data information was stored in a MySQL (http://www.mysqgl.com/
relational database coupled to the R statistical system [25] for vidiglizad statistical
analysis. Comparisons were tested with the Wilcoxon rank-sum test. The tgrtuosit
comparisons were between: different median filter subtractions of the NRladlat
resolutions of NRI data; the three negative controls; males and femaldiRthe

hypertensives and negatives; and Utah hypertensives and negatives.

Results
Centerline stability and accuracy
Centerline accuracy was measured by comparing the measured entéHithe

true centerline in the numeric phantoms and stability was measured by tlesting
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centerlines found with different starting points. The results for the nuplgaictoms are
summarized in Figure 3.6 and Tables 3.2 and 3.3. The multiple branches of the comb
phantom (Figure 3.1 left) pulled the COM centerline in red below the true centerline in
green (Figure 3.6 left). The MDFE cost (Figure 3.6 middle) and DFE-COMr@-R&)6
right) centerlines overlap (in yellow) more with the true green dereeghan the COM
centerline.

Centerline stability as a function of cost function algorithm on brain MRA images
is summarized in Table 3.4. The DFE-COM was tested on the ICA siphon loop,
visualized with a white centerline in Figure 3.4 top left, where it loops back upon itself
often kissing itself and causing problems for centerline extraction. ThediR#&-was

able to complete as many ICA siphon loops as the COM algorithm with sitaitality.

Tortuosity measurement of phantoms
The DFE-COM centerline DFM tortuosity scores were higher for tiglaiésd:
helix phantoms with lower pitches and the tortuosity scores increased proptytional
the increase in the number of coils (Table 3.5). The pitche®@ix has approximately
one coil (DFM = 2.48) and the pitch 2@)zhelix has approximately two coils and has
almost double (ratio = 1.95) the tortuosity score (DFM = 5.45). The tortuosityscurve
were displayed with the distand€Figure 3.7 top) or length (Figure 3.7 bottom) on the

x-axis showing the rise and fall of the tortuosity curve.
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Median filter effect

The 7.0 T images were segmented with no suppression of background noise under
the ZBS segmentation algorithm shown in Figure 3.8, top. Subtracting a mediad filtere
image from the images as the first step in the segmentation removed tgehadk
noise from the segmentation but also removed some of the small lenticulosteiags ar
while leaving the larger arteries especially in the case of the 5x5 métia(Figure 3.8
middle). The larger 11x11 median filter removed most background noise but left some
noise near the larger arteries while leaving most LSAs in the segiaer{tagure 3.8
bottom).

The median filter subtractions (none, 5x5 and 11x11) had no significant effect on
tortuosity measurements of left ACA, right ACA, left to right ACA, left A@nd right
ACA arteries of the hypertensive Korean population apthe/n = 0.05/8 = 0.00625

significance level with a two-sided Wilcoxon rank-sum test.

Resolution and interpolation effect on tortuosity
The tortuosity was measured for the Korean hypertensive and negative control
populations from the low and high-resolution images. The image volumes were not all
long enough to capture the ICA accounting for low numbers of ICA measurements. Out
of the total population size of 40 there were: 19 2X interpolated left ICA, 19 2X
interpolated right ICA, 21 4X interpolated left ICA and 23 4X interpolated right |
The tortuosity values were compared with a 2-sided Wilcoxon rank-sum test, anelda pai

2-sided Wilcoxon rank-sum test on all cases where measurements were made on both the
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high and low interpolations of the same artery. The 4X interpolation had 6.40% higher
left ICA (P = 0.294, paired P = 0.00042) and 3.65% higher right ICA (P = 0.452, paired P
= 0.0348) tortuosity than the 2X interpolation (Figure 3.9 top). The mean resolution of
0.23x0.23x0.36 mm (mean 0.273 mm) is closer to 0.2x0.2x0.2 mm (0.0733 mm
difference) than 0.4x0.4x0.4 mm (0.127 mm difference). The mean DFM taken from the
tortuosity curves of the left ACA, right ACA and left to right ACA of the 0.23xR1R236

mm images was 6.89+2.45% greater than the 0.4x0.4x0.4 mm images of the same
subjects. The 0.2x0.2x0.2 mm images actually had 3.05+1.89% lower tortuosity than the
0.23x0.23x0.36 mm images. The difference in magnitude of both mean resolution and
tortuosity between 0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm images was smaller than
between the 0.4x0.4x0.4 mm and 0.23x0.23x0.36 mm images (Figure 3.9 bottom). Due to
increased similarity of scores, only the 0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm were

used for the hypertensive and negative control comparison experiments tatsrstudy.

Comparison of negative control populations
The Korean negative control population showed significantly less arterial
tortuosity compared to arteries of the Utah and the North Carolina negativelsontr
(Figure 3.10) and the three populations were of similar age (Table 3.6). The Utah and
North Carolina negative controls did not have significantly different arterialdsity.
ANOVA analysis of the three negative controls: NRI Korean, North Carolina taid U
hospital showed significant differences in the left ACA, left to right A(@&# ICA, and

right ICA arteries at th@ = o/n = 0.05/5 = 0.01 level. Pair-wise comparisons between the



85

negative controls with a 2-sided Wilcoxon rank-sum test showed the Korean population
had significantly lower tortuosity of the left to right ACA, left ICA and ri¢hA than
North Carolina and Utah hospital population atfike0.01 level. The North Carolina

and Utah populations did not show any significant differences in arterial tortuosity

Female and male comparisons

The Utah and North Carolina negative populations were split evenly between
males and females while the Korean negative population was mostly fethalieiti
was rarely indicated in the Utah medical record but based on the composition afghe st
of Utah, the subjects are most likely white European descent. The North Carolina
population was mostly of white European descent (Table 3.6). The Korean conteol was
different ethnicity (Asian versus white European descent) and hadtamgpercentage of
females.

Male and female North Carolina and Utah populations showed no significant
differences at thf = a/n = 0.05/5 = 0.01 level of 2-sided Wilcoxon rank-sum tests for
five arteries measured. The lowest P-Value was of the left ICA (P=0.0288) biorth
Carolina population where tortuosity values for males were higher thamfalefe and
females had higher tortuosity in three of five arteries measured. Wasreo significant
difference in tortuosity between males and females in eight arterigsacednat th@ =
a/n = 0.05/8 = 0.0625 level in the Utah negative control (lowest P = 0.0114 with a 1.40%

increase in male right VA tortuosity).
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There was no significant difference in arterial tortuosity betweensnaaie
females in our entire current collection of tortuosity measurements @ttloe05 level
(lowest P = 0.342) (Figure 3.11). The collection included the three negative comidols, a
subjects with vascular diseases. The diseases included hypertension, dtabetss
stroke, intracranial aneurysm, hereditary hemorrhagic telangi@ckdaifan syndrome
and Loeys-Dietz syndrome subjects. There are more females (257) inl¢otia@okhan

males (185). The mean ages were similar for females (48.2) and males (46.5).

Korean hypertension tortuosity comparison

The Korean hypertensive population had higher tortuosity across all 13 artery
measurements than the Korean negative control (Figure 3.12). Ten wereangrifithe
a = 0.05 level of the 1-sided Wilcoxon rank sum test. Even with the statistical cmrect
of B =a/n=0.05/13 = 0.0038, 5 of the 13 tortuosity measurements were significantly
higher in the Korean hypertensive population. The most significant measurereeats w
the left ACA (P=0.00377), the end DFM of left LSAs (P = 0.000161), the end DFM of
the right LSAs (P = 0.00052), the peak DFM of the left LSAs (P = 0.00977) and the peak
DFM of the right LSAs (P = 0.00080). There were more prominent LSAs per subject in
the negative control (3.50 left, 3.35 right) than in the hypertensive subjects (2.15 lef

2.30 right).
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Utah hypertension

The Utah hypertensive population (N=21) did not show significant increases in
tortuosity compared to the Utah hospital negative control (N=45) @tthen = 0.05/8
= 0.00625 level (Figure 3.13). The test was conducted only against the Utah negative
control population. Not all images contained measurable arteries for akarte
examined. The number of measurements and statistical test results dvkeif.TaAn F-
test of variances showed higher variance of the hypertensive Utah populatiositgrt
than the negative control of the right ICA (P = 0.00206), left VA (P = 0.00093) and right
VA (P =0.00174) at thg = 0.00625 level. The hypertensives were insignificantly higher

in tortuosity of seven of the eight arteries compared.

Discussion

We were able to develop a process of measuring arterial tortuosity mgcludi
segmentation, filtering, interpolation, centerline extraction and DFM toryuasélysis.
The DFE-COM centerline was selected for making tortuosity measureimecdause it
was able to calculate centerlines around most of the ICA siphon loops in a brain MRA
data set and had better accuracy in the comb phantom. The subtraction of meddn filter
images from the MRA data had no significant effect on tortuosity and was used when
necessary to improve artery segmentation. The 5x5 median filter was ¢ &lbete
measuring tortuosity of arteries other than the LSAs in the NRI dathddilter's ability
to remove more fully background noise and process images faster than thaltarger f

while producing no significant change in tortuosity measurement. There wasitho m
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chance of data loss when measuring tortuosity of the LSAs to justify the e of t
median filter. The DFM tortuosity curve consistently measured the inogetstuosity
of the helix phantoms. Interpolating lower resolution images to higher resolutiiocece
the effects of resolution on tortuosity measurement. These results led us to use
interpolation when comparing tortuosity in hypertensive populations versus negative
controls.

Our methods measured a statistically significant increase insattatuosity in
the NRI Korean hypertension population compared to the Korean negative control. We
also observed a dependence of tortuosity measurements upon image resolution. Higher
resolution images increased the DFM tortuosity scores. Interpolating lescution
images to higher resolutions reduced or eliminated the reduction in tortuosity &r low
resolutions. Finally different populations may have different baseline toragosit

Hypertension correlated with increased arterial tortuosity in thedfor
population study. The consistency across the arteries measured sugtj@stsetiised
arterial tortuosity with hypertension is a systemic phenomenon. Greatggechn
tortuosity was seen in the ICA and LSA arteries than in the ACA measatent he
ICAs are longer than the ACAs possibly allowing more twisting due toasere
hypertension. The LSAs are narrower than the ACAs and small narrovolagdrave
been shown to twist strongly in response to hypertension [1]. The LSAs also had the
higher significance of the tortuosity increase. To simplify measurtegartortuosity for
clinical use, measuring one longer or narrower diameter artery mayesifigauging

tortuosity.
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The correlation between tortuosity and hypertension was not repeated imlthe Ut
populations. The Utah hypertensive group was under physician care; therefgre man
patients may have been on antihypertensive medications making this a largedyled
hypertensive population. Lack of completeness in the medical records made e num
of subjects on hypertensive medication difficult to determine. A future exp#rooald
compare controlled versus uncontrolled hypertensive (when identified) populations t
study if antihypertensive medications have an effect on arterial tdstuAsother
possibility is that the Utah Hospital negative control is not truly negative. Howteee
Utah Hospital negative control was similar to the North Carolina negativeotontr
population indicating that the Utah hospital control was negative for incredsgdlar
tortuosity and that patients imaged for reasons other than vascular dissases @e

usable as negative controls.

In a retrospective analysis of images such as this one, universal negatreésco
may not be possible. The Korean population showed significantly lower tortuosity than
the Utah population. The North Carolina negative control was similar to the Utah hospita
population in tortuosity. The Korean negative control population was mostly female.
Females in the Utah hospital and North Carolina negative controls and in the entire
tortuosity collection did not show significantly lower tortuosity than theesponding
male populations. The Korean data were higher resolution than the North Carolina or
Utah data after final interpolations. Any remaining resolution effect on totyuesuld
increase the Korean data more than the others but they still had the lowesttyoofuosi

the negative controls. The Utah hospital and North Carolina populations were mostly
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white Americans of European descent and the Korean population was all Korean.descent
Ethnicity remains as one possible cause of the decrease in Korean populatasityort

but the negative Korean control tested here was not a broad representation of the Korean
population. With the ability to interpolate images taken at different resolutiengiiv

attempt to obtain more ethnic populations from clinical images to comparelarteria

tortuosity to determine if ethnicity affects arterial tortuosity.

Conclusions

The methods in the study were able to measure a correlation between
hypertension and arterial tortuosity. The DFE-COM centerline algontas able to
make centerlines for the arteries of interest. The median filterastibin allowed
segmentation of the high-resolution data sets without affecting tortuossignficant
increase in arterial tortuosity was measured in the uncontrolled NRI Kbypantensive
population versus a corresponding negative control. The Korean hypertensive population
was not representative of all hypertensive populations or even of all Koreans. No
significant arterial tortuosity increase was seen in the controlial bypertensive
population. Therefore we do not know if the increase in tortuosity with hypertension
occurs in all populations. These methods can be used to study more populations to find

out more about the relationships between hypertension and arterial tortuosity.



List of abbreviations used

ACA anterior cerebral artery

Acom anterior communicating artery
COM center of mass

d distance

DFE distance from edge

DFM distance factor metric

FOV field of view

HTN hypertensive

ICA internal carotid artery

L left

L length

LSA lenticulostriate artery

MDFE modified distance from edge
MIP maximum intensity projection
MRA magnetic resonance angiography
MRI magnetic resonance imaging
NEG negative

R right

T Tesla

TOF time of flight

ZBS Z buffer segmentation
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Figure 3.1. Numeric phantom generation. (Iftb phantom was made
from a comb shaped centerline. (right) A helix ptoan was made from a helical
centerline
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Figure 3.2. Phantorhelices. -D helix phantoms were display with shade-
faces. (top left) Pitch 5. (top right) Pitch 10(2). (bottom left) Pitch 20(2).
(bottom right) Pitch 40(2).
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Figure 3.3. High resolution artery segmen

o :
tationpftA high-resolution mag-
netic resonance angiography normotensive imageshiag/n in maximum inten-
sity projection. (bottom) Segmentation of the agsrwas shown in shaded sur-
face with colors to highlight bifurcations.
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Figure 3.4.Selected centerlines. Centerlines of arteries atécsions in white
for tortuosity measurement were shown in maximubemsity projection (MIP)
(top left) Right ICA was selected in white with gnessive distance d in yello\
(top right) A lenticulosriate artery (LSA) of a normotensive subject we-
lected. (bottom left) The left to right ACA of a pgrtensive patient was select:t
(bottom right) The anterior cerebral artery (ACA)ahypertensive subject wi
selected.
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Figure 3.5. Artery tortuosity curves. Tortuosityreas of one subjects. (top).
Tortuosity curves of three different subjects ICAeaies. The black curve is
from Figure 3.4 top left. Tortuosity rises and &al{bottom). Repeated tortuosity
curves of the left to right ACA artery of the sasugbject, from Figure 3.4 bot-
tom left, measured from different MRA images.
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Figure 3.6. Comb phantom. Comb phantom where gred¢me true centerline,
red is the algorithm calculated centerline and gx@lis where the true and calcu-
lated centerline overlap. (left). The COM accurawas displayed. (center) The
MDFE accuracy was displayed. (right) The DFE-COMw@acy was displayed.
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Figure 3.7. Phantom tortuosity curves. Helix phamtortuosity curves are
shown in maximum intensity projection. The pitcl2b) (black), pitch 10(2)

(red), pitch 20(2) (green) and pitch 40 (blue) phantoms decrease in tortuos-
ity. (top) DFM tortuosity plotted versus distancdérdm the start. (bottom) DFM
tortuosity plotted versus Length L from the start.
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Pl

Figure 3.8.Median filtered segmentations. Median filisubtraction segmea-
tions of a 7.0 T NRI image of a hypertensive pati@ere displayed in maximui
intensity projection. (top) Segmentation withoué timedian filter subtraction le
background noise in the segmentation. (center) Segation with the 5x'me-
dian filter subtraction removed background noisd amaller lenticLostriate ar-
teries (LSA). (bottom) Segmentation with the 11xthiédiar-filter leaves smal
amounts of background noise near the larger adexigle leaving the LSAs i

the segmentation.



105

Figure 3.9. Tortuosity and resolution. Comparisénme@an tortuosity of the same
Korean subjects from NRI with one standard deviateoror bars. (top) Left and
right ICA tortuosity measurements from higher 0.2%®.2 mm (0.2 mm) resolu-
tions interpolations of the same images increasadpared to 0.4x0.4x0.4 mm
(0.4 mm) resolution. (bottom) The mean DFM tortugsif the 0.2x0.2x0.2 mm
(0.2) and 0.23x0.23x0.36 mm (0.23) resolution inegere closer together than
to the 0.4x0.4x0.4 mm images (0.4).
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Figure 3.10. Negative control tortuosities. Utaldahorth Carolina negative
(NEG) controls had significantly higher tortuosityan the NRI Korean negative
controls: (top) mean end tortuosity measurememigitom) mean peak tortuosity

measurements.
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Figure 3.11. Female-male tortuosity. Mean artetoatuosity comparison with 1
standard deviation error bars between female anlé swbjects showed no sig-
nificant differences: (top) mean end DFM and (botjanean peak DFM tortuos-
ity measurements.
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Figure 3.12. NRI Korean tortuosities. NRI Koreamgatgve versus hypertensive
(HTN) arterial mean tortuosity comparisons withtaredard deviation error bars.
LSA 1 left was the left most LSA and LSA 1 right svehe right most LSA. (top)
The figure showed the mean end DFM tortuosity measu(bottom) The figure
showed the mean peak DFM tortuosity measures.
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Figure 3.13. Utah hypertensive tortuosity. Compamief Utah common hyper-
tension (HTN) and Utah hospital negative (NEG) ecohtwith 1 standard devia-
tion error bars: (top) mean end DFM tortuosity meas and (bottom) mean peak

DFM measures.
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Table 3.1. Tortuosity curve measurement point

Artery Start End Measurement

Left ACA Left ICA/ACA Acom End to end
bifurcation

Right ACA Right ICA/ACA Acom End to end
bifurcation

Left ACA - Acom Left ICA/ACA Right ICA/ACA End to end

- Right ACA bifurcation bifurcation

Basilar Posterior cerebrals  Vertebral arteries End to end

Left ICA and ACA/MCA Bottom of slab Peak

Right ICA bifurcation

Left and Right VA Basilar artery Bottom of slab Peak

LSA (7 T images) MCA Visible end Peak and end-end

The measurement for each artery is taken from diffe points on the tortuosity
curve of the anterior cerebral artery (ACA), intarcarotid artery (ICA), ante-
rior communicating (Acom), vertebral artery (VA)adilar arteries and lenticu-
lostriate artery (LSA). Middle cerebral artery (MEAifurcations are used a
starting points for some measurements.

Table 3.2. Comparison of algorithm stability anad¢d@acy of comb phantom

Algorithm Number of trees Stability RMSE of Accuracy
COM 6 0.918 0.879
MDFE 6 0.819 0.417
DFE-COM 6 0.905 0.413

The COM cost function shortest paths centerlineeatgm was less accurate in
the comb phantom than the MDFE cost and DFE-COM twsction algorithms.
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Table 3.3. Comparison of algorithm stability anadt@acy on 3 branch phantom

Phantom noise Algorithm  Number  Stability RMSE of Accuracy

of trees
SD-10 COM 3 0.960 0.463
SD-10 MDFE 3 0.930 0.393
SD-10 DFE-COM 3 1.00 0.556
SD-20 COM 3 0.950 0.528
SD-20 MDFE 3 0.946 0.674
SD-20 DFE-COM 3 0.955 0.561

The DFE-COM cost function shortest paths centeritgorithm had similar sta-
bility and accuracy to the COM based centerlineoalkipm. The MDFE cost algo-
rithm accuracy degraded going from standard deema{SD) 10 to 20 noise.
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Table 3.4. Comparison of centerline algorithms oRMbrain images

(%] ) Y—
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S o g = 7
COM 15/16 0.938 7/8 0.875 37.000 12.352 0.872 0.0459
MDFE 7/16 0.438 1/8 0.125 39.875 13.228 0.673 0.0732
DFE- 15/16 0.938 7/8 0.875 38.625 11.439 0.825 0.0434
COM

The COM and DFE-COM cost function shortest pathstedine algorithms cal-
culated the correct centerline in the same numbeoorect ICA siphons.
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Table 3.5. Helix phantom tortuosity

Phantom Peak Distance Approximate Peak DFM/2.80 ratio

Factor Metric coils
Pitch 5(Z) 20.95 8 7.48
Pitch 10(z) 10.76 4 3.84
Pitch 20(Z) 5.45 2 1.95
Pitch 40(Z) 2.80 1 1.00

The peak distance factor metric tortuosity sconeslawer with increasing pitch
of the three-dimensional helix phantoms.

Table 3.6. Negative control demographics

(-) control Total Mean Male Female White Asian Black

age (%) (%)
NRI Korean 20 47.7 3(15.0) 17 (85.0)  0(0.00) 200[0) O (0.00)
North Carolina 95 42.7 45 (47.4) 50 (52.6) 83 (37.8 (8 4 4 (4 2)
Utah 45 46.7 23 (51.1) 22(48.9) -

The Korean negative control population was moséiméle whereas the North-
Carolina and Utah negative control populations vehevenly split between fe-
males and males.
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Table 3.7. Utah retrospective tortuosity comparison

Artery Negative  Hypertensive  1-sided 2-sided F

(N) (N) Wilcoxon Test
Left ACA 43 21 0.0565 +0.232
Right ACA 39 21 0.279 -0.0824
Basilar 42 18 0.0641 +0.0302
LtoR 24 11 0.805 +0.501
ACA
Left ICA 35 19 0.132 +0.371
Right ICA 36 19 0.366 +0.00206
Left VA 36 18 0.283 +0.00093
Right VA 35 16 0.297 +0.00174

A (+) indicates increased hypertensive tortuositg @ (-) indicates decreased
hypertensive tortuosity.
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Abstract

High arterial tortuosity may signify early arterial patigy which may precede
development of intracranial aneurysms. We measured arterial itgrtebsntracranial
vessels and reviewed the medical records of three groups of patwthtsntracranial
aneurysms, without aneurysms but at increased clinical risk, andolsomtithout
aneurysms or associated risk factors. There was significambdmrisistent evidence of
increased arterial tortuosity in aneurysm cases and higheasks across different
arteries. Medical records review identified that a subseanafurysm cases carried a
diagnosis of Loeys-Dietz syndrome that is often misdiagnoséthesn syndrome. We
found increased arterial tortuosity in the Loeys-Dietz syndrocases. A combination of
medical record screening for Marfan syndrome or Loeys-Digtmpoms such as
aneurysms and evaluation of arterial tortuosity by a cunseares from medical images
may identify previously undiagnosed cases of Loeys-Dietz syndrome.

Key words: Aneurysm, MRA, Loeys-Dietz, tortuosity.

Introduction
There are autopsy reports of increased arterial and arteriolavdibytin aged
subjects with hypertension and aneurysndghile hypertension is considered a risk
factor for developing intracranial aneurysms, the clinical importandeedajreater
arteriolar tortuosity noted on autopsyto the development of intracranial aneurysms is
not clear. The small arterioles visible on dissection at autopsy are noy nesitile

using current medical imaging techniques but Time of Flight-Magnetic Res®na



131

Angiography (TOF-MRA) imaging has been used to assess arterial ttyrinfdarger
vessels. Increased tortuosity of arteries visible in MRA has been showmdlateowith
agind', exercise levé] tumor$, retinal pathologyand certain genetic syndrom&sThe
degree of arterial tortuosity can be quantitatively measured from MRA swdethe
Distance Factor Metric (DFM) tortuosity score that is calculateshégsuring the length
(L) along the centerline of the artery divided by the straight line distdh&®ih two
points®*3 In the conventional use of DFM, only two points are selected per artery,
producing a single tortuosity score or zero-dimensional measure of tort{iisMy) for
the artery. Whether used for intersubject or intrasubject measurementgOFM
constrained by the underlying data: images may not consistently contaimiéga
well defined points along the artery, images may contain different lengthes aftery,
and the tortuosity may be sensitively dependent upon the selection of the two points. This
study expands the conventional use of DFM to create a one dimensional tortuosity score
curve (DFM) displaying local tortuosity information along a vessel. The PEMhen
used to assess the relationship between arterial tortuosity of largds wessein TOF-
MRA with the development of intracranial aneurysms.

This study utilized medical imaging to assess the degree of brbetigsity
noted in patients with a clinical history of aneurysm, or predisposition to anédysm
recorded in the medical record. We were specifically interested imdeteg whether or
not patients with familial aneurysms, nonfamilial aneurysms or in higrsubjects

without any history of aneurysms as yet, have abnormally increasedladgrtiosity.
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Materials and methods

Source images

All TOF-MRA images were collected from the University of Utah MabiCenter
in Salt Lake City, UT, U.S.A. with approval from the University of Utah laogsbnal
Review Board. A negative control population was collected retrospectiostydiinical
TOF-MRA head images taken within the last three years. The negativel gmoygulation
included patients with a diagnosis of headache or trigeminal neuralgia whevanter
TOF-MRA head imaging but in whom no vascular disease (aneurysmal dilation or
stenosis) was identified in the radiology report and in whom no risk factors tadaas
disease were noted in the medical record (including: arterial diseaakfilatitlation,
diabetes, hypertension, and acquired heart disease). The control group also haaf cance
genetic syndromes screened out. The high-risk group and aneurysm group were
comprised of cases previously identified in a study on high (two-fold) famslabf
intracranial aneurysmsand from patients treated for aneurysms at the University of
Utah Medical Center. The images were clinical scans at a range aiti@sal Lower
resolution images were interpolated to higher resolution with a sinc integoolati

comparison to higher resolution images.

Arterial tortuosity measurement summary
The arterial tortuosity measures were made by segmenting thesairemethe
background, generating a centerline through the segmentation and selecting two e

points along the centerline of the artery measured. The Distance Faatar (MEM)
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tortuosity score is calculated by measutingiong the centerline of the artery divided by

d from the starting poin?™® Rather than compute a single DFM tortuosity score per
artery (DFM), thel/d tortuosity was calculated at every point on the centerline with
respect to the starting point to create a one-dimensional tortuosity scor¢@kitg. A
tortuosity measure based upon a smoothed centerline was also calculated bygverag
the position of each centerline point with its two adjacent neighbors to compute a
smoothed version df (Ls) and the smoothed tortuosity score, DEMLJ/d. After

computing the DFMcurve, an optimal point along each artery was selected for reporting
DFM. In this study, the final DFM tortuosity scores were taken as eith@etdeDFM

value of the DFM curve or the end DFM value of the DERUrve when the arterial

centerline left the image volume and no defined second end existed.

Tools
The segmentation and tortuosity measurement tools were implementedyasd Ima
plugins™*°. The measured centerline positions and subject information were stored in a

MySQL relational database availablehétp://www.mysqgl.com/Plotting of tortuosity

score curves, box and whiskers plot comparisons, and statistical tests werdezbnduc
with R®, connected directly to MySQL using MySQL Open Database Connectivity

(ODBC), using statistical methods previously descfibed
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Statistical tests

Statistical significance was set at the 0.05 level and Bonferroni correctedpto

= a/n, wheren is the number of tests in a set. The significance level was adjusted instead

of the P-value of statistical tests to show raw test results. The Wilcoxosuantest
was used throughout the study as it does not require normality of the underlying
populations and is resistant to outliers. F-test and T-test were used wathsangple set
sizes where normality can be assumed by the central limit theorem. Thadsted for
differences in variation of tortuosity scores and the T-test was used to ctmdirm

Wilcoxon rank sum test results.

Segmentation
The TOF-MRA images (Figure 4.1) were segmented using a Maximunsiltyte

Projection (MIP) Z-buffer segmentatiS(Figure 4.2).

Centerlines
The centerlines were generated from the segmentations using amenterl
algorithm based on algorithms previously descrif&tvith a cost function modification
where the Center of Mass (COM) voxel costs were multiplied by the DiskaooeEdge
(DFE) values of the voxels to give higher weights to voxels at the center of the
segmented arteries. Due to the limitations of intensity based segmentatiorietnal

carotid artery often segments as a closed loop structure, presenting twenapp#rs
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during centerline extraction. The ability of the centerline algorithm eyepl here to
extract the proper geometry of the internal carotid artery was validategithe

centerline stability metric previously developéd

Artery selection and tortuosity measurement

Arteries were selected for tortuosity measurement by firstse two end-
points of a centerline through the segmentation of the desired artery. Unlikéiarted
DFMp measurement, in this case it was only necessary that one of the two end-points be a
common anatomical location for each measured artery, generally a bifurcatiea lsixa
all subjects. The second end-point could either be another common anatomicat locatio
or the point at which the artery of interest exited the image volume. The three-
dimensional segmented artery image was colored to assist the user ingektterline
segments for tortuosity measurement. The red centerlines connectiftrtegibns
which are indicated by green dots (Figure 4.3). A separate random color igas@$s
each centerline to cause a color change at the bifurcations to aid the usevcatiag |

bifurcations.

Visual correlation
The quantitative DFM tortuosity scores were correlated to visual toguosit
rankings. A total of 315 subjects including negative controls and vascular disease cases

from multiple ongoing tortuosity studies were ordered highest to lowest by tg;DF
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based tortuosity score at the end of the basilar artery where it bituncttehe left and

right vertebral arteries (Figure 4.4). Every"lbject beginning with the subject with the
highest tortuosity score was selected to obtain a subset of 25 subjects with angele r

of arterial tortuosities. For each of the 25 subjects, MIP images wepaitennn the
transverse plane with 18 rotations taken every 10 degrees (MIP images at 188 degre
difference are the same) showing the entire brain vasculature imdugpse images were
shown to a group of five volunteer medical imaging researchers who ranked the basilar
arteries highest (rank 1) to lowest (rank 25) in tortuosity. The volunteers weredaidvise
compare images pairwise and were given no time limit or consistency trarangitl

bias®. The means of the human rankings were compared by Spearman rank correlation to
the rank determined by the quantitative end of artery D&idd DFM; scores of the

basilar artery.

Tortuosity was measured for multiple arteries in the image slabs. Eneart
measured were the left and right anterior cerebral arteries (ACA)ss the left ACA
through the anterior communicating artery (Acomm) to the right ACA, thi&abastery,
the left and right internal carotid arteries (ICA) from the ICA bi&ti@n with the middle
cerebral artery (MCA) and ACA to the lower end of the image slab, and tramtefight
vertebral arteries from the bifurcation with the basilar artery to therlewd of the
image slab. The tortuosity score was taken from the tortuosity scoreatuhszend of
the curve for the basilar, anterior cerebral artery (ACA) and ACA4anter
communicating artery (AComm)-ACA measurements. The tortuosity scsdaken at

the peak of the curve for the internal carotid artery (ICA) and vertebeay §A)
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measurements because the end of these arteries varied depending on the depth of the

image slabs.

Results

The end DFMhad higher correlation to the mean visual rankings than the
smoothed end DFMtortuosity score. The end DRMad a 0.72 Spearmen rank
correlation coefficient (P < 0.0001) (Figure 4.5) with the mean visual ranking thkile
end DFM; correlation was 0.67 (P = 0.00025). The mean of the correlation between all
pairs of human visual ranks was 0.88+0.048. Both the end. RN end DFIM,
guantitative tortuosity scores were calculated and used in statissisabtalifferences
between the test cases and negative controls. Only the engdd2BMs are reported due
to better correlation with the mean visual ranks and due to the fact that the oé$ust
tests differed little with the two measurements.

We measured the arterial tortuosity of eight arteries between therartral
aneurysm group and the negative control population. The difference in tortuosity was
tested at th@ = a/n = 0.05/8 = 0.00625 level to account for testing eight arteries. Only
the left ACA tortuosity measurement was noted to be significantly greadise
aneurysm cohort (indicated in bold in Table 1). While the aneurysm group had greater
tortuosity in all eight arteries (indicated with a + in the “Differenteneans” column in
Table 4.1), the difference from the control group was not statisticallyfisegmti for the
other seven arteries. The aneurysm cases also had significantly highecea right

ICA and left VA than the negative controls. Of note, the aneurysm population was
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approximately eight years older than the negative control group. As the data set wa
obtained from existing images taken for other purposes, the images often included
different arteries and in some instances image quality prevented nmeasticd some
arteries resulting in different number (N) of measurements for etarly eecorded in
Table 4.1.

The negative controls who were < 40 or > 55 years produced no statistically
significant differences 4t = 0.00625 with the 1-sided Wilcoxon signed rank test (used
exclusively due to the small sample size) across the eight artdireg. drteries had
higher tortuosity in the > 55 population (+) and five arteries had higher tortuodigy  t
40 population (-) (Table 4.2).

The familial aneurysm cases had significantly higher tortuosity dethACA
than the negative controls at fhe 0.00625 level. Eight of the eight arteries had higher
arterial tortuosity (+) in the familial aneurysm cases than the negatnteols but seven
were not significant (Table 4.3).

A manual medical record chart review of the highest scoring tortuoségures
of intracranial aneurysms cases revealed one diagnosis of Marfan syndiitmat(w
genetic confirmation), two of Loeys-Dietz syndrome (LDS) (with geremnfirmation)
and eight high familial risk intracranial aneurysm (lIA) cases. Be2005 LDS cases
were often diagnosed with Marfan syndrome making diagnosis without genetic
confirmation ambiguous. Further chart review demonstrated that the one patient
diagnosed with Marfan syndrome did not meet clinical criteria for this diagraising

the question of a misdiagnosis in a patient with a P&BS causing mutation.



139

Additional LDS cases were collected to test for an increase in httgtissity in
LDS patients. Six syndromic cases including five genetically corfirboeys-Dietz
syndrome (LDS) and the one unconfirmed clinical Marfan diagnosis had sagtijic
greater tortuosity of the basilar and the left VA atfile0.00625 level (Table 4.4).
Examples of tortuous vertebral arteries of Loeys-Dietz patienthavensn Figure 4.6
and Figure 4.7. For comparison Figure 4.8 shows a low tortuosity VA and Figure 4.9
shows the tortuosity curves of those arteries. These patients had greabsityoof eight
of eight arteries measured. Two of the confirmed LDS patients and the one umednfir
clinical Marfan syndrome cases had intracranial aneurysms and the otheottfieaed
LDS cases did not have aneurysms.

Patients with nonfamilial aneurysms and without an underlying genetic syadrom
had significantly greater left ACA arterial tortuosity by t-té&tn negative controls.
Tortuosity measures were greater in seven of eight arteries. Noafaandiurysm cases
also had significantly higher variation in the left and right ICAs (Table 4.5).

High intracranial aneurysm risk family case subjects without aneurysmsehes had
significantly higher arterial tortuosity in the left ICA and signifidg higher variance in
the left VA. These case subjects had higher tortuosity in seven of the eggiatsart

measured (Table 4.6).

Discussion
Measurement of arterial tortuosity is a newly developed technique that oy pr

to be of clinical utility in identifying diseased vasculature. The RENuosity score
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curve and associated peak and end measurements described herein appear to provide

more information than the traditional single value DRbttuosity score. By selecting

the peak tortuosity score from a curve of values defined from a single engdvpmint

obtain a meaningful tortuosity value from arteries with only one well-défend-point

in a medical image. The original DRvhethod required selection of the same two

defined end-points for all arteries to be compared, making it unusable when déisere w

only one defined point as is often the case with the long ICA and vertebrasarteri

Furthermore, analysis of the DENMbrtuosity score curves shows that the tortuosity score

may vary significantly along the vessel as indicated in Figure 4.9. Thuenbidering

only two particular end-points per artery, the traditional tortuosity aisalyay both

greatly underestimate the peak value and be sensitively dependent on end-ptiohsele
Using the methods described herein, we have been able to demonstrate a

significantly greater degree of arterial tortuosity in patients vatinective tissue

syndromes who are known to be at risk for intracranial aneufydniNonsyndromic

patients with intracranial aneurysms, subjects with high familial risktifcranial

aneurysms, relatives of high-risk aneurysm cases, and patients with niahfami

aneurysms had inconsistently higher arterial tortuosity than negativelsoithe

overlap in tortuosity scores between high familial risk intracranial assucases with

negative controls indicates high-risk subjects with normal tortuosity scaretecalop

intracranial aneurysms. There was also no significant difference betvggendk

subjects with aneurysms compared to relatives without aneurysms. In conteaist, a
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tortuosity in patients with Loeys-Dietz syndrome, a disorder assdaiatie the presence
of intracranial aneurysms, was significantly different than in negatineals.

Age has been shown to mildly increase tortuosity in healthy populatitims age
comparisons conducted here showed no significant tortuosity increase due to age. Itis
thus unlikely that the age difference between the aneurysm and negative control
populations accounted for the differences in tortuosity.

The human visual rankings correlation to each other was closer than to the
guantitative tortuosity score based ranks. This phenomenon of humans correlating with
each other better than a computer score has been previously déacfibeciuman
rankers may be using information seen in the surrounding image, or alterntterely
could be a bias in the projections shown to the rankers causing their ranks to cluster
together.

The results of this study provide evidence that tortuosity measurements may be
able to assist in characterizing specific nonnormal states and may signas
distinguishing between patients with Loeys-Dietz syndrome and Marfan syadrom
Loeys-Dietz syndrome is a more aggressive disorder associated with arsaoial
tortuosity and aneurysms throughout the arteriaf 'aghere many but not all affected
patients will go on to develop cerebral aneurysms. In light of the fact thgsimetz
syndrome was only determined to be a unique clinical entity apart from Marfdrosye
within the last decad® many affected patients may still carry the diagnosis of Marfan
syndrome. Marfan syndrome is caused by a mutation iRBNL gene that encodes for

the glycoprotein fibrillii°. Patients are typically followed with only echocardiographic
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imaging of the ascending aorta as the remainder of the arterial vessetd thought to
be at significant risk of aneurysm formation. In contrast, Loeys-Dieidreyne is caused
by mutations in th@ GFBRI andTGFBRII genes which encode for receptors for the
cytokine TGFB?"?8 By collecting and measuring arterial tortuosity data in patients with
either clinical diagnosis we hope to be able to distinguish between the two disonder
determine which patients with Loeys-Dietz syndrome are at gresesdr cerebral
aneurysm formation. Initial review of arterial tortuosity in LoeystRipatients
demonstrated that these patients may have the greatest increase irtyontiosiextra-
cranial vertebral arteries which are typically more caudal than thierse analyzed in
this study. Assessment of both the cervicocephalic vessels and intracrases veay
prove valuablé®.

This study demonstrates the potential to combine medical record screehing wit
automated image analysis to screen patient data. The study starteanlidi &nd
nonfamilial intracranial aneurysm cases and discovered the syndrommagdtieing the
course of the research. The method for measuring arterial tortuosity is now semi
automated. Future development will further automate the tortuosity measurement.
Automated medical record screening systems already exist. In thithealsvo methods
of medical record and image screening could be combined to look for patients with
diagnosis of Marfan syndrome or other Loeys-Dietz symptoms and high arterial

tortuosity to identify undiagnosed Loeys-Dietz patients in electronic medmards.
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Figure 4.1. Time of FlighiMagnetic Resonance Angiography (TG/MRA) meci-
cal image shown in Maximum Intensity Projection (.
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Figure 4.2 Segmented arteries from T-MRA with color cha}lges at bifua-
tions inshaded surface displ®®.

Figure 4.3 Selection in white of anterioterebral artery (ACA) shown in Mi-
mum Intensity Projection (MIP
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Figure 4.4 Histogram of basilar artery end DI.s (labeled end DFM3) tortuosit

scores.
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Visual quantitative comparison
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Mean visual tortuosity rank (higher =-= lower)
Figure 4.5 Comparison of mean visual rank-axis) versus the rank of the e

DFM¢ tortuosity score (yaxis) of the basilar artery with regression line7@®
Spearmen rank correlation coefficiel
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Figure 4.6 Distance Factor Metri(DFM) = Length () / distance ) tortuosity
scores of the left vertebral artery of a suspedteeys-Dietz patient selected i
white. Yellow lines showd and progressive steps. This subject had the maxii
left vertebral artery tortuosity of the aneurysubjects. Black line in Figure 4

Figure 4.7. Loeydietz syndrome intracranial aneurysm subject witddnan te-
tuosity among aneurysm case subjects of the |lattebeal artery and high tcu-

osity of the basilar artery. Gen line in Figure 4.9.

Figure 4.8 Nonfamilial intracranial aneurysm subject withwmaortuosity left
vertebral artery. Red line in Figure 4
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VA left
Cerebral aneurysm nonruptured
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Figure 4.9. Vertebral artery tortuosity score cuwgod the highest peak tortuosity

score (black line), median tortuosity score (gréar) and low tortuosity score
(red line). The peak score is taken between théeddines to avoid small varia-
tions causing spikes when the lengths L and d hogtsand subject to noise and
before vertebral arteries twist around the firstveeal vertebrae.
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Table 4.2. Negative control age comparisons
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Left End 16 1.379+0.120 27.938 16 1.368+0.106 65.56280-0.0.566
ACA
Right End 16 1.449+0.142 27938 15 1.435+0.148 64.3330 -1.0.727
ACA
L-R End 12 1.699+0.150 26.000 6 1.708+0.223 68.000 10.8.625
ACA
Basilar End 16 1.1764#0.089 27.938 15 1.166+0.0758®5 -0.88 0.673
Left Peak 12 2.796+0.556 28.250 14 3.438+0.699 66.5003.0+20.013
ICA
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Left Peak 14 1.3391#0.154 28.357 13 1.31840.104 64.61546-0 0.215
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Table 4.3. Familial aneurysm cases versus negaowerol tortuosity compari-

sons
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Left ACA 23 1.474+0.127 58.610 +7.2 0.00063
Right ACA 22 1.535+0.136 56.250 +5.8 0.019
L-R ACA 12 1.708+0.168 55.067 +0.82 0.389
Basilar 18 1.217+0.096 57.571 +1.8 0.183
Left ICA 20 3.345+0.685 59.654 +6.0 0.220
Right ICA 20 3.171+0.843 58.568 +7.8 0.268
Left VA 21 1.432+0.234 58.603 +6.1 0.087
Right VA 22 1.366+0.184 58.485 +2.0 0.357
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Table 4.4. Loeys-Dietz/Marfan syndrome cases vengagative control tortuosity
comparisons
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Left ACA 5 1.407+0.168 19.200 +2.3 0.474
Right ACA 4 1.704+0.448 20.000 +17.5 0.131
L-RACA 4 2.143+0.709 20.000 +26.5 0.063
Basilar 5 1.443+0.300 25.300 +20.6 0.0045
Left ICA 3 3.361+0.388 26.833 +6.5 0.323
Right ICA 3 3.263+0.688 26.833 +10.9 0.216
Left VA 6 1.931+0.652 23.750 +43.1 0.00043
Right VA 6 1.511+0.297 23.750 +12.7 0.051
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Table 4.5. Nonfamilial aneurysms versus negativetia tortuosity comparisons
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< sz § = 0% ¢ 7 o
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Left ACA 42  1.454+0.150 54.751 +5.7 0.0069 0.047 0.0036
Right ACA 44  1.471+0.167 54.953 +1.4 0.330 0.193 270.
L-RACA 19  1.725+0.202 54.596 +1.8 0.310 0.526 8.30
Basilar 38  1.207+0.107 55.789 +0.89 0.328 0.360 1®.3
Left ICA 34  3.577+1.262 54.710 +13.3 0.165 0.0024  0.049
Right ICA 30  3.450+1.216 56.703 +17.3 0.059  <0.0001 0.020
Left VA 27  1.395+0.155 54.333 +3.3 0.105 0.980 8.12

Right VA 27 1.31740.097 53.790 -1.7 0.562 0.050 76.7
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Table 4.6. High-risk relative cases versus negatiwetrol tortuosity compari-

sons

> L2 g X C, ©SE5OXB OB O
- c & SsO & co=° 500 TV TOO
= oy ogn 2@ 2y wlE Br 3=
= T2 =245 =" "Felze du Ar
Left ACA 53 1.423+0.111 46.604 +3.5 0.012 0.921 10.0
Right ACA 52 1.494+0.131 46.577 +3.0 0.076 0.805 06Q.
L-R ACA 25 1.706+0.149 50.000 +0.68 0.241 0.421 08.4
Basilar 31 1.182+0.082 47.387 -1.2 0.724 0.490 .72
Left ICA 37 3.850£1.053 46.405 +21.9 0.0023 0.039 0.00092
Right ICA 36 3.330+£0.781 45.639 +13.2 0.028 0.019 .0009
Left VA 47 1.423+0.254 48.234 +5.4 0.087 0.0030 0.054
Right VA 43 1.404+0.189 47.302 +4.8 0.086 0.087 46.0
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CHAPTER 5

CONCLUSION

Developing the use of arterial tortuosity

Arterial tortuosity has been associated with a limited number of vastséases
and is used clinically in only in limited diseases. As described in the introductial vis
tortuosity is used to assist in diagnosing LDS and quantitative tortuositydsrus
diagnosing retinal diseases. Other vascular diseases have been asagbistedeased
arterial tortuosity but are not used clinically due to lack of evidence ofiaisas and
clinical tools to quantitatively measure arterial tortuosity.

This research developed a system for measuring and comparing aterasity
between populations. The system was able to detect increases in arteiaitioim a
hypertensive population and in clinical images of LDS patients versus negatix@scont
While the measure detects differences at the population level the means ofdae Kor
hypertensive and LDS samples fell within one standard deviation of the corregpondin
negative controls. This prevents the measure from differentiating individoiglat|i
samples. The ability to detect the population differences demonstrateslityeoatiie
tortuosity measurement system to measure increases in tortuosity atutetipopevel
since there is no gold standard to compare against for arterial tortuosity eneaists.

The increases in tortuosity seen with hypertension and LDS provide evidence of
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increased arterial tortuosity in those populations. Due to limited sample sizesarsityli
more samples of both hypertensives and LDS patients are needed to confirondases
in arterial tortuosity associated with these diseases. The tortuosisureenent system
developed here can be used for future studies on more hypertensive, LDS and other

disease populations.

Validation of arterial tortuosity measurement

The tortuosity measure combining the DFE-COM based centerline algonthm a
DFM tortuosity curve was able to detect tortuosity differences in a progpect
hypertensive population and in the clinical LDS population demonstrating the methods
ability. There is no gold standard for measuring arterial tortuosity. As derai@asin the
visual tortuosity ranking experiment in Chapter 4, visual tortuosity scbhasgntra-
ranker variability (0.88+£0.048 Spearman rank coefficient). A repeat of the ranking
experiment with neurosurgeons had a lower 0.65+0.13 Spearman rank coefficient
between rankers demonstrating the instability of visual tortuosity scoringeAsoned
earlier the SOAM measurement detected changes due to aging whildvttied not [1]
and ICM measurement detected changes due to exercise while the SOAM ).
There is no single gold standard way to measure tortuosity in all situationeriliosity
measurement method used depends on the disease.

LDS patient tortuosity is characterized by type | tortuosity with pewfly
curving arteries without abrupt changes in slope of the centerline. The DFM

measurement was successful in detecting type | tortuosity [3]. Theahtégecond
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derivative tortuosity measure was designed to detect abrupt changes in slope of the
centerline making it less than ideal for detecting the type | torjudisiplayed in LDS
patients. The DFE-COM based centerline DFM tortuosity curve measuraseghhere
was able to detect increased tortuosity in LDS patients.

Which type of tortuosity is displayed by hypertensives was less cleahebut t
DFE-COM based centerline DFM curve consistently measured artetiadgidy across
several arteries. Additional measurement methods were not needed. Otisggiibat
cause abrupt changes in direction of the centerline may require differenstort
detection methods.

The hypertension study was able to make quantitative measurements of the
smaller LSA arteries due to the use of 7.0 T MRA and the ability of the K8tam
[4, 5] to segment the LSAs. Segmentation of arteries is a difficult ongoiagfre
research [6]. Therefore the hypertension study pushed down the lower diamigtar lim
what arteries can be measured from MRA images in living patients. ldgp&nm
showed greater change in tortuosity of the narrow diameter LSAs thamlartger
diameter arteries. Smaller diameter arteries may increased@ase) in response to
disease progression or treatment sooner than larger diameter arteriesrilioggy
measurements on high field angiography may be a way to measure diseasatarahtr

effects eatrlier.
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Quantitative image phenotype measurement of genotype

The tortuosity measurement of LDS patients is a quantitative measiireintiee
phenotypic effect of the LDS genotype. LDS can be caused by mutationsastdtle
different genes, TGFBR1 and TGFBR2 and there are multiple mutations within those
genes [7-9]. The different mutations may have different levels oft¢ff@tthat may be
guantifiable by the tortuosity measurement. Quantitative measuremeterailar
tortuosity could also be used to identify the presence of genetic modifat e
secondary genes that alter the phenotypic expression of the primary mutations. Genet
modifiers are thought to explain the range of severity of MFS [11]. Quantitative
phenotype measurement is also important for epigenetics research into how
environmental factors alter genotypes expression [12]. Epigenetic testades the
changes in gene expression (phenotype) not due to changes in DNA [13]. Quangitation i
important when attributing part of a phenotype to genotype and part to environmental

factors or an interaction of the two [12].

Flexible analysis system

The tortuosity measurement and group comparison system developed stored data
for reanalysis with new algorithms. The system included a relational dataadoring
data such as the centerline voxel positions and subject information. Tortuosity
measurements were calculated on the fly for comparison between groupdloired a
reanalysis of the data with different algorithms. The intracranialrgsi@uanalysis tried

an alternative centerline smoothing algorithm that had little effedie@results. The
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storing of the centerline points allows for future development of smoothing algsmthm
the centerlines. Calculation of tortuosity on the fly allows new tortuosigsaorement
algorithms as necessary. This tortuosity measurement system also maesabesement
of many different arteries. The system was first developed on the basitroa
cerebral arteries (ACA), internal carotid arteries (ICA) and beatarteries (VA). Then
the study on hypertension added the lenticulostriate arteries (LSA) andc b syas
able to detect an increase in LSA tortuosity in a hypertensive population cdrpéne
corresponding negative control. The system was designed for reanatysisudeted
data, newly added data and new arteries with the same or new analysis methods.
The data storage and on the fly tortuosity measurement were important for
analysis of existing data and new clinical data. The database enablegsisamaén
new subject data were added to existing diagnosis groups. The storage of diagabst
demographic data makes creation of new groups to answer questions thabarise f
previous experiments simple. An example of this was when the Korean negatiwé contr
group, which was predominantly female, had significantly lower artertaidsity than
two other control groups. The system developed here was able to easily cgroppee
of females versus males to find out sex did not show any significant effeceaalart

tortuosity. The database allowed iterative asking and answering ofansesti

Value of quantitative measurement

The quantitative measurement of tortuosity is useful for determining the

difference between groups, changes in tortuosity over time and can be used eteditom
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screening of medical images. The experiments comparing the queatitetasure to

human tortuosity scores had the people rank images according to arterial tartuosity
Ranking was used instead of having the person assign a numeric score because as the
person sees new images they re-evaluate previous scores. A person iskabotanl

keep scores consistent when following a single patient over years. The quantitati
tortuosity measure was partially automated in this study. The user only hedditise

artery centerline ends. Work on automated centerline selection is undernay. Art
characteristics such as diameter length and position are being used tatmalbnselect

the arteries. Automated tortuosity measurements could eventually be add#idlogia

systems.

Secondary use of image data

Clinical images provide a huge repository to study the effects of numerous
vascular diseases on artery morphology. Up to now, studies on quantitative arterial
tortuosity have imaged cases and controls under the same conditions. Clinicalaneages
obtained on different machines at different resolutions. This research measuwesitior
of the same subjects at different resolutions to measure the effect aficgsoh
tortuosity in the hypertension experiment. Knowing the resolution effect allows
comparison of clinical images taken at different resolutions. In the Korearntdrygien
experiment doubling the resolution from 0.4 x 0.4 x0.4 mmto 0.2 x 0.2 x 0.2 mm
increased the tortuosity measurement 4.2+1.3% across five artery meadsardine

increase in LDS syndrome arterial tortuosity ranged from 2.3% to 43.1% wih thén
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15% increase in resolution of the LDS subjects versus the negative controlsrtheref
resolution does not account for the increase in LDS arterial tortuosity. Tloé¢ clsecal
images will allow testing of arterial tortuosity of a variety of vascdigeases not

commonly associated with increased visual tortuosity.

Future work
Arterial tortuosity in hypertension

The system of reuse of existing images makes possible more measu#ments
hypertensive populations that are needed to determine in hypertension correhates wi
increased arterial tortuosity. The hypertension experiment measureasitiaterial
tortuosity in one prospective Korean sample and did not detect a difference in ta clini
Utah population. Future experiments could measure arterial tortuosity prespyeicti
additional hypertensive populations. Hypertensive patients could also be followed over
time to determine if arterial tortuosity increases with progression afiskease or if
tortuosity decreases with treatments lowering blood pressures. Repeatevessel
imaging of hypertensive patients before and after treatment showed adynadication
of changes in microvessels [14]. It is not yet known if arteries lower tatuns
response to treatment with anti-hypertensive medication. The tortuosityne@ast
tools developed and validated here can provide methods to study hypertension over broad

populations.
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Arterial tortuosity in LDS

High arterial tortuosity is one of the distinguishing characteristics leetBS
and the more common Marfan syndrome (MFS) caused by the mutations in the FBN1
gene; but clinically the two diseases’ tortuosities are only distinglighalitatively [7,

8]. Future research plans include measuring MFS patient tortuosity for ¢eompiar

LDS patients to determine if quantitative tortuosity screening can aidntifideg LDS
patients misdiagnosed with MFS. LDS is caused by mutations in either tHeRIGH
TGFBR2 genes [7]. The LDS patients in the intracranial aneurysm study hgieadnl
TGFBR2 mutations [9] but all LDS patients are known for increased togudsié

TGFBR1 and TGDFBR2 mutations show little phenotypic differences [15]. It is not
known if one type has more tortuosity than the other. Quantitative tortuosity
measurements between TGFBR1 and TGFBR2 mutation patients could determiree if ther
is a difference.

Weakened arterial walls are a proposed cause of both arterial torarusity
aneurysms [16]. Under this hypothesis arterial tortuosity would increasegeitmal
correlate with aneurysm development. LDS is a genetic disease often diagnosed i
pediatric patients that will be followed over time, once again showing the impodance
distinguishing LDS from MFS patients that are not typically reimaged out$ithe
aortic arch area [9]. The high arterial tortuosity is seen in young gabantt is not
known if arterial tortuosity increases over time. By obtaining imagesddme patients
taken over years quantitative arterial tortuosity measurements coulddo® wktermine

if arterial tortuosity increases over time. Due to the high rate of anesiigsbbDS
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patients, quantitative tortuosity measurement could also be used to look for correlations
between high or increasing arterial tortuosity and development of intracaaeialysms.

MFS is not known to increase arterial tortuosity and it only raises the rasktot
arch aneurysms. LDS increases tortuosity in head and neck arteries as@mnaisrysm
risk in the aortic arch and other arteries. The FBN1 and TGFBR1 and TGFBR2 proteins
are all in the TGR signaling pathway but the difference in tortuosity and locations of
aneurysms signals some difference in disease mechanism.

Quantitative measurement of LDS patient arterial tortuosity could edtgie
used to monitor new treatments. It is possible treatment prevents normalescreePS
patients or even decreases tortuosity, but these hypotheses need testingA The FD
approved TGP activity inhibiting antihypertensive drug Losartan is being tested in MFS
patients and clinicians are using it to treat LDS patients [17]. MFS andbiSshow
signs of TGRS signaling pathway hyperactivity [17]. More is known about the MFS
disease pathway than LDS disease.

MFS has a range for disease severity. MFS may be a dominant negativermutat
in some of the most severe cases where the heterozygous FBN1 mutated geme produc
dimerizes with the healthy gene product[18]. The MFS genetic cause FBN1amngart
modulates the T@Fsignaling pathway [18]. The MFS mouse model homozygous mg
mice for MFS showed increased TfGiA lung tissue [18]. These mice were successfully
treated with TGE neutralizing antibodies demonstrating the role the { ®fperactivity

in MFS.
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LDS mutations affect TGFBR1 or TGFBR2 in the T8&tgnaling pathway. LDS
is a mutation of TGF | or Il receptor but results in increased TH€tivity possibly due
to a gain of function mutation or by triggering unproductive compensatory events since
the receptor is less active [7, 19]. An LDS patient was known to have a duplication of the
TGFBR1 gene adding further evidence of a gain of mutation function [10].

The screening of images can be combined with medical record screening to
identify undiagnosed LDS cases. Diagnoses of MFS or Ehlers-Danlos syndomme al
with high arterial tortuosity are potential LDS cases. A diagnosis of andA@iuari
malformation along with high arterial tortuosity is another flag for LMS.DS patients
13.3% of 30 developed Arnold-Chiari malformations [8]. This study identified anpatie
with an Arnold-Chiari malformation and high-tortuosity (third highest\kt
tortuosity). Arnold-Chiari malformation is rare, 1 in 1280 [20]. Because high tortussity
also rare, the combination of two rare events could be an undiagnosed case of LDS.
Future advances in automated arterial tortuosity measurement albngjecironic
medical record system screening could automate identification the r&elisBase that

clinicians will not be actively looking for due to its rarity.

Quantitative phenotypes
Quantitation of phenotypes is necessary for epigenetic research. Dpelty ra
dropping DNA sequencing costs there will be more genotype information on patients i

the future and genotype data may become part of the standard medical recotahvill2]. |
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be useful to measure the genotypic effects in medical images. Tortuasity example
of measurement; there will be more in the future.

New technologies in automated DNA sequencing are making whole genome
sequencing drop rapidly in time and price [12, 21]. There has been a 14,000-fold price
decrease in DNA sequencing from 1999 to 2009 [22]. Exome sequencing that sequences
only the protein coding part of the DNA, which is only around 1% of the human genome,
is an even faster and less expensive alternative [21, 23]. There will soon be DNA
sequence information available for individual patients usable for research and
personalized medical treatment [12, 24].

Genetic variation data are becoming more common but due to the lack of
information on the function of genetic variation, genomics has had little impact on
clinical medicine [22, 25]. Determining function from genotype is an open ended project
[22]. Personalized medicine depends on an understanding of genetic and environmental
factors [22]. The next challenge in genomics, as sequence data become an ivexpens
commodity, is in linking genetic variation to physiology and disease phenotypes [24]
Medical imaging has the potential to measure phenotypes before they develop into
clinical disease and has the potential to separate similar clinical phenstygfeas MFS

from LDS and its subtypes.

Contribution to the field of bioinformatics

Medical informatics is “the study, invention, and implementation of structures and

algorithms to improve communication, understanding and algorithms to improve
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communication, understanding, and management of medical information” [26]. The
components of medical informatics are 1) signal processing, 2) database 8gsig
decision making, 4) modeling and simulation, 5) optimizing interfaces between human
and machine. This research involved signal processing of medical images andedataba
design to allow comparison of subject tortuosity on many factors such as despassex
and resolution of the image. By focusing on making secondary use of medical images t
research will help enable reusing and combining data sets together eaoaiyosity

in arteries and diseases not studied before. This study also began a new 8earchre
combining image processing, medical record analysis and genotype attabsssst

decision making.

Summary

The DFE-COM centerline DFM curve tortuosity measurement systesotddt
increased arterial tortuosity with hypertension and LDS validating tlasumnement
method in these diseases. The tortuosity measure can be used to furthetestiadly ar
tortuosity in hypertensive and LDS patients. Further study of hypertensiah coul
determine if tortuosity increases with progression of the disease. @tiaatibrtuosity
measurement is a potential method to distinguish LDS from related genetic sgadrom
The quantitative measurement of phenotypes in medical images is a potenfi tool

determining the effects of genetic variation.
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