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ABSTRACT 

 High arterial tortuosity, or twistedness, is a sign of many vascular diseases. Some 

ocular diseases are clinically diagnosed in part by assessment of increased tortuosity of 

ocular blood vessels. Increased arterial tortuosity is seen in other vascular diseases but is 

not commonly used for clinical diagnosis. This study develops the use of existing 

magnetic resonance angiography (MRA) image data to study arterial tortuosity in a range 

of arteries of hypertensive and intracranial aneurysm patients.  

 The accuracy of several centerline extraction algorithms based on Dijkstra’s 

algorithm was measured in numeric phantoms. The stability of the algorithms was 

measured in brain arteries. A centerline extraction algorithm was selected based on its 

accuracy. A centerline tortuosity metric was developed using a curve of tortuosity scores. 

This tortuosity metric was tested on phantoms and compared to observer-based tortuosity 

rankings on a test data set. The tortuosity metric was then used to measure and compare 

with negative controls the tortuosity of brain arteries from intracranial aneurysm and 

hypertension patients. 

 A Dijkstra based centerline extraction algorithm employing a distance-from-edge 

weighted center of mass (DFE-COM) cost function of the segmented arteries was 

selected based on generating 15/16 anatomically correct centerlines in a looping artery 
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compared to 15/16 for the center of mass (COM) cost function and 7/16 for the inverse 

modified distance from edge cost function. The DFE-COM cost function had a lower root 

mean square error in a lopsided phantom (0.413) than the COM cost function (0.879). 

The tortuosity metric successfully ordered electronic phantoms of arteries by tortuosity. 

The tortuosity metric detected an increase in arterial tortuosity in hypertensive patients in 

13/13 (10/13 significant at α = 0.05). The metric detected increased tortuosity in a subset 

of the aneurysm patients with Loeys-Dietz syndrome (LDS) in 7/7 (three significant at α 

= 0.001).  

 The tortuosity measurement combination of the centerline algorithm and the 

distance factor metric tortuosity curve was able to detect increases in arterial tortuosity in 

hypertensives and LDS patients. Therefore the methods validated here can be used to 

study arterial tortuosity in other hypertensive population samples and in genetic subsets 

related to LDS.
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CHAPTER 1 

INTRODUCTION 

Objective 

 Many vascular diseases affect arteries altering lumen diameter, vessel wall 

thickness and shape. One method used to quantify the shape of arteries is to measure their 

tortuosity or twistedness. Diseased arteries may have increased arterial tortuosity 

compared to healthy arteries. This research developed software for quantitatively 

measuring and comparing tortuosities of arteries from disease and negative control 

populations to determine which diseases are associated with arterial tortuosity.  

Arterial tortuosity 

Clinical diagnosis by arterial tortuosity 

 Some vascular diseases are known to correlate with increased arterial tortuosity. 

Arterial tortuosity is included in diagnosis before venous tortuosity because arteries are 

under higher pressure than veins and will be affected by pressure more. Arteries were 

found in vitro to exhibit increased tortuosity with increasing pressure [1]. Arteries are 

afflicted by aneurysms more often than veins. Autopsy studies have shown intracranial 

aneurysm rates of 0.2 to 9.9 (mean 5%) percent in the general population [2], whereas a 

retrospective study at Walter Reed Army Medical Center found venous aneurysms in 30 
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of 2000 patients (1.5%) and this hospital population may be an overestimate of the 

frequency in the general population [3]. Ophthalmologists and other clinicians use high 

tortuosity of the retinal blood vessels seen in fundus photographs of the dilated pupil to 

diagnose retinal diseases such as retinopathy of prematurity [4]. High tortuosity is also 

used to diagnose retinitis pigmentosa and diabetic retinopathy, and low tortuosity is used 

to identify retinal vasculitis [5]. Rapidly growing cancer tumors recruit new highly 

tortuous arteries by angiogenesis [6]. Genetic syndromes such as arterial tortuosity 

syndrome [7] and Loeys-Dietz syndrome (LDS) [8, 9] are known to increase arterial 

tortuosity.  

 Arterial tortuosity is one of the differentiating characteristics between the rare and 

newly described LDS and the more common (occurring in 2-3 per 10000 individuals) and 

better known Marfan syndrome (MFS) [10] [11-15]. In addition patients with LDS have 

also been misdiagnosed with Ehlers-Danlos syndrome type IV, which is caused by a 

mutation in the COL3A1 gene and is not known for high arterial tortuosity [7]. In a study 

of 25 LDS patients all 25 were visually assessed as having high arterial tortuosity [16]. 

LDS causes aneurysms in a wider anatomical area than MFS requiring imaging over a 

wider range of anatomy, making the correct LDS diagnosis important [17]. Arterial 

tortuosity may be a distinguishing characteristic between LDS and related diseases.  

 Distinguishing between MFS and LDS is important. LDS is a highly aggressive 

disease. Twenty per cent of LDS patients have aneurysms of the head or neck [9]. Mean 

age at death for LDS type I (TGFBR1 mutation) was 22.6 versus 31.8 for type II 

(TGFBR2 mutation) [9]. The clinical presentation of LDS type I and II had no apparent 
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differences [9]. MFS and LDS have many overlapping clinical characteristics making 

misdiagnosis possible [14]. MFS patients are only followed with aortic arch imaging 

whereas LDS patients need more comprehensive imaging to detect aneurysms in other 

parts of the body [12, 17]. MFS patients get aortic arch aneurysms that can rupture. MFS 

patients show no abnormal risk of nonaortic arch aneurysms while 92% of LDS patients 

develop other aneurysms [8]. 

 Currently the clinical diagnosis of retinal diseases and LDS includes visual 

qualitative assessment of blood vessel tortuosity. Validation of quantitative tortuosity 

measurements is needed to develop quantitative tortuosity measurement for clinical 

diagnosis.  

Medical implications of tortuosity 

 Tortuosity of blood vessels has medical implications. Highly tortuous arterioles 

may require high blood pressure (hypertension) to push blood cells through small twisted 

arterioles [18]. Highly twisted arteries have physically prevented stenting [19]. High 

arterial tortuosity may also be a sign of weakened arterial walls caused by defects in 

proteins such as elastin [1]. The force of blood moving parallel with the blood vessels 

may stretch them increasing length causing tortuosity [1]. Blood pressure forces 

perpendicular to the blood vessels may stretch the walls out resulting in aneurysms [1]. 

Thus high arterial tortuosity could be a sign of existing vascular disease and a warning of 

future disease. 



4 

 

 

 

Tortuosity types 

 Vascular diseases cause different types of tortuosity. Tortuosity has been 

characterized in three types [20]. In type I tortuosity arteries exhibit broad meandering 

curves. High type II tortuosity arteries have dense nests of curved and erratically twisting 

vessels of a variety of lengths. The final type III tortuosity arteries have high frequency 

low amplitude coils or sinusoidal curves [20]. Type I tortuosity broadly affects arteries’ 

complete structure and is likely caused by underlying systemic disease. Type II tortuosity 

has been associated with arteriovenous malformations and III tortuosity has been 

associated with tumor angiogenesis [20]. 

Tortuosity measures 

 Several methods to measure arterial tortuosity have been developed. Most 

tortuosity measurements are made on centerlines through the middle of the arteries. 

Centerlines simplify the arteries to a single line passing through the middle of the artery 

making measurement of length possible. The distance factor metric (DFM) measures the 

ratio of the length L along arterial centerlines divided by the straight distance d between 

two end-points [4, 20-25]. The inflection count metric (ICM) multiplies the number of 

direction changes by the DFM to factor in the number of changes in direction [20, 26]. 

The sum of angles metric (SOAM) measures a sum of angles along the centerline [20, 

26]. The tortuosity measure used on arterioles in microscopy slides measures the ratio of 

the length of the largest twist in the blood vessel to the largest diameter of the blood 

vessel [27]. Other tortuosity measurement methods use the integral of the derivative or 
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second derivative of the centerline that is sensitive to abrupt changes along the centerline 

[22, 28]. The different tortuosity measures vary in which types of arterial tortuosity they 

detect. 

Relationship between tortuosity types and measures 

 Different existing measures of tortuosity work better for different types of 

tortuosity. The most commonly used measure has been the DFM partly due to its 

simplicity of implementation. The DFM performs well detecting high type I tortuosity 

arteries but not well detecting high type II and type III [20]. The SOAM performed well 

on type III but not on type I or II. The inflection count metric (ICM) [20] worked well 

detecting type I and type II tortuosity. The SOAM and ICM measurements were 

developed to measure small areas of local tortuosity seen in tumor angiogenesis [20, 28]. 

Quantitatively measured vascular diseases 

 Previous research has correlated several vascular diseases with quantitative 

tortuosity metrics. DFM based methods detected increased arterial tortuosity in retinal 

blood vessels with retinopathy of prematurity [1]. Measurements based on the integral of 

second derivative of the centerline measured increases in retinal blood vessel tortuosity 

with retinitis pigmentosa and diabetic retinopathy and decreased tortuosity with vasculitis 

compared to normal controls [2]. The ratio of the diameter of the largest loop to largest 

vascular diameter measure detected an increase in arteriolar tortuosity in brain blood 
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vessels from autopsy in hypertensive patients [27]. The SOAM measured an increase in 

arterial tortuosity with aging in magnetic resonance angiography (MRA) images while 

the ICM measurement did not in the same data set [29]. The ICM found a decrease in 

tortuosity of the middle cerebral arteries from MRA images with increased 

cardiovascular exercise which was not seen with the SOAM measurement [30]. However 

many diseases, even some known to increase arterial tortuosity visually, have not been 

quantitatively investigated and clinical use of quantitative measurement is not widespread 

and only appears to be used consistently with retinal arteries. 

Arterial tortuosity measurement method 

 This study is concerned with the relationship between blood vessel tortuosity and 

vascular disease. The study started with the DFM tortuosity measure due to its ability to 

detect type I tortuosity and simplicity of implementation. Tortuosity measure by 

curvature of the centerline was also implemented by numeric integration of the second 

derivative along the centerline. The curvature required specification of many 

implementation parameters that change the measures. The DFM tortuosity measure was 

free of implementation parameters. The study started with the DFM tortuosity measure to 

detect arterial tortuosity. When and if the DFM tortuosity measure proved ineffective 

modifications were made to the measure. The tortuosity measurement software developed 

can substitute alternative measures of tortuosity if the DFM is inadequate. 



7 

 

 

 

Imaging blood vessels 

 Blood vessels can be imaged for tortuosity measurement by several different 

modalities. Retinal blood vessels are routinely imaged in two dimensions in fundus 

photography by ophthalmologists [21, 31]. Small arterioles are imaged in two-

dimensional histological photomicrographs but only in autopsies [27, 32]. Digital 

subtraction angiography (DSA) with contrast agents creates high resolution two-

dimensional projection images that can display small arteries and veins [33]. CTA with 

contrast agents images both arteries and veins in three dimensions. And MRA can image 

both arteries and veins or arteries only in three dimensions. MRA’s ability to isolate 

arteries (Figure 1.1 A) from veins simplifies measurement of arteries [34] since veins can 

obscure the arteries (Figure 1.1 B). 

Risks of ionizing radiation in imaging 

 DSA and CTA expose the patients to ionizing radiation and contrast agents. 

Ionizing radiation potentially increases the risk of cancer in a linear no lower threshold 

manner [35]. No lower threshold means that when large numbers of patients are exposed 

to even small radiation doses, cancers are generated by the imaging [36-38]. Contrast 

agents used in DSA and CTA can have side effects. Patients can be allergic to contrast 

agents [34]. Nonionizing, noncontrast MRA imaging is preferred for safety [39, 40].  
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Nuclear magnetic resonance imaging safety 

 Nuclear magnetic resonance (NMR) is the basis of magnetic resonance imaging 

(MRI) and MRA which can image blood vessels without ionizing radiation or contrast. 

MRI scanners typically measure the collective signal from the protons that are the nuclei 

of hydrogen atoms from water and lipids and other hydrocarbons in the body. Therefore 

the magnetic resonance (MR) signal comes from the subject themselves although MRI 

scanners emit nonionizing radiation waves to image subjects. Added ionizing radiation or 

contrast agents are not required. Contrast agents do exist that can be injected to increase 

image contrast between different tissues, but are not always necessary. Thus MRI has no 

known long term side effects [39, 41].  

Nuclear magnetic resonance basics 

 The following provides a classical physics description of NMR. The NMR signal 

employed in MRI typically comes from the hydrogen proton nuclei. Imaging based on the 

nuclei of other atoms exists but is less common. The protons have nuclear magnetic 

moments µ that in the absence of an applied magnetic field are oriented in random 

directions and sum to produce zero net bulk magnetization M = Σµall = 0. In the presence 

of a magnetic field B, any given magnetic moment µ will precess about the direction of 

the applied field B with a frequency known as the Larmor frequency: ω = γB. The type of 

atom determines the gyromagnetic ratio γ, which is 42.58 MHz/Tesla (T) for hydrogen. 

The magnetic moments µ will not produce a measurable signal until they come into 

alignment with each other. When the protons of a subject are exposed to a large external 
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magnetic field vector B0, after a short time through a process known as relaxation, the 

magnetic moments have a tendency to align parallel with the field to sum to produce a net 

longitudinal bulk magnetization M = Σµall > 0. The bulk magnetization M is then 

manipulated to produce the measured NMR signal that is used to reconstruct the 

anatomical image. 

 An additional electromagnetic radio frequency (RF) pulse B1 applied 

perpendicular to the B0 field at the resonance frequency, ω, tips the bulk magnetization M 

out of alignment with B0. At this point, the bulk magnetization vector M has a 

longitudinal component Mz and transverse component Mxy with a tip angle α between the 

vector of M and the vector of B0 (Figure 1.2). Like the underlying magnetic moments µ, 

M precesses or wobbles around the B0 vector axis like a spinning top or dreidle in a cone 

pattern with a transverse Mxy bulk magnetization component perpendicular to the B0 

field. The Mxy component of the magnetization forms the basis of the detected NMR 

signal. After tipping, through a process of relaxation the bulk magnetization returns to 

alignment with B0 recovering the Mz component while reducing the Mxy component.  

 The recovery of Mz and Mxy to equilibrium is known as relaxation. The speed of 

relaxation is tissue dependent. Two forms of relaxation exist governing the recovery of 

Mz and the destruction of Mxy. Each specific tissue has a longitudinal T1, related to the 

recovery of Mz, and transverse T2, related to the loss of Mxy. Tissue specific differences in 

T1 and T2 and the proton density (PD) (increased proton density increases signal) are used 

to create contrast between tissues and highlight and suppress desired tissues with an MRI 

scanner.  
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MRI hardware components 

 An MRI scanner has three main hardware components: a main magnet, a 

magnetic field gradient system, and a radio frequency (RF) system [39]. The main 

magnet creates a static homogeneous magnetic field B0. The subject is placed in the 

magnetic field and the bulk magnetization M of the subject aligns with the B0 field. The 

gradient system alters the local magnetic environment to allow localization of the bulk 

magnetization. The RF system tips the magnetization away from B0 and receives signals 

produced by the precessing transverse bulk magnetization Mxy [39, 41]. 

Main magnet 

 The main magnet is typically a cooled superconducting magnet that creates the 

strong nearly uniform static field B0. Good image quality requires homogeneity of the 

magnetic field B0, which the main magnet is usually not capable of alone. Shim coils add 

magnetic field to even out the B0 field of the main magnet. The magnets are contained in 

a long hollow cylindrical shaped case with a hollow bore. The subject lies on a movable 

table that slides into the hollow bore for imaging. 

 MRI scanners now typically come in 1.5 T, 3.0 T and 7.0 T field strengths. A 

Tesla (T) is the Système international d'unités (SI) unit of magnetic field strength. For 

comparison the Earth’s magnetic field at the equator is 31 µT and a refrigerator magnet is 

around 5 mT. MRI scanners at 1.5 T and 3.0 T are FDA approved and are commonly 

used in clinical imaging. Scanners at 7.0 T are not FDA approved for clinical use but can 

be used with institutional review board (IRB) approval for research purposes only. 
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Higher field strengths have increased signal to noise ratios which can be employed to 

acquire images at higher resolutions making imaging of smaller arteries possible [42-44].  

Gradient fields 

 A gradient in the main B0 field is needed for signal localization to create the three-

dimensional image. Without the gradient the scanner could detect tissue signals but 

would not know where the tissues are located and would not be able to reconstruct the 

image. Gradients Gx, Gy and Gz are created by coil systems positioned around the bore 

and each modify the z-component of the main field along the spatial x, y and z directions, 

respectively. The field due to the gradients Bg = xGx + yGy +zGz changes the magnetic 

field B = B0 + Bg making the resonance frequency ω = γ(B0 + xGx + yGy + zGz) a 

function of position. In practice the gradients are seldom all turned on at the same time 

but are turned on and off as part of the image acquisition process. 

Radio frequency system 

 The radio frequency (RF) system has transmitter and receiver coils. Some systems 

use a combined transceiver coil. The transmitter applies uniform B1 magnetic fields 

perpendicular to B0 at specific resonance frequency to the subject. MRI scanners come 

with whole body coils inside the case of the main magnet and specially designed surface 

coils which may be placed close to anatomy of interest [39]. Surface coils placed on or 

close to the subject to increase signal to noise ratio in a small field of view help imaging 
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small structures such as narrow diameter arteries [45]. After the transmitted B1 RF ends, 

the receiver coils detect the precession of the transverse bulk magnetization Mxy.  

Generation of MRI image 

 The MR image is acquired by sampling NMR signals from the transverse bulk 

magnetization Mxy of the subject. The RF system and gradients are used to manipulate 

and sample signals of the bulk magnetization M throughout the spatial frequency or 

Fourier domain also known as k-space described below. Successive manipulations 

measure sample frequencies throughout k-space. When k-space has been completely 

sampled the anatomical spatial domain is recovered by an inverse Fourier transform [39, 

41].  

 First, the gradient coils are used to select a slab for excitation. A Gz gradient alters 

the resonance frequency linearly of the protons along the Z axis parallel to B0 according 

to ω(z) = γ(B0 + zGz). The transmission RF coils apply B1 perpendicular to B0 in a pulse 

at a narrow band width of resonance frequencies exciting a slab perpendicular to B0 with 

known Z location. The Gz gradient and B1 RF pulse are ended. Localization of the signal 

along the Y and X directions is imposed with phase and frequency encoding by gradients 

Gy and Gx. The Gy gradient phase encodes the signal by applying gradient in B parallel to 

B0 but varying along Y for a time-duration Tpe changing the resonance frequencies 

linearly along the Y axis according to ω(y) = γ(B0 + yGy). After the Gy gradient ends the 

resonance frequencies all return to the previous resonance frequency ω but the relative 

phase of magnetization now varies linearly along the Y axis phase (ϕ) encoding the 
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signal according to ϕ(y) = -γ y GyTpe. The Gx gradient turns on to frequency encode the 

signal by changing the resonance frequencies linearly along the X axis according to ω(x) 

= γ(B0 +xGx). The gradient encoding along the X axis and phase encoding along the Y 

axis of signal frequencies form the frequency domain of the image known as k-space. 

The k-space frequency signals of the image are sampled with the MRI scanner by 

manipulating the gradients, RF-pulses to guide the scanner through k-space. The 

frequency signals are converted with an analog to digital converter (ADC) for digital 

recording. When sufficient frequencies of k-space are sampled and recorded the 

frequency signals are inverse Fourier transformed in two dimensions or three dimensions 

into image space creating the image.  

 The image acquisition can be in two dimensions or three dimensions. In the two-

dimensional acquisition the B1 RF pulse excites a narrow slab determining the Z position. 

In three dimensional imaging the B1 RF pulse excites a wide slab and then a second Gz 

gradient is used to phase the spins to encode location on the Z axis. The choice of two- or 

three-dimensional acquisition depends on the imaging application.  

 Repeated Gy phase encoding gradients at different magnitude Gy and/or duration 

Tpe selectively encode the k-Y axis rows of k-space. The Gx gradient frequency encodes 

the k-X axis columns of k-space and the ADC receiver samples the magnitudes of 

frequencies at time intervals while the frequency encoding Gx gradient is turned on. The 

gradients are manipulated to sample k-space in patterns to collect data from sufficient 

phase and frequency signals to reconstruct the image. 
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 The combination of RF pulses, gradients and receiver listening periods are 

collectively known as a pulse sequence. The pulse sequence specifies the timing, 

magnitude, duration and order of RF pulses, gradients and signal sampling (turning on 

the receiver). The timing between repetitions of the B1 RF pulse is repetition time TR and 

the time between the B1 RF pulse and the peak signal of the echo is echo time TE. Pulse 

sequences use differences in longitudinal T1 relaxation times, transverse T2 relaxation 

times and proton density of the tissues to create contrast that make tissues borders in the 

image visible and selectively highlight or suppress tissues types.  

Time-of-flight magnetic resonance angiography 

 Time-of-flight (TOF) magnetic resonance angiography (MRA) pulse sequences 

have the ability to distinguish moving blood from immobile background tissues. MRA 

even takes advantage of arterial blood moving faster than venous blood to highlight 

arterial blood while suppressing venous blood [46]. MRA uses thick slab B1 RF 

excitation pulses and three-dimensional data acquisition. MRA pulse sequences use 

repeated B1 RF slab selection excitation pulses and gradient echoes with small tip angles 

spaced close together in time with short TR and short TE that saturates the excited tissues. 

The saturated background tissues are not able to recover their longitudinal magnetization 

[47, 48]. The blood within the excited volume is continuously replaced by fresh blood 

flowing into the volume. As a result, the blood does not experience the signal saturation 

and appears as bright tissue in the image. [40, 46, 49]. By keeping the TR times very short 

TOF-MRA can even saturate and suppress signal from slower venous blood [50] leaving 
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fast moving arterial blood brightest [47]. Even the arterial walls will be dimmer than the 

moving blood [47]. Diseased arteries with low blood flow may also appear dim or not be 

visible at all [45]. Thus MRA is showing physiology and not just anatomy [49]. TOF-

MRA images are not free of background tissues due to signal recovery by short T1 tissues 

[48]. These background tissues may have intensities as high as the arterial blood [47] 

requiring extra image postprocessing steps to segment the arterial blood from these 

background tissues. The amplification of the flowing blood by the pulse sequence allows 

this procedure to be done without contrast, thereby increasing patient safety [34].  

Filling a gap in research 

 Quantitative arterial tortuosity measurements are rarely used clinically. More 

research is needed to validate quantitative arterial tortuosity measurement for clinical use. 

Arterial tortuosity of only a limited numbers of vascular diseases has been studied. 

Arterial tortuosity due to tumors is a local phenomenon but it is not known if systemic 

vascular diseases such as hypertension correlate with increased arterial tortuosity in all or 

only limited arteries. Tortuosity measurements are needed for more arteries in more 

vascular diseased populations to build evidence for clinical use of quantitative tortuosity 

measurements. 

 One major obstacle to studying arterial tortuosity is the cost of imaging new 

subjects and corresponding negative controls. MRA images already exist for many 

subjects with vascular diseases. Studying the effects of vascular diseases on arterial 
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tortuosity in these existing images opens up a low cost and quick method to study the 

effects of many vascular diseases. 

 There are many challenges to studying arterial tortuosity using existing MRA 

images. The existing images from clinical scans and previous research studies were often 

acquired with different scanners and parameters, covering different arteries or parts of 

arteries at different resolutions. Corresponding negative controls are not collected for 

clinical scans. The challenges of correlating arterial tortuosity with vascular diseases in 

existing MRA are studied in three experimental papers submitted for publication in peer 

reviewed journals and duplicated here in Chapters 2, 3 and 4. 

Tortuosity measurement and analysis system 

 The experiments to correlate arterial tortuosity with vascular diseases were 

conducted with an arterial tortuosity measurement and comparison system developed in 

the course of this research. The system included plugins to ImageJ [51], an image 

processing tool. The plugins handled image processing tasks such as filtering, 

segmenting, calculating the centerline and selecting arteries for tortuosity measurement. 

Arterial tortuosity measures were computed from centerline data compiled in the 

database and analyzed using the statistical environment, R [52]. The statistical analysis 

environment and relational database were also used to organize data by case and control 

group for comparison between groups. This system was used in all of the experimental 

papers. 
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Experimental papers 

 In Chapter 2 the first paper “Comparing Performance of Centerline Algorithms 

for Quantitative Assessment of Brain Vascular Anatomy” tackles the issues of generating 

centerlines for all arteries of interest. Centerlines are necessary for the tortuosity 

measurements. To measure tortuosity in a large range of different arteries, centerline 

algorithms must be able to consistently make centerlines that accurately represent the 

anatomy of the arteries. In this experiment different Dijkstra based centerline algorithms 

are compared for their ability to create accurate and stable centerlines in numeric 

phantoms of different shapes and in MRA brain images. One of the most challenging 

arteries to calculate centerlines for is the internal carotid artery (ICA) in the brain. 

Anatomically, the ICA has a looping structure where distant inferior (or upstream) and 

superior (or downstream) portions of the vessel are nearly adjacent. During segmentation 

of the ICA from the background, the adjacent portions of vessel are often erroneously 

connected, resulting in a shortcut or “kiss” which subsequently affects the centerline 

extraction. The study measures and selects a centerline algorithm that can draw 

centerlines around the difficult loop of the ICA without taking the kissing shortcut. 

 In Chapter 3 the paper “Validation of an Arterial Tortuosity Measure with 

Application to Hypertension” further refined the centerline algorithm and developed and 

tested a tortuosity measurement method. Tortuosity was measured by calculating DFM 

tortuosity curves rather than single DFM tortuosity measurements and tested the 

underlying DFM tortuosity measurement on numeric phantoms and on hypertensive and 

control populations. This paper deals with many of the challenges of reusing existing 
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image data. The images in this study truncated arteries at different points making direct 

comparison at the same end-points impossible. The study uses DFM tortuosity curves to 

compare truncated arteries. The study also has image data for the same subjects acquired 

at different resolutions making it possible to measure the effect of resolution on the DFM 

tortuosity metric and develop a strategy to reduce the resolution effect. The study also 

compares negative controls collected with different methodologies. 

 Hypertension was an interesting vascular disease for arterial tortuosity 

measurement. Hypertension had been correlated with increased tortuosity of brain matter 

arterioles from autopsy photomicrographs [27]. Large arteries observed in vivo with 

MRA images of living subjects have not been correlated with increased tortuosity before 

this study. The study included a set of hypertension data acquired at 7.0 T which is rare. 

The 7.0 T data set contained images of large diameter arteries like the ICA down to the 

small diameter lenticulostriate arteries not seen at lower field strength. 

 In Chapter 4 the paper “Medical Record and Imaging Evaluation To Identify 

Arterial Tortuosity Phenotype in Populations At Risk For Intracranial Aneurysms” 

examines the relationship between arterial tortuosity and intracranial aneurysms. In a 

previous study on the mechanisms of arterial and aneurysmal tortuosity, the elastin 

protein of extracted arteries was degraded in vitro weakening the arterial walls causing 

increased arterial tortuosity and aneurysmal dilations [1]. There were no previous studies 

on patients with intracranial aneurysms. This study looked for increased arterial tortuosity 

in populations with familial intracranial aneurysms, unaffected members of high 

intracranial aneurysm risk pedigrees and in other patients with intracranial aneurysms. 



 

 

Figure 1.1.Arterial imaging modalitites.
(MIP) image of TOF-MRA image displays flowing arterial blood. (Right) Both 
veins and arteries appear in the computed tomography angiography (CTA) se
mented blood vessel image making arteries difficult to distinguish.

 

Arterial imaging modalitites. (Left) Maximum intensity projection 
MRA image displays flowing arterial blood. (Right) Both 

rteries appear in the computed tomography angiography (CTA) se
mented blood vessel image making arteries difficult to distinguish. 
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(Left) Maximum intensity projection 
MRA image displays flowing arterial blood. (Right) Both 

rteries appear in the computed tomography angiography (CTA) seg-
 



 

 

Figure 1.2. The bulk magnetization vector M precesses about the static magnetic 
field vector B0 at resonance frequency 
transverse component Mxy 

 

The bulk magnetization vector M precesses about the static magnetic 
at resonance frequency ω with longitudinal component M

 at tip angle α.  
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The bulk magnetization vector M precesses about the static magnetic 
 with longitudinal component Mz and 
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Abstract 

 Attributes like length, diameter and tortuosity of tubular anatomical structures 

such as blood vessels seen in medical images can be measured from centerlines. This 

study develops methods for comparing the performance of centerline algorithms. Several 

centerline algorithms exist but there are challenges to calculating centerlines. The starting 

point of a vascular tree can affect calculated centerlines. Vessels can loop back touching 

or kissing themselves causing problems for centerline algorithms. This study develops 

methods for evaluating the accuracy and stability of centerline algorithms. 

 Images of human brain arteries were acquired with time of flight (TOF)–magnetic 

resonance angiography (MRA) and the arteries were segmented. Dijktra's shortest paths 

based centerline algorithms were developed with different cost functions. The cost 

functions were the inverse modified distance from edge (MDFEi) of the segmentation, the 

center of mass (COM) of the segmentation, the binary thinned (BT)-MDFEi and the BT-

COM. The algorithms generated centerlines trees of simulated numeric vasculature 

phantoms and of segmented brain arteries. The accuracy of the centerline algorithms 

were measured by the Root Mean Square Error from known centerlines of electronic 

phantoms. The stability of the centerlines was measured by starting the centerline tree 

from multiple points and measuring the differences between the centerline trees. The 

accuracy and stability of the centerlines were visualized by overlaying centerlines on the 
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vasculature images. The visualization was used to assess algorithm performance on a 

kissing vessel in human brain arteries. 

 The BT-COM cost function centerline was the most stable in numeric phantoms 

and human brain arteries. The MDFEi based centerline was most accurate in the numeric 

phantoms. The COM based centerline handled the kissing artery in the human brain in 16 

out of 16 cases whereas the BT-COM was correct in 10 out of 16 and MDFEi was correct 

in 6 out 16. 

 The COM based centerline algorithm handled the kissing arteries of the brain 

images and will be used for quantitative assessment of vascular morphology in later 

studies. The highest stability did not correspond with the highest accuracy in numeric 

phantoms. The highest stability and accuracy in numeric phantoms also did not 

correspond to the best centerlines in subject data. The centerline visualization methods 

were critical for assessing centerlines in subject data. 

Key words: Centerline, MRA, stability, vascular. 

Introduction 

 Vascular diseases can be diagnosed and characterized by abnormalities in blood 

vessel morphology observed with three-dimensional medical imaging techniques such as 

magnetic resonance angiography (MRA). An example of this includes the correlation of 

the severity of hypertension with tortuosity or twistedness of arteries (Hiroki et al., 2002). 

Currently, nearly all medical evaluation of 3D images is performed qualitatively by 

visual assessment by specialists. Quantitative assessment of vessel morphology including 
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radius, length and tortuosity (twistedness) measurements by computer software would 

make comparison of measurements across medical centers, tracking changes over time, 

and automated screening for vascular disease possible. Quantitative assessment of artery 

morphology can be made from centerlines of arteries (O’Flynn et al., 2007; Lesage et al., 

2009). Arterial centerlines have also been used to measure the tortuosity of blood vessels 

(Bullitt et al., 2003). Centerlines can be used to measure artery lengths and radius. 

Change of radius in arterial centerlines can potentially detect stenoses and aneurysms 

(Frangi et al., 1999; Kang et al., 2009; Lesage et al., 2009). Centerlines can be used for 

many tasks involving the quantitative analysis of blood vessels. 

 Stable and accurate centerline algorithms are needed to quantitatively measure 

and investigate the blood vessels and the effects of disease on blood vessels. Stability of 

the centerline is the ability of an algorithm to create the same centerline for the same 

image data with different input parameters, primarily the starting point of the centerline 

tree. Accuracy refers to how close a calculated centerline is to an ideal centerline for a 

numeric phantom. Centerline accuracy and stability measurement methods are needed to 

select the best algorithms for generating centerlines for a quantitative task. Accuracy and 

stability visualization methods are needed to know where centerlines are accurate or 

inaccurate, stable or unstable. Different studies will have different areas of interest; the 

researcher will want to know if the centerline is accurate and stable in the area of interest. 

For example intracranial aneurysms typically occur in the circle of Willis arteries, which 

experience higher blood pressure and pressure variations than the peripheral intracranial 

arteries (Arimura et al., 2004). Thus, for the purpose of aneurysm detection, it is more 
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important that the circle of Willis arterial centerlines are stable whereas the stability of 

the peripheral arterial centerlines is less important to aneurysm assessment. 

 The purpose of this study is to develop methods for measuring and visualizing the 

accuracy and stability of centerline algorithms and select the best available algorithm for 

creating centerlines in central arteries of human brain MRA images. Arterial centerlines 

have the potential for developing diagnostic and descriptive measures of vascular 

diseases. The methods developed here may also be used to quantify tubular structures in 

any three-dimensional image.  

Materials and methods 

Source images 

 In this study we collected images: a computer generated helical and straight line 

phantom (Fig. 2.1 A, B), two computer generated branching phantoms with background 

noise from Aylward (Aylward and Bullitt, 2002) (Fig. 2.2 A, B) and eight human brain 

Time of Flight (TOF)-MRA images (Fig. 2.3). The helical phantom was generated by 

calculating points on a helical and straight lines then rolling a ball with a 6 voxel radius 

along the points. The eight MRA image data sets were selected from our ongoing 

intracranial aneurysm study approved by the University of Utah Institutional Review 

Board. Additional information on the data set is in the Source Images supplement section. 
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Tools 

 Image processing tools for this study were developed in Java with the ImageJ 

toolkit (Rasband, 1997; Burger and Burge, 2007). Results were stored in the MySQL 

database (available at http://www.mysql.com/). Graphing results and statistical analysis 

were performed with R (R Development Core Team, 2009) . 

Segmentation 

 The unsegmented computer generated branching phantoms and the eight human 

brain MRA images were segmented from the background noise and brain tissue leaving 

the simulated arterial tissue (Fig. 2. 4 A, B) or the human brain arterial tissue (Fig. 2.5) 

with a z-buffer segmentation (ZBS) algorithm (Parker et al., 2000; Chapman et al., 2004). 

The point where the three branches of the branching phantoms meet is narrow so that the 

region growing threshold employed during the ZBS segmentation had to be lowered in 

order to keep the segmented branches all in one connected component (Fig. 2.4 B). 

Additional details of the segmentation process are covered in the Segmentation 

supplement section. The result of segmentation is the extracted arterial tree.  

Cost function segmentation preprocessing 

 To generate a centerline through the segmented arteries a cost was assigned to 

every voxel (a three-dimensional pixel) in the extracted arterial tree. Four different costs 

functions were: MDFEi, COM, BT-COM and BT-MDFEi. 
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 The MDFEi cost function calculates a value for each voxel that is higher for 

voxels closer to the edge of the arteries and lower for voxels closer to the middle of the 

arteries by first calculating the distance from edge (DFE), modifying the DFE (MDFE) to 

break ties and inverting to make the costs higher on the outside and lower on the inside 

(Zhang et al., 2005) (Fig. 2.6). 

 The center of mass cost function loops through every voxel in the segmentation 

and calculates the average X, Y and Z positions of each voxel and up to 26 three-

dimensional neighbors as the center of mass, recording each voxel’s center of mass and 

cumulative distance moved from the original position to each subsequent center of mass 

through multiple iterations. At each iteration, the center of mass calculation depends on 

the positions of the previous iteration. The center of mass calculation is repeated until all 

voxels have been moved a minimum of 30 times. Increasing iterations increased stability 

only minimally after 30 iterations. The cumulative distances moved are divided by the 

minimum nonzero distance moved in the entire segmentation and the result is cubed. 

Voxels at the segmentation edge begin moving with the earliest iterations and tend to 

move the farthest, generating high cost scores. Voxels near the center move with later 

iterations and for short distances, generating low cost scores (Fig. 2.7). 

 The BT centerline algorithm (Homman, 2007) eroded the segmentations to single 

voxel-width skeletons (Fig. 2.8 A, B and Fig. 2.9). The brain artery skeletons are close to 

centerlines but have short segments running across wide arteries (Fig. 2.9). The skeletons 

were used as inputs into the MDFEi or COM cost functions to utilize the existing 

software program developed for the inverse MDFE and COM centerlines. The DFE will 
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always be one for every voxel and not change the skeleton. The voxels will typically only 

have 1, 2 or 3 neighbors in the COM reducing the amount of movement compared to the 

earlier algorithms. 

 The result of preprocessing are cost values for every voxel in the extracted arterial 

tree. The costs will be higher at the edge and lower in the middle. The binary thinned 

arteries will only have one cost value. The centerline of the arteries will be the lowest 

cost path through the cost function.  

Centerline algorithms 

 To calculate the centerline the precomputed arterial tree costs were input into the 

Dijkstra shortest paths algorithm (Dijkstra, 1959). Dijkstra’s algorithm calculated the 

lowest cost centerlines from every voxel back to a selected starting root voxel. Then the 

paths less than 30 voxels long were removed leaving a skeleton centerline of the arterial 

tree (Zhang et al., 2005). The root of the MDFEi based centerline trees was the maximum 

MDFE, the thickest point in the arterial tree (Zhang et al., 2005). The root of the BT-

MDFEi based centerline tree was the most central voxel in the arterial tree. The root of 

the COM based centerline tree and binary thinning-center of mass (BT-COM) based 

centerline trees are voxels with the lowest center of mass score. In the event of tied 

starting root points the root closest to the center of the image was selected. The 

centerlines tend toward the lower cost middle voxels of the preprocessed segmentations 

(Fig. 2.10 A, B). Shortest paths centerline generation on the binary thinned input has the 

effect of pruning off short branches that are running across artery widths (Fig. 2.11). The 
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results of the centerline algorithms were single voxel width centerline skeletons of the 

arterial trees.  

Stability measure 

 Stability of the centerline was measured by generating the centerlines for the same 

segmentation starting at different root points. The first centerline tree is initiated from the 

root as described for the centerline algorithms. The arterial tree endpoints of the largest 

connected centerline tree were used as roots for a second round of centerlines. Smaller 

centerline trees of segmented arteries not connected to the largest section were discarded. 

 To measure and identify stable and unstable centerlines, the first round and all 

second round centerlines were accumulated in one image. The most stable centerline 

points occur in the same voxel for all N centerline root points. The stability measure for 

an image was the percentage of centerline voxels in the accumulated image called 

centerline for all of the centerline roots. 

 To visualize the accumulated centerlines the inverse of the accumulation was 

plotted in 3-D with the surrounding segmentation. This makes unstable voxels that are 

called centerline by fewer than N roots brighter than their neighbors and therefore easily 

visible (Fig. 2.12 left column). 
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Accuracy 

 Accuracy of the centerlines of the phantoms is measured by the root mean square 

error (RMSE) of Euclidean distances from the algorithm generated centerline points to 

the nearest known centerline point for a phantom. The centerline points used to generate 

the helix line phantom were known. The known centerline points for the helix line 

phantom were sparse (Fig. 2.1B); the algorithm-derived centerlines had more points 

because the centerlines extend out to last voxel at the end while the known center points 

used to generate the phantom stop at one radius distance from the edge of the phantom as 

seen in Fig. 2.1B. Therefore, the RMSE was computed only over the set of known points 

and their nearest centerline determined neighbors. Aylward and Bullitt (Aylward and 

Bullitt, 2002) provided ideal subvoxel accuracy positive control centerline coordinates, 

available in a text file, for the branching phantoms with noise. The RMSE of these 

phantoms was calculated between each centerline point determined by the Dijkstra 

algorithm and the closest subvoxel positive control point. The accuracy of the helix line 

phantom was visualized by plotting each algorithm centerline coordinate in red 

accumulating for each starting root and plotting the positive centerline control points in 

green. The red and green color together made yellow showing where the algorithm and 

positive control points were the same and where they differed (Fig. 2.12 right column). 
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Results 

Phantom centerline stability and accuracy 

 The centerline tree of first helix line phantom (Fig. 2.1B) had seven ends. The 

first starting point in the thickest point of the phantom followed by starting points at the 

seven ends made total of eight centerline trees for the stability analysis. In this case, the 

inverse MDFEi cost function was the least stable with the lowest stability score (Table 

2.1). Instability occurred throughout the helix at bifurcations and at line ends (Figure 2.12 

A). The binary thinning skeleton only left one possible highly stable centerline with some 

instability occurring at ends when the skeleton was passed to either the inverse MDFEi or 

COM programs. The COM based centerline was more stable (higher stability score) than 

the inverse MDFEi based centerline (Table 2.1). 

 The MDFEi cost function was the most accurate (lowest RMSE) despite being the 

most unstable (lowest stability score) (Table 2.1). The accuracy visualization shows the 

positive control green, algorithm red and overlapping yellow centerlines (Fig. 2.12 right 

column). The inaccuracies occur at ends and bifurcations and in the helix portion of the 

phantom. The locations of the inaccuracies are similar to the locations of instability (Fig. 

2.12). The COM based centerline lost more accuracy than the other algorithms bending 

around bifurcations as seen by the green color in Fig. 2.12 D. The binary thinning 

algorithms were frequently a few voxels off as seen by the green in the helix (Fig. 2.12 F, 

H) accounting for the high RMSE of accuracy. 
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Stability and accuracy on phantoms with noise 

 The MDFEi based centerline algorithm had the lowest stability and best accuracy 

(lower RMSE) for the lower SD 10 noise phantom. For the higher SD 20 noise phantom 

the COM and binary thinning paired with COM had lower RMSE. Binary thinning 

followed by the COM based algorithm consistently outperformed binary thinning 

followed by the MDFEi based algorithm with higher stability scores and lower RMSE of 

accuracy. Therefore the rest of the trials on MRA data used the binary thinning followed 

only by the COM based algorithm for centerline generation. The number of primary (one) 

plus secondary starting root points was three for most algorithms and four for the binary 

thinning followed by the COM based algorithm because the initial start point for the first 

round centerline was near an end of the branching object for the tests with three starting 

roots. The binary thinning followed by COM had the highest stability besides having the 

extra centerline tree (Table 2.2). The bright end of the lower right branch in Fig. 2.13 B 

shows that much of COM based algorithm instability happens at the end of the branch 

because one of the starting roots occurred here, shortening the centerline. When the 

centerline was rooted at another branch end the centerline extended longer at this branch 

end. This was an example of how the starting point alters the centerline tree. 

Artery centerline stability 

 The running time for calculating COM costs for arterial trees was under 60 

seconds for a total time of 3 to 5 minutes to generate the centerlines for all the centerline 

algorithms. Stability images from the segmentation are shown in Fig. 2.14. A region of 
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instability was seen in the left internal carotid artery in Fig. 2.14 A. In the vessel 

segmentation, the internal carotid artery siphon frequently loops back and touches itself 

creating a shortcut for the centerline to pass through. The MDFEi based centerlines pass 

through the kissing point (Fig. 2.15 A and Fig. 2.16 B). Dijkstra's shortest paths on the 

segmentation cost functions of the MDFEi and COM based algorithms produce only 

nonlooping branches. In the MDFEi based algorithm, the first centerline passes through 

the kissing point and subsequently two centerlines extend out from the kissing point to 

end on the distant edges of the siphon arterial wall (Fig. 2.14 A and B and Fig. 2.16 B). 

The COM based algorithm produced high scores near the kissing point, even though the 

scores in the kissing point are low (Fig. 2.15 B), causing the first centerline to run around 

the siphon loop (Fig. 2.14 C, D and Fig. 2.16 B). Shorter centerlines are subsequently 

generated by Dijkstra's algorithm (Dijkstra, 1959) from the kissing point to end at the 

longer centerline. However, these shorter centerlines fall below the 30 voxel length 

threshold and are removed leaving the final centerline tree (Fig. 2.16 B). The BT-COM 

based centerline consistently forms a loop with one part of the centerline passing through 

the narrow kissing point (Fig. 2.14 E, F and Fig. 2.16 C). Failing to pass a centerline 

through the internal carotid artery (ICA) siphon loop is a common centerline failure and 

is used as a measure of centerline accuracy in the MRI images since there is no gold 

standard centerline for computing the RMSE as with the earlier phantoms. 

 As with the phantoms the COM and BT-COM based centerline had higher 

stability than the MDFEi based centerlines. We recorded when the centerline succeeded 

and failed to pass through the ICA siphon (Table 2.3). Success meant that the centerline 
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passed through the ICA without touching the edge of the segmentation for all roots; any 

failure of one tree was counted as a failure. The MDFEi based centerline would 

frequently pass through the ICA siphon correctly for some starting root locations but not 

others leading to its lower mean stability measure. 

 A one-way analysis of variance (ANOVA), using the lm command from R (R 

Development Core Team, 2009), of the centerline accuracy in the 16 ICA siphons by 

algorithm (MDFEi, COM, BT-COM) showed a significant difference p-value = 3.62e-04. 

The COM was significantly more accurate than BT-COM, p-value = 1.26e-02. BT-COM 

was more accurate than MDFEi but not significantly different, p-value = 9.01e-02. 

 One-way ANOVA showed the algorithm significantly affects the stability, p-

value = 1.63e-06. As the centerline stability box and whiskers plot shows the BT-COM 

based algorithm and COM algorithm are very close in stability, p-value = 0.846 

indicating no significant difference. The MDFEi algorithm produces a significantly less 

stable centerline than the BT-COM based algorithm, p-value < 0.0001 (Fig. 2.17 A and 

Table 2.4). 

 The first run of different centerline algorithms can produce differing numbers of 

tree ends for roots of following centerline trees generated to measure stability. More ends 

and more centerline trees create more opportunity for instability. The centerline 

algorithms did not produce significantly different numbers of tree ends (p-value = 0.862). 

The number of tree ends used as roots does not account for the instability of the MDFEi 

centerline algorithm as seen in Fig. 2.17 B and Table 2.4. Table 2.4 summarizes the 

centerline stability data by algorithm recorded in Table 2.5. 
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Discussion 

 Our study showed the COM based centerline algorithm was more stable and 

correctly calculated more centerlines around the kissing ICA loops than the other 

algorithms tested using the newly developed centerline stability measure and 

visualization of ICA loop centerline. The stability measurement strategy demonstrated 

the consistency of the COM based centerline algorithm in the kissing ICA loops. The 

stability measurement strategy of starting the centerline tree at different points can be 

reused to test other centerline algorithms for use on any tubular structure. The stability, 

and phantom accuracy, visualization methods developed here identified where inaccuracy 

and instability were occurring. These methods are also usable for a wide range of 

centerline algorithms and applications of centerlines to anatomical studies. 

 This study is a first attempt to address the problem of kissing vessels. Kissing 

blood vessels are common in the segmentations of the brain and other anatomy. The 

method of having the centerline follow the middle of the mass of the artery solved the 

kissing vessel problem in the ICA loop in this study. Using mass in the centerline 

algorithm will be useful in any anatomical case where the true anatomical centerline is in 

the largest mass and noise creates smaller adjacent structures to the vessel. 

 The measure of stability from multiple starting points was able to determine the 

COM based algorithm handled the ICA kissing siphon from all starting ends ensuring the 

stability of the algorithm. It would be computationally impractical to test stability by 

starting the stability measure from every point in the segmentation or even from every 

point in the first centerline tree. By starting the centerline trees from all ends of the first 
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centerline tree the centerline algorithm will approach the regions of instability such as 

kissing ICA loop and all bifurcations from all directions thus testing the algorithm from 

all directions. The visualization of stability and accuracy allowed us to see that the 

instabilities and inaccuracies are mainly occurring at kissing vessel points and 

bifurcations. 

 The COM based centerline algorithm generates correct centerlines in cases where 

the artery is much larger than the kissing points and is resistant to adjacent segmentation 

noise as long as the noise is smaller than the artery. The COM based centerline gravitates 

toward the center of the largest mass and in the case of the ICA siphon the largest mass is 

in the loop and kissing section is smaller contributing less to the center of the mass. 

 All the cost functions had inaccuracies in the loop of the helix. The curve of the 

helix in the phantom is approximated to the nearest voxel and the centerline algorithms 

also have to approximate voxel positions causing the inaccuracies and instability 

frequently seen in curving centerlines. Curved centerlines often have a stair-stepped 

appearance. Some applications of the centerline may require subvoxel smoothing of the 

centerline to obtain smooth curves. 

 A limitation of comparing centerline algorithms by stability is that the most 

accurate centerline algorithm was not always the most stable algorithm. The BT 

algorithm was inherently stable because it erodes the segmentation from all outside points 

simultaneously to a single skeleton line. The BT cost functions, paired with MDFEi or 

COM, had consistently high stability while not having the highest accuracy in the 

phantom or in the count of correct ICA siphon centerlines in the brain images. The BT 
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algorithm removed most voxels of the segmentation in the skeletonization step leaving a 

limited path for the centerline generation from the skeleton allowing the BT algorithms to 

maintain high stability. 

 Highest stability also did not correspond to highest accuracy in the no noise and 

low noise phantoms where the MDFEi based algorithm was least stable but most 

accurate. In the brain images the COM based algorithm was clearly most accurate in the 

ICA siphon and was not significantly less stable than the most stable BT-COM based 

algorithm, while having the lowest stability in all phantoms and brain images the MDFEi 

based centerlines were the most accurate in the no added noise helix line phantom (Figure 

2.1 A, B) and low SD 10 noise (Figure 2.2 A) phantoms. The RMSE of accuracy of the 

MDFEi centerlines increased from 0.393 in the SD 10 noise phantom to 0.674 in the SD 

20 noise phantom (Table 2.2), a greater increase than the other more stable COM, BT-

MDFEi and BT-COM based algorithms. It makes sense that the least stable centerline 

would lose accuracy the fastest as noise increases. As noise increases the stability of the 

algorithm becomes increasingly important to maintaining accuracy. The MDFEi based 

centerlines were the least accurate in the ICA siphons of the brain images that contain the 

noise of the MRI. 

 The current study tested a limited number of centerline algorithms both internally 

and externally developed. The stability measure and visualization of inverse stability are 

usable by researchers testing algorithms for particular centerline extraction applications 

of tubular anatomy. There may not be an ultimate singular centerline algorithm suitable 

for all applications. The COM based algorithm which was best in this study for extracting 
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the ICA siphon loop is prone to missing small dim arteries near larger brighter arteries. 

An application looking at a small dim artery would have to use another algorithm making 

the availability of comparison methods important. Tubular structures occur frequently in 

anatomy. In addition to the arteries studied here other anatomical structures studied with 

centerlines include veins, lung bronchioles, large and small intestine, nerves, bones and 

any other tubular anatomical structures. 

Conclusion 

 Centerlines can be used to measure features of tubular anatomical structures. This 

study expands the range of structures that can have a centerline calculated. The kissing 

ICA siphon loops could not have a centerline made with the existing MDFEi (Zhang et 

al., 2005) and BT (Homman, 2007) algorithms. The COM algorithm developed here 

made a centerline possible in the ICA siphon loop. The centerline stability measure 

showed that the COM algorithm handled the kissing ICA siphon starting from any 

direction showing that the COM algorithm is stable in this case. The stability measure 

can be reused to test centerline algorithms when evaluating centerline algorithms for 

other tubular anatomical structures. 
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Figure 2.1. Electronic phantoms. (A) Shaded surface rendering of phantom. (B) 
Maximum intensity projection of phantom with centerline points used to generate 
the phantom. 

 

Figure 2.2. Aylward phantoms with background intensity 100 and tubular objects 
with cross-sectional intensities in a parabolic profile ranging from 150 at the 
edge to 200 at the middle of the object with increasing Gaussian noise. (A) Phan-
tom with Standard Deviation (SD) 10 noise added. (B) Phantom with SD 20 
noise added. 
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Figure 2.3. Magnetic resonance angiography (MRA) images of patient from 3 T 
MRI scanner viewed from the top with background brain tissue. 

 

Figure 2.4. MIP projects of the segmented computer generated branching phan-
toms. (A) SD 10 segmentation with the seed histogram region growing threshold 
set at 0.15. (B) SD 20 segmentation with the seed histogram region growing 
threshold set at 0.13. 
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Figure 2.5. Segmented arteries shaded surface depth image shows the segmenta-
tion in 3D. 

 

Figure 2.6. Brain artery segmentation inverse Modifed Distance From Edge 
(MDFEi) cost function score cross section. Brighter is higher cost, darker is 
lower cost. 



 

 

Figure 2.7. Brain artery segmentation Center Of Mass (COM) cost function score 
cross section. Brighter is higher cost, darker is lower cost.

Figure 2.8. Binary thinned phantoms. (A) SD 10 binary thinned skeleton. (B) SD 
20 binary thinned skeleton.

 

 

Brain artery segmentation Center Of Mass (COM) cost function score 
cross section. Brighter is higher cost, darker is lower cost. 

 

. Binary thinned phantoms. (A) SD 10 binary thinned skeleton. (B) SD 
20 binary thinned skeleton. 
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Brain artery segmentation Center Of Mass (COM) cost function score 

. Binary thinned phantoms. (A) SD 10 binary thinned skeleton. (B) SD 



 

 

Figure 2.9. Maximum intensity transverse projection of binary thinned arteries. 
Binary thinning of segmen
tion with lines running frequently across the arteries.

 

 

 

. Maximum intensity transverse projection of binary thinned arteries. 
Binary thinning of segmented artery data produces a skeleton of the segment
tion with lines running frequently across the arteries. 
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. Maximum intensity transverse projection of binary thinned arteries. 
ted artery data produces a skeleton of the segmenta-



 

 

Figure 2.10. Cross sections of centerlines in artery segmentation cost functions. 
The centerlines line in the low cost darker middles of the segmented arteries. (A) 
COM cost function. (B) MDFE

 

 

 

Cross sections of centerlines in artery segmentation cost functions. 
The centerlines line in the low cost darker middles of the segmented arteries. (A) 

MDFEi cost function. 

 

50 

 

Cross sections of centerlines in artery segmentation cost functions. 
The centerlines line in the low cost darker middles of the segmented arteries. (A) 



 

 

Figure 2.11. Maximum intensity transverse projection of binary thinned arteries. 
The skeleton is turned into a centerline by processing the skeleton with Dijkstra's 
shortest paths algorithm and removing lines less than 30 voxels long. The final 
centerline is shown bright with 
mentation background intensity.

 

 

 

intensity transverse projection of binary thinned arteries. 
The skeleton is turned into a centerline by processing the skeleton with Dijkstra's 
shortest paths algorithm and removing lines less than 30 voxels long. The final 
centerline is shown bright with the removed short lines shown in the dim se
mentation background intensity. 
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intensity transverse projection of binary thinned arteries. 
The skeleton is turned into a centerline by processing the skeleton with Dijkstra's 
shortest paths algorithm and removing lines less than 30 voxels long. The final 

the removed short lines shown in the dim seg-



 

 

Figure 2.12. Phantom stability and accuracy (A
racy visualization. A,C,E,G maximum intensity projection (MIP) of stabil
ages. B, D,F,H shows zoomed in and rotated MIP images of accuracy images to 
show where the known green centerlines differ from the red algorithm cente
lines and were they overlap in yellow. A
COM algorithm, E-F is the BT
rithm. 

 

. Phantom stability and accuracy (A-H) Phantom stability and acc
racy visualization. A,C,E,G maximum intensity projection (MIP) of stabil
ages. B, D,F,H shows zoomed in and rotated MIP images of accuracy images to 
show where the known green centerlines differ from the red algorithm cente
lines and were they overlap in yellow. A- B is the MDFEi algorithm, C

s the BT-MDFEi algorithm, G-H is the BT-COM alg
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H) Phantom stability and accu-
racy visualization. A,C,E,G maximum intensity projection (MIP) of stability im-
ages. B, D,F,H shows zoomed in and rotated MIP images of accuracy images to 
show where the known green centerlines differ from the red algorithm center-

algorithm, C-D is the 
COM algo-



 

 

Figure 2.13. Stability images showing the inverted stability centerlines of the 
branching phantom with SD 20 Gaussian noise. (A) MDFE
segmented image. (B) COM stability lines on the segmented image. (C) BT
MDFEi stability on the skeleton. (D) BT

 

 

. Stability images showing the inverted stability centerlines of the 
branching phantom with SD 20 Gaussian noise. (A) MDFEi stability lines on the 

ge. (B) COM stability lines on the segmented image. (C) BT
stability on the skeleton. (D) BT-COM on the skeleton. 
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. Stability images showing the inverted stability centerlines of the 
stability lines on the 

ge. (B) COM stability lines on the segmented image. (C) BT-



 

 

Figure 2.14. Maximum intensity projections of stability images show the cente
line instability brightly. (A) MDFE
MDFEi cost scoring the centerline passes through the kissing ICA siphon. (C) 
COM algorithm centerline transverse MIP. (D) COM cost scoring the centerline 
takes the larger wider loop around the ICA siphon in
point. (E) BT-COM centerline transverse MIP. (F) BT
through kissing vessel loop.

 

 

Maximum intensity projections of stability images show the cente
A) MDFEi algorithm centerline transverse MIP. (B) 

cost scoring the centerline passes through the kissing ICA siphon. (C) 
COM algorithm centerline transverse MIP. (D) COM cost scoring the centerline 
takes the larger wider loop around the ICA siphon instead of the narrow kissing 

COM centerline transverse MIP. (F) BT-COM centerline shortcuts 
through kissing vessel loop. 
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Maximum intensity projections of stability images show the center-
algorithm centerline transverse MIP. (B) 

cost scoring the centerline passes through the kissing ICA siphon. (C) 
COM algorithm centerline transverse MIP. (D) COM cost scoring the centerline 

stead of the narrow kissing 
COM centerline shortcuts 



 

 

Figure 2.15. Cost function cross sections
showing a kissing ICA siphon loop with the centerline passing through. (B) The 
COM cost function scores showing a kissing ICA siphon with no centerline pas
ing through. 

 

 

 

. Cost function cross sections (A) The MDFEi cost function scores 
sing ICA siphon loop with the centerline passing through. (B) The 

COM cost function scores showing a kissing ICA siphon with no centerline pas
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cost function scores 
sing ICA siphon loop with the centerline passing through. (B) The 

COM cost function scores showing a kissing ICA siphon with no centerline pass-



 

 

Figure 2.16. Stability MIP images of segmented kissing ICA siphon loop. (A) 
Shaded surface depth image of ICA loop shows thin kissing point. (B) MDFE
centerline passes through narrow kissing point. (C) COM centerline draws line 
around low scoring siphon loop. A centerline is m
point but is removed by thresholding to eliminate short centerline lines segments. 
The COM centerline appears to come closer to the inside edge than the outer 
edge of the bend. (D) The BT
point. 

 

 

 

MIP images of segmented kissing ICA siphon loop. (A) 
Shaded surface depth image of ICA loop shows thin kissing point. (B) MDFE
centerline passes through narrow kissing point. (C) COM centerline draws line 
around low scoring siphon loop. A centerline is made through the narrow kissing 
point but is removed by thresholding to eliminate short centerline lines segments. 
The COM centerline appears to come closer to the inside edge than the outer 
edge of the bend. (D) The BT-COM centerline passes through the narrow kissing 
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MIP images of segmented kissing ICA siphon loop. (A) 
Shaded surface depth image of ICA loop shows thin kissing point. (B) MDFEi 
centerline passes through narrow kissing point. (C) COM centerline draws line 

ade through the narrow kissing 
point but is removed by thresholding to eliminate short centerline lines segments. 
The COM centerline appears to come closer to the inside edge than the outer 

row kissing 



 

 

Figure 2.17. Algorithm stability
instability of the MDFEi (labeled DFE) centerline algorithm compared to COM 
and BT-COM centerline algorithms. (B) The three ce
a similar number of centerline tree ends used as tree roots for the centerline st
bility analysis. 

 

 

. Algorithm stability (A) Box and whiskers plot showing the greater 
(labeled DFE) centerline algorithm compared to COM 

COM centerline algorithms. (B) The three centerline algorithms produce 
a similar number of centerline tree ends used as tree roots for the centerline st
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(A) Box and whiskers plot showing the greater 
(labeled DFE) centerline algorithm compared to COM 

nterline algorithms produce 
a similar number of centerline tree ends used as tree roots for the centerline sta-
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Table 2.1. Helix line phantom stability and accuracy 

Algorithm Stability RMSE of Accuracy 
MDFEi 0.880 0.240 
COM 0.980 0.610 
BT-MDFEi 1.000 1.833 
BT-COM 1.000 1.830 
 

Table 2.2. Comparison of algorithm stability and accuracy on phantoms 

Phantom Algorithm Number of 
trees 

Stability RMSE of Accuracy 

SD 10 MDFEi 3 0.930 0.393 
SD 10 COM 3 0.960 0.463 
SD 10 BT-MDFEi 3 0.910 0.438 
SD 10 BT-COM 4 1.000 0.437 
SD 20 MDFEi 3 0.946 0.674 
SD 20 COM 3 0.950 0.528 
SD 20 BT-MDFEi 3 0.920 0.519 
SD 20 BT-COM 4 1.000 0.457 
Stability and accuracy comparison of the MDFEi, COM, BT-MDFEi  and BT-
COM algorithms on branching tubular phantoms with standard deviation (SD) 10 
and 20 distributed Gaussian noise. 

Table 2.3. Comparison of centerline algorithms on MRA brain images 
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MDFEi 6/16 0.375 1/8 38.875 14.672 0.677 0.076 
COM 16/16 1.000 8/8 35.125 13.314 0.877 0.042 

BT-COM 10/16 0.625 4/8 37.500 13.617 0.883 0.068 
Comparison of centerline stability, number of centerline tree roots and correct-
ness of the centerline through the internal carotid artery (ICA) siphon between 
centerline algorithms on 8 brain artery MRA images. 
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Table 2.4. Means by algorithm 

Algorithm Mean stability Mean number of trees 
BT-COM 0.88275 37.50000 
COM 0.87650 35.12500 
MDFEi 0.67737 38.87500 
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Table 2.5. Algorithm centerline stability measurements 

Sample DFE 
Trees 

DFE 
stability 

COM 
Trees 

COM 
Stability 

Thinning 
Trees 

Thinning 
Stability 

445 40 0.692 38 0.867 38 0.903 
443 53 0.644 41 0.909 41 0.937 
136 41 0.641 37 0.886 39 0.842 
20 34 0.673 28 0.924 30 0.882 
49 65 0.529 62 0.848 65 0.740 
807 19 0.762 18 0.793 23 0.953 
788 33 0.713 33 0.879 42 0.877 
656 26 0.765 24 0.906 22 0.928 
 

  



61 

 

 

 

Literature cited 

Arimura H, Li Q, Korogi Y, Hirai T, Abe H, Yamashita Y, Katsuragawa S, Ikeda R, and 
Doi K. 2004. Automated computerized scheme for detection of unruptured intracranial 
aneurysms in three-dimensional magnetic resonance angiography. Acad Radiol 11:1093-
104. 

Aylward SR, and Bullitt E. 2002. Initialization, noise, singularities, and scale in height 
ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21:61-
75. 

Bullitt E, Gerig G, Pizer SM, Lin W, and Aylward SR. 2003. Measuring tortuosity of the 
intracerebral vasculature from MRA images. IEEE Trans Med Imaging 22:1163-1171. 

Burger W, and Burge MJ. 2007. Digital Image Processing: An Algorithmic Introduction 
using Java. 1st ed. Springer. 

Chapman BE, Stapelton JO, and Parker DL. 2004. Intracranial vessel segmentation from 
time-of-flight MRA using pre-processing of the MIP Z-buffer: accuracy of the ZBS algo-
rithm. Med Image Anal 8:113-26. 

Cormen TH, Leiserson CE, Rivest RL, and Stein C. 2009. Introduction to Algorithms, 
Third Edition. 3rd ed. The MIT Press. 

Dijkstra EW. 1959. A note on two problems in connexion with graphs. Numerische 
Mathematik 1:269-271. 

Farnham JM, Camp NJ, Neuhausen SL, Tsuruda J, Parker D, MacDonald J, and Cannon-
Albright LA. 2004. Confirmation of chromosome 7q11 locus for predisposition to intrac-
ranial aneurysm. Hum Genet 114:250-5. 

Frangi AF, Niessen WJ, Hoogeveen RM, van Walsum T, and Viergever MA. 1999. 
Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans 
Med Imaging 18:946-956. 

Hiroki M, Miyashita K, and Oda M. 2002. Tortuosity of the white matter medullary arte-
rioles is related to the severity of hypertension. Cerebrovasc. Dis 13:242-250. 

Homman H. 2007. Insight Journal - Implementation of a 3D thinning algorithm. Avail-
able from: http://www.insight-journal.org/browse/publication/181 

Kang D-G, Suh DC, and Ra JB. 2009. Three-dimensional blood vessel quantification via 
centerline deformation. IEEE Trans Med Imaging 28:405-414. 



62 

 

 

 

Lesage D, Angelini ED, Bloch I, and Funka-Lea G. 2009. A review of 3D vessel lumen 
segmentation techniques: models, features and extraction schemes. Med Image Anal 
13:819-845. 

O’Flynn PM, O’Sullivan G, and Pandit AS. 2007. Methods for three-dimensional geo-
metric characterization of the arterial vasculature. Ann Biomed Eng 35:1368-1381. 

Parker DL, Chapman BE, Roberts JA, Alexander AL, and Tsuruda JS. 2000. Enhanced 
image detail using continuity in the MIP Z-buffer: applications to magnetic resonance 
angiography. J Magn Reson Imaging 11:378-88. 

R Development Core Team. 2009. R: A language and environment for  statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 
Available from: http://www.R-project.org/ 

Rasband W. 1997. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. 
Available from: http://rsb.info.nih.gov/ij/ 

Zhang L, Chapman BE, Parker DL, Roberts JA, Guo J, Vemuri P, Moon SM, and Noo F. 
2005. Automatic detection of three-dimensional vascular tree centerlines and bifurcations 
in high-resolution magnetic resonance angiography. Invest Radiol 40:661-71. 

 

  



63 

 

 

 

Supplementary materials 

Source images 

 The sample objects used for testing segmentation and centerline algorithm 

stability and accuracy included artificial phantom data and eight Time of Flight (TOF) 

MRA image data sets. A binary valued helix line phantom was created by propagating a 

sphere along a path defined by straight lines and helices. Two computer generated 

branching gray-scale phantoms with background intensity 100 and tubular objects with 

cross-sectional parabolic intensity profiles ranging from 150 at the edge to 200 at the 

middle of the artery with added Gaussian noise of standard deviation 10 and 20 were 

obtained from (Aylward and Bullitt, 2002). 

 The eight MRA image data sets were selected from our ongoing intracranial 

aneurysm study approved by the University of Utah Institutional Review Board. Three of 

the eight subjects were selected from high aneurysm risk family pedigrees (Farnham et 

al., 2004). Six subjects have intracranial aneurysms, including the three high-risk 

subjects. The patients were imaged with TOF-MRA on a Siemens TIM Trio 3.0 T MRI 

scanner. The images were acquired with anisotropic voxels (0.3 X 0.3 X 0.6mm3) and 

were zero fill interpolated by a factor of 2 in all directions for final dimensions of 0.15 X 

0.15 X 0.3 mm3. 

Segmentation 

 Each artery segmentation takes approximately 3 to 5 minutes on a 2.83 GHz Intel 

Core 2 Quad CPU running Linux. The branching phantoms and the arterial blood vessels 
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were segmented from the background using a Z-buffer segmentation and region growing 

method (Parker et al., 2000). In the Z-buffer segmentation (ZBS) algorithm, the Z-buffer 

stores the location (Z) along the project direction of the brightest point in the image along 

each ray. In a Z-buffer image formed by displaying the locations of the brightest voxels, 

voxels that project from arteries appear smoothly connected because there is a high 

probability that the high intensity vessel voxels will project and that adjacent projections 

will select voxels in close axial proximity. In extended regions of uniform signal where 

voxels project from background and other nonvessel tissues the Z-buffer image tends to 

appear noisy because there is little probability that voxels in adjacent projections share 

similar axial positions in the source image volume. Seed voxels for region growing are 

obtained by joining smoothly connected voxels in the Z-buffer. The smaller phantoms 

used seeds of 10 connected voxels and the larger brain images used seeds of 30 

connected voxels. The 3D segmentations are completed by intensity-based region 

growing in the source images starting from the ZBS seed and iteratively adding voxels 

with intensity over a threshold. For the brain MRA images the region-growing threshold 

is determined from a histogram of the seed intensities as the maximum intensity of the 

bottom 15 percentile of the seed intensities. The seed threshold was selected to fill large 

aneurysms in our image collection. 

 The resulting vessel segmentations often contained internal holes in regions of 

low signal intensity in the source images caused by slow or recirculating blood flow. 

Holes were filled by finding empty bubbles completely surrounded by arterial voxels as 

determined by connected component analysis (Cormen et al., 2009). After this large hole 
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filling step, individual voxels were filled in that had 21 of 26 neighboring arterial voxels 

within a radius of 3 voxels as in (Zhang et al., 2005). This hole filling was repeatedly 

applied 3 times and then completely surrounded bubbles were filled once more. The hole 

filling parameters were selected to completely fill aneurysms in the tested subjects. 

 To eliminate small kissing arteries in the brain image segmentations, voxels less 

than 0.3 mm from the external surface of the segmented vessels were deleted from the 

segmentation. The voxel size is this study is 0.15 X 0.15 X 0.3 mm3. Therefore all voxels 

less than 0.3 mm from the edge of the segmentation were removed, meaning that one 

voxel in the transverse x, y plane is removed. This reduced segmentation noise and only 

resulted in the loss of smaller peripheral blood vessels. This was acceptable because our 

study focused on the performance of centerlines in the region of the carotid siphon.  
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Abstract 

Background 

 Hypertension may increase tortuosity or twistedness of arteries. We applied a 

centerline extraction algorithm and tortuosity metric to magnetic resonance angiography 

(MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. 

The most commonly used arterial tortuosity measure is the distance factor metric (DFM). 

This study tested a DFM based measurement’s ability to detect increases in arterial 

tortuosity of hypertensives using existing images. Existing images presented challenges 

such as different resolutions which may affect the tortuosity measurement, different 

depths of the area imaged, and different artifacts of imaging that require filtering. 

Methods 

 The stability and accuracy of alternative centerline algorithms was validated in 

numerically generated models and test brain MRA data. Existing images were gathered 

from previous studies and clinical medical systems by manually reading electronic 

medical records to identify hypertensives and negatives. Images of different resolutions 

were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured 

from a DFM curve and tested on numerically generated models as well as MRA images 

from two hypertensive and three negative control populations. Comparisons were made 

between different resolutions, different filters, hypertensives versus negatives, and 

different negative controls. 
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Results 

 In tests using numerical models of a simple helix, the measured tortuosity 

increased as expected with more tightly coiled helices. Interpolation reduced resolution-

dependent differences in measured tortuosity. The Korean hypertensive population had 

significantly higher arterial tortuosity than its corresponding negative control population 

across multiple arteries. In addition one negative control population of different ethnicity 

had significantly less arterial tortuosity than the other two. 

Conclusions 

 Tortuosity can be compared between images of different resolutions by 

interpolating from lower to higher resolutions. Use of a universal negative control was 

not possible in this study. The method described here detected elevated arterial tortuosity 

in a hypertensive population compared to the negative control population and can be used 

to study this relation in other populations. 

Background 

 There is evidence that hypertension can affect blood vessel morphology. 

Increasing stage of hypertension has been shown to correlate with increased tortuosity or 

twistedness of white matter arterioles in autopsy photomicrographs [1]. In vitro studies 

on extracted dog arteries showed increasing blood pressure caused increases in tortuosity 

[2]. In contrast, one study in Korea found that while the number and branches of 
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lenticulostriate arteries visible in Magnetic Resonance Angiography (MRA) images 

decreased in hypertensive subjects compared to negative controls, an increase in 

tortuosity was not seen in tortuosity measurements made on 2D projections of the 3D 

data [3].  

 Tortuosity measurement has the potential to quantify morphological changes in 

arteries due to hypertension. Tortuosity can be measured from MRA images of arteries. 

The process starts with MRA imaging of arteries, segmentation of arteries, calculation of 

centerlines, and calculation of tortuosity from the centerlines. Centerlines simplify 

arteries and other tubular structures to a single line passing through the middle of the 

artery making measurement of length and position possible. Measurements on the 

centerlines can be used to calculate tortuosity scores.  

 The most commonly used tortuosity measure is the distance factor metric (DFM) 

that requires two end-points to measure the ratio of the length L along the centerline and 

the distance d between two end-points [4-10]. The DFM suffers some weaknesses. Some 

arteries only have one anatomical end-point in an image volume and local tortuosity 

scores can rise and fall along an artery. The DFM can miss local tortuosity depending on 

the selection of the two end-points. Furthermore, the comparison of DFM tortuosity 

between multiple subjects can be challenging when the image volumes do not all share 

the same two anatomical centerline end-points. 

 Centerlines can be calculated by Dijkstra's algorithm [11] which finds the shortest 

or lowest cost path from any given point in the arterial segmentation to a selected goal 

point or node. Each voxel (three-dimensional pixel) of the arterial segmentation is 
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assigned a cost based on its position with respect to the goal. The longest lowest cost 

paths from the distal ends of the arteries back to a central goal node are the centerlines 

[12]. The selection of the central goal node and cost function can affect the path of the 

centerline.  

 Existing images from previous studies and clinical scans provide a large set of 

data for analysis that saves the time and cost of acquiring new images. Reusing existing 

images for comparison studies may present difficulties if the images have been acquired 

with different parameters including the field strength of the magnetic resonance imaging 

(MRI) scanner, resolution, and field of view (FOV) placement. FOV placement may 

affect whether the same artery segments are seen in both views. Differences in resolution 

may affect the tortuosity measure. Some vessels visible in MRA images from high 7.0 T 

field strengths may not be seen at lower resolution and the high field may cause phase 

flow artifacts [13, 14] that can be mistaken for arteries by centerline algorithms, requiring 

pre- or postprocessing for removal. Filtering can cause data loss and could affect the 

tortuosity measure. Negative controls may be obtained from existing images from 

patients with nonvascular diseases but proof of being truly negative is needed.  

 Testing of centerline and tortuosity measurement algorithms can be conducted on 

numeric phantoms. Numeric phantoms are three-dimensional shapes generated by 

equations in computer software with known morphology and centerlines. Algorithm 

calculated centerlines can be compared to known centerlines to assess accuracy and 

tortuosity measures can be tested on different shapes with known tortuosity.  
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 In this study we first test the stability and accuracy of our Dijkstra’s shortest path 

centerline algorithms by using different cost functions and goal node voxels on numeric 

phantoms and a sample of brain MRA images. We modified the classical DFM tortuosity 

measurement to create a tortuosity curve that provides additional information and tested 

the measurement on numeric phantoms. We applied the DFM tortuosity curve 

measurement to existing brain MRA images. The images included data on the same 

subjects filtered for noise with different filters and at different resolutions to test the 

effects of filtering and resolution on tortuosity. Hypertension data from the Korean 

hypertension study [3] and clinical hypertension data from Utah were tested to determine 

if the method can detect a correlation between hypertension and tortuosity of the arteries 

visible in MRA images. Tortuosity was also compared between three negative controls to 

test similarity and determine if universal negative controls can be used.  

Methods 

Image analysis flow 

 The image data are analyzed by interpolation, filtering, segmentation, centerline 

extraction, tortuosity curve calculation, and reading of the tortuosity score. The 

interpolation and filtering were optional steps. Segmentation was not needed in numeric 

phantoms without background noise. Details on the analysis steps are described below.  
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Centerline cost functions 

 Cost functions for input into Dijsktra’s shortest path centerline algorithm included 

the modified distance from edge (MDFE) cost, center of mass (COM) and distance from 

edge (DFE)-COM. The DFE measures the distance of each segmented voxel to the 

nearest edge of the artery. The DFE exhibits a degeneracy which can interfere with 

centerline extraction: adjacent voxels may be equally distant from their nearest respective 

edges. The DFE is essentially a one-dimensional measure, ignoring all other edge 

locations but one in its calculation. The MDFE was developed [12] to use local spatial 

information to break ties between adjacent voxels with the same DFE values.  

 The COM function is computed by iteratively moving each voxel toward the 

current COM of its adjacent neighbor voxels, effectively collapsing the object inward. 

For the objects considered in this study, 30 iterations of motion toward the center of mass 

were sufficient. Each iteration uses the previous iteration’s mean positions and the 

cumulative distance moved by each voxel is recorded. To calculate the COM cost for 

each voxel, the cumulative distances moved were divided by the minimum nonzero 

distance moved in the entire segmentation and the result was cubed. Voxels at the 

segmentation edge moved farther, generating higher cost and voxels near the center 

moved shorter distances, generating lower costs. Because the COM calculation depends 

on the relationship between each voxel and its neighbors, it is highly sensitive to the 

shape of the object, eliminating most of the degeneracies encountered with the DFE 

algorithm. 
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 The DFE-COM cost function combines the two cost functions. During the 

iterations of the COM algorithm, rather than assigning uniform weights to neighbor 

voxels, a weighted center of mass was computed using the DFE values as weights. 

Weighting gave more influence to the voxels with higher DFE in the middle of arteries 

when calculating the COM cost function. 

Numeric phantom generation 

 Numeric phantoms were generated by beginning with defined single point width 

centerlines. The centerlines were then discretized and placed within a discrete image 

volume. All voxels within a predefined radius of the centerline voxels were identified as 

object voxels, simulating imaged arteries. A subset of the discrete centerline locations 

were then used as positive controls for comparison with subsequent centerline extraction 

(Figure 3.1).  

Centerline stability and accuracy 

 The stability and accuracy of the DFE-COM cost-function centerline algorithm 

was measured and compared to the separate MDFE and COM cost function centerline 

algorithms on a set of numeric phantoms. The first numeric phantom considered was a 

comb phantom with a three voxel radius. A second series of branching phantoms with 

increasing image noise as designed by Aylward et al. [15] was also studied. Finally, the 
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stability and ability of each algorithm to calculate centerlines around the internal carotid 

artery (ICA) siphon loop were tested with eight 3.0 T brain MRA image volumes.  

Tortuosity measurement 

 Tortuosity was determined at every point along the selected centerlines with the 

DFM [5, 8] creating tortuosity curves. A single tortuosity measure was taken from each 

tortuosity curve either at the end of centerline or where the DFM was a maximum. 

Selection of the DFM value depended upon properties of the arteries being measured and 

is described in detail later.  

Tortuosity measurement of phantoms 

 The DFM tortuosity measurement was tested on 3-D numeric helix phantoms of 

increasing pitch with the DFE-COM centerline tortuosity measurement. The helix 

phantoms were generated by drawing a line with the equation h(t) = [r*cos(t), r*sin(t), 

(p* t)/(2π)] where r was the helix radius and p was the pitch of the helix and the radius of 

the simulated arterial width was 6 voxels. The helix radius r was fixed at 100 and four 

helices were generated with pitches 5(2π), 10(2π), 20(2π) and 40(2π) (Figure 3.2). The 

quantitative DFM tortuosity scores were taken at the highest peak of the tortuosity 

curves. 



77 

 

 

 

Segmentation 

 The arteries in the MRA images were segmented from background (Figure 3.3) 

using the Z-buffer segmentation (ZBS) algorithm [16]. ZBS algorithm works based on 

the assumption that arteries are the brightest structures in the image, they are sparsely 

represented in the image volume, and that bright artery voxels will be spatially close 

together. The algorithm casts rays in the Z axis through the 3D image volume finding the 

z-position of the brightest voxel in each ray. The z-positions of clusters of brightest 

voxels are then used as seeds for region growing and artery segmentation [16]. The artery 

segmentation is grown from the seed voxels by iteratively adding all neighboring voxels 

with intensities over a predetermined intensity threshold. The intensity threshold was set 

as the 20th percentile of all intensities of the seed voxels. Bubbles in the segmentation 

caused by low intensity slow moving or recirculating blood were filled using connected 

component analysis [17]. Small holes at the edges of the segmentation were filled by 

iterative reclassification. In three iterations, hole voxels were filled when they were 

surrounded by arterial voxels within 8 voxel steps along rays in 24 of 26 directions [12]. 

Finally connected component bubble filling was repeated.  

Human source images for hypertension tortuosity study 

 The hypertensive subjects were drawn from two populations. Twenty 

hypertensive subjects were identified by measurement of blood pressure at the 

Neuroscience Research Institute (NRI), Gachon University of Medicine and Science in 

Incheon, South Korea [3] and twenty negative controls were collected in the same study 
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under approval from the Gachon University institutional review board and the Korean 

Food and Drug Administration. 

 For the second population, MRA images were selected from existing brain MRA 

images acquired from clinical hypertensive patients between 2008 and 2010 at the 

University of Utah Medical Center. The selection of subjects and the retrospective study 

of previously acquired images were performed with approval from the University of Utah 

institutional review board. All the Utah hypertensives (N =21) had a history of 

hypertension in the medical record demonstrating that they were under the care of a 

physician, making this a controlled hypertensive population. Diagnoses commonly 

associated with hypertension were allowed in the Utah hypertensive case population 

including transient ischemic attack, ischemic stroke, arterial disease, heart disease, sleep 

apnea and atrial fibrillation. Other diseases that may independently affect vasculature 

were excluded from the Utah hypertensive case population. These were diabetes, cancer 

[18], intracranial aneurysm, and genetic syndromes: hereditary hemorrhagic 

telangiectasia, Marfan syndrome and Loeys-Dietz syndrome [19, 20]. The Utah negative 

control population was collected with IRB approval from clinical brain MRA images 

acquired from 2008 to 2010 (N = 45). The Utah negative control population had the 

following traits: subjects with headache, trigeminal neuralgia or head trauma; available 

brain MRA head images; no vascular pathology recorded in the radiology report; and no 

indication of the above listed diseases associated with hypertension in the subjects' 

medical records. 
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 A third negative control population was obtained from a study on healthy aging 

conducted in North Carolina, U.S.A. [21]. Vascular and psychological diseases were 

screened out in this sample.  

MRI scanners 

 The data were acquired on different MRI scanners. The NRI data set was acquired 

with a 7.0 T MRI scanner (Magnetom, Siemens Medical Systems, Erlangen, Germany) 

[22, 23]. The North Carolina data were acquired with a 3.0 T MRI scanner (Allegra, 

Siemens Medical Systems). The Utah images were clinical scans from both 1.5 T (GE) 

and 3.0 T (Siemens) MRI scanners at a range of image resolutions. 

Arteries measured 

 The arteries measured, the start and end points of the centerlines considered, and 

the points along the tortuosity curve selected for tortuosity measurement are described in 

Table 3.1. Examples of artery selection are shown in Figure 3.4. The measurements for 

the lenticulostriate arteries (LSA) were for the left-most, right–most, and a mean of up to 

four prominent LSAs. Figure 3.5 demonstrates the tortuosity curves created for an 

internal carotid artery (ICA) with the DFM measurement taken from the peaks of the 

curves (Figure 3.5 top) and the left anterior cerebral artery (ACA) – anterior 

communicating artery (Acom)– right ACA (Figure 3.5 bottom) measurement taken from 

the ends of the curves. 
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Filtering the images 

 The NRI data required filtering before segmentation. The image data were median 

filtered; then the filtered image was subtracted from the original image. The arteries were 

segmented from the subtracted image. The effect of filtering on tortuosity was tested by 

measuring tortuosity of the Korean hypertensive population treated with different filters: 

no median filter, 5x5 median filter and an 11x11 median filter. After the comparison the 

5x5 median filter was selected and used for treating the NRI data before segmentation. 

An exception was made where no filtering step used on segmentations used for 

measuring the small LSAs.  

Resolution and interpolation 

 The images were acquired at several different resolutions. Lower resolution 

images were sinc interpolated to higher resolutions [24]. For each subject in the NRI 

population, two MRA data sets were acquired: a thicker resolution (low 0.8x0.8x0.8 mm) 

set and a thinner and higher resolution (0.23x0.23x0.36 mm) set. The lower resolution 

data were interpolated to resolutions of 0.4x0.4x0.4 mm and 0.2x0.2x 0.2mm. The 

clinical Utah data were acquired from 0.38x0.38x1.6 mm (and interpolated on the 

scanner to 0.19x0.19x0.8) to 0.52x0.52x1.0 mm resolution and the lower resolution 

images were 2X interpolated to higher resolution (0.52x0.52x1.0 to 0.26x0.26x0.5 mm). 

The North Carolina data were acquired at 0.5x0.5x0.8 mm resolution and interpolated to 

0.25x0.25x0.4 mm. 
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 The effect of resolution and interpolation were measured in the NRI data set by 

measuring tortuosities of the same arteries for the same subjects at 0.4x0.4x0.4 mm, 

0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm resolutions. The 0.4x0.4x0.4 mm, 0.2x0.2x0.2 

mm were interpolated from the same data acquisition and the 0.23x0.23x0.36 mm were 

acquired separately. The ICA arteries are only in the thicker transverse lower resolution 

volume limiting the testing of resolution effects to between the 4X (0.2x0.2x0.2 mm) and 

2X (0.4x0.4x.4 mm) interpolations of the lower resolution image. 

Tortuosity comparisons 

 Arterial tortuosity was measured and compared between different data sets and 

sub sets. Sample data information was stored in a MySQL (http://www.mysql.com/) 

relational database coupled to the R statistical system [25] for visualization and statistical 

analysis. Comparisons were tested with the Wilcoxon rank-sum test. The tortuosity 

comparisons were between: different median filter subtractions of the NRI data, all 

resolutions of NRI data; the three negative controls; males and females; the NRI 

hypertensives and negatives; and Utah hypertensives and negatives. 

Results 

Centerline stability and accuracy 

 Centerline accuracy was measured by comparing the measured centerline with the 

true centerline in the numeric phantoms and stability was measured by testing the 
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centerlines found with different starting points. The results for the numeric phantoms are 

summarized in Figure 3.6 and Tables 3.2 and 3.3. The multiple branches of the comb 

phantom (Figure 3.1 left) pulled the COM centerline in red below the true centerline in 

green (Figure 3.6 left). The MDFE cost (Figure 3.6 middle) and DFE-COM (Figure 3.6 

right) centerlines overlap (in yellow) more with the true green centerline than the COM 

centerline. 

 Centerline stability as a function of cost function algorithm on brain MRA images 

is summarized in Table 3.4. The DFE-COM was tested on the ICA siphon loop, 

visualized with a white centerline in Figure 3.4 top left, where it loops back upon itself 

often kissing itself and causing problems for centerline extraction. The DFE-COM was 

able to complete as many ICA siphon loops as the COM algorithm with similar stability. 

Tortuosity measurement of phantoms 

 The DFE-COM centerline DFM tortuosity scores were higher for tighter coiled 

helix phantoms with lower pitches and the tortuosity scores increased proportionally to 

the increase in the number of coils (Table 3.5). The pitch 40(2π)-helix has approximately 

one coil (DFM = 2.48) and the pitch 20(2π)-helix has approximately two coils and has 

almost double (ratio = 1.95) the tortuosity score (DFM = 5.45). The tortuosity curves 

were displayed with the distance d (Figure 3.7 top) or length L (Figure 3.7 bottom) on the 

x-axis showing the rise and fall of the tortuosity curve. 
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Median filter effect 

 The 7.0 T images were segmented with no suppression of background noise under 

the ZBS segmentation algorithm shown in Figure 3.8, top. Subtracting a median filtered 

image from the images as the first step in the segmentation removed the background 

noise from the segmentation but also removed some of the small lenticulostriate arteries 

while leaving the larger arteries especially in the case of the 5x5 median filter (Figure 3.8 

middle). The larger 11x11 median filter removed most background noise but left some 

noise near the larger arteries while leaving most LSAs in the segmentation (Figure 3.8 

bottom). 

 The median filter subtractions (none, 5x5 and 11x11) had no significant effect on 

tortuosity measurements of left ACA, right ACA, left to right ACA, left ACA and right 

ACA arteries of the hypertensive Korean population at the β = α/n = 0.05/8 = 0.00625 

significance level with a two-sided Wilcoxon rank-sum test. 

Resolution and interpolation effect on tortuosity 

 The tortuosity was measured for the Korean hypertensive and negative control 

populations from the low and high-resolution images. The image volumes were not all 

long enough to capture the ICA accounting for low numbers of ICA measurements. Out 

of the total population size of 40 there were: 19 2X interpolated left ICA, 19 2X 

interpolated right ICA, 21 4X interpolated left ICA and 23 4X interpolated right ICA. 

The tortuosity values were compared with a 2-sided Wilcoxon rank-sum test, and a paired 

2-sided Wilcoxon rank-sum test on all cases where measurements were made on both the 
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high and low interpolations of the same artery. The 4X interpolation had 6.40% higher 

left ICA (P = 0.294, paired P = 0.00042) and 3.65% higher right ICA (P = 0.452, paired P 

= 0.0348) tortuosity than the 2X interpolation (Figure 3.9 top). The mean resolution of 

0.23x0.23x0.36 mm (mean 0.273 mm) is closer to 0.2x0.2x0.2 mm (0.0733 mm 

difference) than 0.4x0.4x0.4 mm (0.127 mm difference). The mean DFM taken from the 

tortuosity curves of the left ACA, right ACA and left to right ACA of the 0.23x0.23x0.36 

mm images was 6.89±2.45% greater than the 0.4x0.4x0.4 mm images of the same 

subjects. The 0.2x0.2x0.2 mm images actually had 3.05±1.89% lower tortuosity than the 

0.23x0.23x0.36 mm images. The difference in magnitude of both mean resolution and 

tortuosity between 0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm images was smaller than 

between the 0.4x0.4x0.4 mm and 0.23x0.23x0.36 mm images (Figure 3.9 bottom). Due to 

increased similarity of scores, only the 0.2x0.2x0.2 mm and 0.23x0.23x0.36 mm were 

used for the hypertensive and negative control comparison experiments later in this study. 

Comparison of negative control populations 

 The Korean negative control population showed significantly less arterial 

tortuosity compared to arteries of the Utah and the North Carolina negative controls 

(Figure 3.10) and the three populations were of similar age (Table 3.6). The Utah and 

North Carolina negative controls did not have significantly different arterial tortuosity. 

ANOVA analysis of the three negative controls: NRI Korean, North Carolina and Utah 

hospital showed significant differences in the left ACA, left to right ACA, left ICA, and 

right ICA arteries at the β = α/n = 0.05/5 = 0.01 level. Pair-wise comparisons between the 
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negative controls with a 2-sided Wilcoxon rank-sum test showed the Korean population 

had significantly lower tortuosity of the left to right ACA, left ICA and right ICA than 

North Carolina and Utah hospital population at the β = 0.01 level. The North Carolina 

and Utah populations did not show any significant differences in arterial tortuosity. 

Female and male comparisons 

 The Utah and North Carolina negative populations were split evenly between 

males and females while the Korean negative population was mostly female. Ethnicity 

was rarely indicated in the Utah medical record but based on the composition of the state 

of Utah, the subjects are most likely white European descent. The North Carolina 

population was mostly of white European descent (Table 3.6). The Korean control was a 

different ethnicity (Asian versus white European descent) and had a greater percentage of 

females. 

 Male and female North Carolina and Utah populations showed no significant 

differences at the β = α/n = 0.05/5 = 0.01 level of 2-sided Wilcoxon rank-sum tests for 

five arteries measured. The lowest P-Value was of the left ICA (P=0.0288) of the North 

Carolina population where tortuosity values for males were higher than for females and 

females had higher tortuosity in three of five arteries measured. There was no significant 

difference in tortuosity between males and females in eight arteries compared at the β = 

α/n = 0.05/8 = 0.0625 level in the Utah negative control (lowest P = 0.0114 with a 1.40% 

increase in male right VA tortuosity). 
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 There was no significant difference in arterial tortuosity between males and 

females in our entire current collection of tortuosity measurements at the α = 0.05 level 

(lowest P = 0.342) (Figure 3.11). The collection included the three negative controls, and 

subjects with vascular diseases. The diseases included hypertension, diabetes, cancer, 

stroke, intracranial aneurysm, hereditary hemorrhagic telangiectasia, Marfan syndrome 

and Loeys-Dietz syndrome subjects. There are more females (257) in the collection than 

males (185). The mean ages were similar for females (48.2) and males (46.5).  

Korean hypertension tortuosity comparison 

 The Korean hypertensive population had higher tortuosity across all 13 artery 

measurements than the Korean negative control (Figure 3.12). Ten were significant at the 

α = 0.05 level of the 1-sided Wilcoxon rank sum test. Even with the statistical correction 

of β = α/n = 0.05/13 = 0.0038, 5 of the 13 tortuosity measurements were significantly 

higher in the Korean hypertensive population. The most significant measurements were 

the left ACA (P= 0.00377), the end DFM of left LSAs (P = 0.000161), the end DFM of 

the right LSAs (P = 0.00052), the peak DFM of the left LSAs (P = 0.00977) and the peak 

DFM of the right LSAs (P = 0.00080). There were more prominent LSAs per subject in 

the negative control (3.50 left, 3.35 right) than in the hypertensive subjects (2.15 left, 

2.30 right). 
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Utah hypertension 

 The Utah hypertensive population (N=21) did not show significant increases in 

tortuosity compared to the Utah hospital negative control (N=45) at the β = α/n = 0.05/8 

= 0.00625 level (Figure 3.13). The test was conducted only against the Utah negative 

control population. Not all images contained measurable arteries for all arteries 

examined. The number of measurements and statistical test results are in Table 3.7. An F-

test of variances showed higher variance of the hypertensive Utah population tortuosity 

than the negative control of the right ICA (P = 0.00206), left VA (P = 0.00093) and right 

VA (P = 0.00174) at the β = 0.00625 level. The hypertensives were insignificantly higher 

in tortuosity of seven of the eight arteries compared. 

Discussion 

 We were able to develop a process of measuring arterial tortuosity including 

segmentation, filtering, interpolation, centerline extraction and DFM tortuosity analysis. 

The DFE-COM centerline was selected for making tortuosity measurements because it 

was able to calculate centerlines around most of the ICA siphon loops in a brain MRA 

data set and had better accuracy in the comb phantom. The subtraction of median filtered 

images from the MRA data had no significant effect on tortuosity and was used when 

necessary to improve artery segmentation. The 5x5 median filter was selected when 

measuring tortuosity of arteries other than the LSAs in the NRI data for the filter's ability 

to remove more fully background noise and process images faster than the larger filter 

while producing no significant change in tortuosity measurement. There was too much 
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chance of data loss when measuring tortuosity of the LSAs to justify the use of the 

median filter. The DFM tortuosity curve consistently measured the increasing tortuosity 

of the helix phantoms. Interpolating lower resolution images to higher resolution reduced 

the effects of resolution on tortuosity measurement. These results led us to use 

interpolation when comparing tortuosity in hypertensive populations versus negative 

controls. 

 Our methods measured a statistically significant increase in arterial tortuosity in 

the NRI Korean hypertension population compared to the Korean negative control. We 

also observed a dependence of tortuosity measurements upon image resolution. Higher 

resolution images increased the DFM tortuosity scores. Interpolating lower resolution 

images to higher resolutions reduced or eliminated the reduction in tortuosity for lower 

resolutions. Finally different populations may have different baseline tortuosities. 

 Hypertension correlated with increased arterial tortuosity in the Korean 

population study. The consistency across the arteries measured suggests that increased 

arterial tortuosity with hypertension is a systemic phenomenon. Greater change in 

tortuosity was seen in the ICA and LSA arteries than in the ACA measurements. The 

ICAs are longer than the ACAs possibly allowing more twisting due to increased 

hypertension. The LSAs are narrower than the ACAs and small narrow arterioles have 

been shown to twist strongly in response to hypertension [1]. The LSAs also had the 

higher significance of the tortuosity increase. To simplify measuring arterial tortuosity for 

clinical use, measuring one longer or narrower diameter artery may suffice for gauging 

tortuosity. 
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 The correlation between tortuosity and hypertension was not repeated in the Utah 

populations. The Utah hypertensive group was under physician care; therefore many 

patients may have been on antihypertensive medications making this a largely controlled 

hypertensive population. Lack of completeness in the medical records made the number 

of subjects on hypertensive medication difficult to determine. A future experiment could 

compare controlled versus uncontrolled hypertensive (when identified) populations to 

study if antihypertensive medications have an effect on arterial tortuosity. Another 

possibility is that the Utah Hospital negative control is not truly negative. However, the 

Utah Hospital negative control was similar to the North Carolina negative control 

population indicating that the Utah hospital control was negative for increased arterial 

tortuosity and that patients imaged for reasons other than vascular disease reasons are 

usable as negative controls. 

 In a retrospective analysis of images such as this one, universal negative controls 

may not be possible. The Korean population showed significantly lower tortuosity than 

the Utah population. The North Carolina negative control was similar to the Utah hospital 

population in tortuosity. The Korean negative control population was mostly female. 

Females in the Utah hospital and North Carolina negative controls and in the entire 

tortuosity collection did not show significantly lower tortuosity than the corresponding 

male populations. The Korean data were higher resolution than the North Carolina or 

Utah data after final interpolations. Any remaining resolution effect on tortuosity would 

increase the Korean data more than the others but they still had the lowest tortuosity of 

the negative controls. The Utah hospital and North Carolina populations were mostly 
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white Americans of European descent and the Korean population was all Korean descent. 

Ethnicity remains as one possible cause of the decrease in Korean population tortuosity 

but the negative Korean control tested here was not a broad representation of the Korean 

population. With the ability to interpolate images taken at different resolutions we will 

attempt to obtain more ethnic populations from clinical images to compare arterial 

tortuosity to determine if ethnicity affects arterial tortuosity. 

Conclusions 

 The methods in the study were able to measure a correlation between 

hypertension and arterial tortuosity. The DFE-COM centerline algorithm was able to 

make centerlines for the arteries of interest. The median filter subtraction allowed 

segmentation of the high-resolution data sets without affecting tortuosity. A significant 

increase in arterial tortuosity was measured in the uncontrolled NRI Korean hypertensive 

population versus a corresponding negative control. The Korean hypertensive population 

was not representative of all hypertensive populations or even of all Koreans. No 

significant arterial tortuosity increase was seen in the controlled Utah hypertensive 

population. Therefore we do not know if the increase in tortuosity with hypertension 

occurs in all populations. These methods can be used to study more populations to find 

out more about the relationships between hypertension and arterial tortuosity. 
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List of abbreviations used 

ACA anterior cerebral artery 

Acom anterior communicating artery 

COM center of mass 

d distance 

DFE distance from edge 

DFM distance factor metric 

FOV field of view 

HTN hypertensive 

ICA internal carotid artery 

L left 

L length 

LSA lenticulostriate artery 

MDFE modified distance from edge 

MIP maximum intensity projection 

MRA magnetic resonance angiography 

MRI magnetic resonance imaging 

NEG negative 

R right 

T Tesla 

TOF time of flight 

ZBS Z buffer segmentation 
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Figure 3.1. Numeric phantom generation. (left) The comb phantom was made 
from a comb shaped centerline. (right) A helix phantom was made from a helical 
centerline 

  



 

 

Figure 3.2. Phantom helices. 3
faces. (top left) Pitch 5(2π). (top right) Pitch 10(2
(bottom right) Pitch 40(2π).

 

 

helices. 3-D helix phantoms were display with shaded su
faces. (top left) Pitch 5(2π). (top right) Pitch 10(2π). (bottom left) Pitch 20(2
(bottom right) Pitch 40(2π). 
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D helix phantoms were display with shaded sur-
). (bottom left) Pitch 20(2π). 
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Figure 3.3. High resolution artery segmentation. (top) A high-resolution mag-
netic resonance angiography normotensive image was shown in maximum inten-
sity projection. (bottom) Segmentation of the arteries was shown in shaded sur-
face with colors to highlight bifurcations. 

  



 

 

Figure 3.4. Selected centerlines. Centerlines of arteries and selections in white 
for tortuosity measurement were shown in maximum intensity projection (MIP). 
(top left) Right ICA was selected in white with progressive distance d in yellow. 
(top right) A lenticulostriate artery (LSA) of a normotensive subject was s
lected. (bottom left) The left to right ACA of a hypertensive patient was selected. 
(bottom right) The anterior cerebral artery (ACA) of a hypertensive subject was 
selected. 

 

 

Selected centerlines. Centerlines of arteries and selections in white 
for tortuosity measurement were shown in maximum intensity projection (MIP). 
(top left) Right ICA was selected in white with progressive distance d in yellow. 

triate artery (LSA) of a normotensive subject was s
lected. (bottom left) The left to right ACA of a hypertensive patient was selected. 
(bottom right) The anterior cerebral artery (ACA) of a hypertensive subject was 
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Selected centerlines. Centerlines of arteries and selections in white 
for tortuosity measurement were shown in maximum intensity projection (MIP). 
(top left) Right ICA was selected in white with progressive distance d in yellow. 

triate artery (LSA) of a normotensive subject was se-
lected. (bottom left) The left to right ACA of a hypertensive patient was selected. 
(bottom right) The anterior cerebral artery (ACA) of a hypertensive subject was 
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Figure 3.5. Artery tortuosity curves. Tortuosity curves of one subjects. (top). 
Tortuosity curves of three different subjects ICA arteries. The black curve is 
from Figure 3.4 top left. Tortuosity rises and falls. (bottom). Repeated tortuosity 
curves of the left to right ACA artery of the same subject, from Figure 3.4 bot-
tom left, measured from different MRA images. 
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Figure 3.5 continued.  
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Figure 3.6. Comb phantom. Comb phantom where green is the true centerline, 
red is the algorithm calculated centerline and yellow is where the true and calcu-
lated centerline overlap. (left). The COM accuracy was displayed. (center) The 
MDFE accuracy was displayed. (right) The DFE-COM accuracy was displayed. 
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Figure 3.7. Phantom tortuosity curves. Helix phantom tortuosity curves are 
shown in maximum intensity projection. The pitch 5(2π) (black), pitch 10(2π) 
(red), pitch 20(2π) (green) and pitch 40(2π) (blue) phantoms decrease in tortuos-
ity. (top) DFM tortuosity plotted versus distance d from the start. (bottom) DFM 
tortuosity plotted versus Length L from the start. 
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Figure 3.7 continued.  



 

 

Figure 3.8. Median filtered segmentations. Median filter 
tions of a 7.0 T NRI image of a hypertensive patient were displayed in maximum 
intensity projection. (top) Segmentation without the median filter subtraction left 
background noise in the segmentation. (center) Segmentation with the 5x5 
dian filter subtraction removed background noise and smaller lenticul
teries (LSA). (bottom) Segmentation with the 11x11 median
amounts of background noise near the larger arteries while leaving the LSAs in 
the segmentation. 

 

 

 

Median filtered segmentations. Median filter subtraction segment
tions of a 7.0 T NRI image of a hypertensive patient were displayed in maximum 
intensity projection. (top) Segmentation without the median filter subtraction left 
background noise in the segmentation. (center) Segmentation with the 5x5 
dian filter subtraction removed background noise and smaller lenticul
teries (LSA). (bottom) Segmentation with the 11x11 median-filter leaves small 
amounts of background noise near the larger arteries while leaving the LSAs in 
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subtraction segmenta-
tions of a 7.0 T NRI image of a hypertensive patient were displayed in maximum 
intensity projection. (top) Segmentation without the median filter subtraction left 
background noise in the segmentation. (center) Segmentation with the 5x5 me-
dian filter subtraction removed background noise and smaller lenticulostriate ar-

filter leaves small 
amounts of background noise near the larger arteries while leaving the LSAs in 
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Figure 3.9. Tortuosity and resolution. Comparison of mean tortuosity of the same 
Korean subjects from NRI with one standard deviation error bars. (top) Left and 
right ICA tortuosity measurements from higher 0.2x0.2x0.2 mm (0.2 mm) resolu-
tions interpolations of the same images increased compared to 0.4x0.4x0.4 mm 
(0.4 mm) resolution. (bottom) The mean DFM tortuosity of the 0.2x0.2x0.2 mm 
(0.2) and 0.23x0.23x0.36 mm (0.23) resolution images were closer together than 
to the 0.4x0.4x0.4 mm images (0.4). 
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Figure 3.9 continued.  
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Figure 3.10. Negative control tortuosities. Utah and North Carolina negative 
(NEG) controls had significantly higher tortuosity than the NRI Korean negative 
controls: (top) mean end tortuosity measurements, (bottom) mean peak tortuosity 
measurements. 
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Figure 3.10 continued.  
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Figure 3.11. Female-male tortuosity. Mean arterial tortuosity comparison with 1 
standard deviation error bars between female and male subjects showed no sig-
nificant differences: (top) mean end DFM and (bottom) mean peak DFM tortuos-
ity measurements. 
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Figure 3.11 continued.   
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Figure 3.12. NRI Korean tortuosities. NRI Korean negative versus hypertensive 
(HTN) arterial mean tortuosity comparisons with 1 standard deviation error bars. 
LSA 1 left was the left most LSA and LSA 1 right was the right most LSA. (top) 
The figure showed the mean end DFM tortuosity measures. (bottom) The figure 
showed the mean peak DFM tortuosity measures. 
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Figure 3.13. Utah hypertensive tortuosity. Comparison of Utah common hyper-
tension (HTN) and Utah hospital negative (NEG) control with 1 standard devia-
tion error bars: (top) mean end DFM tortuosity measures and (bottom) mean peak 
DFM measures. 
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Figure 3.13 continued.   
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Table 3.1. Tortuosity curve measurement point 

Artery Start End Measurement 
Left ACA Left ICA/ACA 

bifurcation 
Acom End to end 

Right ACA Right ICA/ACA 
bifurcation 

Acom End to end 

Left ACA - Acom 
- Right ACA 

Left ICA/ACA 
bifurcation 

Right ICA/ACA 
bifurcation 

End to end 

Basilar Posterior cerebrals Vertebral arteries End to end 
Left ICA and 
Right ICA 

ACA/MCA 
bifurcation 

Bottom of slab Peak 

Left and Right VA Basilar artery Bottom of slab Peak 
LSA (7 T images) MCA Visible end Peak and end-end 
The measurement for each artery is taken from different points on the tortuosity 
curve of the anterior cerebral artery (ACA), internal carotid artery (ICA), ante-
rior communicating (Acom), vertebral artery (VA), basilar arteries and lenticu-
lostriate artery (LSA). Middle cerebral artery (MCA) bifurcations are used a 
starting points for some measurements. 

Table 3.2. Comparison of algorithm stability and accuracy of comb phantom 

Algorithm Number of trees Stability RMSE of Accuracy 
COM 6 0.918 0.879 
MDFE 6 0.819 0.417 
DFE-COM 6 0.905 0.413 
The COM cost function shortest paths centerline algorithm was less accurate in 
the comb phantom than the MDFE cost and DFE-COM cost function algorithms. 
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Table 3.3. Comparison of algorithm stability and accuracy on 3 branch phantom 

Phantom noise Algorithm Number 
of trees 

Stability RMSE of Accuracy 

SD-10 COM 3 0.960 0.463 
SD-10 MDFE 3 0.930 0.393 
SD-10 DFE-COM 3 1.00 0.556 
SD-20 COM 3 0.950 0.528 
SD-20 MDFE 3 0.946 0.674 
SD-20 DFE-COM 3 0.955 0.561 
The DFE-COM cost function shortest paths centerline algorithm had similar sta-
bility and accuracy to the COM based centerline algorithm. The MDFE cost algo-
rithm accuracy degraded going from standard deviation (SD) 10 to 20 noise. 
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Table 3.4. Comparison of centerline algorithms on MRA brain images 
A

lg
or

ith
m

 

IC
A

 s
ip

ho
ns

 a
cc

ur
at

e 

P
or

tio
n 

IC
A

 s
ip

ho
ns

 
co

rr
ec

t 

B
ot

h 
IC

A
 c

or
re

ct
 in

 
im

ag
e 

P
or

tio
n 

co
rr

ec
t i

m
ag

es
 

M
ea

n 
nu

m
be

r 
of

 tr
ee

s 

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 

tr
ee

s 

M
ea

n 
st

ab
ili

ty
 

S
ta

nd
ar

d 
de

vi
at

io
n 

st
ab

ili
ty

 

COM 15/16 0.938 7/8 0.875 37.000 12.352 0.872 0.0459 
MDFE 7/16 0.438 1/8 0.125 39.875 13.228 0.673 0.0732 
DFE-
COM 

15/16 0.938 7/8 0.875 38.625 11.439 0.825 0.0434 

The COM and DFE-COM cost function shortest paths centerline algorithms cal-
culated the correct centerline in the same number of correct ICA siphons. 
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Table 3.5. Helix phantom tortuosity 

Phantom Peak Distance 
Factor Metric 

Approximate 
coils 

Peak DFM/2.80 ratio 

Pitch 5(2π) 20.95 8 7.48 
Pitch 10(2π) 10.76 4 3.84 
Pitch 20(2π) 5.45 2 1.95 
Pitch 40(2π) 2.80 1 1.00 
The peak distance factor metric tortuosity scores are lower with increasing pitch 
of the three-dimensional helix phantoms. 

Table 3.6. Negative control demographics 

(-) control Total Mean 
age 

Male 
(%) 

Female 
(%) 

White Asian Black 

NRI Korean 20 47.7 3(15.0) 17 (85.0) 0 (0.00) 20 (100.0) 0 (0.00) 

North Carolina 95 42.7 45 (47.4) 50 (52.6) 83 (87.4) 8 (8.4) 4 (4.2) 
Utah 45 46.7 23 (51.1) 22 (48.9) - - - 
The Korean negative control population was mostly female whereas the North-
Carolina and Utah negative control populations where evenly split between fe-
males and males.  
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Table 3.7. Utah retrospective tortuosity comparison 

Artery Negative 
(N) 

Hypertensive 
(N) 

1-sided 
Wilcoxon 

2-sided F 
Test 

Left ACA 43 21 0.0565 +0.232 
Right ACA 39 21 0.279 -0.0824 
Basilar 42 18 0.0641 +0.0302 
L to R 
ACA 

24 11 0.805 +0.501 

Left ICA 35 19 0.132 +0.371 
Right ICA 36 19 0.366 +0.00206 
Left VA 36 18 0.283 +0.00093 
Right VA 35 16 0.297 +0.00174 
A (+) indicates increased hypertensive tortuosity and a (-) indicates decreased 
hypertensive tortuosity.  
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Abstract 

 High arterial tortuosity may signify early arterial pathology which may precede 

development of intracranial aneurysms. We measured arterial tortuosity of intracranial 

vessels and reviewed the medical records of three groups of patients: with intracranial 

aneurysms, without aneurysms but at increased clinical risk, and controls without 

aneurysms or associated risk factors. There was significant but inconsistent evidence of 

increased arterial tortuosity in aneurysm cases and high-risk cases across different 

arteries. Medical records review identified that a subset of aneurysm cases carried a 

diagnosis of Loeys-Dietz syndrome that is often misdiagnosed as Marfan syndrome. We 

found increased arterial tortuosity in the Loeys-Dietz syndrome cases. A combination of 

medical record screening for Marfan syndrome or Loeys-Dietz symptoms such as 

aneurysms and evaluation of arterial tortuosity by a curve of scores from medical images 

may identify previously undiagnosed cases of Loeys-Dietz syndrome. 

Key words: Aneurysm, MRA, Loeys-Dietz, tortuosity. 

Introduction 

 There are autopsy reports of increased arterial and arteriolar tortuosity in aged 

subjects with hypertension and aneurysms1. While hypertension is considered a risk 

factor for developing intracranial aneurysms, the clinical importance of the greater 

arteriolar tortuosity noted on autopsy2,3, to the development of intracranial aneurysms is 

not clear. The small arterioles visible on dissection at autopsy are not readily visible 

using current medical imaging techniques but Time of Flight-Magnetic Resonance 
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Angiography (TOF-MRA) imaging has been used to assess arterial tortuosity of larger 

vessels. Increased tortuosity of arteries visible in MRA has been shown to correlate with 

aging4, exercise level5, tumors6, retinal pathology7 and certain genetic syndromes8,9. The 

degree of arterial tortuosity can be quantitatively measured from MRA images with the 

Distance Factor Metric (DFM) tortuosity score that is calculated by measuring the length 

(L) along the centerline of the artery divided by the straight line distance (d) from two 

points10-13. In the conventional use of DFM, only two points are selected per artery, 

producing a single tortuosity score or zero-dimensional measure of tortuosity (DFM0) for 

the artery. Whether used for intersubject or intrasubject measurements, DFM0 is 

constrained by the underlying data: images may not consistently contain the same two 

well defined points along the artery, images may contain different lengths of the artery, 

and the tortuosity may be sensitively dependent upon the selection of the two points. This 

study expands the conventional use of DFM to create a one dimensional tortuosity score 

curve (DFMc) displaying local tortuosity information along a vessel. The DFMc is then 

used to assess the relationship between arterial tortuosity of larger vessels seen in TOF-

MRA with the development of intracranial aneurysms. 

 This study utilized medical imaging to assess the degree of arterial tortuosity 

noted in patients with a clinical history of aneurysm, or predisposition to aneurysm14-16, 

recorded in the medical record. We were specifically interested in determining whether or 

not patients with familial aneurysms, nonfamilial aneurysms or in high-risk subjects 

without any history of aneurysms as yet, have abnormally increased arterial tortuosity. 
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Materials and methods 

Source images 

 All TOF-MRA images were collected from the University of Utah Medical Center 

in Salt Lake City, UT, U.S.A. with approval from the University of Utah Institutional 

Review Board. A negative control population was collected retrospectively from clinical 

TOF-MRA head images taken within the last three years. The negative control population 

included patients with a diagnosis of headache or trigeminal neuralgia who underwent 

TOF-MRA head imaging but in whom no vascular disease (aneurysmal dilation or 

stenosis) was identified in the radiology report and in whom no risk factors for vascular 

disease were noted in the medical record (including: arterial disease, atrial fibrillation, 

diabetes, hypertension, and acquired heart disease). The control group also had cancer or 

genetic syndromes screened out. The high-risk group and aneurysm group were 

comprised of cases previously identified in a study on high (two-fold) familial risk of 

intracranial aneurysms14 and from patients treated for aneurysms at the University of 

Utah Medical Center. The images were clinical scans at a range of resolutions. Lower 

resolution images were interpolated to higher resolution with a sinc interpolation for 

comparison to higher resolution images. 

Arterial tortuosity measurement summary 

 The arterial tortuosity measures were made by segmenting the arteries from the 

background, generating a centerline through the segmentation and selecting two end 

points along the centerline of the artery measured. The Distance Factor Metric (DFM) 
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tortuosity score is calculated by measuring L along the centerline of the artery divided by 

d from the starting point10-13. Rather than compute a single DFM tortuosity score per 

artery (DFM0), the L/d tortuosity was calculated at every point on the centerline with 

respect to the starting point to create a one-dimensional tortuosity score curve (DFMc). A 

tortuosity measure based upon a smoothed centerline was also calculated by averaging 

the position of each centerline point with its two adjacent neighbors to compute a 

smoothed version of L (Ls) and the smoothed tortuosity score, DFMcs = Ls/d. After 

computing the DFMc curve, an optimal point along each artery was selected for reporting 

DFM. In this study, the final DFM tortuosity scores were taken as either the peak DFM 

value of the DFMc curve or the end DFM value of the DFMc curve when the arterial 

centerline left the image volume and no defined second end existed. 

Tools 

 The segmentation and tortuosity measurement tools were implemented as ImageJ 

plugins17-19. The measured centerline positions and subject information were stored in a 

MySQL relational database available at http://www.mysql.com/. Plotting of tortuosity 

score curves, box and whiskers plot comparisons, and statistical tests were conducted 

with R20, connected directly to MySQL using MySQL Open Database Connectivity 

(ODBC), using statistical methods previously described21.  
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Statistical tests 

 Statistical significance was set at the α = 0.05 level and Bonferroni corrected to β 

= α/n, where n is the number of tests in a set. The significance level was adjusted instead 

of the P-value of statistical tests to show raw test results. The Wilcoxon rank sum test 

was used throughout the study as it does not require normality of the underlying 

populations and is resistant to outliers. F-test and T-test were used with larger sample set 

sizes where normality can be assumed by the central limit theorem. The F-test tested for 

differences in variation of tortuosity scores and the T-test was used to confirm the 

Wilcoxon rank sum test results. 

Segmentation 

 The TOF-MRA images (Figure 4.1) were segmented using a Maximum Intensity 

Projection (MIP) Z-buffer segmentation22(Figure 4.2). 

Centerlines 

 The centerlines were generated from the segmentations using a centerline 

algorithm based on algorithms previously described23,24 with a cost function modification 

where the Center of Mass (COM) voxel costs were multiplied by the Distance From Edge 

(DFE) values of the voxels to give higher weights to voxels at the center of the 

segmented arteries. Due to the limitations of intensity based segmentation, the internal 

carotid artery often segments as a closed loop structure, presenting two apparent paths 
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during centerline extraction. The ability of the centerline algorithm employed here to 

extract the proper geometry of the internal carotid artery was validated using the 

centerline stability metric previously developed24. 

Artery selection and tortuosity measurement 

 Arteries were selected for tortuosity measurement by first selecting two end-

points of a centerline through the segmentation of the desired artery. Unlike a traditional 

DFM0 measurement, in this case it was only necessary that one of the two end-points be a 

common anatomical location for each measured artery, generally a bifurcation shared by 

all subjects. The second end-point could either be another common anatomical location 

or the point at which the artery of interest exited the image volume. The three-

dimensional segmented artery image was colored to assist the user in selecting centerline 

segments for tortuosity measurement. The red centerlines connect at the bifurcations 

which are indicated by green dots (Figure 4.3). A separate random color was assigned to 

each centerline to cause a color change at the bifurcations to aid the user when locating 

bifurcations.  

Visual correlation 

 The quantitative DFM tortuosity scores were correlated to visual tortuosity 

rankings. A total of 315 subjects including negative controls and vascular disease cases 

from multiple ongoing tortuosity studies were ordered highest to lowest by the DFMcs 
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based tortuosity score at the end of the basilar artery where it bifurcates into the left and 

right vertebral arteries (Figure 4.4). Every 11th subject beginning with the subject with the 

highest tortuosity score was selected to obtain a subset of 25 subjects with a wide range 

of arterial tortuosities. For each of the 25 subjects, MIP images were computed in the 

transverse plane with 18 rotations taken every 10 degrees (MIP images at 180 degrees 

difference are the same) showing the entire brain vasculature imaged. These images were 

shown to a group of five volunteer medical imaging researchers who ranked the basilar 

arteries highest (rank 1) to lowest (rank 25) in tortuosity. The volunteers were advised to 

compare images pairwise and were given no time limit or consistency training to avoid 

bias25. The means of the human rankings were compared by Spearman rank correlation to 

the rank determined by the quantitative end of artery DFMc and DFMcs scores of the 

basilar artery. 

 Tortuosity was measured for multiple arteries in the image slabs. The arteries 

measured were the left and right anterior cerebral arteries (ACA), across the left ACA 

through the anterior communicating artery (Acomm) to the right ACA; the basilar artery, 

the left and right internal carotid arteries (ICA) from the ICA bifurcation with the middle 

cerebral artery (MCA) and ACA to the lower end of the image slab, and the left and right 

vertebral arteries from the bifurcation with the basilar artery to the lower end of the 

image slab. The tortuosity score was taken from the tortuosity score curve at the end of 

the curve for the basilar, anterior cerebral artery (ACA) and ACA-anterior 

communicating artery (AComm)-ACA measurements. The tortuosity score was taken at 

the peak of the curve for the internal carotid artery (ICA) and vertebral artery (VA) 
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measurements because the end of these arteries varied depending on the depth of the 

image slabs. 

Results 

 The end DFMc had higher correlation to the mean visual rankings than the 

smoothed end DFMcs tortuosity score. The end DFMc had a 0.72 Spearmen rank 

correlation coefficient (P < 0.0001) (Figure 4.5) with the mean visual ranking while the 

end DFMcs correlation was 0.67 (P = 0.00025). The mean of the correlation between all 

pairs of human visual ranks was 0.88±0.048. Both the end DFMc and end DFMcs 

quantitative tortuosity scores were calculated and used in statistical tests of differences 

between the test cases and negative controls. Only the end DFMc scores are reported due 

to better correlation with the mean visual ranks and due to the fact that the results of the 

tests differed little with the two measurements. 

 We measured the arterial tortuosity of eight arteries between the intracranial 

aneurysm group and the negative control population. The difference in tortuosity was 

tested at the β = α/n = 0.05/8 = 0.00625 level to account for testing eight arteries. Only 

the left ACA tortuosity measurement was noted to be significantly greater in the 

aneurysm cohort (indicated in bold in Table 1). While the aneurysm group had greater 

tortuosity in all eight arteries (indicated with a + in the “Difference of means” column in 

Table 4.1), the difference from the control group was not statistically significant for the 

other seven arteries. The aneurysm cases also had significantly higher variance in right 

ICA and left VA than the negative controls. Of note, the aneurysm population was 
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approximately eight years older than the negative control group. As the data set was 

obtained from existing images taken for other purposes, the images often included 

different arteries and in some instances image quality prevented measurement of some 

arteries resulting in different number (N) of measurements for each artery recorded in 

Table 4.1. 

 The negative controls who were < 40 or > 55 years produced no statistically 

significant differences at β = 0.00625 with the 1-sided Wilcoxon signed rank test (used 

exclusively due to the small sample size) across the eight arteries. Three arteries had 

higher tortuosity in the > 55 population (+) and five arteries had higher tortuosity in the < 

40 population (-) (Table 4.2). 

 The familial aneurysm cases had significantly higher tortuosity of the left ACA 

than the negative controls at the β = 0.00625 level. Eight of the eight arteries had higher 

arterial tortuosity (+) in the familial aneurysm cases than the negative controls but seven 

were not significant (Table 4.3).  

 A manual medical record chart review of the highest scoring tortuosity measures 

of intracranial aneurysms cases revealed one diagnosis of Marfan syndrome (without 

genetic confirmation), two of Loeys-Dietz syndrome (LDS) (with genetic confirmation) 

and eight high familial risk intracranial aneurysm (IA) cases. Before 2005 LDS cases 

were often diagnosed with Marfan syndrome making diagnosis without genetic 

confirmation ambiguous. Further chart review demonstrated that the one patient 

diagnosed with Marfan syndrome did not meet clinical criteria for this diagnosis raising 

the question of a misdiagnosis in a patient with a TGF-β LDS causing mutation. 
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 Additional LDS cases were collected to test for an increase in arterial tortuosity in 

LDS patients. Six syndromic cases including five genetically confirmed Loeys-Dietz 

syndrome (LDS) and the one unconfirmed clinical Marfan diagnosis had significantly 

greater tortuosity of the basilar and the left VA at the β = 0.00625 level (Table 4.4). 

Examples of tortuous vertebral arteries of Loeys-Dietz patients are shown in Figure 4.6 

and Figure 4.7. For comparison Figure 4.8 shows a low tortuosity VA and Figure 4.9 

shows the tortuosity curves of those arteries. These patients had greater tortuosity of eight 

of eight arteries measured. Two of the confirmed LDS patients and the one unconfirmed 

clinical Marfan syndrome cases had intracranial aneurysms and the other three confirmed 

LDS cases did not have aneurysms. 

 Patients with nonfamilial aneurysms and without an underlying genetic syndrome 

had significantly greater left ACA arterial tortuosity by t-test than negative controls. 

Tortuosity measures were greater in seven of eight arteries. Nonfamilial aneurysm cases 

also had significantly higher variation in the left and right ICAs (Table 4.5). 

High intracranial aneurysm risk family case subjects without aneurysms themselves had 

significantly higher arterial tortuosity in the left ICA and significantly higher variance in 

the left VA. These case subjects had higher tortuosity in seven of the eight arteries 

measured (Table 4.6). 

Discussion 

 Measurement of arterial tortuosity is a newly developed technique that may prove 

to be of clinical utility in identifying diseased vasculature. The DFMc tortuosity score 
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curve and associated peak and end measurements described herein appear to provide 

more information than the traditional single value DFM0 tortuosity score. By selecting 

the peak tortuosity score from a curve of values defined from a single end-point, we 

obtain a meaningful tortuosity value from arteries with only one well-defined end-point 

in a medical image. The original DFM0 method required selection of the same two 

defined end-points for all arteries to be compared, making it unusable when there was 

only one defined point as is often the case with the long ICA and vertebral arteries. 

Furthermore, analysis of the DFMc tortuosity score curves shows that the tortuosity score 

may vary significantly along the vessel as indicated in Figure 4.9. Thus, by considering 

only two particular end-points per artery, the traditional tortuosity analysis may both 

greatly underestimate the peak value and be sensitively dependent on end-point selection.  

 Using the methods described herein, we have been able to demonstrate a 

significantly greater degree of arterial tortuosity in patients with connective tissue 

syndromes who are known to be at risk for intracranial aneurysms8,27. Nonsyndromic 

patients with intracranial aneurysms, subjects with high familial risk of intracranial 

aneurysms, relatives of high-risk aneurysm cases, and patients with nonfamilial 

aneurysms had inconsistently higher arterial tortuosity than negative controls. The 

overlap in tortuosity scores between high familial risk intracranial aneurysm cases with 

negative controls indicates high-risk subjects with normal tortuosity scores can develop 

intracranial aneurysms. There was also no significant difference between high-risk 

subjects with aneurysms compared to relatives without aneurysms. In contrast, arterial 
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tortuosity in patients with Loeys-Dietz syndrome, a disorder associated with the presence 

of intracranial aneurysms, was significantly different than in negative controls. 

 Age has been shown to mildly increase tortuosity in healthy populations4. The age 

comparisons conducted here showed no significant tortuosity increase due to age. It is 

thus unlikely that the age difference between the aneurysm and negative control 

populations accounted for the differences in tortuosity. 

 The human visual rankings correlation to each other was closer than to the 

quantitative tortuosity score based ranks. This phenomenon of humans correlating with 

each other better than a computer score has been previously described25. The human 

rankers may be using information seen in the surrounding image, or alternatively there 

could be a bias in the projections shown to the rankers causing their ranks to cluster 

together. 

 The results of this study provide evidence that tortuosity measurements may be 

able to assist in characterizing specific nonnormal states and may even assist in 

distinguishing between patients with Loeys-Dietz syndrome and Marfan syndrome. 

Loeys-Dietz syndrome is a more aggressive disorder associated with visible arterial 

tortuosity and aneurysms throughout the arterial tree8,27 where many but not all affected 

patients will go on to develop cerebral aneurysms. In light of the fact that Loeys-Dietz 

syndrome was only determined to be a unique clinical entity apart from Marfan syndrome 

within the last decade28, many affected patients may still carry the diagnosis of Marfan 

syndrome. Marfan syndrome is caused by a mutation in the FBN1 gene that encodes for 

the glycoprotein fibrillin29. Patients are typically followed with only echocardiographic 
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imaging of the ascending aorta as the remainder of the arterial vessels are not thought to 

be at significant risk of aneurysm formation. In contrast, Loeys-Dietz syndrome is caused 

by mutations in the TGFBRI and TGFBRII genes which encode for receptors for the 

cytokine TGF-β27,28. By collecting and measuring arterial tortuosity data in patients with 

either clinical diagnosis we hope to be able to distinguish between the two disorders and 

determine which patients with Loeys-Dietz syndrome are at greatest risk for cerebral 

aneurysm formation. Initial review of arterial tortuosity in Loeys-Dietz patients 

demonstrated that these patients may have the greatest increase in tortuosity in the extra-

cranial vertebral arteries which are typically more caudal than the sections analyzed in 

this study. Assessment of both the cervicocephalic vessels and intracranial vessels may 

prove valuable 30. 

 This study demonstrates the potential to combine medical record screening with 

automated image analysis to screen patient data. The study started with familial and 

nonfamilial intracranial aneurysm cases and discovered the syndromic patients during the 

course of the research. The method for measuring arterial tortuosity is now semi-

automated. Future development will further automate the tortuosity measurement. 

Automated medical record screening systems already exist. In this case the two methods 

of medical record and image screening could be combined to look for patients with 

diagnosis of Marfan syndrome or other Loeys-Dietz symptoms and high arterial 

tortuosity to identify undiagnosed Loeys-Dietz patients in electronic medical records. 



 

 

 We greatly appreciate the help of the staff at the Utah Center for Ad

Imaging Research in supporting this research. The research including database collection 

supported by grants from the Ben B. and Iris M. Margolis Foundation, NLM training 

grant T15LM007124, and NIH grants: R01

Figure 4.1. Time of Flight-
cal image shown in Maximum Intensity Projection (MIP).

 

Acknowledgments 

We greatly appreciate the help of the staff at the Utah Center for Advanced 

Imaging Research in supporting this research. The research including database collection 

supported by grants from the Ben B. and Iris M. Margolis Foundation, NLM training 

, and NIH grants: R01-NS-37737 and R01-HL-48223. 

 

-Magnetic Resonance Angiography (TOF-MRA) med
cal image shown in Maximum Intensity Projection (MIP). 

143 

vanced 

Imaging Research in supporting this research. The research including database collection 

supported by grants from the Ben B. and Iris M. Margolis Foundation, NLM training 

MRA) medi-



 

 

Figure 4.2. Segmented arteries from TOF
tions in shaded surface display

Figure 4.3. Selection in white of anterior c
mum Intensity Projection (MIP).

 

 

. Segmented arteries from TOF-MRA with color changes at bifurc
shaded surface display26. 

 

. Selection in white of anterior cerebral artery (ACA) shown in Max
mum Intensity Projection (MIP). 
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Figure 4.4. Histogram of basilar artery end DFM
scores. 

 

. Histogram of basilar artery end DFMcs (labeled end DFM3) tortuosity 
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(labeled end DFM3) tortuosity 



 

 

Figure 4.5. Comparison of mean visual rank (x
DFMc tortuosity score (y-axis) of the basilar artery with regression line (0.72 
Spearmen rank correlation coefficient).

 

 

. Comparison of mean visual rank (x-axis) versus the rank of the end 
axis) of the basilar artery with regression line (0.72 

Spearmen rank correlation coefficient). 
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Figure 4.6. Distance Factor Metric 
scores of the left vertebral artery of a suspected Loeys
white. Yellow lines show d
left vertebral artery tortuosity of the aneurysm 

Figure 4.7. Loeys-Dietz syndrome intracranial aneurysm subject with median to
tuosity among aneurysm case subjects of the left vertebral artery and high tort
osity of the basilar artery. Gre

Figure 4.8. Nonfamilial intracranial aneurysm subject with low tortuosity left 
vertebral artery. Red line in Figure 4.9.

 

 

. Distance Factor Metric (DFM) = Length (L) / distance (d) tortuosity 
scores of the left vertebral artery of a suspected Loeys-Dietz patient selected in 

d and progressive steps. This subject had the maximum 
left vertebral artery tortuosity of the aneurysm subjects. Black line in Figure 4.9.

 

Dietz syndrome intracranial aneurysm subject with median to
tuosity among aneurysm case subjects of the left vertebral artery and high tort
osity of the basilar artery. Green line in Figure 4.9. 

. Nonfamilial intracranial aneurysm subject with low tortuosity left 
vertebral artery. Red line in Figure 4.9. 
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Dietz patient selected in 

and progressive steps. This subject had the maximum 
subjects. Black line in Figure 4.9. 

Dietz syndrome intracranial aneurysm subject with median tor-
tuosity among aneurysm case subjects of the left vertebral artery and high tortu-

 

. Nonfamilial intracranial aneurysm subject with low tortuosity left 
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Figure 4.9. Vertebral artery tortuosity score curves of the highest peak tortuosity 
score (black line), median tortuosity score (green line) and low tortuosity score 
(red line). The peak score is taken between the dotted lines to avoid small varia-
tions causing spikes when the lengths L and d are short and subject to noise and 
before vertebral arteries twist around the first cervical vertebrae. 
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Table 4.2. Negative control age comparisons 
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Left 
ACA 

End 16 1.379±0.120 27.938 16 1.368±0.106 65.562 -0.80 0.566 

Right 
ACA 

End 16 1.449±0.142 27.938 15 1.435±0.148 64.333 -1.0 0.727 

L-R 
ACA 

End 12 1.699±0.150 26.000 6 1.708±0.223 68.000 +0.51 0.625 

Basilar End 16 1.176±0.089 27.938 15 1.166±0.075 65.867 -0.88 0.673 
Left 
ICA 

Peak 12 2.796±0.556 28.250 14 3.438±0.699 66.500 +23.0 0.013 

Right 
ICA 

Peak 13 2.849±0.380 28.000 14 3.010±0.534 64.857 +5.7 0.229 

Left 
VA 

Peak 14 1.339±0.154 28.357 13 1.318±0.104 64.615 -0.46 0.215 

Right 
VA 

Peak 14 1.324±0.180 29.286 13 1.312±0.097 65.231 -2.1 0.547 
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Table 4.3. Familial aneurysm cases versus negative control tortuosity compari-
sons 
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Left ACA 23 1.474±0.127 58.610 +7.2 0.00063 
Right ACA 22 1.535±0.136 56.250 +5.8 0.019 
L-R ACA 12 1.708±0.168 55.067 +0.82 0.389 
Basilar 18 1.217±0.096 57.571 +1.8 0.183 
Left ICA 20 3.345±0.685 59.654 +6.0 0.220 
Right ICA 20 3.171±0.843 58.568 +7.8 0.268 
Left VA 21 1.432±0.234 58.603 +6.1 0.087 
Right VA 22 1.366±0.184 58.485 +2.0 0.357 
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Table 4.4. Loeys-Dietz/Marfan syndrome cases versus negative control tortuosity 
comparisons 
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Left ACA 5 1.407±0.168 19.200 +2.3 0.474 
Right ACA 4 1.704±0.448 20.000 +17.5 0.131 
L-R ACA 4 2.143±0.709 20.000 +26.5 0.063 
Basilar 5 1.443±0.300 25.300 +20.6 0.0045 
Left ICA 3 3.361±0.388 26.833 +6.5 0.323 
Right ICA 3 3.263±0.688 26.833 +10.9 0.216 
Left VA 6 1.931±0.652 23.750 +43.1 0.00043 
Right VA 6 1.511±0.297 23.750 +12.7 0.051 
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Table 4.5. Nonfamilial aneurysms versus negative control tortuosity comparisons 
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Left ACA 42 1.454±0.150 54.751 +5.7 0.0069 0.047 0.0036 
Right ACA 44 1.471±0.167 54.953 +1.4 0.330 0.193 0.270 
L-R ACA 19 1.725±0.202 54.596 +1.8 0.310 0.526 0.303 
Basilar 38 1.207±0.107 55.789 +0.89 0.328 0.360 0.318 
Left ICA 34 3.577±1.262 54.710 +13.3 0.165 0.0024 0.049 
Right ICA 30 3.450±1.216 56.703 +17.3 0.059 <0.0001 0.020 
Left VA 27 1.395±0.155 54.333 +3.3 0.105 0.980 0.128 
Right VA 27 1.317±0.097 53.790 -1.7 0.562 0.050 0.773 
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Table 4.6. High-risk relative cases versus negative control tortuosity compari-
sons 
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Left ACA 53 1.423±0.111 46.604 +3.5 0.012 0.921 0.019 
Right ACA 52 1.494±0.131 46.577 +3.0 0.076 0.805 0.061 
L-R ACA 25 1.706±0.149 50.000 +0.68 0.241 0.421 0.403 
Basilar 31 1.182±0.082 47.387 -1.2 0.724 0.490 0.724 
Left ICA 37 3.850±1.053 46.405 +21.9 0.0023 0.039 0.00092 
Right ICA 36 3.330±0.781 45.639 +13.2 0.028 0.019 0.0079 
Left VA 47 1.423±0.254 48.234 +5.4 0.087 0.0030 0.054 
Right VA 43 1.404±0.189 47.302 +4.8 0.086 0.087 0.046 
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CHAPTER 5 

CONCLUSION 

Developing the use of arterial tortuosity 

 Arterial tortuosity has been associated with a limited number of vascular diseases 

and is used clinically in only in limited diseases. As described in the introduction visual 

tortuosity is used to assist in diagnosing LDS and quantitative tortuosity is used in 

diagnosing retinal diseases. Other vascular diseases have been associated with increased 

arterial tortuosity but are not used clinically due to lack of evidence of associations and 

clinical tools to quantitatively measure arterial tortuosity.  

 This research developed a system for measuring and comparing arterial tortuosity 

between populations. The system was able to detect increases in arterial tortuosity in a 

hypertensive population and in clinical images of LDS patients versus negative controls. 

While the measure detects differences at the population level the means of the Korean 

hypertensive and LDS samples fell within one standard deviation of the corresponding 

negative controls. This prevents the measure from differentiating individual clinical 

samples. The ability to detect the population differences demonstrates the ability of the 

tortuosity measurement system to measure increases in tortuosity at the population level 

since there is no gold standard to compare against for arterial tortuosity measurements. 

The increases in tortuosity seen with hypertension and LDS provide evidence of 



159 

 

 

 

increased arterial tortuosity in those populations. Due to limited sample size and diversity 

more samples of both hypertensives and LDS patients are needed to confirm the increases 

in arterial tortuosity associated with these diseases. The tortuosity measurement system 

developed here can be used for future studies on more hypertensive, LDS and other 

disease populations.  

Validation of arterial tortuosity measurement 

 The tortuosity measure combining the DFE-COM based centerline algorithm and 

DFM tortuosity curve was able to detect tortuosity differences in a prospective 

hypertensive population and in the clinical LDS population demonstrating the methods 

ability. There is no gold standard for measuring arterial tortuosity. As demonstrated in the 

visual tortuosity ranking experiment in Chapter 4, visual tortuosity scoring has intra-

ranker variability (0.88±0.048 Spearman rank coefficient). A repeat of the ranking 

experiment with neurosurgeons had a lower 0.65±0.13 Spearman rank coefficient 

between rankers demonstrating the instability of visual tortuosity scoring. As mentioned 

earlier the SOAM measurement detected changes due to aging while the ICM did not [1] 

and ICM measurement detected changes due to exercise while the SOAM did not [2]. 

There is no single gold standard way to measure tortuosity in all situations. The tortuosity 

measurement method used depends on the disease. 

 LDS patient tortuosity is characterized by type I tortuosity with long gently 

curving arteries without abrupt changes in slope of the centerline. The DFM 

measurement was successful in detecting type I tortuosity [3]. The integral of second 
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derivative tortuosity measure was designed to detect abrupt changes in slope of the 

centerline making it less than ideal for detecting the type I tortuosity displayed in LDS 

patients. The DFE-COM based centerline DFM tortuosity curve measurement used here 

was able to detect increased tortuosity in LDS patients. 

 Which type of tortuosity is displayed by hypertensives was less clear, but the 

DFE-COM based centerline DFM curve consistently measured arterial tortuosity across 

several arteries. Additional measurement methods were not needed. Other diseases that 

cause abrupt changes in direction of the centerline may require different tortuosity 

detection methods. 

 The hypertension study was able to make quantitative measurements of the 

smaller LSA arteries due to the use of 7.0 T MRA and the ability of the ZBS algorithm 

[4, 5] to segment the LSAs. Segmentation of arteries is a difficult ongoing area of 

research [6]. Therefore the hypertension study pushed down the lower diameter limit of 

what arteries can be measured from MRA images in living patients. Hypertension 

showed greater change in tortuosity of the narrow diameter LSAs than other larger 

diameter arteries. Smaller diameter arteries may increase (or decrease) in response to 

disease progression or treatment sooner than larger diameter arteries. Thus tortuosity 

measurements on high field angiography may be a way to measure disease and treatment 

effects earlier. 
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Quantitative image phenotype measurement of genotype 

 The tortuosity measurement of LDS patients is a quantitative measurement of the 

phenotypic effect of the LDS genotype. LDS can be caused by mutations in at least two 

different genes, TGFBR1 and TGFBR2 and there are multiple mutations within those 

genes [7-9]. The different mutations may have different levels of effect [10] that may be 

quantifiable by the tortuosity measurement. Quantitative measurement of arterial 

tortuosity could also be used to identify the presence of genetic modifiers that are 

secondary genes that alter the phenotypic expression of the primary mutations. Genetic 

modifiers are thought to explain the range of severity of MFS [11]. Quantitative 

phenotype measurement is also important for epigenetics research into how 

environmental factors alter genotypes expression [12]. Epigenetic research studies the 

changes in gene expression (phenotype) not due to changes in DNA [13]. Quantitation is 

important when attributing part of a phenotype to genotype and part to environmental 

factors or an interaction of the two [12]. 

Flexible analysis system 

 The tortuosity measurement and group comparison system developed stored data 

for reanalysis with new algorithms. The system included a relational database for storing 

data such as the centerline voxel positions and subject information. Tortuosity 

measurements were calculated on the fly for comparison between groups. This allowed 

reanalysis of the data with different algorithms. The intracranial aneurysm analysis tried 

an alternative centerline smoothing algorithm that had little effect on the results. The 
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storing of the centerline points allows for future development of smoothing algorithms on 

the centerlines. Calculation of tortuosity on the fly allows new tortuosity measurement 

algorithms as necessary. This tortuosity measurement system also handles measurement 

of many different arteries. The system was first developed on the basilar, anterior 

cerebral arteries (ACA), internal carotid arteries (ICA) and vertebral arteries (VA). Then 

the study on hypertension added the lenticulostriate arteries (LSA) and the system was 

able to detect an increase in LSA tortuosity in a hypertensive population compared to the 

corresponding negative control. The system was designed for reanalysis accumulated 

data, newly added data and new arteries with the same or new analysis methods. 

 The data storage and on the fly tortuosity measurement were important for 

analysis of existing data and new clinical data. The database enabled reanalysis when 

new subject data were added to existing diagnosis groups. The storage of diagnostic and 

demographic data makes creation of new groups to answer questions that arise from 

previous experiments simple. An example of this was when the Korean negative control 

group, which was predominantly female, had significantly lower arterial tortuosity than 

two other control groups. The system developed here was able to easily compare groups 

of females versus males to find out sex did not show any significant effect on arterial 

tortuosity. The database allowed iterative asking and answering of questions. 

Value of quantitative measurement 

 The quantitative measurement of tortuosity is useful for determining the 

difference between groups, changes in tortuosity over time and can be used in automated 
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screening of medical images. The experiments comparing the quantitative measure to 

human tortuosity scores had the people rank images according to arterial tortuosity. 

Ranking was used instead of having the person assign a numeric score because as the 

person sees new images they re-evaluate previous scores. A person is also unlikely to 

keep scores consistent when following a single patient over years. The quantitative 

tortuosity measure was partially automated in this study. The user only had to select the 

artery centerline ends. Work on automated centerline selection is underway. Artery 

characteristics such as diameter length and position are being used to automatically select 

the arteries. Automated tortuosity measurements could eventually be added to radiologic 

systems.  

Secondary use of image data 

 Clinical images provide a huge repository to study the effects of numerous 

vascular diseases on artery morphology. Up to now, studies on quantitative arterial 

tortuosity have imaged cases and controls under the same conditions. Clinical images are 

obtained on different machines at different resolutions. This research measured tortuosity 

of the same subjects at different resolutions to measure the effect of resolution on 

tortuosity in the hypertension experiment. Knowing the resolution effect allows 

comparison of clinical images taken at different resolutions. In the Korean hypertension 

experiment doubling the resolution from 0.4 x 0.4 x0.4 mm to 0.2 x 0.2 x 0.2 mm 

increased the tortuosity measurement 4.2±1.3% across five artery measurements. The 

increase in LDS syndrome arterial tortuosity ranged from 2.3% to 43.1% with a less than 
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15% increase in resolution of the LDS subjects versus the negative controls therefor 

resolution does not account for the increase in LDS arterial tortuosity. The use of clinical 

images will allow testing of arterial tortuosity of a variety of vascular diseases not 

commonly associated with increased visual tortuosity. 

Future work 

Arterial tortuosity in hypertension 

  The system of reuse of existing images makes possible more measurements of 

hypertensive populations that are needed to determine in hypertension correlates with 

increased arterial tortuosity. The hypertension experiment measured increased arterial 

tortuosity in one prospective Korean sample and did not detect a difference in the clinical 

Utah population. Future experiments could measure arterial tortuosity prospectively in 

additional hypertensive populations. Hypertensive patients could also be followed over 

time to determine if arterial tortuosity increases with progression of the disease or if 

tortuosity decreases with treatments lowering blood pressures. Repeated microvessel 

imaging of hypertensive patients before and after treatment showed some early indication 

of changes in microvessels [14]. It is not yet known if arteries lower tortuosity in 

response to treatment with anti-hypertensive medication. The tortuosity measurement 

tools developed and validated here can provide methods to study hypertension over broad 

populations. 
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Arterial tortuosity in LDS 

 High arterial tortuosity is one of the distinguishing characteristics between LDS 

and the more common Marfan syndrome (MFS) caused by the mutations in the FBN1 

gene; but clinically the two diseases’ tortuosities are only distinguished qualitatively [7, 

8]. Future research plans include measuring MFS patient tortuosity for comparison to 

LDS patients to determine if quantitative tortuosity screening can aid in identifying LDS 

patients misdiagnosed with MFS. LDS is caused by mutations in either the TGFBR1 or 

TGFBR2 genes [7]. The LDS patients in the intracranial aneurysm study here only had 

TGFBR2 mutations [9] but all LDS patients are known for increased tortuosity. The 

TGFBR1 and TGDFBR2 mutations show little phenotypic differences [15]. It is not 

known if one type has more tortuosity than the other. Quantitative tortuosity 

measurements between TGFBR1 and TGFBR2 mutation patients could determine if there 

is a difference. 

 Weakened arterial walls are a proposed cause of both arterial tortuosity and 

aneurysms [16]. Under this hypothesis arterial tortuosity would increase with age and 

correlate with aneurysm development. LDS is a genetic disease often diagnosed in 

pediatric patients that will be followed over time, once again showing the importance of 

distinguishing LDS from MFS patients that are not typically reimaged outside of the 

aortic arch area [9]. The high arterial tortuosity is seen in young patients but it is not 

known if arterial tortuosity increases over time. By obtaining images of the same patients 

taken over years quantitative arterial tortuosity measurements could be used to determine 

if arterial tortuosity increases over time. Due to the high rate of aneurysms in LDS 
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patients, quantitative tortuosity measurement could also be used to look for correlations 

between high or increasing arterial tortuosity and development of intracranial aneurysms. 

 MFS is not known to increase arterial tortuosity and it only raises the risk of aortic 

arch aneurysms. LDS increases tortuosity in head and neck arteries and raises aneurysm 

risk in the aortic arch and other arteries. The FBN1 and TGFBR1 and TGFBR2 proteins 

are all in the TGF-β signaling pathway but the difference in tortuosity and locations of 

aneurysms signals some difference in disease mechanism. 

 Quantitative measurement of LDS patient arterial tortuosity could potentially be 

used to monitor new treatments. It is possible treatment prevents normal increases in LDS 

patients or even decreases tortuosity, but these hypotheses need testing. The FDA 

approved TGFβ activity inhibiting antihypertensive drug Losartan is being tested in MFS 

patients and clinicians are using it to treat LDS patients [17]. MFS and LDS both show 

signs of TGF-β signaling pathway hyperactivity [17]. More is known about the MFS 

disease pathway than LDS disease. 

 MFS has a range for disease severity. MFS may be a dominant negative mutation 

in some of the most severe cases where the heterozygous FBN1 mutated gene product 

dimerizes with the healthy gene product[18]. The MFS genetic cause FBN1 is part and 

modulates the TGFβ signaling pathway [18]. The MFS mouse model homozygous mg∆ 

mice for MFS showed increased TGFβ in lung tissue [18]. These mice were successfully 

treated with TGFβ neutralizing antibodies demonstrating the role the TGFβ hyperactivity 

in MFS. 
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 LDS mutations affect TGFBR1 or TGFBR2 in the TGFβ signaling pathway. LDS 

is a mutation of TGFβ I or II receptor but results in increased TGFβ activity possibly due 

to a gain of function mutation or by triggering unproductive compensatory events since 

the receptor is less active [7, 19]. An LDS patient was known to have a duplication of the 

TGFBR1 gene adding further evidence of a gain of mutation function [10]. 

 The screening of images can be combined with medical record screening to 

identify undiagnosed LDS cases. Diagnoses of MFS or Ehlers-Danlos syndrome along 

with high arterial tortuosity are potential LDS cases. A diagnosis of an Arnold-Chiari 

malformation along with high arterial tortuosity is another flag for LDS. In LDS patients 

13.3% of 30 developed Arnold-Chiari malformations [8]. This study identified a patient 

with an Arnold-Chiari malformation and high-tortuosity (third highest left VA 

tortuosity). Arnold-Chiari malformation is rare, 1 in 1280 [20]. Because high tortuosity is 

also rare, the combination of two rare events could be an undiagnosed case of LDS. 

Future advances in automated arterial tortuosity measurement along with electronic 

medical record system screening could automate identification the rare LDS disease that 

clinicians will not be actively looking for due to its rarity. 

Quantitative phenotypes 

 Quantitation of phenotypes is necessary for epigenetic research. Due to rapidly 

dropping DNA sequencing costs there will be more genotype information on patients in 

the future and genotype data may become part of the standard medical record [12]. It will 
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be useful to measure the genotypic effects in medical images. Tortuosity is one example 

of measurement; there will be more in the future. 

 New technologies in automated DNA sequencing are making whole genome 

sequencing drop rapidly in time and price [12, 21]. There has been a 14,000-fold price 

decrease in DNA sequencing from 1999 to 2009 [22]. Exome sequencing that sequences 

only the protein coding part of the DNA, which is only around 1% of the human genome, 

is an even faster and less expensive alternative [21, 23]. There will soon be DNA 

sequence information available for individual patients usable for research and 

personalized medical treatment [12, 24]. 

 Genetic variation data are becoming more common but due to the lack of 

information on the function of genetic variation, genomics has had little impact on 

clinical medicine [22, 25]. Determining function from genotype is an open ended project 

[22]. Personalized medicine depends on an understanding of genetic and environmental 

factors [22]. The next challenge in genomics, as sequence data become an inexpensive 

commodity, is in linking genetic variation to physiology and disease phenotypes [24]. 

Medical imaging has the potential to measure phenotypes before they develop into 

clinical disease and has the potential to separate similar clinical phenotypes such as MFS 

from LDS and its subtypes. 

Contribution to the field of bioinformatics 

 Medical informatics is “the study, invention, and implementation of structures and 

algorithms to improve communication, understanding and algorithms to improve 
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communication, understanding, and management of medical information” [26]. The 

components of medical informatics are 1) signal processing, 2) database design, 3) 

decision making, 4) modeling and simulation, 5) optimizing interfaces between human 

and machine. This research involved signal processing of medical images and database 

design to allow comparison of subject tortuosity on many factors such as disease, age, sex 

and resolution of the image. By focusing on making secondary use of medical images this 

research will help enable reusing and combining data sets together to analyze tortuosity 

in arteries and diseases not studied before. This study also began a new line of research 

combining image processing, medical record analysis and genotype analysis to assist 

decision making. 

Summary 

 The DFE-COM centerline DFM curve tortuosity measurement system detected 

increased arterial tortuosity with hypertension and LDS validating the measurement 

method in these diseases. The tortuosity measure can be used to further study arterial 

tortuosity in hypertensive and LDS patients. Further study of hypertension could 

determine if tortuosity increases with progression of the disease. Quantitative tortuosity 

measurement is a potential method to distinguish LDS from related genetic syndromes. 

The quantitative measurement of phenotypes in medical images is a potential tool for 

determining the effects of genetic variation.
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