11 research outputs found

    DCU 250 Arabic dependency bank: an LFG gold standard resource for the Arabic Penn treebank

    Get PDF
    This paper describes the construction of a dependency bank gold standard for Arabic, DCU 250 Arabic Dependency Bank (DCU 250), based on the Arabic Penn Treebank Corpus (ATB) (Bies and Maamouri, 2003; Maamouri and Bies, 2004) within the theoretical framework of Lexical Functional Grammar (LFG). For parsing and automatically extracting grammatical and lexical resources from treebanks, it is necessary to evaluate against established gold standard resources. Gold standards for various languages have been developed, but to our knowledge, such a resource has not yet been constructed for Arabic. The construction of the DCU 250 marks the first step towards the creation of an automatic LFG f-structure annotation algorithm for the ATB, and for the extraction of Arabic grammatical and lexical resources

    Automatic Acquisition of Lexical-Functional Grammar Resources from a Japanese Dependency Corpus

    Get PDF
    PACLIC 21 / Seoul National University, Seoul, Korea / November 1-3, 200

    Towards a constraint parser for categorial type logics

    Get PDF
    This thesis shows how constraint programming can be applied to the processing of Categorial Type Logics(CTL). It presents a novel formalisation of the parsing task for categorial grammars as a tree configuration problem, and demonstrates how a recent proposal for emph{structural constraints} on CTL parse trees can be integrated into this framework. The resulting processing model has been implemented using the Mozart programming environment. It appears to be a promising starting point for further research on the application of constraint parsing to CTL and the investigation of the practical processing complexity of CTL grammar fragments.}

    Towards a constraint parser for categorial type logics

    Get PDF
    This thesis shows how constraint programming can be applied to the processing of Categorial Type Logics(CTL). It presents a novel formalisation of the parsing task for categorial grammars as a tree configuration problem, and demonstrates how a recent proposal for emph{structural constraints} on CTL parse trees can be integrated into this framework. The resulting processing model has been implemented using the Mozart programming environment. It appears to be a promising starting point for further research on the application of constraint parsing to CTL and the investigation of the practical processing complexity of CTL grammar fragments.}

    Parsing with sparse annotated resources

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 67-73).This thesis focuses on algorithms for parsing within the context of sparse annotated resources. Despite recent progress in parsing techniques, existing methods require significant resources for training. Therefore, current technology is limited when it comes to parsing sentences in new languages or new grammars. We propose methods for parsing when annotated resources are limited. In the first scenario, we explore an automatic method for mapping language-specific part of- speech (POS) tags into a universal tagset. Universal tagsets play a crucial role in cross-lingual syntactic transfer of multilingual dependency parsers. Our central assumption is that a high-quality mapping yields POS annotations with coherent linguistic properties which are consistent across source and target languages. We encode this intuition in an objective function. Given the exponential size of the mapping space, we propose a novel method for optimizing the objective over mappings. Our results demonstrate that automatically induced mappings rival their manually designed counterparts when evaluated in the context of multilingual parsing. In the second scenario, we consider the problem of cross-formalism transfer in parsing. We are interested in parsing constituency-based grammars such as HPSG and CCG using a small amount of data annotated in the target formalisms and a large quantity of coarse CFG annotations from the Penn Treebank. While the trees annotated in all of the target formalisms share a similar basic syntactic structure with the Penn Treebank CFG, they also encode additional constraints and semantic features. To handle this apparent difference, we design a probabilistic model that jointly generates CFG and target formalism parses. The model includes features of both parses, enabling transfer between the formalisms, and preserves parsing efficiency. Experimental results show that across a range of formalisms, our model benefits from the coarse annotations.by Yuan Zhang.S.M

    CCG-augmented hierarchical phrase-based statistical machine translation

    Get PDF
    Augmenting Statistical Machine Translation (SMT) systems with syntactic information aims at improving translation quality. Hierarchical Phrase-Based (HPB) SMT takes a step toward incorporating syntax in Phrase-Based (PB) SMT by modelling one aspect of language syntax, namely the hierarchical structure of phrases. Syntax Augmented Machine Translation (SAMT) further incorporates syntactic information extracted using context free phrase structure grammar (CF-PSG) in the HPB SMT model. One of the main challenges facing CF-PSG-based augmentation approaches for SMT systems emerges from the difference in the definition of the constituent in CF-PSG and the ‘phrase’ in SMT systems, which hinders the ability of CF-PSG to express the syntactic function of many SMT phrases. Although the SAMT approach to solving this problem using ‘CCG-like’ operators to combine constituent labels improves syntactic constraint coverage, it significantly increases their sparsity, which restricts translation and negatively affects its quality. In this thesis, we address the problems of sparsity and limited coverage of syntactic constraints facing the CF-PSG-based syntax augmentation approaches for HPB SMT using Combinatory Cateogiral Grammar (CCG). We demonstrate that CCG’s flexible structures and rich syntactic descriptors help to extract richer, more expressive and less sparse syntactic constraints with better coverage than CF-PSG, which enables our CCG-augmented HPB system to outperform the SAMT system. We also try to soften the syntactic constraints imposed by CCG category nonterminal labels by extracting less fine-grained CCG-based labels. We demonstrate that CCG label simplification helps to significantly improve the performance of our CCG category HPB system. Finally, we identify the factors which limit the coverage of the syntactic constraints in our CCG-augmented HPB model. We then try to tackle these factors by extending the definition of the nonterminal label to be composed of a sequence of CCG categories and augmenting the glue grammar with CCG combinatory rules. We demonstrate that our extension approaches help to significantly increase the scope of the syntactic constraints applied in our CCG-augmented HPB model and achieve significant improvements over the HPB SMT baseline

    Treebank-based grammar acquisition for German

    Get PDF
    Manual development of deep linguistic resources is time-consuming and costly and therefore often described as a bottleneck for traditional rule-based NLP. In my PhD thesis I present a treebank-based method for the automatic acquisition of LFG resources for German. The method automatically creates deep and rich linguistic presentations from labelled data (treebanks) and can be applied to large data sets. My research is based on and substantially extends previous work on automatically acquiring wide-coverage, deep, constraint-based grammatical resources from the English Penn-II treebank (Cahill et al.,2002; Burke et al., 2004; Cahill, 2004). Best results for English show a dependency f-score of 82.73% (Cahill et al., 2008) against the PARC 700 dependency bank, outperforming the best hand-crafted grammar of Kaplan et al. (2004). Preliminary work has been carried out to test the approach on languages other than English, providing proof of concept for the applicability of the method (Cahill et al., 2003; Cahill, 2004; Cahill et al., 2005). While first results have been promising, a number of important research questions have been raised. The original approach presented first in Cahill et al. (2002) is strongly tailored to English and the datastructures provided by the Penn-II treebank (Marcus et al., 1993). English is configurational and rather poor in inflectional forms. German, by contrast, features semi-free word order and a much richer morphology. Furthermore, treebanks for German differ considerably from the Penn-II treebank as regards data structures and encoding schemes underlying the grammar acquisition task. In my thesis I examine the impact of language-specific properties of German as well as linguistically motivated treebank design decisions on PCFG parsing and LFG grammar acquisition. I present experiments investigating the influence of treebank design on PCFG parsing and show which type of representations are useful for the PCFG and LFG grammar acquisition tasks. Furthermore, I present a novel approach to cross-treebank comparison, measuring the effect of controlled error insertion on treebank trees and parser output from different treebanks. I complement the cross-treebank comparison by providing a human evaluation using TePaCoC, a new testsuite for testing parser performance on complex grammatical constructions. Manual evaluation on TePaCoC data provides new insights on the impact of flat vs. hierarchical annotation schemes on data-driven parsing. I present treebank-based LFG acquisition methodologies for two German treebanks. An extensive evaluation along different dimensions complements the investigation and provides valuable insights for the future development of treebanks

    Integrating source-language context into log-linear models of statistical machine translation

    Get PDF
    The translation features typically used in state-of-the-art statistical machine translation (SMT) model dependencies between the source and target phrases, but not among the phrases in the source language themselves. A swathe of research has demonstrated that integrating source context modelling directly into log-linear phrase-based SMT (PB-SMT) and hierarchical PB-SMT (HPB-SMT), and can positively influence the weighting and selection of target phrases, and thus improve translation quality. In this thesis we present novel approaches to incorporate source-language contextual modelling into the state-of-the-art SMT models in order to enhance the quality of lexical selection. We investigate the effectiveness of use of a range of contextual features, including lexical features of neighbouring words, part-of-speech tags, supertags, sentence-similarity features, dependency information, and semantic roles. We explored a series of language pairs featuring typologically different languages, and examined the scalability of our research to larger amounts of training data. While our results are mixed across feature selections, language pairs, and learning curves, we observe that including contextual features of the source sentence in general produces improvements. The most significant improvements involve the integration of long-distance contextual features, such as dependency relations in combination with part-of-speech tags in Dutch-to-English subtitle translation, the combination of dependency parse and semantic role information in English-to-Dutch parliamentary debate translation, supertag features in English-to-Chinese translation, or combination of supertag and lexical features in English-to-Dutch subtitle translation. Furthermore, we investigate the applicability of our lexical contextual model in another closely related NLP problem, namely machine transliteration
    corecore