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Abstract. This paper describes a method for automatic acquisition of wide-coverage 
treebank-based deep linguistic resources for Japanese, as part of a project on treebank-
based induction of multilingual resources in the framework of Lexical-Functional 
Grammar (LFG). We automatically annotate LFG f-structure functional equations (i.e. 
labelled dependencies) to the Kyoto Text Corpus version 4.0 (KTC4) (Kurohashi and 
Nagao 1997) and the output of of Kurohashi-Nagao Parser (KNP) (Kurohashi and Nagao 
1998), a dependency parser for Japanese. The original KTC4 and KNP provide unlabelled 
dependencies. Our method also includes zero pronoun identification. The performance of 
the f-structure annotation algorithm with zero-pronoun identification for KTC4 is 
evaluated against a manually-corrected Gold Standard of 500 sentences randomly chosen 
from KTC4 and  results in a pred-only dependency f-score of 94.72%.  The parsing 
experiments on KNP output yield a pred-only dependency f-score of 82.08%. 

Keywords: Lexical-Functional Grammar, Japanese, automatic linguistic resource acquisition, 
zero-pronoun identification 

 

1. Introduction 
We present a method to automatically annotate Lexical-Functional Grammar (LFG)-style 
functional structure equations (labelled dependencies) on the unlabelled Kyoto University Text 
Corpus version 4 (KTC4) (Kurohashi and Nagao 1997), to acquire more abstract and 
(somewhat) less language-dependent LFG f-structure representations for Japanese sentences. 
We apply the algorithm to enrich the output of a Japanese dependency parser (Kurohashi-
Nagao Parser, KNP) (Kurohashi and Nagao 1998), to construct f-structure representations for 
KNP output; the enriched parser output is available for further cross-linguistic research or 
applications such as machine translation.  

Our annotation method is based on the assumption that non-configurational, relatively free 
word-order languages, of which Japanese is one example, do not require phrase structure trees 
as an indispensable level of linguistic representation. Rather, the rich morphological 
information on each unit in a sentence, along with the unlabelled dependency between syntactic 
units in KTC4 and KNP output, provides us with as much information as what can be deduced 
from phrase-structure trees in other configurational, fixed word-order languages.  

Our method provides zero pronoun identification as a preliminary process for long distance 
dependency (LDD) resolution, based on the morphology of verbs and on the probability of 
subcategorization frames, associated with particular verbs. 

This paper has the following structure: in Section 2 we summarize the background of this 
research, including LFG and related work. In Section 3, we describe in detail our method of 
automatic annotation of f-structure functional equations on KTC4, and show how we approach 
the problem of zero-pronoun identification and present results of our f-structure annotation and 
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parsing experiments. We discuss the overall results and their implications in Section 4, and 
conclude in Section 5. 

2. Background 

2.1 Lexical-Functional Grammar 
Lexical-Functional Grammar (LFG) (Bresnan 2001; Dalrymple 2001) is a syntactic theory in 
which there are two levels of representation: c-structures are phrase-structure trees, and f-
structures are attribute-value matrices encoding abstract grammatical relations such as subject, 
object, oblique or adjunct, mapped from the c-structure through functional equations annotated 
to c-structure nodes. Figure 1 is the c-structure for the sentence “Taro went to Seoul”, and 
Figure 2 is the f-structure for the same sentence: 
 
                                     S 
 
                          NP                           VP  
                        (↑SUBJ)=↓                     ↑=↓ 
 
                          Taro               V                                PP 

(↑PRED)='Taro'       ↑=↓                       (↑(↓PCASE))=↓  
                       (↑PERS)=3rd 

                       (↑NUM)=SG          went                P           NP 
(↑PRED)='go<SUBJ, OBLgoal>   ↑=↓          ↑=↓ 

                               (↑TENSE)=PST 
                                                                                    Seoul  
                                                                          to       (↑PRED)='Seoul' 
                                                 (↑PCASE)=OBLgoal 
Figure 1: The c-structure for “Taro went to Seoul”. 
 
 
                                                    SUBJ   PRED   'Taro' 
                                                   PERS    3rd 

                                                        NUM    SG 
 
                                                    OBLgoal  PRED  'Seoul' 
                                                        PCASE OBLgoal 
 
                                                    PRED   'go<SUBJ, OBLgoal>' 
                                                    TENSE PST 
 
Figure 2: The f-structure for “Taro went to Seoul”. 
 
C-structures capture language-specific properties, such as word order and the hierarchical 
grouping of phrases, while f-structures are more abstract and somewhat more language-
independent representations of surface grammatical relations (labelled dependencies). LFG is 
used in various fields of NLP research, such as Machine Translation (Owczarzak et al. 2007) or 
Question Answering (Judge et al. 2006).  

2.2 Automatic Induction of LFG Resources 
Treebank-based automatic acquisition of deep linguistic resources has been one of the 
important topics in the field of NLP (Hockenmeier et al., 2002; Cahill et al. 2002; Miyao et al. 
2003). It is expected to overcome the shortcomings of manual production of linguistic 
resources: manual development is time-consuming, expensive and limited in terms of coverage. 
Ideally, automatic methods are expected to be able to induce linguistic resources that are deep, 
including not only syntactic properties of given sentences but also semantic properties such as 
predicate-argument structures and long-distance dependencies (LDDs). Several methods to 
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achieve this goal have been developed to date, based on different grammatical formalisms like 
Combinatory Categorial Grammar (CCG) (Steedman, 2000), Head-Driven Phrase Structure 
Grammar (HPSG) (Pollard and Sag, 1994), and LFG. For example, Hockenmaier and 
Steedman (2002) presented an algorithm to translate the Penn-II Treebank into a CCG-style 
Treebank. Miyao and Tsujii (2005) developed probabilistic models for parsing with HPSG 
grammars acquired from the Penn-II treebank. Cahill et al. (2002, 2003, 2004) developed a 
method for automatic annotation of LFG f-structure on the Penn-II Treebank. The approach of 
Cahill et al. (2002, 2003, 2004) is as follows: first, LFG functional equations are automatically 
annotated on the phrase-structure trees in the English treebank. The equations specify the 
constraints on the f-structure mapping from the c-structure. The equations are collected and 
sent to a constraint solver to generate f-structures for these sentences. Long-distance 
dependencies (LDD) are resolved on f-structures using LDD path frequencies acquired from 
the f-structure annotated treebank and automatically acquired subcategorization frames 
(O’Donovan et al. 2004). This method has been applied to several languages other than English, 
including Chinese and German (Burke et al. 2004; Cahill et al. 2003). 

3. Acquisition of LFG Resources from a Japanese Text Corpus 
A wide-coverage LFG grammar for Japanese (Masuichi et al.2003) has been manually 
developed in the ParGram project (Butt et al. 2002) along with grammars for a number of other 
languages. To the best of our knowledge our research is the first method for the automatic 
treebank-based acquisition of deep Japanese LFG resources, focusing on morphological 
information and on unlabelled dependency relationships among the syntactic units in a sentence, 
as provided by an existent wide-coverage Japanese corpus. 

We use KTC4 as the corpus from which wide-coverage LFG resources are acquired. The 
method we develop implements the idea that the part-of-speech tags on each morpheme and the 
unlabelled dependency tags on each syntactic unit in KTC4 provide us with enough 
information for constructing what Cahill et al. (2003, 2004) call “proto” f-structures for the 
texts in the corpus, without employing context-free grammar syntactic trees. This idea is 
inspired by the difference in the type of syntactic information encoded in the English Penn 
treebank (Marcus et al. 2004) and that in the Japanese text corpus. This difference reflects 
language-particular properties of Japanese. Japanese is a non-configurational language which 
has relatively free-word order and where grammatical functions of syntactic phrases are shown 
not by the word order (as in English), but by the morphology of each syntactic phrase, such as 
case particles for specifying the grammatical function of an NP (e.g., the case particle “-wo” 
specifies that the noun phrase with this particle is an OBJ of the verb on which this noun phrase 
is dependent), or verbal inflections for specifying tense or modal information, and sometimes 
for the distinction between relative clauses and sentential modifiers. According to this 
morphological information and unlabelled dependency links as represented in KTC4, f-
structure functional equations are automatically annotated on each syntactic unit of the 
sentences in KTC4; these equations are sent to a constraint solver to construct the f-structures 
for these sentences. 

3.1 Automatic Annotation of f-Structure Functional Equations to KTC4 Representations 

This section describes how the method developed in this research augments KTC4 unlabelled 
dependency representations with the information necessary to construct “proto” f-structures, 
through f-structure functional equations which are resolved by a constraint solver. 

KTC4 encodes morphological and syntactic information by tags in the format displayed in 
Figure 3, for the example sentence “Taro ga souru ni itta (Taro went to Seoul)”. The 
parenthesized lines provide glosses in English, which are not contained in KTC4: 

 
#S-ID:950101001-001 
* 0 2D 
太郎 たろう 名詞*  人名 * * (Taro Noun Person**) 
が が 助詞格助詞*    * * (ga particle case **) 
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* 1 2D 
ソウルそうる 名詞地名  *   * * (souru “Seoul” * Noun Place**) 
に * 助詞 格助詞 * * (ni particle Case**) 
* 2 -1D 
行ったいった行く動詞 子音動詞過去    *  形 (itta “went” Verb * ConsonantStem pst) 
EOS 

Figure 3: KTC4 annotation for the sentence “Taro ga souru ni itta (Taro went to Seoul)” 
 

The first line in Figure 3 is the sentence ID. Lines which start with a star are the first lines of 
syntactic units. The representations also specify the unit ID number and the target unit ID 
number of the unit on which this unit is dependent, and the character after the target unit ID 
specifies the type of dependency: D denotes a direct dependency, P a coordinate relation and A 
an apposition. Note that apart from this, dependencies are unlabelled. If the unit does not have 
any target unit, then it is the root unit of the sentence, and this is indicated by “-1D”.  

The f-structure functional annotation algorithm assumes that each one of the syntactic units in 
the KTC4 representation corresponds to one sub-f-structure and that they combine with each 
other according to the unlabelled dependency relation provided in the KTC4 representation, to 
constitute one f-structure for the sentence as a whole. In other words, what is projected from 
one node in a phrase-structure tree of a configurational language, such as English, is projected 
from one syntactic unit of Japanese. The labels in the dependencies in the f-structure 
representation (i.e. the LFG grammatical functions) are captured from the morphological 
particle information in the KTC4 representation. For example, the first syntactic unit (indexed 
0) in Figure 3 contains the case-particle “-ga” which is a subject marker for a noun, and this 
unit depends on the last syntactic unit (indexed 2), meaning that the information in the first unit 
provides the value of a SUBJ attribute in the f-structure associated with the head verb (indexed 
2). The second syntactic unit (indexed 1) contains the case-particle “-ni” which signals that the 
syntactic unit functions as an oblique argument of the predicate. The last syntactic unit 
(indexed 2) has a morpheme whose part of speech is verb. Since its inflection form is the past 
form, the tense value is past. As it does not have any morpheme which specifies the statement 
type and style, by default this sentence is a declarative statement in plain style. The dependency 
relation tag (-1D) specifies that it does not have any target unit on which it is dependent, hence 
this unit is the root unit of the sentence. From these pieces of information, the f-structure 
annotation algorithm automatically annotates each syntactic unit with appropriate equations for 
its grammatical function, for its predicate value, and for some other lexical values such as tense.  

For the example sentence in Figure 3 above, the first unit is annotated as the subject of the 
sentence, the second unit is the oblique-case marked argument, and the last unit is the main 
predicate of the f-structure of the whole sentence. The output of the annotation algorithm is 
shown in the Figure 4, and the f-structure generated from these functional equations by the 
constraint solver is shown in Figure 5: 

 
#S-ID:950101001-001 
* 0 2D 
太郎 たろう 名詞*  人名 * * (Taro Noun Person **) 
が が 助詞格助詞*    * * (ga particle Case **) 
F0:pred ='Taro', 
F0:case='ga', 
F2:subj=F0, 
* 1 2D 
ソウルそうる 名詞地名  *   * * (souru “Seoul” * Noun Place**) 
に * 助詞 格助詞 * * (ni particle Case**) 
F1:pred='Seoul', 
F1:case='ni', 
F2:obl=F1, 
* 2 -1D 
行ったいった行く動   詞 子音動詞過去形 *   (itta 'went' iku Verb * ConsonantStem pst) 
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F2:pred='iku', 
F2:tns='pst', 
F2:stmt='decl', 
F2:style='plain'. 
EOS 

Figure 4: KTC4 annotation for the sentence “Taro ga souru ni itta (Taro went to Seoul)” with 
functional equasions. 
 
                                                     SUBJ   PRED  'Taro' 
                                                     CASE ga 
 
                                                     OBL   PRED  'Seoul' 
                                                          CASE  ni 
 
                                                     PRED   'iku<SUBJ, OBL>' 
                                                     STMT   'decl' 
                                                     STYLE 'plain' 
                                                     TENSE PST 
 
Figure 5: The f-structure for the sentence “Taro ga souru ni itta (Taro went to Seoul)” 

 
The advantage of this method is that the annotation algorithm can be applied not only to the 
tagged sentences in KTC4, but also to raw texts using JUMAN (a Japanese morphological 
analyzer), and the KNP parser. This is because KTC4 has been developed along with the 
development of the KNP parsing system (Kurohashi and Nagao 1998). Using the method on 
JUMAN-KNP output, we can annotate KNP parser output with LFG f-structure functional 
equations. The f-structures from parser output can be employed in various applications such as 
Machine Translation or Question Answering.   

Table 1 evaluates the f-structures generated by the method against a 500-sentence gold 
standard. Details are described in Section 3.3. Overall weighted precision for all features is 
95.66%, recall 86.02% and f-score 90.59%: 

 
Table 1: Evaluation results for all features without zero pronoun identification: 
Feature Precision Recall F-score Feature Precision Recall F-score

adj 644/668 = 96 644/662 = 97 97 obj_p 1005/1053 = 95   1005/1033 = 97 96 

adjform 207/208 = 100 207/209 = 99 99 obl 321/346 = 93     321/577 = 56   70 

asp 120/121 = 99 120/121 = 99 99 padj 1080/1135 = 95   1080/1118 = 97 96 

case 990/1065 = 93 990/1088 = 91 92 pfrm 96/96 = 100      96/96 = 100    100 

caus 8/8 = 100 8/8 = 100 100 progform 120/121 = 99     120/121 = 99   99 

cj 350/361 = 97 350/356 = 98 98 ptrav 394/395 = 100    394/398 = 99   99 

comp 300/308 = 97 300/325 = 92 95 prtcj 0/0 = 0        0/29 = 0 0 

coord_form 125/162 = 77 125/158 = 79 78 prtcnj 1/1 = 100      1/2 = 50      67 
copulaform 105/109 = 96 105/109 = 96 96 prtcs 124/126 = 98     124/129 = 96   97 

exrl 0/0 = 0       0/32 = 0 0 rel 281/337 = 83     281/287 = 98   90 

mod 66/67 = 99    66/70 = 94 96 sadj 236/246 = 96     236/270 = 87   91 

nadv 83/83 = 100   83/83 = 100 100 stmt 1380/1477 = 93   1380/1421 = 97 95 

neg 145/151 = 96  145/151 = 96 96 style 1398/1472 = 95   1398/1418 = 99 97 

negform 140/151 = 93  140/151 = 93 93 subj 283/288 = 98     283/1418 = 20  33 

nform 32/33 = 97    32/32 = 100 98 sufvform 67/67 = 100      67/67 = 100    100 

noda 28/34 = 82    28/34 = 82     82 tns 767/770 = 100    767/875 = 88   93 

nsa 908/910 = 100 908/915 = 99   100 topic 330/345 = 96     330/350 = 94   95 
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num 27/30 = 90    27/27 = 100    95 vform 502/507 = 99     502/508 = 99   99 

obj 410/414 = 99  410/558 = 73 84 voice 91/96 = 95      91/96 = 95     95 
 

3.2 Zero-Pronoun Identification 
The language-particular properties of Japanese mentioned above allow us to induce LFG 
resources from the KTC4 corpus or KNP parser output. However, zero-pronouns cause a major 
problem for the method. Along with ordinary pronouns, Japanese has zero pronouns, which 
have no morphological or phonological realization but, for all intents and purposes, function as 
pronouns in other languages. Since they are used quite often both in spoken and written 
Japanese, identification of them is one of the issues in Japanese NLP (Kawahara et al. 2004a, 
2004b, among others). Moreover, zero pronoun identification is required to resolve LDDs 
which is one of the important research topics in automatic induction of deep linguistic 
resources.  

Cahill et al. (2004) present a method to automatically obtain approximations of LDD 
resolution for LFG resources acquired from a treebank. It uses verb subcategorization frames 
and LDD paths between coindexed materials (e.g., wh-phrase and its gap), both of which are 
extracted from the f-structures automatically generated for the Penn-II treebank.  
Since KTC4 does not annotate zero pronouns on all the texts (only about 5,000 sentences are 

annotated with zero pronouns), LDD resolution based on KTC4 necessarily is divided into two 
steps: the first is zero-pronoun identification and the second is their resolution. The method we 
have presented in Section 3.1 does not detect the presence of zero pronouns. Hence, we have 
devised an additional method, making use of morphological and syntactic information in the 
corpus, in order to identify zero pronouns. If the method is able to identify zero pronouns in the 
KTC4 corpus, then it can also be applied to the output of KNP, which also does not identify 
zero pronouns. In this paper we concentrate on zero pronoun identification. Zero pronoun and 
LDD resolution will be addressed in future research. 
 

3.3 Experiment 1: Zero Pronoun Identification in KTC4 
The quality of the f-structures automatically acquired from KTC4 is evaluated against gold-
standard f-structures which are manually created for a set of 500 test sentences randomly 
chosen from the first half of KTC4 (Table 1). 200 sentences randomly chosen from the second 
half of KTC4 are used as a development set. For both the development and test sets, f-structure 
functional equations are annotated automatically by the method without zero-pronoun 
identification and then their f-structures are manually corrected. The zero pronouns in the 500 
Gold Standard f-structures are added manually, based on the context in which each of them 
appeared in the original text, verbal morphology, and A Japanese Lexicon (Ikehara et al. 1999), 
a hand-coded Japanese case-frame dictionary. Table 2 shows the numbers of the core 
arguments in the Gold Standard f-structures and the numbers of zero pronouns of each core 
argument (SUBJ, OBJ, OBL). 
 
Table 2: The numbers of the core arguments and the numbers of zero pronouns of each core 
grammatical function in the Gold standard f-structures: 

Grammatical functions token numbers token numbers of pro
SUBJ 1411 1121 (approx. 79% of all SUBJ)
OBJ 536 122 (approx. 22% of all OBJ)
OBL 568 199 (approx. 35% of all OBL)

 
 
We have developed five methods for zero pronoun identification. The first method is the Null 
method, which ignores zero pronouns and nothing is added to the f-structure annotation output.  
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The second method is the Simplistic method, which simply adds zero pronouns SUBJ-pro, 
OBJ-pro and OBL-pro whenever full NPs with the particle “-ga”, “-wo” or “-ni” are missing 
for local verbs, regardless of the case frame of the verb.  

The third method is the Morphological method, which uses a list of verbs whose 
morphology specifies their transitivity. The list is automatically constructed from KTC4 
(except for the Gold Standard sentences), based on the morphology of the verbs. For some 
Japanese verbs, morphological information of the verb indicates unambiguously whether it is a 
transitive or intransitive verb. Verbs which end with “su”, whether su is the verb-ending 
morpheme or part of the verb-ending morpheme, are all unambiguously transitives. For those 
verbs which are unambiguously transitives, if they appear in KTC4 without an object NP, then 
an object zero pronoun OBJ-pro is assumed to be present. F-structure equations are added 
automatically  which specify that the verb takes an object whose predicate value is “pro”. 

The fourth method is the probabilistic method, which uses a list of verbs with high 
transitivity rate (the rate that each verb appears with an OBJ NP dependent on it). The problem 
of the morphology-based method 3 is its low coverage. The total number of verb types in 
KTC4 is 3506, and the total number of verb tokens is 95383. The number of morphologically 
unambiguously transitive verb types which have their intransitive counterpart is 1286, and their 
token number is 33911. As for the other 2220 verb types (61472 verb tokens), their 
morphology does not tell us their valency.  

KTC4 does not annotate the text with tags which specify the valency of verbs. Therefore, an 
approach must be developed to determine the valency of verbs which are not unambiguously 
marked by their morphology, and one of the possible approaches to achieve this task is to look 
at the syntactic environment in which the verb appears; e.g., we can estimate the probability 
that a verb whose morphology does not specify its valency is used transitively in the corpus. 
The phrase “used transitively in the corpus” means that the verb takes a noun phrase which is 
dependent on the verb and the noun phrase has the case particle “-wo”. If the probability that a 
verb lemma is used as a transitive verb is higher than a certain threshold, and if it appears 
without object in a given sentence, then the appropriate f-structure equations are automatically 
added to the f-structure for the sentence. The list of verbs and their transitivity rate is 
automatically acquired from the second half of KTC4, which does not contain Gold Standard 
sentences. The threshold is 0.3 in this experiment, i.e., the list includes verbs whose transitivity 
rates are above 0.3.  

The fifth method is a combination of methods 3 and 4: add to the list of method 3 those verbs 
whose morphology does not specify their transitivity but that have a high transitivity rate.   

In all methods, 500 f-structures generated by different zero-pronoun identification methods 
are converted into dependency triples of a grammatical function, a predicate and its argument: 
for example, a dependency triple “subj(go, Taro)” which is obtained from a sentence “Taro 
went to Seoul” means that the subject of the verb “go” is “Taro”. The triples are compared with 
the dependency triples of the Gold Standard f-structures, and the precision, recall and f-score 
for each grammatical function are calculated using the software of Crouch et al. (2002).  

Table 3 shows the evaluation results of the five methods. The figures in the parentheses are 
recall, precision and f-score of zero pronouns only. “Pred-only” means the result includes the 
precision, recall and f-score of dependency triples of the predicates, arguments and adjuncts in 
the 500 test sentences, but not atomic features such as tense, mood, aspect features. 
In all methods except for Method 1, SUBJ-pro is added simplistically; since every verb 

subcategorises for a subject, hence if a clause lacks a subject NP, then pro-SUBJ is added into 
the clause. However, this result does not yield 100% accuracy because of the wrong annotation 
of functional equations, especially those on nominal predicates functioning as sentential 
adjuncts, hence more cleaning up operations are required.  

From all the results, method 5 performs best for OBJ zero pronoun identification. The results 
of zero pronoun identification for OBL are lower than that for OBJ, because of the ambiguity 
of “ni” marked NPs. This particle can be used as the OBL case marker, or as a postposition 
which functions as a temporal or a locative adverbial.  
 
Table 3: Results of Experiment 1 
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Precision Recall F-score
Pred-only 95.71 75.18 84.22
SUBJ 97.56(0) 19.84(0) 32.97(0)
OBJ 98.79(0) 73.16(0) 84.06(0)
OBL 93.31(0) 58.05(0) 71.57(0)
Pred-only 78.22 95.51 86.01
SUBJ 98.64(98.91) 97.38(97.60) 98.00(98.25)
OBJ 39.47(14.13) 97.67(95.80) 56.22(24.62)
OBL 39.25(19.10) 89.94(88.46) 54.65(31.41)
Pred-only 95.75 92.69 94.2
OBJ 92.83(71.55) 88.01(58.04) 90.35(64.09)
OBL 92.48(88.05) 68.28(28.36) 78.55(42.90)
Pred-only 95.76 92.92 94.32
OBJ 97.97(87.09) 77.99(18.88) 86.94(31.03)
OBL 82.17(63.92) 82.32(67.30) 82.24(65.56)
Pred-only 95.08 94.37 94.72
OBJ 93.26(76.29) 91.59(72.02) 92.41(74.09)
OBL 84.46(68.65) 81.97(66.34) 83.19(67.47)

Method 1 (null)

Method 5 (combination)

Method 4 (probabilistic)

Method 3 (morphological)

Method 2 (simplistic)

 
 
Results for Method 5 for all features (rather than pred-only) are as follows: precision is 95.61%, 
recall 94.68% and f-score 95.15%. Compared to Table 1, this shows a marked increase due to 
the effect of zero-pronoun identification. 
 
3.4 Experiment 2: Zero Pronoun Identification in KNP Parser Output 
Experiment 2 explores how the methods in Experiment 1 can identify zero pronouns in raw 
texts, using KNP, a Japanese dependency parser. We stripped off the dependency and other 
tags in the 500 Gold Standard sentences and parsed them with KNP. The parser output is 
automatically annotated with f-structure functional equations, and zero pronouns are identified 
using the same methods as in Experiment 1. The output f-structures are converted into triples 
and compared to the Gold Standard triples. Table 4 shows the results of each method. The 
general tendency of recall, precision and f-scores of SUBJ are the same as Experiment 1: 
 
Table 4: Results of Experiment 2 

Precision Recall F-score
Pred-only 83.57 79.06 72.37
SUBJ 79.93(0) 16.59(0) 27.47(0)
OBJ 89.63(0) 66.54(0) 76.37(0)
OBL 85.38(0) 51.64(0) 64.35(0)
Pred-only 67.96 82.77 74.64
SUBJ 89.60(92.16) 88.84(90.93) 89.21(92.04)
OBJ 35.88(12.88) 88.90(87.41) 51.12(22.45)
OBL 34.68(16.63) 79.89(78.36) 48.36(27.43)
Pred-only 83.28 80.74 81.99
OBJ 85.26(65.95) 77.63(43.35) 81.26(52.31)
OBL 84.96(82.85) 61.69(27.88) 71.47(41.72)
Pred-only 83.13 80.62 81.86
OBJ 89.31(84.00) 70.30(14.68) 78.67(24.99)
OBL 72.82(53.33) 72.44(57.69) 72.62(55.42)
Pred-only 82.91 81.27 82.08
OBJ 85.82(68.91) 77.99(44.75) 81.71(54.23)
OBL 72.82(56.33) 72.44(57.69) 72.62(57.00)

Method 1 (null)

Method 5 (combination)

Method 4 (probabilistic)

Method 3 (morphological)

Method 2 (simplistic)

 
 

4. Discussion 
Method 5 yields the best pred-only f-score for both KTC4 and KNP parser output. The 
experiments show that the morphology-based approach and the probability-based approach 
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improve the f-scores of the annotation algorithm in terms of the pred-only f-scores of the 
sentence as a whole.  

However, these two approaches do not yet identify zero pronouns as precisely as expected, 
and the improvement remains moderate; for example, the f-score of zero-pronoun OBJ in 
Method 5 in parsing is only slightly above 82%.  

5. Conclusion  
This paper presents a method for automatically acquiring LFG resources from the KTC4 
Japanese text corpus and KNP parser output along with a basic zero-pronoun identification 
method. The performance of the f-structure annotation algorithm for KTC4 is evaluated against 
a manually-corrected Gold Standard of 500 sentences randomly chosen from KTC4 and the 
evaluation results in a pred-only dependency f-score of 94.72%. The parsing experiments on 
KNP output yields a pred-only dependency f-score of 82.08%. The results show that LFG 
resources automatically acquired from a Japanese text corpus can be improved through zero-
pronoun identification.  
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