
Treebank-Based Grammar

Acquisition for German

Ines Rehbein

A dissertation submitted in fulfilment of the requirements

for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisor: Prof. Josef van Genabith

August 2009

ThesisFigs/DCUwhite.eps


2



Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Doctor of Philosophy (Ph.D.) is entirely

my own work, that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge breach any law of copyright,

and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed (Ines Rehbein)

Student ID: 5513 0917

Date: May 2009

i



Acknowledgements

I wish to acknowledge everyone who has helped me with this thesis.

First of all, I would like to thank my supervisor, Josef van Genabith,

who’s unshakeable optimism and constant believe that my time at

DCU will result in a publishable piece of research never ceased to

surprise me. He was right, after all...

Thanks to my fellow students in the GramLab project, Amine Akrout,

Gregorz Chrupa la, Yvette Graham, Yuqing Guo, Masanori Oya and

Natalie Schluter, for their support and interest in my work. Special

thanks to Yuqing, who has been a great friend, and who never got

tired of joining in my complaints over the Irish weather.

I’d also like to thank other past and present members of the NCLT,

Ŕıona Finn, Jennifer Foster, Deirdre Hogan, Sara Morrisey, Karolina

Owczarzak, Lamia Tounsi and Joachim Wagner. Thanks for many

inspiring chats during lunch and coffee breaks, revitalising jogs in the

park, and for giving encouragement when I needed it.

I am especially grateful to Jennifer Foster and Sandra Kübler for many

useful comments on my thesis.

My life in Dublin, especially during the first year, would not have

been the same without my friends. I’d like to thank Susanne Lechle

for strenuous hikes in the mountains, relaxing walks on the beach,

shared cooking experiences and great nights out in the pub. Dublin

would have been less fun without her!

I also want to thank my collegues in Saarbrücken, Caroline Sporleder

and Josef Ruppenhofer, for encouraging and supporting me while I

was writing up my thesis. I’m very fortunate to work with them.



Finally, I would like to express my gratitude to the Science Foundation

Ireland who supported my research with grant 04/IN/I527.



Contents

1 Introduction 3

1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Data 11

2.1 Language-Specific Properties of German . . . . . . . . . . . . . . 11

2.2 Two German Treebanks: TiGer and TüBa-D/Z . . . . . . . . . . 14

2.3 Differences between TiGer and NEGRA . . . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Background and Related Work (PCFG Parsing for German) 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 State-of-the-Art for German Data-Driven

Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Morphological Information . . . . . . . . . . . . . . . . . . 28

3.2.2 The Pitfalls of Evaluation . . . . . . . . . . . . . . . . . . 30

3.2.3 Significance Tests for Parser Performance . . . . . . . . . . 31

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Evaluating Evaluation Measures 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Controlled Error Insertion Experiments for German . . . . . . . . 36

4.3 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Error Insertion . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



CONTENTS

4.3.3 Results for Controlled Error Insertion for the Original Tree-

bank Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 The Leaf-Ancestor Metric (LA) . . . . . . . . . . . . . . . 42

4.3.5 Comparing LA and PARSEVAL . . . . . . . . . . . . . . 46

4.4 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Converting the TüBa-D/Z Trees to TiGer-Style Trees . . . 50

4.4.3 The Conversion Process: A Worked Example . . . . . . . . 50

4.4.4 Results for Converted Parser Output . . . . . . . . . . . . 52

4.5 Experiment III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Dependency-Based (DB) Evaluation . . . . . . . . . . . . 56

4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 TiGer and TüBa-D/Z: Apples and Oranges 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Comparing the Treebanks . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Sentence Length / Word Length / Vocabulary Size . . . . 63

5.2.2 Principal Component Analysis (PCA) of POS Tags . . . . 64

5.2.3 Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Parsing Experiments . . . . . . . . . . . . . . . . . . . . . 69

5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme . . . 72

5.3.1 Qualitative Evaluation of TiGer and TüBa-D/Z Parser Out-

put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 TePaCoC - A New Testsuite for Cross-Treebank Comparison 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 TePaCoC - Testing Parser Performance on Complex Grammati-

cal Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Extraposed Relative Clauses (ERC) . . . . . . . . . . . . . 88

v



CONTENTS

6.3.2 Forward Conjunction Reduction (FCR) . . . . . . . . . . . 90

6.3.3 Subject Gap with Fronted/Finite Verbs (SGF) . . . . . . . 91

6.3.4 Coordination of Unlike Constituents (CUC) . . . . . . . . 94

6.4 Constituent Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Dependency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Manual Evaluation of TePaCoC Phenomena . . . . . . . . . . . 99

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Treebank-Based Deep Grammar Acquisition - Background 103

7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources . 104

7.1.1 Overview of Lexical Functional Grammar . . . . . . . . . . 105

7.1.2 Automatic F-structure Annotation of the English Penn-II

Treebank . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.3 Using F-structure Information to Guide Parsing . . . . . . 108

7.1.4 Extracting Subcategorisation Frames from the F-structures

Generated from the Penn-II Treebank . . . . . . . . . . . . 109

7.1.5 Resolving LDDs on F-structure Level for Parser Output . 110

7.2 Multilingual Treebank-Based LFG Grammar Acquisition . . . . . 110

7.3 Automatic Acquisition of Rich LFG Resources for German . . . . 111

7.3.1 F-Structure Annotation and Evaluation for German . . . . 111

7.3.2 Parsing Experiments and Evaluation for German . . . . . 112

7.3.3 Parsing with Morphological Information . . . . . . . . . . 113

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Improved Acquisition of Deep, Wide-Coverage LFG Resources

for German: Preliminaries 115

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Gold Standards for Evaluation . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Gold Standards Based on the TiGer Treebank . . . . . . . 116

8.2.2 A Gold Standard Based on the TüBa-D/Z . . . . . . . . . 121

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



CONTENTS

9 Developing F-structure Annotation Algorithms for German 123

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Developing F-Structure Annotation Algorithms for the Extended

Feature Sets in the TiGer DB, DCU250 and TUBA100 . . . . . . 123

9.2.1 Differences between the English and the German Annota-

tion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2.2 Differences between the New AA for German and Cahill et

al. (2003, 2005) and Cahill (2004) . . . . . . . . . . . . . . 131

9.3 Results for Automatic F-structure Annotation on Gold Trees . . . 134

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Parsing 142

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.2 Approaches to Treebank-Based Grammar Extraction, Parsing and

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2.1 Raised versus Split - What’s the Difference? . . . . . . . . 143

10.2.2 Automatic F-structure Annotation . . . . . . . . . . . . . 147

10.3 Parsing into LFG F-structures . . . . . . . . . . . . . . . . . . . . 148

10.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 150

10.3.2 C-Structure and F-Structure Parsing Results for the TiGer

DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.3.3 C-Structure and F-Structure Parsing Results for the DCU250156

10.3.3.1 Error Analysis . . . . . . . . . . . . . . . . . . . 160

10.3.3.2 Evaluating FunTag . . . . . . . . . . . . . . . . . 162

10.3.4 C-Structure and F-Structure Parsing Results for the TüBa-

D/Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3.5 C-Structure and F-Structure Parsing Results in a CCG-

Style Evaluation . . . . . . . . . . . . . . . . . . . . . . . 173

10.3.6 LFG F-structure Annotation with TiGer and TüBa-D/Z

Trained Parsing Resources - Conclusions . . . . . . . . . . 178

10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

vii



CONTENTS

11 Extensions: Recovering LDDs and Improving Coverage with

SubCat Frames 182

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.2 Recovering LDDs in the Parse Trees . . . . . . . . . . . . . . . . . 183

11.3 Improving Coverage with SubCat Frames . . . . . . . . . . . . . . 187

11.3.1 SubCat Frame Extraction . . . . . . . . . . . . . . . . . . 188

11.3.2 Using SubCat Frames for Disambiguation . . . . . . . . . 192

11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

12 Parsing: Related Work 199

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

12.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

12.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

13 Conclusions 204

13.1 Is German Harder to Parse than English? . . . . . . . . . . . . . . 204

13.2 Comparing Treebank Design - TiGer and TüBa-D/Z . . . . . . . 205

13.3 Is Treebank-Based Grammar Induction for German feasible? . . . 206

13.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

viii



List of Figures

2.1 Multiple elements in the initial field and their annotation in TüBa-

D/Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 TiGer treebank tree . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 TüBa-D/Z treebank tree . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 ATTACH I: changing PP noun attachment to verb attachment

(TiGer example) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ATTACH II: changing PP verb attachment to noun attachment

(TiGer example) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 SPAN I: changing phrase boundaries (TiGer example) . . . . . . . 43

4.4 Example sentences for PP attachment . . . . . . . . . . . . . . . . 45

4.5 Original TüBa-D/Z-style gold tree . . . . . . . . . . . . . . . . . . 51

4.6 Converted TüBa-D/Z to TiGer-style gold tree . . . . . . . . . . . 52

4.7 Parser output (trained on TüBa-D/Z) . . . . . . . . . . . . . . . . 52

4.8 TüBa-D/Z to TiGer-style converted parser output . . . . . . . . . 53

4.9 TiGer treebank representation for Figure 4.4 (a) (page 45) . . . . 57

4.10 Dependency tree for Figure 4.9 . . . . . . . . . . . . . . . . . . . 57

5.1 PCA for TiGer/TüBa-D/Z POS tags . . . . . . . . . . . . . . . . 65

5.2 Perplexity for randomised and sequential samples (word/POS tri-

gram model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Preprocessing for TiGer: insertion of preterminal nodes . . . . . . 70

5.4 The annotation of appositions in TiGer . . . . . . . . . . . . . . . 75

5.5 The annotation of appositions in TüBa-D/Z . . . . . . . . . . . . 76

ix



LIST OF FIGURES

5.6 The annotation of postnominal genitive and dative attributes in

TiGer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 The annotation of postnominal genitive and dative attributes in

TüBa-D/Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Dependency tree for a TüBa-D/Z sentence . . . . . . . . . . . . . 83

7.1 LFG c-structure and F-structure . . . . . . . . . . . . . . . . . . . 106

7.2 Architecture of the F-structure annotation algorithm . . . . . . . 107

7.3 Two parsing architectures for English . . . . . . . . . . . . . . . . 109

9.1 The modules of the AA . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2 TiGer treebank tree example for free word order in German . . . 128

9.3 F-structure equations for the grammar rule in Figure 9.2 . . . . . 129

9.4 NP-internal structure in TiGer (PN=head) . . . . . . . . . . . . . 132

9.5 NP-internal structure in TiGer (PN=apposition) . . . . . . . . . . 132

9.6 NP-internal structure in TiGer (PN=genitive to the right) . . . . 132

10.1 Different approaches to grammar extraction, f-stucture annotation

and evaluation for parsing . . . . . . . . . . . . . . . . . . . . . . 144

10.2 Conversion of crossing branches into CFG trees: original tree . . . 145

10.3 Conversion of crossing branches into CFG trees: raised-node (Kübler,

2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.4 Conversion of crossing branches into CFG trees: split-node (Boyd,

2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.5 Constituency parsing learning curves for the Berkeley parser (no

GF, berk.fun) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.6 Constituency parsing learning curves for the Berkeley parser (GF,

berk.par) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.7 POS tag error by the Berkeley parser trained with GF . . . . . . 162

10.8 Berkeley parser error . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.9 High attachment for independent phrases in TüBa-D/Z . . . . . . 170

10.10High attachment for independent phrases in TüBa-D/Z . . . . . . 171

x



LIST OF FIGURES

11.1 FunTag error: the same GF (SB) appearing twice in the same local

tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.2 LFG c-structure and F-structure . . . . . . . . . . . . . . . . . . . 189

1 PP Attachment in TiGer . . . . . . . . . . . . . . . . . . . . . . . 227

2 PP Attachment in TüBa-D/Z . . . . . . . . . . . . . . . . . . . . 228

3 Extraposed Relative Clauses in TiGer . . . . . . . . . . . . . . . . 229

4 Extraposed Relative Clauses in TüBa-D/Z . . . . . . . . . . . . . 230

5 Forward Conjunction Reduction in TiGer . . . . . . . . . . . . . . 231

6 Forward Conjunction Reduction in TüBa-D/Z . . . . . . . . . . . 232

7 Subject Gap with Fronted/Finite Verbs in TiGer . . . . . . . . . 233

8 Subject Gap with Fronted/Finite Verbs in TüBa-D/Z . . . . . . . 234

9 Coordination of Unlike Constituents in TiGer . . . . . . . . . . . 235

10 Coordination of Unlike Constituents in TüBa-D/Z . . . . . . . . . 236

xi



Abstract

Manual development of deep linguistic resources is time-consuming

and costly and therefore often described as a bottleneck for traditional

rule-based NLP. In my PhD thesis I present a treebank-based method

for the automatic acquisition of LFG resources for German. The

method automatically creates deep and rich linguistic representations

from labelled data (treebanks) and can be applied to large data sets.

My research is based on and substantially extends previous work on

automatically acquiring wide-coverage, deep, constraint-based gram-

matical resources from the English Penn-II treebank (Cahill et al.,

2002; Burke et al., 2004b; Cahill, 2004). Best results for English show

a dependency f-score of 82.73% (Cahill et al., 2008) against the PARC

700 dependency bank, outperforming the best hand-crafted grammar

of Kaplan et al. (2004). Preliminary work has been carried out to

test the approach on languages other than English, providing proof of

concept for the applicability of the method (Cahill et al., 2003; Cahill,

2004; Cahill et al., 2005).

While first results have been promising, a number of important re-

search questions have been raised. The original approach presented

first in Cahill et al. (2002) is strongly tailored to English and the data-

structures provided by the Penn-II treebank (Marcus et al., 1993).

English is configurational and rather poor in inflectional forms. Ger-

man, by contrast, features semi-free word order and a much richer

morphology. Furthermore, treebanks for German differ considerably

from the Penn-II treebank as regards data structures and encoding

schemes underlying the grammar acquisition task.



In my thesis I examine the impact of language-specific properties of

German and of linguistically motivated treebank design decisions on

PCFG parsing and LFG grammar acquisition. I present experiments

investigating the influence of treebank design on PCFG parsing and

show which type of representations are useful for the PCFG and LFG

grammar acquisition task. Furthermore I present a novel approach for

cross-treebank comparison, measuring the effect of controlled error in-

sertion on treebank trees and parser output from different treebanks.

I complement the cross-treebank comparison by augmenting a human

evaluation on the TePaCoC, a new testsuite for testing parser perfor-

mance on complex grammatical constructions. The manual evaluation

on the TePaCoC provides new insights on the impact of flat vs. hi-

erarchical annotation schemes on data-driven parsing. In my thesis I

present treebank-based LFG acquisition methodologies for two Ger-

man treebanks. An extensive evaluation along different dimensions

complements the investigation and provides valuable insights for the

future development of treebanks.



Chapter 1

Introduction

Over the last two decades, deep wide-coverage linguistic resources such as gram-

mars have attracted interest from different areas in NLP. Deep linguistic re-

sources can provide useful information for NLP applications such as Information

Retrieval, Question Answering, Information Extraction or Machine Translation.

Typically, deep linguistic resources are hand-crafted. Unfortunately, the develop-

ment of hand-crafted deep, wide-coverage linguistic resources is extremely time-

consuming, knowledge-intensive and expensive. Many hand-crafted resources are

domain-dependent and exhibit a serious lack of coverage. Therefore, more and

more attention has been focused on data-driven methods for the automatic ac-

quisition of linguistic resources, mostly in the area of data-driven grammar acqui-

sition or automatic acquisition of lexical resources (Sharman et al., 1990; Brent,

1991, 1993; Pereira and Schabes, 1992; Miller and Fox, 1994; Briscoe and Carroll,

1997). However, the automatic acquisition of linguistic resources, in particular

grammars, has its own problems, the most serious one being that automatically

induced resources are mostly shallow and therefore of restricted use. In addi-

tion, the quality of automatically induced resources is often inferior to manually

created resources. The challenge at hand consists of developing a method for

automatically acquiring deep, wide-coverage linguistic resources which are able

to generalise to unrestricted data and provide truly rich and deep linguistic in-

formation.

The last fifteen years have seen the development of a new and active research

area working with deep grammatical frameworks like Tree Adjoining Grammar

3



(TAG) (Xia, 1999; Chen and Shanker, 2000), Categorial Grammar (CCG) (Hock-

enmaier and Steedman, 2002a), Head-Driven Phrase Structure Grammar (HPSG)

(Nakanishi et al., 2004; Miyao and Tsujii, 2005) and Lexical Functional Grammar

(LFG) (Cahill et al., 2002, 2003; Cahill, 2004; Cahill et al., 2005), taking up the

challenge to automatically acquire deep, rich linguistic resources encoding de-

tailed and fine-grained linguistic information from treebanks (i.e. labelled data).

To date, most of the work has concentrated on English.

While the approaches mentioned above present a solution to the well-known

knowledge-acquisition bottleneck by automatically inducing deep, wide-coverage

linguistic resources for English, it is not clear whether the same is possible for

other languages. Hockenmaier (2006) reports on the first steps on the automatic

induction of rich CCG lexical resources for German. She transformed the TiGer

treebank Skut et al. (1997) into a CCGbank and derived a wide-coverage CCG

lexicon, but to date there are no parsing results for an automatically induced

deep German CCG grammar. Burke et al. (2004b) and O’Donovan et al. (2005b)

provided early and preliminary proof-of-concept research on the adaptation of

the automatic LFG F-structure annotation algorithm (originally developed for

English) to Spanish and Chinese, respectively. Cahill (2004); Cahill et al. (2005)

ported the LFG grammar acquisition methodology to German and the TiGer

treebank. The work of Cahill et al. (2003) and Cahill (2004); Cahill et al. (2005)

provides proof-of-concept, showing that, in principle, the automatic acquisition of

deep, wide-coverage probabilistic LFG resources for German is possible. However,

the work of Cahill et al. is limited in many ways. At the time only Release 1 of the

TiGer treebank was available, a preliminary, incomplete version of the treebank

without morphological information. For evaluation purposes, Cahill (2004) and

Cahill et al. (2003, 2005) could only revert to a hand-crafted gold standard of

100 sentences, which obviously is too small to cover many of the interesting

grammar phenomena present in the full TiGer data. The most problematic aspect

of their work, however, is the restricted number of grammatical features used

for F-structure annotation. The set of features was rather small and coarse-

grained, containing only 26 different grammatical features. Furthermore, Cahill

et al. did not provide long-distance dependency (LDD) resolution for parsing.

4



Finally, parsing results for the automatically acquired resources for German are

substantially below the results obtained for English.

This means that the question whether the automatic acquisition of truly deep,

wide-coverage linguistic resources for languages different from English is possible

or not, is still not fully answered. German, despite being a Germanic language and

in the same language family as English, shows typological features very different

from English. The main differences between the two languages concern word

order and inflection: English is a configurational language with a strict Subject-

Verb-Object (SVO) word order, while German shows far more flexibility with its

semi-free word order. In contrast to English, which is rather poor in inflection,

German morphology results in a higher number of different word forms, leading

to a different distribution of word forms in the two languages, with German

displaying a higher number of different word forms occurring with a low frequency

only. At the same time, German has much (case) syncretism, so that despite

its richer morphological inflection, German word order is in fact often highly

ambiguous. These typological properties have an important impact on machine

learning methods, which are the core technology in my approach for the automatic

acquisition of LFG resources. It is not clear whether the methodology, which

was developed for English and heavily relies on the configurational properties

of English, can handle structural ambiguity and low-frequency distributions of

lexical items as caused by German morphology and word order.

Besides language-specific properties, however, there is another important re-

search challenge to treebank-based grammar acquisition. So far most of the ap-

proaches for English reported above have been based on the Penn-II treebank.

This means that, to date, we do not know much about the influence of alterna-

tive treebank design, data-structures and representations, on automatic grammar

acquisition. For German, Cahill (2004) and Cahill et al. (2003, 2005) based their

work on the TiGer treebank (Release I), a treebank very different in design, data

structures and annotation schemes from the Penn-II treebank. Here I use the

TiGer treebank (Release II) as well as the TüBa-D/Z, another German tree-

bank with newspaper text, but encoded using data structures very different from

the ones in the TiGer treebank. Chapter 2 presents the two treebanks and de-

scribes the major differences between the two annotation schemes. In addition

5



to focussing on language-specific properties like (semi-)free word order and a rich

morphological system, in my research I investigate the influence of a particular

treebank annotation scheme on grammar acquisition and, in particular, on pars-

ing, as the use of statistical parsers is a core technology in the treebank-based

LFG grammar acquisition approach. In Chapter 3 I report the state-of-the-art

for German data-driven CFG parsing and discuss problems specific to typologi-

cal properties of German. The core questions which need to be addressed in this

context are:

• Is it possible to obtain parsing results from an automatically induced Ger-

man grammar in the same range as the results achieved for English? Or are

there language-specific properties which make parsing of German inherently

more difficult?

• What is the impact of different treebank annotation schemes on PCFG

parsing? Which treebank annotation scheme is more adequate to support

PCFG parsing?

Questions about the impact of language-specific properties as well as data

structures and treebank encodings on data-driven parsing are a recurrent theme in

my thesis. Both issues constitute open research questions and have been discussed

controversely over the last years (Kübler, 2005; Maier, 2006; Kübler et al., 2006;

Dubey and Keller, 2003; Schiehlen, 2004).

Recent studies by Kübler (2005); Kübler et al. (2006) and Maier (2006) in-

vestigate the influence of different treebank annotation schemes on data-driven

parsing results for German and question the widely accepted assumption that lex-

icalisation does not support parsing of German (Dubey and Keller, 2003). The

central claim of Kübler et al. is that, contrary to what has been assumed so

far, given appropriate treebank data structures and encoding schemes, parsing

German is not harder than parsing more configurational languages such as En-

glish. I critically review these studies in Chapter 4 and present new evidence that

strongly questions the claim of Kübler et al. My approach provides a thorough

evaluation of different evaluation metrics, using automatic, controlled error in-

sertion to assess the performance of the different metrics on data structures from

different treebanks.

6



The experiments reported in Chapter 4 show that we still do not know enough

about the relationship between treebank design, particular data-driven parsing

models and language-specific features. In Chapter 5 I present a thorough in-

vestigation of the two German treebanks, showing that not only the different

data representations in the treebanks influence data-driven parsing and evalua-

tion (as shown in Section 4.2), but also that the properties of the text in the two

corpora as well as the differences in linguistic analysis of the same grammatical

constructions, as implemented in the two annotation schemes, are crucial fac-

tors in grammar acquisition and data-driven parser evaluation. In Chapter 6 we1

explore some of these interrelations and discuss the impact of particular design

decisions on parser performance of specific grammatical constructions.

In the remaining part of my thesis I extend the research question to the

adequacy of particular treebank designs for the automatic acquisition of deep,

wide-coverage linguistic resources. After providing some background on treebank-

based automatic acquisition of deep LFG approximations (Chapter 7), I present

an improved method for treebank-based deep wide-coverage grammar acquisition

for German (Chapters 8 and 9), based on and substantially revising and extending

the preliminary, proof-of-concept work by Cahill et al. (2003, 2005) and Cahill

(2004). I automatically extract LFG resources from two German treebanks, TiGer

and TüBa-D/Z. The core question which is addressed here is:

• Which treebank design is more adequate for data-driven grammar acquisi-

tion and for the automatic acquisition of deep, wide-coverage LFG resources

for German?

Parsing experiments with automatically acquired LFG grammars from the

TiGer and TüBa-D/Z treebanks (Chapter 10) show that design properties of the

TüBa-D/Z, like the annotation of topological fields and the encoding of non-local

dependencies with the help of grammatical function labels, are not adequate to

support machine learning methods as used in my grammar acquisition architec-

ture. Results show that the flat structure of the TiGer treebank, where functional

dependencies are expressed through attachment, is more suitable for automatic,

1Chapter 6 presents joint work with Sandra Kübler, Yannick Versley and Wolfgang Maier.

7



data-driven grammar acquisition. A major drawback, however, consists of the

crossing branches resulting from non-local dependencies in the TiGer trees. Be-

fore extracting a PCFG, the discontiguous trees have to be converted into CFG

representations. The standard technique used for conversion (Kübler, 2005) re-

sults in a lossy, shallow representation with no information about LDDs in the

tree, which means that LFG resources automatically extracted based on these

representations are also shallow. I compare two conversion methods to context-

free representations (Chapter 11), the one of Kübler (2005) and the improved

conversion method by Boyd (2007), and evaluate their impact on the grammar

acquisition architecture.

In addition to the adequate representation of LDDs, there is another problem

which needs to be addressed: low coverage for F-structure annotation result-

ing from the flat annotation in the TiGer treebank. In Chapter 11 I present

a method for improving coverage based on automatically extracted subcategori-

sation frames. I describe the automatic extraction of subcategorisation frames

(henceforth, subcat) from LFG F-structures generated from TiGer and TüBa-

D/Z, following the work of O’Donovan et al. (2004, 2005a) for English, and show

how these subcat frames can be used for disambiguation.

This thesis presents a method for automatically acquiring large-scale, robust,

probabilistic LFG approximations for German. Chapter 12 compares the perfor-

mance of our data-driven grammar acquisition architecture with the hand-crafted

German ParGram LFG of Dipper (2003) and Rohrer and Forst (2006). The au-

tomatically acquired grammars substantially outperform the ParGram LFG with

regard to coverage (Rohrer and Forst (2006) report 81.5% coverage on the NE-

GRA treebank, the automatically induced grammars achieve close to 90% cover-

age on the same data), but overall F-scores are higher for the hand-crafted LFG

(Rohrer and Forst (2006) report upper and lower bounds in the range of 81.9-

75.1% F-score on the TiGer Dependency Bank (TiGer DB), while our best TiGer

DB-style grammar achieves an F-score of 72.7%). One reason for this is the low

PCFG parsing results for German, especially with regard to the assignment of

grammatical function labels. One component in our architecture are off-the-shelf

PCFG parsers, which produce “shallow” constituency trees. The parser output

is then annotated with LFG F-structure equations, resulting in deep linguistic

8



1.1 Outline of the Thesis

resources. The low parsing results for state-of-the-art parsers suggest an upper

bound to the task of treebank-based grammar acquisition and LFG parsing for

German.

1.1 Outline of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 gives a brief overview over the most important language-specific

properties of German. It then presents the data used in this thesis: the German

TiGer treebank and the TüBa-D/Z, and describes the different strategies they

employ to encode the language-specific properties of German.

Chapter 3 describes the state-of-the-art in German PCFG parsing. It

presents a literature review and discusses problems specific to parsing German

and the strategies that have been tried to overcome these problems.

Chapter 4 presents a thorough evaluation of different evaluation metrics.

I present experiments based on automatic, controlled error insertion and cross-

treebank conversion, rejecting the claim (Kübler et al., 2006; Maier, 2006) that

German is not harder to parse than English. I discuss the pitfalls of using

particular evaluation measures in previous cross-treebank evaluations and show

why the PARSEVAL metric Black et al. (1991), the most commonly used parser

evaluation metric for constituency parsing, cannot be used for meaningful cross-

treebank comparisons.

Chapter 5 concentrates on the different data structures and encoding

strategies used in the TiGer and TüBa-D/Z treebanks. Having rejected the

PARSEVAL metric as a valid measure for comparing treebanks with differ-

ent encoding schemes, I show that other issues like out-of-domain problems and

differences in linguistic analysis make a direct, automatic comparison of different

treebanks infeasible.

Chapter 6 presents an extensive evaluation of three different parsers,

trained on the two treebanks. An automatic dependency-based evaluation and

9



1.1 Outline of the Thesis

a human evaluation on the TePaCoC, a new testsuite for testing parser per-

formance on complex grammatical constructions, provides new insights on the

impact of flat vs. hierarchical annotation schemes on data-driven parsing.

Chapter 7 outlines previous research on treebank-based acquisition of

deep LFG grammars.

Chapter 8 presents an improved method for treebank-based deep wide-

coverage grammar acquisition for German, based on and substantially revising

and extending the preliminary, proof-of-concept work by Cahill et al. (2003, 2005)

and Cahill (2004). The chapter gives an overview of different gold standards

available for German, including the DCU250, a dependency gold standard with

an extended feature set for the evaluation of the LFG annotation algorithm.

Chapter 9 describes the development of an f-Structure annotation algo-

rithm for the extended feature set in the TiGer DB, DCU250 and TUBA100 gold

standards and presents results for F-structure annotation on gold treebank trees.

Chapter 10 outlines my research methodology for treebank-based LFG

parsing for German. I present parsing experiments with the LFG grammars

automatically acquired from the two German treebanks and discuss the impact

of treebank design on grammar acquisition and parsing results for German.

Chapter 11 presents two extensions to the LFG grammar acquisition

architecture: the recovery of LDDs in the parse trees and a method for improving

coverage, based on subcat frames automatically extracted from LFG F-structures.

Chapter 12 discusses related work and compares the performance of

the automatically extracted, treebank-based LFG grammar to a hand-crafted,

wide-coverage LFG for German.

Chapter 13 concludes and outlines areas for future work.

10



Chapter 2

The Data

This chapter describes language-specific properties of German, two German tree-

banks, the TiGer treebank and the TüBa-D/Z, and the different strategies they

employ to encode language-specific properties of German.

2.1 Language-Specific Properties of German

German, like English, belongs to the Germanic language family. However, despite

being closely related there are a number of crucial differences between the two

languages. One of them is the semi-free word order in German which contrasts

with a more configurational word order in English; another (but related) difference

concerns the richer morphology in German, compared to the rather impoverished

English morphology. Both properties are reflected in the treebank data structures

used to represent syntactic analyses of the particular languages.

In German complements and adjuncts can be ordered rather freely, while in

English the assignment of predicate-argument structure is largely determined by

the relative position in the sentence. While English instantiates an SVO (Subject-

Verb-Object) word order, in German the position of the finite verb is dependent

on the sentence type. German distinguishes three different types of sentence

configuration relative to the position of the finite verb:

1. verb-first (V1, yes-no questions)

11



2.1 Language-Specific Properties of German

(1) War
Was

Josef
Josef

gestern
yesterday

Nacht
night

Salsa
Salsa

tanzen?
dancing?

Did Josef dance Salsa last night?

2. verb-second (V2, declarative clauses)

(2) Josef
Josef

war
was

gestern
yesterday

Nacht
night

Salsa
Salsa

tanzen.
dancing.

Josef was dancing Salsa last night.

3. verb-final (VL, subordinate clauses)

(3) Weil
Because

Josef
Josef

gestern
yesterday

Nacht
night

Salsa
Salsa

tanzen
dancing

war,
was,

...

...

Because Josef was dancing Salsa last night, ...

Non-finite verb clusters are usually positioned at the right periphery of the

clause, irrespective of the sentence type. The different possibilities for verb place-

ment increase the possibilities of parse errors.

(4) Sie
She

begann
began

die
the

Bücher
books

zu
to

lesen,
read,

die
which

sie
she

gekauft
bought

hatte.
had.

She began to read the books which she had bought.

Discontinuous constituents provide another difference between German and

English. While both languages allow the extraposition of clausal constituents

to the right periphery of a clause, this phenomenon is much more frequent in

German. This is especially true for extraposed relative clauses (Example 4).

Gamon et al. (2002) compare the frequency of three types of extraposed clauses

in German and English technical manuals (relative clause extraposition, infinitival

clause extraposition and complement clause extraposition). The most frequent

phenomenon out of the three is relative clause extraposition: around one third

of the relative clauses in the German manuals were extraposed, while in the

English manuals extraposed relative clauses and extraposed infinitival clauses

constitute less than one percent of the clause types, and extraposed complement

clauses did not occur at all. Gamon et al. (2002) also report numbers for the

12



2.1 Language-Specific Properties of German

German NEGRA treebank (Skut et al., 1997), a German newspaper corpus. Here

extraposed relative clauses account for approximately 27% of all relative clauses.

Another major difference concerns the morphological system in each language.

English is poor in inflectional forms, while German shows far richer morphological

variation. In contrast to English, case is marked for nouns, determiners and

adjectives in German. Nominative case indicates the subject function, while the

direct object is marked with accusative case. This allows for more flexibility

in word order, while in English the position of the different arguments in the

sentence is fixed (Table 2.1).

Der HundNom beißt den MannAcc . The dogNom bites the manAcc .

Den MannAcc beißt der HundNom . The dogNom bites the manAcc .

Beißt der HundNom den MannAcc? Is the dogNom biting the manAcc?

Beißt den MannAcc der HundNom? Is the dogNom biting the manAcc?

Table 2.1: Nominative and accusative case marking in German and English (mas-

culine nouns)

However, morphological case is not always enough to disambiguate between

different types of arguments. Consider a variation of the examples in Table 2.1

where we replace the masculine man (Mann) by the feminine woman (Frau) and

the masculine dog (Hund) by the neutral horse (Pferd). In this case the surface

form does not disambiguate between the subject and the direct object (this is

known as case syncretism; see Table 2.2) and the sentence is ambiguous. This

also increases the structural ambiguity in German.

Das PferdNom/Acc beißt die FrauNom/Acc . The horseNom bites the womanAcc .

Die FrauNom/Acc beißt das PferdNom/Acc . The horseNom bites the womanAcc .

Beißt das PferdNom/Acc die FrauNom/Acc? Is the horseNom biting the womanAcc?

Beißt die FrauNom/Acc das PferdNom/Acc? Is the horseNom biting the womanAcc?

Table 2.2: Nominative and accusative case marking in German and English (fem-

inine and neutral nouns)

Another problem is caused by the different distribution of word forms in both

languages. For German, morphological variation causes a higher number of dif-

13



2.2 Two German Treebanks: TiGer and TüBa-D/Z

ferent word forms which occur with low frequency in the training data. This

is a problem for machine learning-based approaches and causes data sparseness

for lexicalised parsing models for German (Dubey and Keller, 2003). This means

that machine learning-based approaches developed for English may not generalise

well to German.

2.2 Two German Treebanks: TiGer and TüBa-

D/Z

The TiGer treebank (Brants et al., 2002) and the TüBa-D/Z (Telljohann et al.,

2005) are two German treebanks with text from the same domain, namely text

from two German daily newspapers. While TiGer contains text from the Frank-

furter Rundschau, the TüBa-D/Z text comes from the taz (die tageszeitung). The

TüBa-D/Z (Release 2) consists of approximately 22 000 sentences, while TiGer

(Release 2) is much larger with more than 50 000 sentences.2 Sentence length in

the two treebanks is comparable with around 17 words per sentence (Table 2.3).

Both treebanks are annotated with phrase structure trees, dependency (gram-

matical relation) information and POS tags, using the Stuttgart Tübingen Tag

Set (STTS) (Schiller et al., 1995).

# sent. avg. sent. cat. node GF non-term.

length labels labels /term. nodes

TiGer 50474 17.46 25 44 0.47

TüBa-D/Z 27125 17.60 26 40 1.20

Table 2.3: Some features of TiGer and TBa-D/Z

While both treebanks use the same POS tagset, there are considerable differ-

ences with regard to the set of syntactic categories in each treebank. TiGer has

a set of 25 syntactic category labels, TüBa-D/Z distinguishes 26 different syntac-

tic categories. The main difference between the two sets is the use of topological

2Part of the experiments reported in the thesis (Chapters 4, 6, 8) were conducted using

Release 3 of the TüBa-D/Z, which was published in July 2006 and which has a size of approx-

imately 27 000 sentences.

14



2.2 Two German Treebanks: TiGer and TüBa-D/Z

fields in TüBa-D/Z. The Topological Field Model (Herling, 1821; Erdmann, 1886;

Drach, 1937; Bierwisch, 1963; Höhle, 1986) is a descriptive grammar theory, cap-

turing the partially free German word order which accepts three possible sentence

configurations (V1, V2, VL). Depending on the sentence type, the model posits

the separation of a sentence into several fields (Table 2.4), where certain con-

straints have to be satisfied. For verb-second sentences, for example, the finite

verb is positioned in the left sentence bracket (LF), while co-occurring non-finite

verbs are moved to the right sentence bracket, also called the verbal complex (VC).

It is widely accepted that the initial field (VF) contains exactly one constituent

(Berman, 1996), while there are no real restrictions for the middle field. The final

field (NF) is optionally filled. For verb-last sentences the finite verb is positioned

in the right sentence bracket, but this is not necessarily the last element of the

sentence. Again the final field may be optionally filled. For verb-first sentences

the initial field has to be empty.

Vorfeld Linke Satz- Mittelfeld Rechte Satz- Nachfeld

klammer klammer

initial field left sentence middle field right sentence final field

(VF) bracket (LF) (MF) bracket (VC) (NF)

Dances Josef on the table about?

V1 Tanzt Josef auf dem Tisch herum?

V2 Josef tanzt auf dem Tisch herum.

V2 Josef tanzt herum auf dem

Tisch.

VL weil Josef auf dem Tisch herumtanzt.

Table 2.4: Topological fields and word order in German

Contrary to the basic assumptions in the Topological Field model, Müller

(2005) presents data which shows that multiple frontings in German are a common

phenomenon. The TüBa-D/Z annotation scheme integrates multiple constituents

into one phrasal constituent and attach this constituent to the initial field (VF)

(Figure 2.1).

Because of the high variability in the order of German complements and ad-

juncts, the syntactic annotation for both treebanks is supplemented by grammat-

ical function labels, annotating predicate-argument structure in the trees. TiGer

15



2.2 Two German Treebanks: TiGer and TüBa-D/Z

“Unusable, out of touch with reality, unapt” - Norbert Klusen, chairman of the

TK management, uses strong adjectives.

Figure 2.1: Multiple elements in the initial field and their annotation in TüBa-

D/Z

uses 44 different grammatical labels, while TüBa-D/Z utilises 40 grammatical

features (Table 2.6).

The basic arguments like subject, accusative object, prepositional objects or

appositions exist in both treebanks, but they are not always used in exactly

the same way. In Chapter 5.3 I will describe some of the differences in detail.

The basic Topological Field Model does not support the annotation of (local or

non-local) dependencies. Therefore TüBa-D/Z reverts to the use of grammatical

functions to express dependency relations. This results in a set of grammatical

functions with labels expressing head-dependent relationships such as modifier of

an accusative object, modifier of a modifier, conjunct of a modifier of a modifier

and so on (Table 2.6).

Some of the grammatical functions in the TüBa-D/Z occur with a very low

frequency (OA-MODK, ON-MODK and OADVPK occur only once in 27125 sen-

tences in TüBa-D/Z Release 3, OG-MOD 7 times, OADJP-MO 8 times, OADVP-

MO 10 times, FOPPK 17 times). This poses a problem for machine learning

methods, which rely on a sufficiently large set of training instances in order to

achieve good performance on unseen data.

16

Chapter2/Chapter2Figs/mehrfachVFstark.eps


2.2 Two German Treebanks: TiGer and TüBa-D/Z

TiGer TüBa-D/Z

similar syntactic categories present in both treebanks

AP adjectival phrase ADJX

AVP adverbial phrase ADVX

CH chunk (mostly used for FX foreign language

foreign language material) material

NP noun phrase NX

PN proper noun EN-ADD

PP adpositional phrase PX

S sentence SIMPX

VROOT virtual root VROOT

topological field labels in TüBa-D/Z

C field for complementiser (VL)

FKONJ conjunct with more than 1 field

FKOORD coordination of complex fields

KOORD field for coordinating particles

LK left sentence bracket

LV topological field for resumptive

constructions

MF middle field

MFE second middlefield for

substitutive infinitive

PARORD field for non-coordinating

XX particle (V2)

coordination

CAC coordinated adposition FKONJ conjunct with more than 1 field

CAP coordinated adjective phrase FKOORD coordination of complex fields

CAVP coordinated adverbial phrase KOORD field for coordinating particles

CCP coordinated complementiser

CNP coordinated noun phrase

CO coordination

CPP coordinated PP

CS coordinated sentence

CVP coordinated VP

CVZ coordinated zu-marked infinitive

miscellaneous

AA superlative phrase with “am” C field for complementiser (VL)

DL discourse level constituent DM discourse marker

ISU idiosyncratic unit DP determiner phrase

MTA multi-token adjective P-SIMPX paratactic coordination of 2 sent.

NM multi-token number

VZ zu-marked infinitive

Table 2.5: Syntactic category labels in TiGer and TüBa-D/Z

17



2.2 Two German Treebanks: TiGer and TüBa-D/Z

similar grammatical functions present in both treebanks

TiGer TüBa-D/Z

SB subject ON

OA accusative object OA

DA dative object OD

OG genitive object OG

OP prepositional object OPP

APP apposition APP

HD head HD

CJ conjunct KONJ

MO modifier MOD ambiguous modifier

OC clausal object OV verbal object

PD predicate PRED

SVP separable verb VPT

grammatical functions only used in TiGer

AC adpositional case marker NK noun kernel

ADC adjective component NMC numerical component

AG genitive attribute OA2 second accusative object

AMS measured argument of ADJ OC clausal object

AVC adverbial phrase component PAR parenthesis

CC comparative complement PG phrasal genitive

CD coordinating conjunction PH placeholder

CM comparative conjunction PM morphological particle

CP complementiser PNC proper noun component

CVC collocational verb construction RC relative clause

DH discourse-level head RE repeated element

DM discourse marker RS reported speech

EP expletive es SBP passivised subject (PP)

JU junctor SP subject or predicate

MNR postnominal modifier UC unit component

NG negation VO vocative

grammatical functions only used in TüBa-D/Z

ES initial field-es (expletive) OD-MOD modifier of OD

FOPP PP obj. (facultative) ODK conjunct of OD

FOPP-MOD modifier of a FOPP OG-MOD modifier of OG

FOPPK facultative obj. of FOPP ON-MOD modifier of ON

MOD-MOD modifier of a MOD ON-MODK conjunct of ON-MOD

MODK conjunct of MOD-MOD ONK conjunct of ON

OA-MOD modifier of OA OPP-MOD modifier of OPP

OA-MODK conjunct of OA-MOD OS sentential object

OADJP ADJP object OS-MOD modifier of OS

OADJP-MO modifier of OADJP OV verbal object

OADVP ADVP object PRED-MOD modifier of PRED

OADVP-MO modifier of OADVP PREDK conjunct of PRED

OADVPK conjunct of OADVP-MO V-MOD verbal modifier

OAK conjunct of OA V-MODK conjunct of V-MOD

Table 2.6: Grammatical function labels in TiGer and TüBa-D/Z

18



2.2 Two German Treebanks: TiGer and TüBa-D/Z

But without the Tigers will it no peace give.

“But without the Tigers there will be no peace.”

Figure 2.2: TiGer treebank tree

Namable reinforcements however will it for the next playing time not give

“However, there won’t be considerable reinforcements for the next playing time.”

Figure 2.3: TüBa-D/Z treebank tree

19

Chapter2/Chapter2Figs/ohneTiger.eps
Chapter2/Chapter2Figs/namhaft.eps


2.3 Differences between TiGer and NEGRA

Figures 2.2 and 2.3 illustrate the most important differences between the

TiGer and the TüBa-D/Z annotation schemes. The constituency annotation in

the TiGer treebank is rather flat and allows no unary branching, whereas the

nodes in TüBa-D/Z do contain unary branches and a more hierarchical con-

stituency structure, resulting in a much deeper tree structure than the trees in

the TiGer treebank. This is reflected by the on average higher number of syn-

tactic category nodes per sentence for the TüBa-D/Z (20.9 in TüBa-D/Z vs. 7.4

nodes per sentence in TiGer). Figures 2.2 and 2.3 show the different annotation

of PPs in both annotation schemes. In TiGer (Figure 2.2) the internal structure

of the PP is flat. The adjective and the noun inside the PP are directly attached

to the PP, while TüBa-D/Z (Figure 2.3) is more hierarchical and inserts an ad-

ditional NP node inside the PP. The PP in the TiGer sentence is a modifier of

the direct object keinen Frieden (no peace). The relation between the two con-

stituents is expressed through attachment: both, the PP and the accusative NP

are attached to the same parent node (VP), which results in crossing branches.

In the TüBa-D/Z example the PP für die nächste Spielzeit (for the next playing

season) is a verb modifier. Due to the annotation of topological fields the two

constituents end up in different fields. Here the dependency relation is expressed

with the help of the complex grammatical function label V-MOD.

The differences in encoding between TiGer and TüBa-D/Z express different

views on syntax: TiGer consistently encodes functor-argument structure by an-

notating all dependents of a head in a local tree. TüBa-D/Z, on the other hand,

follows the topological field model, where the trees encode the distribution of

word classes due to field constraints. As a result, predicate-argument structure is

not explicitly encoded in the TüBa-D/Z trees, but can only be recovered by the

help of grammatical function labels.

2.3 Differences between TiGer and NEGRA

To date, most data-driven parsing for German has been done using the NE-

GRA corpus as a training resource (Dubey and Keller, 2003; Fissaha et al.,

2003; Schiehlen, 2004; Kübler, 2005; Versley, 2005; Maier, 2006). The anno-

tation scheme of the TiGer treebank is based on the NEGRA annotation scheme

20



2.4 Summary

(Skut et al., 1997), but also employs some important extensions, which include

the annotation of verb-subcategorisation, appositions and parentheses, coordina-

tions and the encoding of proper nouns (Brants et al., 2002). The text in both

corpora comes from the Frankfurter Rundschau, a German daily newspaper, but

the NEGRA text is not a subset of the TiGer text.

2.4 Summary

In this chapter I have given an overview over the most important language-

specific properties of German. I described the TiGer and TüBa-D/Z treebanks

and discussed the differences in annotation schemes, resulting from the different

strategies used for encoding language-specific properties of German in each of the

treebanks.

The next chapter gives some background on PCFG parsing for German and

reports on related work.

21



Chapter 3

Background and Related Work

(PCFG Parsing for German)

3.1 Introduction

In early automatic parsing research, hand-crafted, symbolic, rule-based parsing

approaches dominated the field (Briscoe et al., 1987; Kaplan and Maxwell III,

1988; Alshawi, 1992; Grover et al., 1993), but soon stochastic, corpus-based ap-

proaches proved to be very successful (Sampson et al., 1989; Sharman et al., 1990;

Bod, 1992). The English Penn-II treebank (Marcus et al., 1993) substantially

advanced the development of data-driven parsing (Magerman, 1995; Charniak,

1996; Collins, 1997). Parser F-scores, measured within the PARSEVAL met-

ric (Black et al., 1991), have increased from around 85% (Magerman, 1995) up

to more than 90% (Charniak et al., 2006; Petrov and Klein, 2007). A variety

of research questions have been addressed, including the impact of lexicalisation

on parsing results (Hindle and Rooth, 1993; Collins, 1997; Klein and Manning,

2003), and the role of domain variation (Gildea, 2001; Roark and Bacchiani,

2003; Judge et al., 2005; Versley, 2005). Recently, further improvements have

been achieved by applying reranking techniques (Charniak and Johnson, 2005),

self-training (Bacchiani et al., 2006), or combinations of both (McClosky et al.,

2006a,b; Foster et al., 2007), especially to overcome out-of-domain problems.

To date, most of the parsing research has been using Penn-II treebank Wall

Street Journal data. The predominance of Penn-II data lead some (Oepen, 2007)

22



3.1 Introduction

to claim that research on statistical parsing has degenerated to the science of

the Wall Street Journal, focussing on outdated, highly domain-specific text with

linguistically insufficient annotation, and that this kind of research is incapable

of providing us with interesting insights into human language processing, or with

generalisations to other markedly different languages.

Another major source of criticism addresses parser evaluation. The stan-

dard evaluation metric for assessing constituency-based parser performance is

the PARSEVAL metric (Black et al., 1991). PARSEVAL counts matching

brackets in the original treebank trees and the parser output. Results report

precision, recall and the number of crossing brackets in the parser output. PAR-

SEVAL has often been criticised for not reflecting a linguistically motivated

view of parser output quality. For example, it is not completely clear to what

extent an improvement of 2% PARSEVAL F-score reflects an increase in quality

in parser output. Another point of criticism is PARSEVAL’s inability to distin-

guish between linguistically more or less severe errors. Carroll and Briscoe (1996)

point out that PARSEVAL is very indulgent towards parser errors concerning

the misidentification of arguments and adjuncts, but at the same time severely

punishes rather harmless attachment errors if they are embedded deep in the

parse tree. It is becoming increasingly clear that, instead of giving a linguis-

tically motivated account of parser output quality, the PARSEVAL metric is

highly sensitive to the data structures and encoding of the input data. Several

proposals have been made to overcome the shortcomings of PARSEVAL (Lin,

1995; Carroll et al., 1998; Lin, 1998; Sampson and Babarczy, 2003), some driven

by the conviction that not only the PARSEVAL metric, but constituency-based

evaluation in general is problematic and not the road to success for a meaning-

ful evaluation of parser output. Despite such efforts, PARSEVAL remains the

standard evaluation measure for constituency-based parsing.

23



3.2 State-of-the-Art for German Data-Driven
Parsing

3.2 State-of-the-Art for German Data-Driven

Parsing

The question as to less-configurational languages like German are harder to parse

than English is a long-standing and unresolved issue in the parsing literature.

Several studies have addressed this topic and have arrived at quite controversial

conclusions (Dubey and Keller, 2003; Fissaha et al., 2003; Cahill, 2004; Abhishek

and Keller, 2005). Most of the work on data-driven parsing for German to date

has used the NEGRA treebank (Skut et al., 1997), a predecessor of the TIGER

treebank, which is characterised by its flat tree structure and the rich set of

grammatical functions.

Different strategies have been applied to the task of parsing German, some of

them more successful than others. Some studies (Cahill et al., 2003; Fissaha et al.,

2003; Cahill, 2004; Schiehlen, 2004; Versley, 2005) have tried to include gram-

matical functions or morphology in their parsing systems. Others have explored

lexicalised parsing models (Dubey and Keller, 2003; Abhishek and Keller, 2005)

or used treebank transformation techniques such as parent-encoding, Markovisa-

tion or split & merge operations on trees (Petrov and Klein, 2007, 2008; Rafferty

and Manning, 2008).

One of the first treebank-based parsing experiments on German was conducted

by Fissaha et al. (2003). They addressed the differences between NEGRA and

the Penn-II treebank, namely the flat annotation which captures the partially free

word order in German and the richer set of grammatical functions in the NEGRA

treebank. In their experiments they explored the impact of grammatical functions

on parsing results. Furthermore, they presented treebank transformations using

a partial parent encoding technique, following Johnson (1998). Fissaha et al.

(2003) trained the LoPar parser (Schmid, 2000) on the NEGRA treebank, using

an unlexicalised probabilistic parsing model with gold POS tags as parser input.

Their results showed that including grammatical functions in the training data

improved parsing results in the range of 2% labelled F-measure,3 compared to

a parser trained on a grammar with syntactic categories only. Results for three

3The evaluation has been performed using evalb (Sekine and Collins, 1997), an implemen-

tation of the PARSEVAL metric.

24



3.2 State-of-the-Art for German Data-Driven
Parsing

different types of parent-encoding also improved precision, but at the cost of a

dramatic decrease in coverage. Most interestingly, the authors could not detect

any learning effect for their parent encoding experiments.

Fissaha et al. (2003) also addressed the question whether German is harder

to parse than English. They compared their parsing results (labelled precision

and recall) to state-of-the-art parsing results for a parser trained on the English

Penn-II treebank, which are considerably higher. The authors put the differences

down to the different treebank sizes and, perhaps optimistically, expect that the

differences in performance will be reduced when training on a larger data set.

A somewhat less optimistic conclusion is reached by Dubey and Keller (2003),

who discussed the role of lexicalisation for parsing models for German. They

showed that, contrary to English and some other languages, lexicalisation does

not improve data-driven parsing for German. In their experiments with lexicalised

probabilistic grammars, Dubey & Keller were not able to outperform the baseline

result obtained with an unlexicalised PCFG on the same data. They also showed

that this was not due to a lack of training data. The authors suggested that the

effect is caused by the flat annotation in NEGRA, which cannot be captured well

by the lexicalised models which have been developed for the more hierarchical

annotation scheme of the Penn-II treebank. To tackle the problem they proposed

an alternative to Collins’s head-head relationships, based on the treatment of non-

recursive NPs in Collins (1997). Their model, called sister-head dependencies,

implicitly adds binary branching to the flat rules in NEGRA by conditioning the

probability of a rule not on the head sister but on features of the previous sister

node. The sister-head dependencies model outperforms the unlexicalised baseline

and achieves an F-score of up to 74%.

Dubey and Keller (2003) also noted that the higher parsing results achieved

for the Penn-II treebank might reflect the properties of the annotation schemes.

The Penn-II treebank contains hierarchical PPs, which in contrast to the flat PP

annotation in NEGRA, are easier for the parser to process. Therefore Dubey

and Keller (2003) claimed that parsing results for parsers trained on annotation

schemes as different as NEGRA and the Penn-II treebank do not allow for a direct

comparison.

25



3.2 State-of-the-Art for German Data-Driven
Parsing

Based on the observation that lexicalisation does not support data-driven

parsing for German (Dubey and Keller, 2003), Schiehlen (2004) presents parsing

models based on different treebank transformations to boost parser performance.

His work is inspired by Klein and Manning (2003), who showed that unlexicalised

parsing for English can yield results close to state-of-the-art lexicalised parsing

models for English, when applying linguistically motivated splits to the treebank

in order to weaken the independence assumption of PCFGs and to encode local

context information in the trees. In addition to annotation strategies, Schiehlen

also applies treebank transformation techniques like parent and grandparent en-

coding (Johnson, 1998) and Markovisation. He optimises his grammars with re-

spect to a dependency-based evaluation and shows that constituency-based and

dependency-based evaluation results do not always agree. He also shows that,

while improving scores for constituency-based evaluation, parent-annotation and

Markovisation do impair results for word-word dependencies in the parser output.

Schiehlen explains this by the flat annotation in the NEGRA treebank, which does

not gain much from parent-encoding techniques. In fact, transformations worsen

the problem of sparse data which, due to the high number of long low-frequency

rules, is already an issue for the NEGRA treebank. Markovisation, on the other

hand, takes away necessary context information from the trees. In German, in

contrast to English, predicate-argument structure can not be determined locally.

Therefore Schiehlen claims that Markovisation, despite working for the English

Penn-II treebank, does not work for a parser trained on the NEGRA treebank.

Kübler et al. (2006) return to the question of lexicalisation and challenge the

claim that lexicalised parsing does not work for German. They present exper-

iments contradicting Dubey and Keller (2003), showing that lexicalisation does

support data-driven parsing for German when using the Stanford parser (Klein

and Manning, 2003), a state-of-the-art probabilistic parser which provides a fac-

tored probabilistic model combining a PCFG with a dependency model. They

trained the parser on NEGRA and on the TüBa-D/Z. For both treebanks they

obtained a slight improvement for the lexicalised parsing model. However, the

improvement for the NEGRA treebank was only in the range of 0.2 labelled F-

score, which is unlikely to be statistically significant. For the more hierarchical

TüBa-D/Z the improvement was more profound at 2.4%. But, considering that

26



3.2 State-of-the-Art for German Data-Driven
Parsing

the Stanford parser offers a number of features like vertical and horizontal Marko-

visation,4 it is not clear whether the improvement can in fact be traced back to

the use of lexical information only.

Kübler et al. (2006) present further parsing experiments with three different

parsing models (Stanford unlexicalised, Stanford lexicalised, LoPar unlexicalised)

and show that evalb F-scores for all models for the parsers trained on NEGRA

are between 15 and 20% lower compared to the parsers trained on the TüBa-D/Z,

which obtain parsing results in the same range as parsers trained on the Penn-II

treebank. Kübler et al. (2006) conclude that German is not harder to parse than

English and that low parsing results for the NEGRA treebank are an artefact

of encoding schemes and data structures rather than due to language-specific

properties. I will come back to this topic in Chapter 4, showing why the claim

by Kübler et al. (2006) does not hold.

Petrov and Klein (2008) achieve the best PARSEVAL scores for both German

treebanks, TiGer and TüBa-D/Z, in a shared task on Parsing German (PaGe)

(Kübler, 2008). They use a latent variable method, a language-agnostic approach

based on automatically refining and re-annotating the original treebank by a num-

ber of split & merge operations, so that the likelihood of the transformed treebank

is maximised. Petrov and Klein (2008) compare two different approaches for as-

signing grammatical functions. In the first approach they merge the grammatical

function labels with the syntactic node labels, resulting in new, atomic node la-

bels. In the second approach they first train their parser on a version of the

treebank which has been stripped of grammatical functions. After 4 training it-

erations which apply the split & merge technique, their grammars achieve good

accuracy on constituent labels. In a second pass they assign grammatical func-

tions to the constituent trees. Most interestingly, the two-pass parsing approach

yields much lower results than the ones for the merged node–grammatical func-

tion labels. Petrov & Klein explain this by the fact that grammatical functions

model long-distance dependencies, while the two-pass model, which uses split &

4Horizontal Markovisation (Schiehlen, 2004) decomposes the grammar rules by constrain-

ing the horizontal context of each rule. Vertical Markovisation (also called parent-annotation

(Johnson, 1998)), on the other hand, adds vertical context to the rules by adding the syntactic

category of the parent node to each node in the tree.

27



3.2 State-of-the-Art for German Data-Driven
Parsing

merge operations during the first pass only and assigns the grammatical functions

using a local X-Bar style grammar, is not good at capturing non-local relations.

3.2.1 Morphological Information

An approach which has not been tried for English (for obvious reasons) is the

enrichment of the parsing models with morphological information. Cahill (2004),

Schiehlen (2004) and Versley (2005) present a somewhat simplistic way of inte-

grating morphological information into the syntactic node labels of their gram-

mars and report contradicting results.

As Cahill (2004) and Schiehlen (2004) both work with a treebank which does

not include explicit morphological annotation (NEGRA and TiGer Release 1, re-

spectively), they automatically simulate morphological information in the trees.

They exploit functional annotations in the treebanks and percolate case infor-

mation, which is implicitly encoded in the grammatical function labels, down to

the leaf nodes. Cahill (2004) annotates POS tags like determiners, adjectives and

pronouns with case information, while Schiehlen (2004) assigns case marking to

the categorial nodes themselves and, for NPs, also to NP-internal common nouns

and pronouns. Grammatical function labels triggering such a transformation are

SB, PD and SP (nominative), OA and OA2 (accusative), DA (dative), and AG

and OG (genitive).

Cahill (2004) did not observe any improvement over parsing models without

case information. She puts this down to the incompleteness and coarseness of

the grammar transformation and expects better results for a more detailed and

complete morphological analysis. In contrast to Cahill (2004), the results of

Schiehlen (2004) show a clear improvement of around 4% for a constituency-

based evaluation and around 3% for a dependency-based evaluation. It is not

clear whether the contradictory results are due to the differences with respect to

the tree transformations, the different sizes of the training sets (Cahill trained

on a TIGER training set of about twice the size of the NEGRA treebank) or

the parsing models themselves (Schiehlen’s PCFG includes grammatical function

labels only for the case-marking transformations described above, while Cahill

uses an LFG f-structure-annotated PCFG with far more information; Cahill’s

28



3.2 State-of-the-Art for German Data-Driven
Parsing

model integrates grammatical functions and LFG f-structure annotations into

the syntactic node labels).

Cahill (2004) and Schiehlen (2004) try to improve parser accuracy for Ger-

man by enriching the node labels with case information. Dubey (2005) presents

a different approach to include morphology into the parsing model. He provides

a special treatment for unknown words by the means of a suffix analyser (Brants,

2000). Results show that the suffix analysis does improve parser performance,

but only after applying a number of linguistically motivated treebank transforma-

tion strategies. In contrast to Schiehlen (2004), who argued that Markovisation

does not help for the German NEGRA treebank, Dubey (2005) achieves better

results for a Markovised grammar induced from NEGRA. However, Dubey (2005)

presents a constituency-based evaluation only, so the question whether Marko-

visation does help for parsing German in general (i.e. also for a dependency-

based evaluation) cannot be answered here. Versley (2005) addresses this is-

sue by presenting parsing experiments for German across different text types.

Like Schiehlen (2004) and Dubey (2005), he applies a number of linguistically

motivated treebank transformations. In his experiments Markovisation gives a

slight improvement for the transformed grammar (dependency evaluation), while

it hurts performance for a vanilla PCFG. Case marking, included in the syntactic

node labels of NPs as well as the POS tag labels of determiners and pronouns,

also helps for all different text types.

So far the literature on parsing German has reported a rather confusing picture

of the usefulness of different features like grammatical functions, lexicalisation,

Markovisation, split & merge operations and morphology for boosting parsing

performance for German. Rafferty and Manning (2008) follow up on this and

try to establish baselines for unlexicalised and lexicalised parsing of German,

using the Stanford parser (Klein and Manning, 2003) with different parameter

settings, trained on the German TiGer and TüBa-D/Z treebanks. The results

obtained, however, do not settle the case but rather add to the confusion. What

becomes clear is that the three settings tested in the experiments (Markovisation,

lexicalisation and state splitting) strongly interact with each other, and also with

a number of other factors like the size of the training set, the encoding and, in

particular, the number of different categorial node labels to be learned by the

29



3.2 State-of-the-Art for German Data-Driven
Parsing

parser. This number crucially increases when including grammatical function

labels in the categorial node labels. It becomes apparent that especially the

TiGer treebank suffers from a sparse data problem, caused by the flat trees,

and that smoothing could present a possible way out of the dilemma. This is

consistent with Dubey (2004, 2005), who achieves considerable improvements by

experimenting with different smoothing techniques.

Rafferty and Manning (2008) present no dependency-based evaluation but

PARSEVAL F-scores only, which leads them to conclude that including gram-

matical functions in the parsing model increases data sparseness and therefore

reduces parser performance by 10-15%. The inclusion of grammatical functions

into the node labels results in a set of 192 (instead of 24) syntactic category la-

bels for TiGer, which have to be learned by the parser. Therefore, a decrease in

F-score is not surprising. However, due to the variability of the relatively free

order of complements and adjuncts in German, it is not sufficient to identify say

an NP node label with the correct phrase span. In order to recover the meaning

of a sentence, it is also necessary to distinguish arguments from adjuncts, and

to identify the grammatical function of each argument. Therefore it is arguable

whether higher F-scores for an impoverished parser output present useful infor-

mation, or whether lower scores for a more meaningful representation are, in fact,

better.

3.2.2 The Pitfalls of Evaluation

The considerations above raise the question of what are valid methods for the eval-

uation of different parsing models, particularly so for cross-treebank and cross-

language comparisons involving different annotation schemes. Based on the obser-

vation that the constituency-based PARSEVAL F-measure does not necessarily

correspond to an improvement for a dependency evaluation (Schiehlen, 2004), I

consider pure constituency-based evalb F-scores insufficient to compare different

parsing systems. There are some well-known drawbacks, like for example the ten-

dency of PARSEVAL towards errors concerning the identification of complements

and adjuncts (Carroll and Briscoe, 1996), or that PARSEVAL shows a varying

tolerance towards attachment errors, depending on how deep they are embedded

30



3.2 State-of-the-Art for German Data-Driven
Parsing

within the tree (Manning and Schütze, 1999). It is also not always clear how to in-

terpret PARSEVAL F-scores. Intuition tells us that higher scores reflect higher

quality in the parser output, but it is by no means evident that this always holds

and, if so, to what extent, as there is not yet a proven correlation between human

judgements on parser output quality and PARSEVAL F-scores. The F-measure

often tempts us to compare apples with oranges: Fissaha et al. (2003) and Kübler

et al. (2006) for example compare F-scores for the English Penn-II treebank and

the German NEGRA treebank. I will return to this issue in Chapter 4. Propos-

als have been made to overcome the weaknesses of the PARSEVAL metric, see

for example (Lin, 1995, 1998; Carroll et al., 1998; Kübler and Telljohann, 2002;

Sampson et al., 1989; Sampson and Babarczy, 2003). I will provide a detailed

discussion of evaluation alternatives in Chapter 4.

Coming back to the topic of state-of-the-art parsing systems for German, it is

not straightforward to decide which system provides the best data-driven parsing

results for German. Petrov and Klein (2008) achieve best PARSEVAL scores in a

shared task (Kübler, 2008) with a language independent latent variable method.

It might seem ironic that a language-independent approach scores best for the

task of parsing German. However, this is not as strange as it seems: the method

does not rely on any predefined linguistic knowledge but uses a split-and-merge

technique which automatically refines the treebank and finds the optimal encod-

ing for each particular treebank annotation scheme. So the grammar extracted

for German would have different properties compared to the one extracted for

the English Penn-II treebank, as would each grammar induced from the different

treebanks available for German.

3.2.3 Significance Tests for Parser Performance

Another issue for parser evaluation is the question of how to decide whether an

increase or decrease in parser output results is statistically significant or not. Dan

Bikel provides software5 working on evalb output for two different parsing runs,

which outputs p-values for whether observed differences in recall and/or precision

are statistically significant. The program uses a compute-intensive randomised

5Available at: http://www.cis.upenn.edu/∼dbikel/software.html.

31



3.2 State-of-the-Art for German Data-Driven
Parsing

test, in which the null hypotheses (the two models that produced the observed

results are the same) is tested by randomly shuffling scores for individual sentences

between the two models and then re-computing precision and recall for the new

result sets. For each shuffle iteration, a counter is incremented if the difference in

results after shuffling is equal to or greater than the original observed difference.

After 10,000 iterations, the likelihood of incorrectly rejecting the null hypothesis

is computed as follows:

(nc + 1)/(nt + 1), (3.1)

nc is the number of random differences greater than the original observed

difference, and nt is the total number of iterations.

In my thesis, however, I did not perform any significance tests for the results

of my parsing experiments. I argue that the PARSEVAL metric does not provide

a meaningful evaluation of parser output quality for cross-treebank comparisons

(see Chapter 4), therefore it seems somehow pointless to perform significance

tests for results which, in itself, are not meaningful.

For evaluating parsers trained on the same treebank, significance tests seem

to be more informative. This, however, is not necessarily true. Let us assume

that we have two different parsers which have been trained on the same data,

thus parsing raw text into the same type of tree representations, using the same

set of syntactic categories. We use these parsers to obtain a syntactic analysis

for the sentence in Example (5).

(5) So
so

erklärt
explains

Edward
Edward

Brandon
Brandon

vom
of the

Unternehmen
company

National
National

City:
City:

Edward Brandon of National City thus explains:

Let us further assume that the first parser has access to an external resource

for Named Entity Recognition, thus correctly annotating Edward Brandon and

National City as proper nouns (PN) (Example 6), while the second parser analyses

the same constituents as noun phrases (NP) (Example 7). The second parser, on

the other hand, might have a more sophisticated way to deal with PP attachment,

and so correctly attaches the PP vom Unternehmen to the noun Brandon, but

32



3.3 Conclusions

fails to identify Edward Brandon and National City as named entities but projects

each of the two contituents to an NP node (Example 7).

(6) (TOP (S (ADV So) (VVFIN erklrt) (NP (PN (NE Edward) (NE Brandon) ) )

(PP (APPRART vom) (NN Unternehmen) (PN (NE National) (NE City) ) )

) (PUNC :) )

(7) (TOP (S (ADV So) (VVFIN erklrt) (NP (NN Edward) (NN Brandon) (PP

(APPRART vom) (NN Unternehmen) (NP (NN National) (NN City) ) ) ) )

(PUNC :) )

From a linguistic point of view, we would prefer the analysis in (7), where

PP attachment has been analysed correctly, while the difference between an NP

and a proper name node is not as crucial for understanding the meaning of the

sentence. PARSEVAL, however, would evaluate the two parses as follows (Table

3.1), giving better results to the analyis in 6:

Precision Recall F-score

(6) 83.3 83.3 83.3

(7) 80.0 66.7 72.7

Table 3.1: PARSEVAL results for Examples 6 and 7

It has yet to be shown whether PARSEVAL provides a meaningful evaluation

of parser output quality even for parsers trained on the same treebank. Therefore

I do not test for statistical significance of parsing results in my experiments, as

these results might be misleading.

3.3 Conclusions

In this chapter I gave an overview of state-of-the-art data-driven parsing for

German and discussed the different approaches used to tackle language-specific

characteristics as well as treebank-specific properties. While considerable progress

has been made during the last couple of years, there is still no agreement as to

the impact of different strategies like lexicalisation or Markovisation on parsing

German. Two major points are apparent: (1) Linguistically motivated annotation

33



3.3 Conclusions

strategies can boost parser performance to some extent. This is best done by

letting the parser learn its own optimisation strategies. (2) There is a complex

interaction between the different strategies to improve parsing results discussed

in this section. It is not straightforward to decide whether a particular approach

is useful or not. While it might be useful in a certain context, after changing

some of the experimental settings, the same strategy might hurt results. Easy

answers are not at hand.

In the next chapter I will focus on the question whether German is harder to

parse than English or not. I provide an extensive evaluation of different evaluation

metrics, based on experiments with automatic, controlled error insertion and

cross-treebank conversion. I discuss the pitfalls of using particular evaluation

measures in previous cross-treebank evaluations. My experiments show why the

PARSEVAL metric cannot be used for meaningful cross-treebank comparisons.

34



Chapter 4

Evaluating Evaluation Measures

4.1 Introduction

A long-standing and unresolved issue in the parsing literature is whether pars-

ing less-configurational languages is harder than (say) parsing English. German

is a case in point. Results from Dubey and Keller (2003) suggest that, in con-

trast to English and other languages like French (Abhishek and Keller, 2005),

(head-)lexicalisation (Dubey and Keller, 2003) does not boost performance for

German parsing models. Recent results from Kübler et al. (2006) question this

claim, raising the possibility that the gap between the PARSEVAL results for

TiGer and TüBa-D/Z might be an artefact of encoding schemes and data struc-

tures of the treebanks which serve as training resources for probabilistic parsers.

Kübler (2005); Kübler et al. (2006) and Maier (2006) show that treebank anno-

tation schemes have a considerable influence on parsing results. A comparison

of unlexicalised PCFGs trained and evaluated on the German NEGRA and the

TüBa-D/Z treebanks using the LoPar parser (Schmid, 2000) shows a difference

in parsing results of about 16% for a constituency-based evaluation with the

PARSEVAL metric (Black et al., 1991). Kübler et al. (2006) and Maier (2006)

conclude that, contrary to what had been assumed, German is not actually harder

to parse than English, but that the NEGRA annotation scheme does not support

optimal PCFG parsing performance.

This claim is based on the assumption that PARSEVAL is a valid measure

for cross-treebank evaluation. This chapter, by using a novel approach measur-

35



4.2 Controlled Error Insertion Experiments for German

ing the effect of controlled error insertion on treebank trees and parser output

from different treebanks, shows that this claim does not hold. The error inser-

tion approach allows for a meaningful comparison of the performance of different

evaluation metrics on the different treebanks.

In the first section of this chapter I present a number of parsing experiments

with controlled error insertion using the PARSEVAL metric, the Leaf-Ancestor

metric as well as a dependency-based evaluation. I also provide extensive cross-

treebank conversion, crucially operating on parser output, rather then on training

resources, as in previous research. The results of the experiments show that,

contrary to Kübler et al. (2006) the question whether or not German is harder

to parse than English is still undecided.

Part of the research presented in this Chapter has been published in Rehbein

and van Genabith (2007a) and Rehbein and van Genabith (2007c).

4.2 Controlled Error Insertion Experiments for

German

In the parsing community, implementations of the PARSEVAL metric (Black

et al., 1991) constitute the de facto standard constituency evaluation metric for

data-driven parser performance. Despite being the standard metric, PARSE-

VAL has been criticised for not representing “real” parser quality (Carroll and

Briscoe, 1996; Sampson, 2000; Sampson and Babarczy, 2003). The PARSEVAL

metric checks label and wordspan identity in parser output compared to the

original treebank trees. It neither weights results, differentiating between linguis-

tically more or less severe errors, nor does it give credit to constituents where the

syntactic categories have been recognised correctly but the phrase boundary is

slightly wrong.

With this in mind, I question the claim (Kübler, 2005; Kübler et al., 2006;

Maier, 2006) that the PARSEVAL results for NEGRA and TüBa-D/Z reflect a

real difference in quality between the parser output for parsers trained on the

two different treebanks. As a consequence I also question the claim that PARSE-

VAL results for German in the same range as the parsing results for the English

36



4.3 Experiment I

Penn-II treebank prove that German is not harder to parse than the more con-

figurational English. To investigate this issue I present three experiments on

the German TiGer and the TüBa-D/Z treebanks. In the first experiment I au-

tomatically insert controlled errors into the original treebank trees from TiGer

and TüBa-D/Z and evaluate the modified trees against the gold treebank trees.

Experiment II presents cross-treebank conversion of the parser output of a statis-

tical parser trained on the two treebanks, and in the third experiment I supple-

ment the previous constituency-based evaluation with PARSEVAL and LA by a

dependency-based evaluation of the parser output.

4.3 Experiment I

Experiment I is designed to assess the impact of identical errors on the different

encoding schemes of the TiGer and TüBa-D/Z treebanks and on the PARSEVAL

and Leaf-Ancestor evaluation metrics.

4.3.1 Experimental Setup

The TiGer treebank and the TüBa-D/Z both contain newspaper text, but from

different German newspapers. To support a meaningful comparison we have to

compare similar sentences from both treebanks. Similarity can be understood

with regard to different aspects of likeness: vocabulary, text genre, topics, syn-

tactic structure, style, and so on. We are interested in the impact of encoding

schemes on parsing results and thus define similarity with respect to the under-

lying syntactic structure of the sentences. Therefore I created “comparable” test

sets as follows.

First I selected all sentences of length 10 ≤ n ≤ 40 from both treebanks.

For all sentences I extracted the sequence of POS tags underlying each sentence.

Then I computed the Levenshtein edit distance (Levenshtein, 1966), a string-

based similarity measure, for all lists of part-of-speech tags with equal length

from the two treebanks.6

6The Levenshtein distance was computed with the help of Josh Goldberg’s perl module Text-

LevenshteinXS-0.03 (http://search.cpan.org/∼jgoldberg/Text-LevenshteinXS-0.03)

37



4.3 Experiment I

Symbol STTS POS tags

a ADJA ADJD

b ADV PAV PWAV

c APPR APPRART APPO APZR

d ART CARD

e ITJ

f KOUI

g KOUS

h KON

i KOKOM

j NN NE FM TRUNC

k PDAT PIAT PIDAT PWAT

l PDS PIS PPER PWS

m PPOSS

n PPOSAT

o PRELS

p PRELAT

q PRF

r PTKZU

s PTKNEG

t PTKVZ

u PTKANT

v PTKA

w VVFIN VMFIN VAFIN

x VVIMP VAIMP

y VVINF VMINF VAINF

z VVIZU

ä VVPP VAPP VMPP

ö XY

ü $. $( $,

Table 4.1: Generalisations over POS tags used for conversion

The Levenshtein edit distance compares two strings (or any two lists of atomic

expressions) by calculating the number of substitutions, deletions or insertions

(“edits”) needed to transform one string into another string. Identical strings

38



4.3 Experiment I

have an edit distance of 0. The Levenshtein distance works on strings, so the

sequence of POS tags had to be converted into a sequence of one-symbol-per-

POS. To avoid a sparse-data problem I applied a generalisation over POS tags:

all punctuation marks were converted into the same symbol, the same was done

with attributive and predicative adjectives, and so on (see Table 4.1 for a complete

list of conversions).

I approximated the distribution of sentence length in both treebanks by, for

each sentence length n with 10 <= n <= 40, taking the average number of sen-

tences with length n between the two treebanks, normalised by corpus size. Then

I chose the sentences with the lowest edit distance for each particular sentence

length. This resulted in two test sets with 1000 sentences each, comparable with

regard to sentence length, syntactic structure and complexity distribution. Next

I automatically inserted different types of controlled errors into the original tree-

bank trees in the test sets and evaluated the modified trees against the original

treebank trees, which allowed me to assess the impact of similar (controlled for

type and number) errors on the two treebank encoding schemes. Grammatical

function labels were not included in the evaluation.

4.3.2 Error Insertion

The inserted errors fall into three types: attachment, span and labelling (Table

4.2). The attachment errors and span errors are linguistically motivated errors

which partly represent real ambiguity in the data and are also typical parser

errors. Label errors are not as frequent in the parser output, but allow us to

insert a high number of the same error type in both test sets and so to quantify

the impact of similar errors on the results of our evaluation. The same number

of errors were inserted in both test sets.

I inserted two different types of PP attachment errors: for the first type

(ATTACH I) I attached all PPs which were inside of an NP one level higher

up in the tree (this usually means that noun attachment is changed into verb

attachment, see Figure 4.1); for the second type (ATTACH II) I selected PPs

which directly followed a noun and were attached to an S or VP node (TiGer) or

to the middle field (TüBa-D/Z) and attached them inside the NP node governing

39



4.3 Experiment I

Error description

ATTACH I Attach PPs inside an NP one level

higher up in the tree

ATTACH II Change verb attachment to noun

attachment for PPs on sentence level,

inside a VP or in the MF (middle field)

LABEL I Change labels of PPs to NP

LABEL II Change labels of VPs to PP

LABEL III Change labels of PNs to NP

SPAN I Include adverb to the left of a PP

into the PP

SPAN II Include NN to the left of a PP

into the PP

Table 4.2: Error description for inserted error types

the preceeding noun. This usually resulted in a change from verb attachment to

noun attachment (Figure 4.2).

The three types of label errors simply change the labels of PP nodes to NP

(LABEL I), of VPs to PP (LABEL II) and of proper name nodes (PN) to NP

(LABEL III). For the last error type I slightly changed the phrase boundaries in

the trees. For SPAN I, I selected adverbs which were positioned at the left phrase

boundary of a PP and included them into the PP. For SPAN II-type errors I did

the same with nouns, including them in a prepositional phrase positioned to the

right of the noun.

4.3.3 Results for Controlled Error Insertion for the Orig-

inal Treebank Trees

Table 4.3 shows the number of errors generated and the impact of the error inser-

tion into the original treebank trees on PARSEVAL results, evaluated against

the gold trees without errors. PARSEVAL results in all experiments report

labelled F-scores based on precision and recall. The first error type (PP attach-

40



4.3 Experiment I

Figure 4.1: ATTACH I: changing PP noun attachment to verb attachment (TiGer

example)

ment I, 593 inserted errors) leads to a decrease in F-score of 2.5 for the TiGer

test set, while for the TüBa-D/Z test set the same error causes a decrease of 0.8

only. The effect remains the same for all error types and is most pronounced

for the category label errors, because the frequency of the labels resulted in a

large number of substitutions. The total weighted average over all error types

shows a decrease in F-score of more than 18% for TiGer and of less than 8%

for TüBa-D/Z. This clearly shows that the PARSEVAL measure punishes the

TiGer treebank annotation scheme to a greater extent, while the same number

and type of errors in the TüBa-D/Z annotation scheme do not have an equally

strong effect on PARSEVAL results for similar sentences.

Experiment I shows that the gap between the PARSEVAL results for the

two annotation schemes does not necessarily reflect a difference in quality between

the trees. Both test sets contain the same number of sentences with the same

sentence lengths. The sentences are equivalent with regard to complexity and

41

Chapter4/Chapter4Figs/tex1.eps
Chapter4/Chapter4Figs/tex2.eps


4.3 Experiment I

Figure 4.2: ATTACH II: changing PP verb attachment to noun attachment

(TiGer example)

structure, and contain the same number and type of errors. This suggests that

the difference between the results for the TiGer and the TüBa-D/Z test set is

due to the higher ratio of non-terminal/terminal nodes in the TüBa-D/Z trees

reported in Table 2.3.

4.3.4 The Leaf-Ancestor Metric (LA)

In order to obtain an alternative view on the quality of the annotation schemes I

used the leaf-ancestor (LA) metric (Sampson and Babarczy, 2003), a parser eval-

uation metric which measures the similarity between the path from each terminal

node in the parse tree to the root node and the corresponding path in the gold

tree. The path consists of the sequence of node labels between the terminal node

and the root node, and the similarity of two paths is calculated with the help of

the Levenshtein edit distance (Levenshtein, 1966).

42

Chapter4/Chapter4Figs/prog1.eps
Chapter4/Chapter4Figs/prog2.eps


4.3 Experiment I

Figure 4.3: SPAN I: changing phrase boundaries (TiGer example)

Consider the following two example sentences (Figure 4.4). Let us assume that

the first sentence was taken from the gold standard, while the second sentence

was generated by a statistical parser.

For the analyses in Figure 4.4, the LA metric would extract the paths listed

in Table 4.4 for each terminal node in the trees. POS tags are not represented in

the paths. Paths encode phrase boundaries, represented by square brackets. The

following rules determine the insertion of a phrase boundary:

1. A left phrase boundary is inserted in the path of terminal node N imme-

diately before the highest non-terminal symbol for which N is the leftmost

child.

2. A right phrase boundary is inserted in the path of terminal node N imme-

diately after the highest non-terminal symbol for which N is the rightmost

child.

43

Chapter4/Chapter4Figs/medien1.eps
Chapter4/Chapter4Figs/medien2.eps


4.3 Experiment I

TiGer TüBa-D/Z # errors

PP attachment I 97.5 99.2 593

PP attachment II 98.0 98.3 240

Label I 70.6 88.3 2851

Label II 92.5 97.0 725

Label III 95.9 98.4 399

SPAN I 99.4 99.8 57

SPAN II 97.9 99.1 208

total weighted ave. 81.6 92.6 5073

Table 4.3: F-score for PARSEVAL results for controlled error insertion in the

original treebank trees

gold paths parser output paths

1.000 She [ S : [ S

1.000 saw S : S

1.000 the [ NP S : [ NP S

0.800 man NP ] S : NP S

0.857 with [ PP S : [ PP NP S

0.800 the NP S : PP NP S

0.857 telescope PP ] S : PP NP ] S

0.902 average score

Table 4.4: LA paths and scores for example sentence in TiGer encoding

For the terminal node She the path consists of an opening bracket, according to

the first rule, followed by the label S, and this is the same for gold tree and parser

output. For the terminal node saw there is no non-terminal node for which saw

is either the left-most or the right-most child node, so no phrase boundary is

inserted. Therefore the path for saw consists of the label S only. The terminal

the is the left-most child of the NP, so an opening bracket is inserted in the

path right before the NP, which results in the path [ NP S for both the gold

tree and the parser output tree. For the first three terminal nodes the parser

output paths are the same as the paths extracted from the gold trees and so they

44



4.3 Experiment I

S

PPER

She

VVFIN

saw

NP

ART

the

NN

man

PP

APPR

with

ART

the

NN

telescope

(a) PP verb attachment

S

PPER

She

VVFIN

saw

NP

ART

the

NN

man

PP

APPR

with

ART

the

NN

telescope

(b) PP noun attachment

Figure 4.4: Example sentences for PP attachment

receive a Levenshtein edit distance score of 1.0. The PP attachment ambiguity

results in different paths for the remaining terminals. Again the score for each

terminal is computed with the help of the Levenshtein edit distance, but with

slight modifications. The Levenshtein edit distance assesses the similarity of two

strings (s1 , s2 ) by calculating the cost of converting s1 into s2 . The cost for

45



4.3 Experiment I

each insertion, deletion or replacement required in the conversion process is 1.

Therefore the basic function for computing the similarity of a gold path g and a

parser output path p is described in (4.1).

1 −
Lv(g, p)

length(g) + length(p)
(4.1)

However, the LA metric does a little bit more than that: the cost for each

insertion or deletion is set to 1, but in order to distinguish between linguistically

more or less severe errors the cost of replacing a node label in the path by another

label is determined depending on the particular label. The cost of replacing two

unrelated labels is set to 2, while replacing two labels closely related to each other

incurs a cost of 0.5 only. Two labels are considered to be related if they start with

the same character. As a result the LA metric gives worse results for a parse tree

where an NM node (numerical node) has been falsely annotated as a PP than

for a tree where the same node has been assigned an NP label.

In order to make use of this linguistically motivated feature, I transformed ev-

ery PN node (proper name) in the TiGer treebank into the label NPN and every

EN-ADD node (proper name) in TüBa-D/Z into NEN-ADD. I also converted

all R-SIMPX nodes (relative clause) in TüBa-D/Z into the label SIMPX-R (in

TiGer relative clauses are marked by the grammatical function label RC, so no

conversion is needed). As a result the LA metric considers NP nodes and proper

name nodes as well as simplex clauses and relative clauses as related and therefore

punishes these errors less severely.

4.3.5 Comparing LA and PARSEVAL

Table 4.5 shows the results for the leaf-ancestor evaluation metric for the error

insertion test sets (Section 4.3.2). The LA results for the two 1000 sentences test

sets are much closer to each other than the corresponding PARSEVAL scores

(92.2 vs. 95.5 as against 81.6 vs. 92.6). In fact, under the LA evaluation, only

the label errors, due to the large numbers, show a significant difference between

the two treebank annotation schemes.

46



4.3 Experiment I

TiGer TüBa-D/Z # errors

PP attachment I 99.3 99.5 593

PP attachment II 99.3 99.0 240

Label I 87.8 92.3 2851

Label II 94.5 99.4 725

Label III 99.8 99.9 399

SPAN I 99.9 99.9 57

SPAN II 99.7 99.8 208

total weighted avg. 92.2 95.5 5073

Table 4.5: LA results for error insertion in the original treebank trees

To understand the difference between the two evaluation metrics, consider

again the example sentences in Figure 4.4. PARSEVAL counts matching brack-

ets in the gold tree and in the parser output. For the two sentences annotated

according to the TiGer treebank encoding scheme, we obtain the following result:

(S She saw (NP the man ) (PP with the telescope) ) TiGer gold tree

(S She saw (NP the man (PP with the telescope) ) ) Parser output

2 out of 3 brackets correct → 66.7% labelled F-score

Now let us take the same sentences and annotate them according to the TüBa-

D/Z encoding scheme. This time the result is different:

(S (VF (NP She)) (LK (VP saw)) (MF (NP the man) (PP with (NP the telescope)) )

(S (VF (NP She)) (LK (VP saw)) (MF (NP the man (PP with (NP the telescope))))

7 out of 8 brackets correct → 87.5% labelled F-score

evalb measures parser quality by counting matching brackets in the gold

tree and the parser output. For the more hierarchical annotation scheme of the

TüBa-D/Z, where the more deeply nested annotation results in a higher number

of brackets for each tree, the effect of one mismatching bracket is substantially

less severe than for TiGer. This shows that the PARSEVAL metric is biased

towards annotation schemes with a high ratio of nonterminal vs. terminal nodes.

47



4.3 Experiment I

In contrast to this, the LA metric is less sensitive to the ratio of non-terminal

vs. terminal nodes in the tree. Table 4.6 shows LA results for the same sentence

in TüBa-D/Z encoding. While for PARSEVAL we observe a difference in scores

between the two annotation schemes of more than 20%, LA results for the TüBa-

D/Z-encoded sentence are only around 3% better than for TiGer. Table 4.6 shows

that the same three terminals are affected by the error as for TiGer (Table 4.4),

but due to the more hierarchical annotation and the extra layer of topological

fields the paths in the TüBa-D/Z annotation scheme are longer than in TiGer.

Therefore, the edit cost for inserting or deleting one symbol in the path, which is

computed relative to path length, is lower for the TüBa-D/Z trees. This shows

that the LA metric is also biased towards the TüBa-D/Z, but not to the same

extent as the PARSEVAL metric.

gold path parser output

1.000 She NP VF ] [ S : NP VF ] [ S

1.000 saw VP [ LK ] S : VP [ LK ] S

1.000 the NP [ MF S : NP [ MF S

0.857 man NP ] MF S : NP MF S

0.889 with [ PP MF S : NP MF S

0.909 the [ NP PP MF S : [ NP PP NP MF S

0.909 telescope NP PP MF S ] : NP PP NP MF S ]

0.938 average score for TüBa-D/Z

Table 4.6: LA paths and scores for example sentence in TüBa-D/Z encoding

Experiment I showed that both PARSEVAL and (less so) the LA metric do

favour treebank annotation schemes with a higher ratio of non-terminal versus

terminal nodes in the tree, and thus do not provide a valid measure for cross-

treebank evaluation. This means that the claim that German is not harder to

parse than English (Kübler et al., 2006; Maier, 2006), which is based on a cross-

treebank evaluation with PARSEVAL, does not hold.

48



4.4 Experiment II

4.4 Experiment II

Kübler (2005) and Maier (2006) assess the impact of the different treebank an-

notation schemes on PCFG parsing by conducting a number of modifications

converting the TüBa-D/Z into a format more similar to the NEGRA (and hence

the TiGer) treebank, essentially by flattening TüBa-D/Z trees. After each modi-

fication they extract a PCFG from the modified treebank and measure the effect

of the changes on parsing results. They show that with each modification trans-

forming the TüBa-D/Z into a more NEGRA-like format the parsing results also

become more similar to the results of training on the NEGRA treebank, i.e.

the results deteriorate. The authors take this as evidence that the TüBa-D/Z is

more adequate for PCFG parsing. This assumption is based on the belief that

PARSEVAL results fully reflect parse quality across treebanks and under dif-

ferent annotation schemes. This is not always true, as shown in the comparison

between PARSEVAL and LA scores in Experiment I (Section 4.3.5).

In the second experiment I crucially change the order of events in the Kübler

(2005), Kübler et al. (2006) and Maier (2006) conversion experiments: I first

extract an unlexicalised PCFG from each of the original treebanks. I then trans-

form the output of the parser trained on the TüBa-D/Z into a format more similar

to the TiGer treebank. In contrast to Kübler (2005), Kübler et al. (2006) and

Maier (2006), who converted the treebank before extracting the grammars in or-

der to measure the impact of single features like topological fields or unary nodes

on PCFG parsing, I convert the trees in the parser output of a parser trained on

the original unconverted treebank resources. This allows me to preserve the basic

syntactic structure and also the errors present in the output trees resulting from

a potential bias in the original treebank training resources. The expectation is

that the results for the original parser output evaluated against the unmodified

gold trees should not be crucially different from the results for the modified parser

output evaluated against the modified gold trees. If this is not the case, then the

outcome is further evidence that different encodings react differently to what are

the same parsing errors and again we cannot conclude that German is not harder

to parse than English.

49



4.4 Experiment II

4.4.1 Experimental Setup

For Experiment II I trained BitPar (Schmid, 2004), a statistical parser for highly

ambiguous PCFG grammars, on the two treebanks. The TüBa-D/Z training

data consists of the 26125 treebank trees not included in the TüBa-D/Z test

set. Because of the different size of the two treebanks I randomly selected 26125

sentences from the TiGer treebank (excluding the sentences in the TiGer test

set).

Before extracting the grammars I resolved the crossing branches in the TiGer

treebank by attaching the non-head child nodes higher up in the tree, following

Kübler et al. (2006). As a side-effect this leads to the creation of some unary nodes

in the TiGer trees. I also inserted a virtual root node in the TiGer and TüBa-D/Z

data sets and removed all functional labels from the trees. After this preprocessing

step I extracted an unlexicalised PCFG from each of the training sets. The TiGer

grammar has a total of 24504 rule types, while the grammar extracted from the

TüBa-D/Z treebank consists of 5672 rules only. I parsed the TiGer and TüBa-

D/Z test set with the extracted grammars, using raw text for parser input. Then

I automatically converted the TüBa-D/Z-trained parser output to a TiGer-like

format and compared the evaluation results for the unmodified parser output trees

against the original gold trees with the results for the converted parser output

against the converted gold trees.

4.4.2 Converting the TüBa-D/Z Trees to TiGer-Style Trees

The automatic conversion of the TüBa-D/Z-style trees includes the removal of

topological fields and unary nodes as well as the deletion of NPs inside of PPs,

because the NP child nodes are directly attached to the PP in the TiGer anno-

tation scheme. As a last step in the conversion process I adapted the TüBa-D/Z

node labels to the TiGer categories.

4.4.3 The Conversion Process: A Worked Example

I demonstrate the conversion process using an example sentence from the TüBa-

D/Z test set (TüBa-ORIG) ((8) and Figure 4.5). Topological fields, here VF

50



4.4 Experiment II

Figure 4.5: Original TüBa-D/Z-style gold tree

(initial field), MF (middle field), LK (left sentence bracket) and VC (verb com-

plex), as well as unary nodes are removed. The category labels have been changed

to TiGer-style annotation. The converted tree (TüBa-ORIG-CONV) is given in

Figure 4.6.

(8) Der
The

Krieg
war

bringt
messes

das
the

Fernsehprogramm
TV program

der
(of) the

kleinen
little

Leute
people

durcheinander.
about.

“War messes about the TV program of ordinary people.”

Figure 4.7 shows the unmodified parser output from the TüBa-D/Z-trained

parser (TüBa-PARSE) for the same string. The parser incorrectly attached the

two NPs directly to the middle field, while in the gold tree (Figure 4.5) both NPs

are attached to an NP which is a child node of the middle field. The TiGer-style

modified parser output (TüBa-PARSE-CONV) is shown in Figure 4.8.

51

Chapter4/Chapter4Figs/conv1.eps


4.4 Experiment II

Figure 4.6: Converted TüBa-D/Z to TiGer-style gold tree

Figure 4.7: Parser output (trained on TüBa-D/Z)

4.4.4 Results for Converted Parser Output

I applied the conversion method described above to the original TüBa-D/Z trees

and the TüBa-D/Z-trained parser output for the sentences in the TüBa-D/Z

test set. Table 4.7 shows PARSEVAL and LA results for the modified trees,

evaluating the (converted) parser output for each treebank against the (converted)

gold trees of the same treebank, using gold POS tags as parser input (results for

raw text are given in Table 4.8). Due to the resolved crossing branches in the

52

Chapter4/Chapter4Figs/conv2.eps
Chapter4/Chapter4Figs/conv3.eps


4.4 Experiment II

Figure 4.8: TüBa-D/Z to TiGer-style converted parser output

TiGer treebank we also have some unary nodes in the TiGer test set. Their

removal surprisingly improves both PARSEVAL and LA results.7

Table 4.7 shows that for the TüBa-D/Z, all conversions lead to a decrease in

F-score for the PARSEVAL metric. However, precision improves slightly when

removing topological fields from the TüBa-D/Z trees. For the LA metric the

flattening of PPs improves the average score.

After applying all conversion steps to the data and thereby effectively con-

verting the trees parsed by the TüBa-D/Z grammar to a TiGer-like format, we

observe a PARSEVAL F-score for the TüBa-D/Z test set which is lower than

that for the TiGer trees. The LA metric gives better results for the original

TiGer trees compared to the result for the unmodified TüBa-D/Z trees. Here the

treebank modification has no strong effect on parsing results.

Table 4.8 shows results for the same experimental setting, this time using raw

7This is caused by the fact that both measures compute scores relative to the overall num-

ber of brackets in the tree and path length, respectively. Example 9 illustrates this. The

example shows a sentence from the gold standard (9), including a unary VP node (VP (VVPP

geleugnet)). The parser output tree for this sentence is exactly the same for both settings,

with and without unary nodes. First we evaluate the parser output sentence against the gold

standard sentence with the unary node and get an evalb score of 66.67 for both, precision and

recall (see table below).
(9) (S (PP (APPR In)

In
(ART dem)

the
(NN Pamphlet))

pamphlet
(VAFIN wird)

becomes
(NP(ART die)

the

(NN Judenvernichtung)
holocaust

(PP (APPR in)
in

(NE Auschwitz)))
Auschwitz

(VP (VVPP geleugnet))))
denied

“The pamphlet denies the holocaust in Auschwitz”

53

Chapter4/Chapter4Figs/conv4.eps


4.4 Experiment II

Gold POS tags as parser input

prec. recall F-sco. LA

TiGer 78.4 77.2 77.8 93.6 TiGer-PARSED

no Unary 78.5 77.8 78.2 93.6 against

TiGer-ORIG

TüBa-D/Z 89.3 83.9 86.5 92.0 TüBa-PARSED

against

TüBa-ORIG

TüBa-D/Z → TiGer

no Topological 89.3 82.3 85.7 91.5 TüBa-PARSED-CONV

no Unary 83.7 76.4 79.9 91.3 against

no Top + no Unary 83.4 74.0 78.4 90.6 TüBa-ORIG-CONV

no Top + no Unary 80.1 71.8 75.7 91.2

+ flatten PPs

Table 4.7: The impact of the conversion process on PARSEVAL and LA (gold

POS)

text as parser input. For TiGer, results for perfect tags (77.8% F-score) and for

raw text (76.7% F-score) are quite close, while for TüBa-D/Z the use of gold POS

tags has a more profound effect and leads to an increase in F-score of around 3%.

Sent. Matched Bracket

ID Length Recal Prec. Bracket gold test

unary 1 10 66.67 66.67 4 6 6

no unary 1 10 80.00 66.67 4 5 6

For the same parser output tree evaluated against the gold standard tree without the unary

node, we obtain a precision of 66.67 and a recall of 80.00 (see Table above, no unary). This is

due to the fact that the gold tree without unary nodes has one pair of brackets less than the

one with the unary node. As a result the number of matching brackets in the parser output

tree and gold standard is divided by 5, not by 6, as was the case for the gold tree including the

unary node. Unary nodes mostly occur in the gold standard, but not so much in the parser

output. Thus results for parser output trees improve when removing unary nodes from the gold

standard.

54



4.4 Experiment II

Raw text as parser input

prec. recall F-sco. LA

TiGer 77.3 76.1 76.7 93.2 TiGer-PARSED

no Unary 77.4 76.8 77.1 93.3 against

TiGer-ORIG

TüBa-D/Z 86.4 81.0 83.6 91.1 TüBa-PARSED

against

TüBa-ORIG

TüBa-D/Z → TiGer

no Topological 86.6 79.5 82.9 90.8 TüBa-PARSED-CONV

no Unary 81.5 74.4 77.8 90.5 against

no Top + no Unary 81.9 72.3 76.8 90.0 TüBa-ORIG-CONV

no Top + no Unary 78.6 70.0 74.0 90.6

+ flatten PPs

Table 4.8: The impact of the conversion process on PARSEVAL and LA (raw

text)

When parsing raw text we observe the same trend in the results for the conversion

process as we did when using gold POS tags.

The constant decrease in PARSEVAL results for the modified trees is consis-

tent with the results in Kübler et al. (2006) and Maier (2006), but my conclusions

are crucially different. Experiment II shows that the decrease in parsing results

reported in Kübler et al. (2006) and Maier (2006) does not reflect a decrease in

parser output quality, as in my experiment the original parser output and the

converted parser output trees contain the same basic structure and, crucially,

the same parsing errors. The lower results for the converted parser output are

due to the sensitivity of the PARSEVAL metric to the TiGer/TüBa-D/Z data

structures, in particular the ratio of non-terminal vs. terminal nodes in the trees.

55



4.5 Experiment III

4.5 Experiment III

Experiments I and II show that the tree-based PARSEVAL metric does not pro-

vide a reliable measure for comparing the impact of different treebank annotation

schemes on the quality of parser output and so the question whether German is

harder to parse than English is still undecided. In Experiment III I present a

dependency-based evaluation and compare the results to the results of the two

constituency-based evaluation metrics, PARSEVAL and LA.

4.5.1 Dependency-Based (DB) Evaluation

The dependency-based evaluation used in the experiments follows the method of

Lin (1998) and Kübler and Telljohann (2002), converting the original treebank

trees and the parser output into bilexical POS-labelled dependency relations of

the form WORD POS HEAD. Functional labels have been omitted for parsing,

so the dependencies do not comprise functional information.8

Figure 4.9 shows the CFG representation in the TiGer treebank style for the

gold tree in Figure 4.4 (a). Square boxes denote grammatical functions. Figure

4.10 shows the dependency relations for the same tree, indicated by labelled

arrows. Converted into a WORD POS HEAD triple format the dependency

tree looks as in Table 4.9.

I assessed the quality of the automatic dependency conversion methodology by

converting the 1000 original trees from each of the test sets into bilexical, POS-

labelled dependency relations. In TiGer, verbal heads are annotated with the

label HD, so for the personal pronoun She in Figure 4.9 the head is the sister

node with label HD, saw, which results in the dependency relation She PPER

saw. Unfortunately TiGer does not annotate the lexical heads of PPs and NPs,

which makes it necessary to use heuristic head-finding rules for the dependency

conversion.

8Note that the bilexical POS-labelled dependency relations are different from labelled de-

pendency triples using grammatical functions, as POS labels do not specify grammatical rela-

tions between a head and its dependent.

56



4.5 Experiment III

Figure 4.9: TiGer treebank representation for Figure 4.4 (a) (page 45)

She saw the man with the telescope
� � �W WW

PPER VVFIN ART NN APPR ART NN

Figure 4.10: Dependency tree for Figure 4.9

After converting the original trees into dependencies, using the grammatical

function labels to support the evaluation, I then removed all functional infor-

mation from the original treebank trees and converted the stripped trees into

dependencies, using heuristics to find the head of each node. I evaluated the

dependencies for the stripped gold trees against the dependencies for the original

gold trees including functional labels and obtained an F-score of 99.65% for TiGer

and 99.13% for the TüBa-D/Z dependencies. This shows that the conversion is

reliable and not unduly biased to either the TiGer or TüBa-D/Z annotation

57

Chapter4/Chapter4Figs/tele.eps


4.5 Experiment III

WORD POS HEAD

She PPER saw

saw VVFIN -

the ART man

man NN saw

with APPR saw

the ART telescope

telescope NN with

Table 4.9: Dependency triples for Figure 4.9

schemes.

4.5.2 Experimental Setup

For Experiment III I used the same PCFG grammars and test sets as in Exper-

iment II. I used both raw text and gold POS tags as parser input.

4.5.3 Results

Table 4.10 shows the evaluation results for the three evaluation metrics using gold

POS tags (we repeat results for the constituency-based evaluation from Section

4.4.4). For the dependency-based evaluation the parser trained on the TiGer

training set achieves significantly higher results for precision and recall than the

parser trained on the TüBa-D/Z. This is clearly in contrast to the PARSEVAL

scores, which show higher precision and recall for the TüBa-D/Z. Table 4.11 shows

the same trends for parsing raw text. In contrast to the PARSEVAL results on

gold POS tags (Table 4.10), the gap between the PARSEVAL results for TiGer

and TüBa-D/Z parsing raw text (Table 4.11) is not as wide as before.

The considerable difference between the results for the different evaluation

methods raises the question as to which of the metrics is the most adequate for

judging parser output quality. In Chapter 5 I will return to this question by

comparing automatic evaluation results with human judgements.

58



4.5 Experiment III

Gold POS tags as parser input

Dependencies PARSEVAL LA

Prec Rec Prec Rec F-sco. avg.

TiGer 88.2 88.3 78.4 77.2 77.8 93.6

TüBa-D/Z 76.6 76.6 89.3 83.9 86.5 92.0

Table 4.10: Parsing results for three evaluation metrics (gold POS)

Raw text as parser input

Dependencies PARSEVAL LA

Prec Rec Prec Rec F-sco. avg.

TiGer 83.1 83.1 77.3 76.1 76.7 93.2

TüBa-D/Z 76.6 76.6 86.4 81.0 83.6 91.1

Table 4.11: Parsing results for three evaluation metrics (raw text)

4.5.4 Related Work

Boyd and Meurers (2008) present a labelled dependency evaluation based on

PCFG parser output of the LoPar parser (Schmid, 2000) trained on the NEGRA

and TüBa-D/Z treebanks. They point out that the evaluation of Kübler et al.

(2006) did not consider grammatical function labels attached to terminal nodes,

which means that a substantial part of the GF labels in the NEGRA treebank were

not included in the evaluation. Boyd and Meurers provide an evaluation for the

main grammatical functions and give results for all subjects, accusative objects

and dative objects, regardless of whether the underlying label was attached to

a terminal or non-terminal argument. They report better labelled dependency

F-scores for all three grammatical functions for the parser trained on the NEGRA

treebank compared to the parser trained on TüBa-D/Z (Table 4.12). This result

is in contrast to the results of Kübler et al. (2006), and provides further evidence

for my claim that PARSEVAL is not a meaningful measure for parser evaluation

across treebanks.

59



4.6 Conclusions

NEGRA TüBa-D/Z

Prec Rec F-sco. Prec Rec F-sco.

Subj 69.7 69.1 69.4 65.7 72.2 69.0

Acc 48.2 51.0 49.6 41.4 46.8 44.1

Dat 20.9 15.2 18.1 21.4 11.5 16.5

Table 4.12: Labelled dependency F-scores (Boyd and Meurers, 2008) for main

GFs in NEGRA and TüBa-D/Z

4.6 Conclusions

In this chapter I presented experiments assessing the validity of parsing results

measured along different dimensions: the tree-based PARSEVAL metric, the

string-based Leaf-Ancestor metric and a dependency-based evaluation. By in-

serting controlled errors into gold treebank trees and measuring the effects on

evaluation results, I gave new evidence for the problems of using PARSEVAL

which, despite severe criticism, is still the standard measure for PCFG parser

evaluation. I showed that PARSEVAL cannot be used to compare the output of

PCFG parsers trained on different treebank annotation schemes, because PAR-

SEVAL results correlate with the ratio of non-terminal/terminal nodes in the

trees. Comparing two different annotation schemes, PARSEVAL consistently

favours the one with the higher node ratio.

I examined the influence of treebank annotation schemes on unlexicalised

PCFG parsing, and rejected the claim that the German TüBa-D/Z treebank is

more appropriate for PCFG parsing than the German TiGer treebank. I showed

that converting the TüBa-D/Z parser output to a TiGer-like format leads to

PARSEVAL results which are slightly worse than the ones for the TiGer tree-

bank. Additional evidence comes from a dependency-based evaluation, showing

that, for the output of the parser trained on the TiGer treebank, the mapping

from the CFG trees to dependency relations yields better results than for the

grammar trained on the TüBa-D/Z annotation scheme, even though PARSE-

VAL scores suggest that the TiGer-based parser output trees are substantially

worse than TüBa-D/Z trees. This means that contrary to Kübler et al. (2006), the

60



4.6 Conclusions

question whether German is harder to parse than English or not is still undecided.

Future work might explore the impact of automatic controlled error insertion and

cross-treebank conversion on results of the dependency-based evaluation.

The experiments presented in this chapter showed that the PARSEVAL met-

ric does not support a meaningful cross-treebank comparison. In the next chapter

I discuss other pitfalls for cross-treebank evaluation, such as out-of-domain prob-

lems or differences in linguistic analysis between different treebanks.

61



Chapter 5

TiGer and TüBa-D/Z: Apples

and Oranges

5.1 Introduction

In the last chapter I showed that neither PARSEVAL nor the Leaf-Ancestor met-

ric are valid measures for cross-treebank comparisons, which raises the question

how to perform a fair and unbiased comparison of treebanks (and resources de-

rived from these treebanks) with different encoding schemes and, at the same

time, avoid comparing apples with oranges.

There are a number of attempts, based on statistical measures, to compare

syntactic structure in different corpora: Nerbonne and Wiersma (2006) present

an aggregate measure of syntactic distance based on POS trigrams. Sanders

(2007) uses Leaf-Ancestor path-based permutation tests to measure differences

between dialectal variations of British English. (Corazza et al., 2008) describe

a measure based on conditional cross-entropy to predict parser performance for

a parser trained on different treebanks. Out of the studies mentioned above the

last one is the closest to our interests. However, in contrast to Corazza et al., who

aim at developing a measure to assess the parseability of different corpora, we

aim at obtaining detailed knowledge about the pros and cons of specific treebank

design decisions and their impact on parser performance.

The next sections provide a thorough comparison of two German treebanks,

the TiGer treebank and the TüBa-D/Z. I use simple statistics on sentence length

62



5.2 Comparing the Treebanks

and vocabulary size, and more refined methods such as perplexity and its corre-

lation with PCFG parsing results, as well as a Principal Component Analysis. I

also investigate the impact of sampling methods on comparisons. After discussing

the differences between the two corpora I present a qualitative evaluation of a

set of 100 sentences from the TüBa-D/Z, manually annotated in the TiGer as

well as in the TüBa-D/Z annotation scheme, and show that even the existence of

a parallel subcorpus does not support a straightforward and easy comparison of

both annotation schemes.

Part of the research presented in this chapter has been published in Rehbein

and van Genabith (2007b).

5.2 Comparing the Treebanks

For the experiments I divided both treebanks into sets of samples without replace-

ment with 500 sentences each, randomly selected from the two treebanks, which

resulted in 100 samples for the TiGer treebank and 44 samples for the TüBa-

D/Z. In order to account for the different size of the treebanks I used samples

1-44 from the TüBa-D/Z treebank as well as samples 1-44 (TiGer1) and 45-88

(TiGer2) from the TiGer treebank.

As I am interested in the influence of sampling techniques on parsing results

I also generated a second set of samples with 500 trees each, which were taken

in sequential order from the treebanks (rather than randomly as in the first set

described above). This means that, in contrast to the random samples, the

content in each sample is “semantically” related, which most obviously must

have a crucial impact on vocabulary size and homogeneity of the samples.

5.2.1 Sentence Length / Word Length / Vocabulary Size

The average sentence length in TiGer is comparable to the one in TüBa-D/Z

(Table 5.1), but the average word length in TüBa-D/Z is shorter than in TiGer.

TüBa-D/Z also uses a smaller vocabulary than the TiGer treebank, which is

most probably due to the shorter period of time covered by the articles in the

63



5.2 Comparing the Treebanks

corpus.9 (Stylistic differences between the two newspapers may also have an

impact on vocabulary size, see Section 5.2.2). As noted previously, due to the

flat annotation in TiGer the ratio of non-terminal vs. terminal nodes is much

smaller than in TüBa-D/Z. While the treebanks are comparable with regard to

text domain and sentence length, there are considerable differences concerning

word length and vocabulary size between the two corpora. In the next section I

investigate the distribution of POS tags in TiGer and TüBa-D/Z, using Principal

Component Analysis.

avg. sent. avg. word avg. vocab avg. vocab non-term.

length (rand) length (rand) size (rand) size (seq) /terminal

TiGer1 17.86 6.27 2992 2638 0.47

TiGer2 17.03 6.27 2989 2662 0.47

TüBa-D/Z 17.25 5.70 2906 2585 1.20

Table 5.1: Some properties of the TiGer and TüBa-D/Z treebank

5.2.2 Principal Component Analysis (PCA) of POS Tags

PCA is a way of reducing complex, high-dimensional data and detecting underly-

ing patterns by transforming a high number of (possibly) correlated variables in

a multivariate data set into a smaller number of uncorrelated variables whilst re-

taining as much as possible of the variation present in the data. The uncorrelated

new variables are called principal components or eigenvectors. They are chosen

in such a way that high correlating variables are combined into a new variable

which describes the largest part of the variance in the data. The new variable

constitutes the first principal component. Next the second component is chosen

so that it describes the largest part of the remaining variance, and so on. PCA

has been successfully applied to a number of tasks such as the analysis of register

variation (Biber, 1998) or authorship detection (Juola & Baayen, 1998).

Figure 5.1 shows the 1st and 2nd components of a PCA based on the frequency

counts of POS tags in the randomised samples, which together capture around

9The TiGer treebank (Release 2) contains newspaper articles from 1992/1994, while the

TüBa-D/Z (Release 2) covers a period of one month only (May 1999).

64



5.2 Comparing the Treebanks

Figure 5.1: PCA for TiGer/TüBa-D/Z POS tags

33% of the variance in the data. The first component clearly separates TiGer

from TüBa-D/Z samples. TüBa-D/Z is characterised by a high number of infor-

mal elements such as interjections, foreign language material (mostly Anglicisms),

indefinite and interrogative pronouns and indicators of a personal style such as

personal pronouns. TiGer samples show a high number of nouns, determiners,

attributive adjectives, prepositions and also circumpositions, past participles and

first elements of compounds. A high number of nominal elements (nouns, com-

pounds, nominalised adjectives) is typical for a nominative style (Ziegler et al.,

2002), which is often interpreted as being more objective and informative than a

65

Chapter5/Chapter5Figs/y.eps


5.2 Comparing the Treebanks

verbal style. I tend to interpret the first component as a dimension of informality,

where formal texts with a high degree of information content are positioned at

one end and informal texts written in a more personal and subjective style at the

other end.

5.2.3 Perplexity

Kilgariff (2001) describes how the information-theoretic measure of cross-entropy

can be used to assess the homogeneity of a text corpus. Perplexity is the log

of the cross-entropy of a corpus with itself and can be interpreted as a measure

of self-similarity of a corpus: the higher the perplexity, the less homogeneous

the corpus. Perplexity can be unpacked as the inverse of the corpus probability,

normalised by corpus size (5.1).

PP (W ) = P (w1 ...wN )
1
N = N

√

ΠN
i=1

1

P (wi |w1 ...i−1 )
(5.1)

I compute the perplexity for language models derived from each of the tree-

banks.10 As I am mostly interested in parsing results it is questionable whether

a simple word trigram model provides the information I am looking for. Hence

I also computed perplexity for a POS trigram model and for a trigram model

based on Leaf-Ancestor (LA) paths (Sampson & Babarczy, 2003). LA measures

the similarity of the path of each terminal node in the parse tree to the root

node. The path consists of the sequence of node labels between the terminal

node and the root node, and the similarity of two paths is calculated by using

the Levenshtein distance (Levenshtein, 1966). For a more detailed description

see Chapter 4.3.4. I assume that POS trigrams and LA path representations are

more adequate to approximate the syntactic structure of a sentence and to allow

predictions about parsing results.11

10The language models were produced and calculated using the CMU/Cambridge toolkit

(http://mi.eng.cam.ac.uk/∼prc14/toolkit.html)
11Note that the LA-path-based representations used for generating the language models do

not include grammatical functions.

66



5.2 Comparing the Treebanks

I report experiments on both the randomised and sequential samples. For

TüBa-D/Z we have a total of 44 samples with 500 trees each in a 44-cross-

validation-style experiment. I compute the perplexity for each of the 44 samples

by training a language model on the remaining 43 samples and testing the model

on the held-out sample. For TiGer1 and TiGer2 I proceeded as described for

TüBa-D/Z.

Table 5.1 shows that the “semantic relatedness” in the sequential samples has

a crucial impact on the size of the vocabulary. I expect that this will lead to a

higher predictability of the structure in the sequential samples compared to the

randomised samples, which should result in a lower perplexity for the sequential

samples. I also expect that, due to the smaller vocabulary in the TüBa-D/Z,

perplexity for the TüBa-D/Z samples will be lower than for the TiGer samples.

Table 5.2 shows results for all samples.

sequential randomised

word POS LA word POS LA

trigram trigram path trigram trigram path

TiGer1 599 8.8 6.0 681 8.9 6.1

TiGer2 643 8.8 5.9 684 8.9 6.0

TüBa-D/Z 665 9.4 4.3 651 9.4 4.3

Table 5.2: Perplexity (word/POS/LA-path-based trigram model) for TiGer and

TüBa-D/Z

As expected, perplexity for the randomised TiGer samples is slightly higher

than for the samples taken in sequential order from the corpus. For TüBa-D/Z,

however, perplexity for the sequential word trigram model is higher than for

the randomised samples. There is no such effect of “semantic relatedness” on

syntactic homogeneity in the TüBa-D/Z. This again might be due to the fact

that the TüBa-D/Z samples cover a smaller period in time and so the overall

variance between the samples is lower than in TiGer. While this assumption is

supported by the lower perplexity for the randomised word trigram model, it is all

the more surprising that the perplexity for the TüBa-D/Z, computed for a POS

trigram model, is so much higher than for the TiGer samples. This suggests that,

67



5.2 Comparing the Treebanks

0 10 20 30 40

30
0

40
0

50
0

60
0

70
0

80
0

Samples (sequential)

P
er

pl
ex

ity
 fo

r 
w

or
d 

tr
ig

ra
m

 m
od

el

0 10 20 30 40
30

0
40

0
50

0
60

0
70

0
80

0
Samples (randomised)

P
er

pl
ex

ity
 fo

r 
w

or
d 

tr
ig

ra
m

 m
od

el

TIGER1
TIGER2
TüBa−D/Z

0 10 20 30 40

6
7

8
9

10
11

12

Samples (sequential)

P
er

pl
ex

ity
 fo

r 
P

O
S

 tr
ig

ra
m

 m
od

el

0 10 20 30 40

6
7

8
9

10
11

12

Samples (randomised)

P
er

pl
ex

ity
 fo

r 
P

O
S

 tr
ig

ra
m

 m
od

el

TIGER1
TIGER2
TüBa−D/Z

Figure 5.2: Perplexity for randomised and sequential samples (word/POS trigram

model)

68

Chapter5/Chapter5Figs/plotPerplexitySeqRandWord.eps


5.2 Comparing the Treebanks

despite having text from the same domain (newspaper text), there are crucial

differences between the structural properties of the texts in the two corpora.

Figure 5.2 shows the perplexity for the word and POS trigram models (se-

quential and randomised) for each sample in TiGer and TüBa-D/Z. It can be seen

that, while the averaged results for the POS trigram models for the sequential

and randomised samples are close or even identical, variation between results is

much higher for the sequential samples. It can also be seen that for the sequential

word trigram models, the variation between the TiGer samples is much higher

than between the samples taken from the TüBa-D/Z, which again might be an

effect of the larger period in time covered by the TiGer samples.

Results for the LA-path-based models diverge from the POS trigram model:

despite its smaller vocabulary size, the POS-trigram perplexity indicates that

the syntactic structure in the TüBa-D/Z is less homogeneous than in TiGer, and

hence expected to be harder to parse. By contrast, the LA-path-based perplexity

shows that TiGer (and crucially its annotation scheme as captured by the LA-

path-based perplexity) is less homogeneous than TüBa-D/Z. In order to resolve

this puzzle, in the next section I will investigate the correlation between (POS-

and LA-path-based) perplexity and PCFG parsing results.

5.2.4 Parsing Experiments

For the parsing experiments I trained the PCFG parser BitPar (Schmid, 2004) on

the data sets in 44-fold cross-validation-style experiments. For each sample, the

training data consists of all remaining samples, so for the first TüBa-D/Z sample

I trained the parser on samples 2-44, for sample 2 on samples 1 and 3-44 of the

treebank, and so forth; and similarly for TiGer1 and TiGer2. In the experiments

described below I used raw text as parser input.

Preprocessing

Before extracting the grammars, following Kübler (2005) I resolved the crossing

branches in TiGer by attaching the non-head child nodes higher up in the tree

and, where grammatical function labels such as subject or accusative object were

directly attached to the terminal node, I inserted an additional unary node to

69



5.2 Comparing the Treebanks

prevent the POS tagset for the TiGer grammar from being blown up artificially.

The node insertion increases the ratio of non-terminal vs. terminal nodes in the

TiGer treebank from 0.47 to 0.5 (compared to 1.2 in TüBa-D/Z). Figure 5.3

illustrates the insertion of preterminal nodes.

S-OC

KOUS-CP

ob

if

PPER-SB

sie

she

PROAV-MO

damit

therewith

NN-OA

Feindesland

enemy territory

VVFIN-HD

betritt

enters

S-OC

KOUS-CP

ob

if

NP-SB

PPER -HD

sie

she

PROAV-MO

damit

therewith

NP-OA

NN -HD

Feindesland

enemy territory

VVFIN-HD

betritt

enters

Figure 5.3: Preprocessing for TiGer: insertion of preterminal nodes

I then extract a PCFG from each of the training sets and parse the test sets. I

evaluate parsing results using evalb (results report labelled bracketing F-score),

an implementation of the PARSEVAL metric, as well as the Leaf-Ancestor (LA)

metric (Sampson and Babarczy, 2003).

Results

Table 5.3 shows averaged evalb and Leaf-Ancestor (LA) results for the ran-

domised and the sequential samples in the test sets. For all three data sets the

evalb results for the randomised samples show less variation (min. 71.5 and max.

76.5 for TiGer; min. 80.9 and max. 84.1 for TüBa-D/Z), while the results for the

70



5.2 Comparing the Treebanks

sequential samples are distributed over a wider range from 70 to 79.2 for TiGer

and 78 to 85.8 for TüBa-D/Z. evalb gives around 10% better results for the

parser trained and evaluated on the TüBa-D/Z, while the LA results are much

closer across the treebanks within the 88-89% range. Table 5.3 also shows that the

rankings given by evalb and LA do not necessarily correlate: while for TiGer1

and TüBa-D/Z LA gives better results for the sequential samples, evalb ranks

the randomised samples as the ones with the higher quality in parser output.12

In Chapter 4 I showed that the remarkable difference in evalb results for

TiGer and TüBa-D/Z reflects the different data structures in the two treebanks

and that evalb cannot be used for cross-treebank comparisons. Therefore I

now focus on the correlation between parser performance and perplexity for each

parsing model (Table 5.4).

For the POS trigram model I compute a strong correlation between perplexity

and LA as well as evalb parsing results for sequential TiGer samples and a weak

correlation for sequential TüBa-D/Z samples. By contrast, the LA-path-based

trigram model shows a strong correlation for TiGer and TüBa-D/Z samples. For

both models there is no correlation for randomised samples. This means that

while for sequential samples a higher perplexity corresponds to lower evalb and

LA results, this observation does not hold for randomised samples. The same

is true for sentence length: while there is a negative correlation between sen-

tence length and parsing results for TiGer samples and, to a lesser extent, for

TüBa-D/Z, for randomised samples there is a weak correlation of around -0.45

only. This shows that randomisation succeeded in creating representative sam-

ples, where the variation between training and test samples is not high enough

12Note that the differences between results are small and may not be statistically significant.

TiGer1 TiGer2 TüBa-D/Z

LA (avg.) sequential 88.36 88.45 89.14

randomised 88.21 88.49 88.95

evalb sequential 74.00 73.45 82.80

(≤ 40) randomised 74.33 74.00 83.64

Table 5.3: avg. LA and evalb results for TiGer and TüBa-D/Z samples

71



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

Perplexity/LA Perplexity/EVALB sent. length/

POS-n-gram LA-path POS-n-gram LA-path LA EVALB

TiGer1 -0.89 -0.87 -0.76 -0.78 -0.80 -0.78

TiGer2 -0.81 -0.93 -0.81 -0.87 -0.89 -0.81

TüBa-D/Z -0.47 -0.81 -0.49 -0.74 -0.73 -0.60

Table 5.4: Pearson’s product-moment correlation (sequential samples)

to cause differences in parsing results as observed for the sequential samples. It

also shows that perplexity can only be used to predict parseability for samples

which are not homogeneous. For structurally similar text (as in the randomised

samples) perplexity is no reliable measure to forecast parser output quality (note

that, while the averaged perplexity for the randomised POS trigram models was

identical or even higher than for the sequential models, the variance between the

samples was much lower for the randomised samples. This means that homo-

geneity should not be defined by the overall perplexity in all samples, but by

the variance between perplexity for the training and test sets). For measuring

parseability for homogeneous text more refined methods are needed, such as the

one proposed by Corazza et al. (2008).

5.3 Annotating the TüBa-D/Z in the TiGer An-

notation Scheme

In Section 5.2 I showed that comparing treebanks is by no means an easy and

straightforward task, and that a fair and unbiased automatic comparison of dif-

ferent encoding schemes is made even more complicated by the fact that other

variables, like the actual text in the corpora or sampling methods, might have an

impact on results. In order to conduct a meaningful comparison of the impact of

different annotation schemes on PCFG parsing, I created a small parallel corpus,

containing the same text annotated in the two encoding schemes. This should

enable us to abstract away from problems caused by domain variation and text

variation.

72



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

I extracted a test set of 100 trees from the TüBa-D/Z treebank and manually

annotated it following the guidelines in the TiGer annotation manual. Due to

the high expenditure of time needed for manual annotation I was able to create a

small test set only. To make up for the restricted size I carefully selected the test

set by subdividing each of the 44 samples from the TüBa-D/Z treebank into five

subsamples with 100 sentences each, and picked the subsample with a sentence

length and perplexity closest to the mean sentence length (17.24, mean: 17.27)

and mean perplexity computed for the whole treebank (9.44, mean: 9.43). This

assures that the test set, despite its limited size, is maximally representative of

the treebank as a whole.

I then extracted a training set from the 44 TüBa-D/Z samples (excluding

the sentences in the test set). From the TiGer treebank I selected the same

number of trees (21898) from the samples 1-44 as well as the first 21898 trees

from the samples 45-88 in sequential order and trained the parser on all three

training sets (TüBa-D/Z, TiGer1, TiGer2). Then I parsed the test set with

the resulting grammars, evaluating the TiGer-trained parser output against the

manually created TiGer-style gold-standard of the original TüBa-D/Z strings and

the TüBa-D/Z trained parser output for the same strings against the original

TüBa-D/Z trees for those strings. Table 5.5 shows the parsing results measured

with evalb and LA.

TiGer1 TiGer2 TüBa-D/Z

evalb 69.84 71.21 83.35

LA 84.91 86.04 88.94

Table 5.5: evalb and LA results for the manually annotated test set (100 sen-

tences)

As predicted by sentence length and perplexity the LA results for the test

set parsed with the TüBa-D/Z grammar is close to the average LA result for

the whole TüBa-D/Z (88.95 vs. 88.94; see Table 5.3). For the TiGer grammars

parsing TüBa-D/Z-based test strings, however, LA performance drops from 88.36

to 84.91 (TiGer1) and from 88.45 to 86.04 (TiGer2). The better results for TiGer2

imply that the TüBa-D/Z-based test set is more similar to the TiGer2 training set,

73



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

an assumption which is supported by the higher word-based perplexity for TiGer2

compared to TiGer1 (643 vs. 599; TüBa-D/Z: 665), and by the average sentence

length for the training sets (TiGer1: 17.96, TiGer2: 17.15, TüBa-D/Z: 17.24).

However, due to the small size of the test set we cannot make a strong claim.

In Section 5.2.1 I showed that, despite coming from the same general domain

(newspaper articles, but from two different newspapers), TiGer and TüBa-D/Z

are crucially different with regard to the distribution of POS tags, vocabulary

size and perplexity. Therefore it is not surprising that the parser trained on a

TiGer training set shows lower performance for sentences derived from the TüBa-

D/Z. In fact, the results indicate an instance of domain variation, where a parser

trained on a data set shows sub-optimal performance when tested on another

data set, with properties different from the training set.

5.3.1 Qualitative Evaluation of TiGer and TüBa-D/Z Parser

Output

The existence of a small parallel corpus annotated in the TiGer and the TüBa-

D/Z annotation schemes allows us to directly compare parser performance for

both treebanks. However in addition to the limited size, the differences in cat-

egorial and functional labels used in the two annotation schemes often does not

support a direct automatic comparison. Here I focus on the grammatical func-

tions describing similar phenomena in both treebanks. Using the same sentences

annotated either in the TiGer or the TüBa-D/Z annotation scheme allows us to

assess which functions can be compared. Table 5.6 gives an overview over some

features of the test set in the TiGer annotation scheme and in the TüBa-D/Z

annotation scheme.

Categorial nodes Functional labels

S NP PP AVP SB OA DA AG APP OP

TiGer 155 286 164 85 138 67 11 32 12 16

TüBa-D/Z 159 636 180 105 140 67 10 0 44 24

Table 5.6: Overview over some categorial/functional features in both test sets

74



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

Table 5.6 shows that the flat annotation in TiGer leads to a crucially different

number of nodes for noun phrases and adverbial phrases for the same sentences.

The mismatch in the number of PPs is due to the different annotation of pronom-

inal adverbs, which in TüBa-D/Z are always governed by a PP node, while in

TiGer only around one-third of the pronominal adverbs project a PP, the others

being either attached to an S or VP node or, less frequently, to an NP, AP or

AVP.

With regard to functional labels there are also considerable differences. While

some of the basic argument functions like subjects (SB), accusative objects (OA)

and dative objects (DA) follow an approximately similar distribution, most other

grammatical functions are interpreted differently in both annotation schemes.

One example is appositions (APP): the TüBa-D/Z annotation guidelines consider

an apposition to be an attribute to a noun which has the same case and does

not change the meaning of the noun. They do not distinguish between loosely

constructed appositions (e.g.: “Angela Merkel, the chancellor”) and tightly con-

structed appositions (e.g.: “the chancellor Angela Merkel”) and treat both as

appositional constructions (Figure 5.4). Because of the referential identity of the

constituents they do not determine the head of an appositional construction but

annotate both constituents as an APP (Figure 5.5).

NP

NK

PN

NE

Angela

Angela

NE

Merkel ,

Merkel ,

APP

NP

ART

die

the

NN

Kanzlerin

chancellor

NP

ART

die

the

NN

Kanzlerin

chancellor

NK

PN

NE

Angela

Angela

NE

Merkel

Merkel

Figure 5.4: The annotation of appositions in TiGer

TiGer only considers loosely constructed appositions which are separated by

a comma or another punctuation mark from the preceding element (Figure 5.4).

Referential identity is also regarded as a constituting property of an apposition,

but in contrast to the TüBa-D/Z the first constituent is annotated as a noun

kernel (NK) and the following constituent as an apposition. These differences

75



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

NP

APP

PN

NE

Angela

Angela

NE

Merkel ,

Merkel ,

APP

NP

ART

die

the

NN

Kanzlerin

chancellor

NP

APP

NP

ART

die

the

NN

Kanzlerin

chancellor

APP

PN

NE

Angela

Angela

NE

Merkel

Merkel

Figure 5.5: The annotation of appositions in TüBa-D/Z

explain the considerable discrepancy in the number of appositions in both test

sets.

Another example of the crucial differences in the annotation is postnominal

genitives. In TiGer they are annotated with the label AG (Figure 5.6), while

the same constituents do not get a label in TüBa-D/Z at all and so are not

distinguishable from syntactically similar constructions (Figure 5.7).

NP

NN

Übergriffe

assaults

Nom.

AG

NP

ART

der

(by) the

Gen.

NN

Polizei

police

Gen.

NP

NN

Deutschland

Germany

Nom.

DA

NP

ART

den

(for) the

Dat.

NN

Italiänern

italians

Dat.

Figure 5.6: The annotation of postnominal genitive and dative attributes in TiGer

However, some of the functions do support a direct comparison between both

treebanks, for example subjects, accusative objects, dative objects, predicates

and conjuncts of coordinations (Table 5.7). The TüBa-D/Z-trained parser shows

better performance for subjects and comparable results for accusative objects,

conjuncts and predicates, while it fails to identify dative objects. However, even

for grammatical functions which are equally distributed in both treebanks a direct

comparison is not straightforward. I will illustrate this for the personal pronoun

76



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

NP

HD

NP

NN

Club

Club

Nom.

-

NP

ART

der

(of) the

Gen.

NN

Melancholiker

melancholiacs

Gen.

NP

HD

NP

NN

Friede

Peace

Nom.

-

NP

ART

den

(for) the

Dat.

NN

Hüften

hips

Dat.

Figure 5.7: The annotation of postnominal genitive and dative attributes in

TüBa-D/Z

es (it), which functions either as a subject or as an expletive es (it).

TiGer1 TiGer2 TüBa-D/Z

Prec. Recall F-score Prec. Recall F-score Prec. Recall F-score

subj. 0.64 0.63 0.64 0.66 0.70 0.68 0.73 0.76 0.75

acc. obj. 0.47 0.40 0.43 0.50 0.49 0.50 0.46 0.54 0.50

dat. obj. 0.25 0.18 0.21 0.14 0.09 0.11 0 0 0

conj. 0.47 0.57 0.52 0.44 0.53 0.49 0.53 0.48 0.50

pred. 0.28 0.30 0.29 0.24 0.30 0.27 0.40 0.21 0.28

Table 5.7: Evaluation of functional labels in the test sets

The TüBa-D/Z annotation scheme distinguishes three uses of expletive es:

1. Formal subject or object without semantic content

(e.g. weather verbs)

(10) Es
It

regnet.
rains.

It’s raining.

2. Correlate of an extraposed clausal argument

(11) Hier
Here

bringt
brings

es
it

wenig,
little,

Bewerbungen
applications

herumzuschicken.
to send around.

Here it doesn’t help to send applications around.

77



5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme

3. Vorfeld-es (initial field es)

(12) Das
This

bedeutet:
means:

Es
it

wird
is

viel
much

schöngeredet,
blandished,

und
and

es
it

passiert
happens

nichts.
nothing.

This means: there is much blandishing, but nothing happens.

In TüBa-D/Z, formal subjects are annotated as subjects, the correlate es is

either annotated as a subject modifier or a modifier of an object clause, and

the Vorfeld-es, which is considered to be a purely structural dummy-element, is

assigned the label ES (Table 5.8). The TiGer annotation scheme also distinguishes

three uses of the expletive es, but annotates them differently. In TiGer es as a

formal subject is assigned the label EP instead of the subject label. The Vorfeld-

es as well as the correlate es are both annotated as a placeholder (PH).

formal subject correlate es Vorfeld-es

TIGER EP PH PH

TüBa-D/Z ON ON/OS-MOD ES

Table 5.8: Annotation of expletive es (it) in TiGer and TüBa-D/Z

This has major consequences for the test sets, where we have 15 personal

pronouns with word form es. In the TüBa-D/Z annotation scheme 12 of them

are annotated as subjects, the other three as subject modifiers. In TiGer none

of them are annotated as a subject. 6 occurrences of es are considered to be

a placeholder, while the rest are annotated as expletive es. If we look at the

evaluation results for subjects, 12 of the correctly identified subject relations in

the TüBa-D/Z test set are occurrences of expletive es (in fact all occurrences of

expletive es have been assigned the subject label by the parser). The linguistic

analysis in the TiGer annotation scheme causes more difficulties for the parser to

correctly identify the subject. For the placeholders it has to find the corresponding

clause and detect the phrase boundaries correctly, which is more challenging than

identifying a single token. Another error frequently made by the TiGer grammar

is to mistake an expletive es as a subject. Here the TüBa-D/Z grammar has a

huge advantage as it annotates formal subjects as regular subjects. Caused by the

use of an unlexicalised parsing model in some cases, the TiGer grammar assigns

78



5.4 Conclusions

the label EP to personal pronouns with the word form er (he) or sie (she). These

problems easily explain the gap in evaluation results for subjects between TiGer

and TüBa-D/Z and show that even for the same text annotated in the TiGer

and in the TüBa-D/Z annotation scheme in Table 5.7, a fair evaluation is not

straightforward at all.

5.4 Conclusions

In this Chapter I took a closer look at the two German treebanks, TiGer and

TüBa-D/Z, and showed that a fair and unbiased comparison of the different an-

notation schemes is not straightforward. I showed that, despite coming from the

same domain, the content of the two treebanks displays crucial differences with

regard to vocabulary and structural homogeneity. The PCA as well as perplexity

computed for different models indicate that we may face domain variation prob-

lems. In order to assess the impact of different treebank designs on NLP tasks

like PCFG parsing, we have to make sure that we exclude these variables from

our investigation. Furthermore, sampling methods may influence comparisons.

An attempt to abstract away from these differences resulted in the creation

of a small parallel corpus. Even then, differences in linguistic analysis do not

allow us to directly compare results automatically and might, in fact, lead to

wrong conclusions, as illustrated for the example of expletive es (it). In the next

chapter we will present a possible way out of the dilemma, using a dependency-

based evaluation backed up by a human evaluation of particular grammatical

constructions, extracted from the two treebanks.

79



Chapter 6

TePaCoC - A New Testsuite for

Cross-Treebank Comparison

6.1 Introduction

In the last chapter I showed that, due to domain variation problems caused

by the actual newspaper articles in the two corpora, and due to differences in

linguistic analysis in the two encoding schemes, neither an automatic nor even a

manual evaluation of parsing results on a parallel corpus with different annotation

schemes is straightforward. Despite all efforts we are still comparing apples with

oranges. In this chapter we13 aim to resolve the puzzle which of the two treebank

annotation schemes is more suitable to support data-driven parsing, or at least

shed some light on the effect of particular treebank design decisions on the parsing

task.

This chapter presents an extensive evaluation of three different parsers, trained

on two German treebanks, evaluated with four evaluation measures: the PAR-

SEVAL metric, the Leaf-Ancestor metric, a dependency-based evaluation and a

human evaluation of parser performance on a testsuite of particular grammat-

ical constructions, the TePaCoC. The resource (TePaCoC – Testing Parser

13This Chapter presents joined work with Sandra Kübler, Wolfgang Maier and Yannick

Versley. Sandra and myself created the TePaCoC, developed the error classification system

and conducted the human evaluation on the testsuite. I ran the parsing experiments and

carried out the PARSEVAL and LA evaluation, while Yannick and Wolfgang carried out the

dependency-based evaluation.

80



6.2 Experimental Setup

Performance on Complex Grammatical Constructions) presented in this chapter

takes a different approach to parser evaluation: instead of providing evaluation

data in a single annotation scheme, TePaCoC uses comparable sentences and

their annotations for 5 selected key grammatical phenomena (with 20 sentences

each per phenomena) from both TiGer and TüBa-D/Z resources. This provides

a 2 times 100 sentence comparable testsuite which allows us to evaluate TiGer-

trained parsers against the TiGer part of TePaCoC, and TüBa-D/Z-trained

parsers against the TüBa-D/Z part of TePaCoC for key phenomena, instead

of comparing them against a single (and potentially biased) gold standard. To

overcome the problem of inconsistency in human evaluation and to bridge the

gap between the two different annotation schemes, we provide an extensive error

classification, which enables us to compare parser output across the two different

treebanks and allows us to trace parser errors back to the underlying treebank de-

sign decision. This also gives valuable insights for the future creation of language

resources.

Parts of the research presented in this chapter have been published in Kübler

et al. (2008) and Kübler et al. (2009).

6.2 Experimental Setup

The limited size of the TePaCoC testsuite (200 sentences) raises suspicions con-

cerning the representativeness of our results. Therefore we also create a larger

testset from each treebank with 2000 sentences, in order to complement the hu-

man evaluation by an automatic evaluation on a larger data set.

For the experiments, we divided the TüBa-D/Z into a test set with 2000 sen-

tences and a training set, containing the remaining sentences. The 200 sentences

in the TePaCoC testsuite were removed from both training and test set. The

split was done following the proposal described in Dubey (2004), who split the

TiGer treebank into 20 buckets by placing the first sentence of the treebank into

bucket 1, the second sentence into bucket 2, and so on. He then combined the

content of buckets 1 to 18 into the training set, and used bucket 19 for devel-

opment and bucket 20 as a test set. As we do not need a development set, we

put the last 2000 sentences from buckets 19 and 20 into the test set and use the

remaining 25005 sentences for training. For TiGer, we proceed as described for

81



6.2 Experimental Setup

the TüBa-D/Z (the remaining TiGer sentences beyond the 25005 sentences for

the training set were ignored).

We then trained the unlexicalised parsers BitPar (Schmid, 2004) and LoPar

(Schmid, 2000), and the Stanford parser (Klein and Manning, 2003) in its lexi-

calised and Markovised form14 on the training set and tested them on the 2000

test sentences as well as on the 200 TePaCoC sentences.

Before extracting the grammars, we resolved the crossing branches in TiGer by

attaching the non-head child nodes higher up in the tree and, where grammatical

function labels such as subject or accusative object were directly attached to the

terminal node, we inserted an additional unary node to prevent the POS tagset

for the TiGer grammar from being blown up artificially, as described in section

??.

For the dependency-based evaluation, the phrase-structure trees had to be

converted into dependencies. We followed the German Dependency Grammar

of Foth (2003), who distinguishes 34 different dependency relations. The set of

dependencies in the German Dependency Grammar includes five different verb ar-

guments, five types of clausal subordination (infinitive clauses, dependent object

clauses, dependent adjunct clauses, full sentences, and relative clauses), and sev-

eral adjunct relations. Because of inconsistencies between the annotation schemes

for TiGer and TüBa-D/Z, we follow Versley (2005) and conflate the labels of

prepositional verbal arguments and adjuncts. Foth’s dependency grammar an-

notates exactly one head for each dependent. Figure 6.1 shows an example tree

from the TüBa-D/Z treebank, converted to dependencies.

For the TiGer trees we used the dependency converter of Daum et al. (2004),

for the TüBa-D/Z trees software by Versley (2005). The conversion process might

introduce some noise into the data sets and lower the results, especially when

comparing TüBa-D/Z parses with a TiGer gold standard and vice versa. Com-

paring the accuracy of frequent grammatical functions, however, usually provides

a robust estimate for parser output quality.

14The parser was trained using the following parameters for Markovisation: hMarkov=1,

vMarkov=2.

82



6.2 Experimental Setup

Namhafte

AT
TR

Verstärkungen

OBJA

hingegen

A
D

V

wird es

SUBJ

für

PP

die

DET

nächste

AT
TR

Spielzeit

PN

nicht

ADV

geben

AUX

.

(13) Namhafte
considerable

Verstärkungen
reinforcements

hingegen
however

wird
will

es
it

für
for

die
the

nächste
next

Spielzeit
playing time

nicht
not

geben.
give.

“However, there wont be considerable reinforcements for the next playing sea-

son”

Figure 6.1: Dependency tree for a TüBa-D/Z sentence

83

Chapter6/Chapter6Figs/deps.eps


6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

6.3 TePaCoC - Testing Parser Performance on

Complex Grammatical Constructions

Human evaluation is time-consuming and can be applied to small data sets only.

Therefore the data has to be chosen carefully. The TePaCoC testsuite contains

200 sentences handpicked from the two German treebanks, TiGer and TüBa-D/Z,

with 100 sentences from each. The sentences cover five complex grammatical

constructions (20 sentences from each treebank for each construction), which are

extremely difficult for a statistical parser to process:

1. PP Attachment: Noun (PPN) vs. Verb Attachment (PPV)

2. Extraposed Relative Clauses (ERC)

3. Forward Conjunction Reduction (FCR)

4. Subject Gap with Finite/Fronted Verbs (SGF)

5. Coordination of Unlike Constituents (CUC)

PP attachment is the canonical case of structural ambiguity and constitutes

one of the major problems in (unlexicalised) parsing, since disambiguation often

requires lexical rather than structural information (Hindle and Rooth, 1993). The

testsuite allows us to investigate which of the different encoding strategies in the

two treebanks is more successful in resolving PP attachment ambiguities.

The second construction we included in TePaCoC was extraposed relative

clauses, which are a frequent phenomenon in German. According to Gamon et al.

(2002), who present a case study in German sentence realisation, 35% of all rel-

ative clauses in a corpus of German technical manuals are extraposed, while in

a comparable corpus of English technical manuals less than one percent of the

relative clauses have been subject to extraposition. This shows that extraposed

relative clauses are a frequent phenomenon in German and important to be con-

sidered for parser evaluation.

Coordination is a phenomenon which poses a great challenge not only to

statistical parsing but also to linguistic theories in general (see for example Sag

et al. (1984); Steedman (1985); Kaplan and Maxwell (1988); Pollard and Sag

84



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

(1994) for a discussion on different types of coordination in LFG, HPSG, GPSG

and CCG respectively).

Harbusch and Kempen (2007) present a corpus study on the TiGer treebank

(Release 2), where they investigate cases of clausal coordination with elision.

They found 7196 sentences including clausal coordinations, out of which 4046

were subject to elisions. 2545 out of these 4046 sentences proved to be For-

ward Conjunction Reduction, and 384 sentences contained Subject Gaps with

Finite/Fronted Verbs. We included FCR and SGF as two frequent forms of non-

constituent coordination in the testsuite. Coordination of unlike constituents is

not a very frequent phenomenon and therefore might be considered to be of less

interest for data-driven parser evaluation. However, the TiGer treebank (Re-

lease 2) contains 384 subtrees with a CUC-labelled constituent, which means

that coordination of unlike constituents is as frequent as SGF. Additionally, we

choose CUC to be part of the TePaCoC because, from a linguistic point of view,

they are quite interesting and put most linguistic theories to the test. There is, of

course, a range of phenomena which for linguistic or computational reasons would

be of particular interest to be included into the testsuite. Possible examples are

equi/raising constructions and verb clusters. For time reasons we did not yet

include these, but leave this for future work.

For each of the grammatical phenomena listed above, we selected 20 sentences

from TiGer and TüBa-D/Z each with a sentence length ≤ 40.15 This results in a

test set of 200 sentences, 100 from each treebank. Below we describe the different

grammatical phenomena and discuss the annotation decisions made in TiGer and

TüBa-D/Z for encoding these phenomena.

The differences in treebank design do not support a systematic description

of different error types like e.g. span errors, attachment errors or grammatical

function label errors, as the same phenomenon might be encoded with the help

of GF labels in one treebank and by using attachment in the other treebank.

For Extraposed Relative Clauses (ERC), for example, the relation between the

extraposed relative clause and the corresponding head noun is expressed through

attachment in TiGer, while TüBa-D/Z uses grammatical function labels to encode

15We restricted sentence length in the testsuite to n <= 40, because many parsers (like the

LoPar parser used in our experiments) have considerable problems parsing sentences with a

sentence length > 40.

85



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

the same relation. In our evaluation, we do not want to count these as different

errors but want to generalise over the different representations and evaluate them

as the same parser error of not recognising the ERC as a relative clause. Therefore

we need well-defined criteria which support a meaningful evaluation and ensure

inter-annotator agreement in our human evaluation. We present a descriptive

error classification scheme based on empirical data, capturing all potential parser

errors on the specific grammatical phenomena.

PP Attachment: Noun (PPN) vs. Verb Attachment (PPV)

The two German treebanks use different strategies to encode prepositional phrases.

In TiGer, PPs are annotated as flat tree structures, where the nominal object of

the preposition does not project an extra NP, but is directly attached to the PP

node. For noun attachment this results in a flat NP in which the PP is attached

on the same level as the head noun. For verb attachment the PP is grouped under

the VP or the S node (see Example (14) and Figure 1 in the Appendix). In case

of attachment ambiguities, TiGer always chooses high attachment. Different edge

labels specify the grammatical function of the PP. TiGer distinguishes preposi-

tional objects (OP), postnominal modifiers (MNR), genitive attributes (PG) and

verb modifiers (MO). PPs can also be part of a collocational verb construction

(CVC), where it is not the preposition, but the noun inside the PP which carries

the semantic meaning.

(14) Auf
By

dem
the

Umweg
detour

über
via

die
the

129a-Ermittlungen
129a-investigations

könnten
could

die
the

Bemühungen
efforts

der
of the

Autonomen
autonomous activists

um
for

ein
a

bißchen
little

bürgerliche
middle-class

Respektierlichkeit
respectability

im
in the

Keim
bud

erstickt
nipped

werden.
be.

“With the 129a investigations, the efforts of the autonomous activists for a

little middle-class respectability could be nipped in the bud.”

The TüBa-D/Z uses more hierarchical structures for the annotation of PPs.

For noun attachment the head noun is grouped inside an NP node, with the

postmodifier PP as a sister node. Both, the NP and the PP, are then attached to

another NP node. For verb attachment the PP is directly attached to the govern-

ing topological field. Information about Noun vs. Verb Attachment is expressed

86



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

through the use of grammatical function labels in combination with attachment.

The TüBa-D/Z distinguishes prepositional objects (OPP), optional prepositional

objects (FOPP), unambiguous verbal modifiers (V-MOD), and ambiguous verbal

modifiers (MOD). NP postmodifiers get the default label “-” (non-head) (Exam-

ple (15), Figure 2 (Appendix)).

(15) Wie
How

kann
can

einer
one

sich
refl.

derart
so

empören
revolt

über
about

den
the

Wortbruch
breach of promise

bei
concerning

den
the

Großflächen-Plakaten,
large-scale posters,

dessen
whose

Partei
party

selbst
itself

Großflächen-Plakate
large-scale posters

in
in

Auftrag
commission

gegeben
given

und
and

geklebt
posted

hat?
has?

“How can someone bristle at the breach of promise concerning the large-scale

posters when his party has commissioned and posted such posters?”

Error Classification (PPN vs. PPV)

We consider a PP to be parsed correctly if

1. the PP is recognized correctly;

2. the PP is attached correctly;

3. the PP is assigned the correct grammatical function label.

In TüBa-D/Z, extraposed PPs that are extracted from a preceding NP are not

attached directly to the NP, their attachment is shown in the function label. For

an extraposed PP in the TüBa-D/Z, incorrect attachment means that the parser

assigned a wrong grammatical function label. In such cases, the error code D

must be used (Table 6.1).

Error description TiGer / TüBa

A correct GF & correct head of PP, span incorrect

B correct span, incorrect GF

C incorrect span, incorrect GF

D wrong attachment

Table 6.1: Error classification for PP attachment

87



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

6.3.1 Extraposed Relative Clauses (ERC)

Extraposed relative clauses in German are treated as adjuncts to the head noun

they modify, but there is no agreement in the literature whether they are base-

generated locally (Haider, 1996) or whether they obtain their final position through

movement (Müller, 2006). In TiGer, relative clauses are attached to the mother

node of the head noun, which results in crossing branches for extraposed clauses

(Example (16), Figure 3 (Appendix)). The relative clause has the categorial node

label S and carries the grammatical function label RC. The relative pronoun is

attached directly to the S node.

(16) ...da
...that

immer
always

mehr
more

Versicherte
insurants

nur
just

noch
still

eine
a

Rente
pension

erhielten,
would receive,

die
which

niedriger
lower

ist
is

als
than

die
the

Sozialhilfe
social welfare

“... that more and more insured receive a pension lower than social welfare”

In TüBa-D/Z, the extraposed relative clause is located in the final field (NF)

and is associated with the node label R-SIMPX. The grammatical function label

references the head noun modified by the relative clause (Example (17), Figure

4 (Appendix)). The relative pronoun is embedded inside an NP (NX) which is

attached to a C node (complementiser for verb-final sentences).

(17) Warum
Why

also
so

soll
shall

man
one

homosexuellen
homosexual

Paaren
couples

nicht
not

das
that

gönnen,
grant,

was
which

sie
they

nun
now

mal für
for

ihr
their

Glück
luck

wichtig
important

finden?
find?

“So why shouldn’t homosexual couples be granted what they think is important

to their happiness?”

In TiGer, the crossing branches make the representation of ERCs more in-

tuitive by encoding the surface word order as well as the deeper dependency

relations in a transparent way. After resolving the crossing branches during pre-

processing to generate training resources for data-driven parsers following Kübler

(2005), this is no longer the case. The relative clause is no longer a sister node

of the head noun it modifies, but a sister node of the whole NP. This means that

in most cases the dependency between the noun and the relative clause is still

recoverable.

88



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

Error Classification (ERC)

We consider an ERC to be correct if

1. the clause has been identified by the parser as a relative clause;

2. the clause is associated with the correct head noun;

3. the phrase boundaries have been recognized correctly.

Due to differences in annotation, we have to adapt the error analysis to the two

annotation schemes. Table 6.2 shows our error classification for ERC with an

error specification for each treebank.

Error description TiGer TüBa

(A) Clause not recognized as Grammatical function SIMPX label instead

relative clause incorrect of R-SIMPX

(B) Head noun incorrect Attachment error Grammatical function

incorrect

(C) Clause not recognized Clause not recognized Clause not recognized

(D) Sentence boundaries Span error Span error

incorrect

Table 6.2: Error classification for extraposed relative clauses

In TiGer, the grammatical function label carries the information that the

clause is a relative clause. In TüBa-D/Z, the same information is encoded in

the categorial node label (R-SIMPX). Therefore, (A) corresponds to a function

label error in TiGer and to a categorial node label error in TüBa-D/Z. The

relationship between the relative clause and its head noun is expressed through

attachment in TiGer and by the use of a grammatical function label in TüBa-

D/Z. According to this, (B) is caused by an incorrect attachment decision in

TiGer and by a grammatical function label error in TüBa-D/Z. For (C), the

parser failed to identify the relative clause at all. In TüBa-D/Z, this is usually

caused by a POS tagging error, where the parser failed to assign the correct POS

tag to the relative pronoun. In TiGer, error (C) might also be caused by a POS

tag error, but there are also cases where the parser annotated the ERC as part of

89



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

a coordinated sentence. (D) applies to both annotation schemes: here, the main

components of the clause have been identified correctly but the phrase boundaries

are slightly wrong.

6.3.2 Forward Conjunction Reduction (FCR)

Forward Conjunction Reduction is a form of non-constituent coordination, in

which both conjuncts include an overt head verb. The conjuncts can share

the left peripheral context, but there are some restrictions on what else can

be shared: only major constituents can be borrowed by the second conjunct.

This makes FCR more restricted than for example Right Node Raising, another

form of non-constituent coordination where the coordinated constituents share

the right-peripheral context. Right Node Raising, in contrast to FCR, also allows

for the coordination of many traditional non-constituents.

In TiGer, FCR is annotated as a coordination of sentences. The left peripheral

context and the first conjoined verb phrase are grouped as a clause (S), and

the second conjunct is projected to an elliptical clause. Both clauses are then

coordinated. The information, that the left peripheral context is not only the

subject of the first conjunct, but also of the second one, is encoded via a labelled

secondary edge (Example (18), Figure 5 (Appendix)).

(18) Die
The

Schatzmeister
treasurers

der
of the

beiden
both

Parteien
parties

protestierten
protested

dagegen
against it

und
and

kündigten
announced

juristische
legal

Schritte
action

an.
verb part.

“The treasurers of both parties protested and announced they would take legal

action.”

In TüBa-D/Z, the coordination combines topological fields rather than sen-

tences (Example (19), Figure 6 (Appendix)). As a consequence of the field model,

the left peripheral context constitutes the initial field (VF) and is attached higher

up in the tree. Here the fact that the NP Nationalspieler Bode is the subject of

both finite verbs is more transparent than in the TiGer annotation, where the

information is encoded by the use of secondary edges (which are not included in

the parsing model). Within the field coordination, each conjunct is a combination

of the verbal field (LK or VC) and its arguments (MF).

90



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

(19) Nationalspieler
Member of the national team

Bode
Bode

klagte
complained

erneut
again

über
about

eine
an

alte
old

Oberschenkelzerrung
strain of the thigh

und
and

konnte
could

nicht
not

das
the

komplette
complete

Trainingsprogramm
training regime

absolvieren.
finish.

“International player Bode again complained about a strain of the femural

muscle and could not finish the training.”

Error Classification (FCR)

We consider an FCR to be parsed correctly if

1. the parser has identified the coordination;

2. the parser has assigned the subject label to the right node;

3. no other node in the first or second constituent has been associated with

the subject label.

Here, with the exception of span errors, the annotation schemes allow us to use

the same error specification for both treebanks (Table 6.3).

Error description TiGer / TüBa

A Parser incorrectly annotates subject in one of the constituents

B Parser fails to identify subject

C Coordination not recognized

D Second subject in first conjunct

E Span error (only in TüBa-D/Z)

Table 6.3: Error classification for forward conjunction reduction

6.3.3 Subject Gap with Fronted/Finite Verbs (SGF)

In SGF constructions the shared constituent is not embedded in the left periph-

eral context, as it is the case for FCR, but in the middle field of the first conjunct.

This poses a challenge for theoretical linguistics, where SGF has been analysed

91



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

as an asymmetric form of coordination (Wunderlich, 1988; Höhle, 1990) as well

as a symmetric coordinated construction (Steedman, 1990; Kathol, 1999). Both

approaches bear their own problems. The phrase-structure-based approaches of

Höhle (1990) and Heycock and Kroch (1993) lead to extraction asymmetries and

violate constraints like the Across-the-Board (ATB) extraction constraint. In

contrast, Steedman (1990) analyses SGF as a form of gapping, which is criti-

cised by Kathol (1999). Kathol argues that only subjects can be extracted from

the middle field and points out that Steedman’s analysis does not predict the

ungrammaticality of object gaps, as shown in Example (20).

(20) Statt dessen
Instead

leugnet
denies

man
one

Tatsachen
facts

und
and

verdreht
twists

sie.
them.

“Instead, the facts are denied and twisted.”

Kathol (1999) presents a linearisation-based approach which relies on the

topological field model. In his analysis Kathol separates constituent relations

from word order and establishes structural and functional constraints which allow

him to capture word order asymmetries in SGF constructions. Frank (2002), how-

ever, states that the constraints used in Kathol’s analysis are not well motivated.

Instead, Frank (2002) proposes an LFG-based analysis which combines symmet-

ric and asymmetric approaches. She presents a solution in which SGF is analysed

as a symmetric coordination in c-structure, where the subject, which is embed-

ded inside the first constituent and so inaccessible for the second constituent, is

bound by asymmetric projection of a grammaticalised discourse function (GDF)

on the level of f-structure.

None of the linguistic analyses described above can be associated directly with

one of the annotation schemes of the two German treebanks. However, the TüBa-

D/Z with its layer of topological fields seems to be closer to theories like the one

of Kathol (1999), while the TiGer treebank, which is partly based on a hand-

corrected version of the output of the German ParGram LFG grammar, should

be more suitable to represent theories like the one of Frank (2002). Therefore it

will be interesting to see the differences in performance of parsers trained on the

two treebank annotation schemes on non-constituent coordinations, especially on

SGFs.

In TiGer, SGFs are encoded as a coordination of sentences (CS) (Example

(20), Figure 7 (Appendix)). The subject is realised in the first constituent and

92



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

can be identified by the grammatical function label SB (subject). With the help

of labeled secondary edges (SB), TiGer makes explicit that the subject of the first

constituent should also be interpreted as the subject of the second constituent.

In TüBa-D/Z, SGFs are treated as a complex coordination of fields (FKOORD)

(Example (21), Figure 8 (Appendix)). As in TiGer, the subject is part of the first

constituent, where it is attached to the middle field and has the functional label

ON (nominative object). Both constituents are associated with the functional

label FKONJ (conjunct with more than one field).

(21) Immer
Always

kommt
comes

einer
someone

und
and

stiehlt
steals

mir
me

meine
my

Krise.
crisis.

“Every time, someone comes and steals my crisis.”

Error Classification (SGF)

We consider an SGF to be parsed correctly if

1. the parser has identified the coordination;

2. the parser has assigned the subject label to the right node in the first

constituent;

3. no other node in the first or second constituent has been associated with

the subject label.

Here, the annotation schemes allow us to use the same error specification for both

treebanks (Table 6.4).

Error description TiGer / TüBa

A Parser incorrectly annotates subject in second conjunct

B Parser fails to identify subject in first conjunct

C Coordination not recognized

D Parser annotates additional subject in first conjunct

E Parser fails to identify the verb in the sentence

Table 6.4: Error classification for subject gap with fronted/final verb

93



6.3 TePaCoC - Testing Parser Performance on Complex Grammatical
Constructions

6.3.4 Coordination of Unlike Constituents (CUC)

The sentences in TePaCoC cover three types of coordinations of unlike con-

stituents: VPs coordinated with adjectival phrases (AP), VPs coordinated with

NPs, and clauses (S) coordinated with NPs. Here, we will concentrate on the

second type (VP-NP), which shows the greatest differences between the two an-

notation schemes. In TiGer, the coordination is rather straightforward: the VP

and the NP project to a coordinated phrase (CO). The functional labels for the

conjuncts (CJ) describe their conjunct status, while the coordination gets the

functional label of the verb phrase (OC). The grammatical function of the NP

remains unspecified (Example (22), Figure 9 (Appendix)).

(22) Das
This

ist
is

eigentlich
actually

ein
a

Witz
joke

und
and

nicht
not

zu
to

verstehen.
understand.

“This actually is a joke and hard to understand.”

In the TüBa-D/Z, CUCs are annotated as a coordination of complex topo-

logical fields. The VP is represented as a combination of the verbal field and the

middle field (MF). The NP in the first conjunct is projected to the MF, before

both conjuncts are coordinated. Here, the grammatical functions are retained in

the constituents under the MFs (Example (23), Figure 10 (Appendix)).

(23) Die
The

Älteren
elderly

sind
are

teurer,
more expensive,

haben
have

familiäre
familial

Verpflichtungen
commitments

und
and

oft
often

ein
a

Haus
house

abzuzahlen.
to repay.

“The elderly are more expensive, have family commitments and often have to

pay off a house.”

Error Classification (CUC)

Since the two annotation schemes differ drastically in the annotation of coordi-

nations of unlike constituents, we decided to use a correct/incorrect distinction

only. A CUC is considered correct if

1. the constituents are recognized with correct spans;

2. the parser recognised the heads of all constituents correctly.

94



6.4 Constituent Evaluation

6.4 Constituent Evaluation

Table 6.5 shows constituent-based evaluation results for the 2000 sentence test-

sets, measured with evalb and LA . As discussed in Chapter 3, there is a wide gap

between evalb results for the TiGer and the TüBa-D/Z model, while LA scores

for both treebanks are much closer. This is due to the fact that evalb has a

strong bias towards annotation schemes with a high ratio of nonterminal vs. ter-

minal nodes as in the TüBa-D/Z (see Section 4.3.5). Additionally, there is a clear

improvement from BitPar to LoPar to the Stanford parser for both treebanks,

which is consistent for both constituency-based evaluation metrics. The differ-

ences between BitPar and LoPar are rather surprising since both parsers are based

on the same principles. The difference may be due to the internal translation of

the grammar into CNF in BitPar (Schmid, 2004), or to differences in smoothing.

The Stanford parser obviously profits from the combination of lexicalisation and

Markovisation.

Table 6.6 shows evaluation results for the TePaCoC sentences. Compared

to our 2000 sentence test sets, most evalb and LA scores are considerably lower.

This confirms our intuition that the TePaCoC sample constitutes a challenge

for statistical parsers. Again, we observe the same parser ranking as for the

larger test sets, and again the TüBa-D/Z results are higher than the ones for

TiGer. This shows that, apart from being more difficult to parse, the sentences

in TePaCoC show the same properties as the larger test sets.

6.5 Dependency Evaluation

The bias of both constituent-based evaluation measures (cf. Section 4.3.5) does

not support a cross-treebank comparison of the results. Therefore we resort to

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan

evalb 74.0 75.2 77.3 83.4 84.6 88.5

LA 90.9 91.3 92.4 91.5 91.8 93.6

Table 6.5: evalb and LA scores (2000 sentences)

95



6.5 Dependency Evaluation

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan

evalb ERC 71.7 73.0 76.1 80.6 82.8 82.8

FCR 76.6 77.7 81.3 84.0 85.2 86.7

PPN 71.2 73.9 83.6 86.2 87.4 89.2

PPV 71.9 76.5 78.7 84.3 85.0 91.9

CUC 55.9 56.5 63.4 78.4 73.6 76.6

SGF 73.3 74.1 78.6 73.6 76.6 78.4

ALL 69.64 71.07 75.82 81.20 83.51 84.86

LA ERC 85.3 86.1 84.8 89.3 89.8 91.0

FCR 91.2 89.0 91.0 92.0 93.4 88.7

PPN 87.1 88.7 91.0 94.2 94.3 94.4

PPV 88.4 88.9 86.4 91.3 90.5 94.7

CUC 78.0 78.4 78.3 82.2 85.5 84.9

SGF 89.1 89.7 87.5 90.9 94.4 88.5

ALL 86.26 86.42 86.09 89.42 91.13 89.84

Table 6.6: evalb (labeled) bracketing and LA scores (TePaCoC)

a dependency-based evaluation (Lin, 1995, 1998; Kübler and Telljohann, 2002),

which is considered to be more neutral with regard to the underlying annota-

tion scheme. Arguably, the results of a dependency-based evaluation give a more

meaningful insight into parser errors than the number of correctly matched brack-

ets in the tree. Another great advantage of the dependency-based evaluation

concerns the resolving of crossing branches in TiGer. The constituency-based

evaluation measures can only be applied to trees with crossing branches resolved.

This means that, for TiGer, we evaluate against a lossy representation, which cer-

tainly distorts results. By contrast, the dependency-based evaluation allows us

to evaluate parser output against the original treebank trees including non-local

information.

Table 6.7 shows the results for the dependency evaluation of the 2000 sen-

tence test sets. We observe the same parser ranking as in the constituent-based

evaluation, and again this is consistent for both treebanks. For unlabelled accu-

racy scores (UAS), the Stanford parser trained on the TüBa-D/Z gives the best

96



6.5 Dependency Evaluation

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan

LAS 78.8 80.5 81.6 71.3 72.8 75.9

UAS 83.0 84.5 85.6 81.7 83.4 86.8

Table 6.7: Labeled/unlabeled dependency accuracy for the 2000 test sentences

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan

SUBJ 80.2 81.1 78.7 74.6 75.3 76.1

OBJA 55.6 58.4 59.5 42.4 45.8 52.9

OBJD 11.6 11.5 14.1 12.9 13.3 13.1

PP 71.1 72.2 78.2 68.1 69.1 75.6

CL-SUB 57.0 58.2 60.9 45.8 47.5 52.1

Table 6.8: Dependency F-measure for the 2000 test sentences: nominal verb

arguments (subjects and accusative/dative objects), PP attachment and clause

subordination (including infinitive and relative clauses as well as adjunct and

argument subordinated clauses and argument full clauses)

results, but for labelled accuracy the results for all TiGer-trained parsers are far

better than for the same parsers trained on the TüBa-D/Z. This result clearly

contradicts the constituent-based evaluation.

Table 6.8 gives dependency F-scores for specific dependency relations. The

results are mostly consistent with the accuracy scores in Table 6.7, showing bet-

ter LAS results for the TiGer-trained parsers and replicating the parser ranking

Bitpar < LoPar < Stanford. For subjects, however, the TiGer-trained Stanford

parser shows a lower performance than the two unlexicalised parsers, and also

for dative objects the ranking is slightly distorted with BitPar outperforming the

TiGer-trained LoPar parser. For PP attachment the Stanford parser gives by far

the best results, which is not surprising, as the disambiguation of PP attachment

is dependent on lexical information.

The accuracy scores for the TePaCoC testsuite paint the same picture as the

results for the 2000 sentences test sets. For the TiGer-trained parsers we achieve

lower unlabelled dependency accuracy, but far better results for labelled accu-

97



6.5 Dependency Evaluation

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan

LAS ERC 76.2 76.0 77.4 71.6 71.8 71.1

FCR 79.5 74.4 81.8 78.5 81.0 79.3

PPN 76.8 79.7 87.0 75.5 76.1 76.1

PPV 73.6 80.9 79.2 65.8 67.9 71.5

CUC 65.2 67.0 70.7 57.5 63.0 60.9

SGF 76.1 77.2 79.3 74.0 77.7 75.1

ALL 73.3 73.9 76.8 69.3 72.7 70.3

UASERC 81.1 80.8 82.0 79.1 80.5 79.1

FCR 82.7 77.8 85.6 85.4 88.2 88.7

PPN 84.2 86.4 89.3 84.8 85.3 85.9

PPV 78.1 86.0 86.0 81.3 82.9 88.6

CUC 69.7 71.5 74.7 66.1 72.0 73.6

SGF 81.7 82.5 83.6 82.8 86.2 85.4

ALL 78.1 78.7 81.0 78.3 81.9 81.7

Table 6.9: Labeled/unlabeled dependency accuracy for the TePaCoC testsuite

racy compared to the TüBa-D/Z-trained parsers. Table 6.9 lists the LAS/UAS

for the whole testsuite as well as for the particular constructions. The scores

for specific phenomena, however, are not really significant because of the small

number of sentences (20 sentences for each phenomenon; PPN and PPV count as

one phenomenon). We should also keep in mind that the dependency evaluation

does not solely focus on the particular grammatical construction, but evaluates

all dependency relations in the trees. For the TiGer-trained sentences we obtain

the same parser ranking as before (BitPar < LoPar < Stanford), for the TüBa-

D/Z the Stanford results are lower than the results for LoPar. While for PP

verb attachment in the TüBa-D/Z parsing model the lexicalised Stanford parser

is superior to the unlexicalised parsers, lexicalisation does not help to parse the

different types of coordination in the testsuite. Especially for CUC and SGF,

results for the Stanford parser are significantly lower than for LoPar. A possible

explanation might be that the additional layer of topological fields prevents the

benefits of lexicalisation on clause level.

98



6.6 Manual Evaluation of TePaCoC Phenomena

6.6 Manual Evaluation of TePaCoC Phenom-

ena

The results for the dependency evaluation clearly contradict the constituent-based

evaluation using evalb and LA. In Chapter 3 I showed that the constituent-based

measures are highly sensitive to the data structures in the treebanks. Therefore

we believe that the dependency-based evaluation gives a more meaningful assess-

ment of the quality in the parser output. To back up our claim we add a human

evaluation of the testsuite. Here we are interested in how the parsers perform

on handling particular grammatical constructions, as included in the TePaCoC

testsuite. This allows us to concentrate on our core phenomena (rather than the

cumulative scores over all dependencies in the sentences in Table 6.9).

Table 6.10 shows the results for a human evaluation for the different phe-

nomena in TePaCoC. The rightmost column gives the number of occurrences

of the particular phenomenon in the testsuite. To keep things simple we do not

list the different error categories but rather the total number of correctly parsed

constructions in TiGer and TüBa-D/Z. For extraposed relative clauses (ERC)

and for both types of asymmetric coordinations (FCR, SGF), we observe dis-

tinctly better results for the TiGer-trained parsers. For relative clauses, in TiGer

the relative pronoun is directly attached to the relative clause, which makes it

easier for the parser to recognise the whole clause as a relative clause. Another

advantage is due to our method of resolving crossing branches in TiGer. Due to

the conversion the relative clause, which originally was attached to the NP node

of the head noun, is now a sister node of the NP and attached to the VP or S

mother node of the NP. This again makes it easier for the TiGer-trained parsers

to process extraposed relative clauses correctly, but still enables us to reconstruct

the dependency between the head noun and the relative clause in most cases.

For the two non-constituent coordinations, FRC and SGF, the two annotation

schemes make different decisions with regard to the level of attachment for the

coordination. In TiGer, the coordination is attached at the clause level while

TüBa-D/Z coordinates complex fields. This results in a higher number of possible

attachment locations in the TüBa-D/Z model and makes it harder for the parser

to attach FCR and SGF constructions correctly.

Coordinations of Unlike Constituents (CUC) are extremely difficult to parse

99



6.6 Manual Evaluation of TePaCoC Phenomena

TiGer TüBa-D/Z

Bit Lop Stan Bit Lop Stan Total

ERC 20 19 19 0 0 3 41

FCR 26 27 23 11 9 13 40

PPN 9 9 16 15 14 14 60

PPV 15 16 18 14 13 18 62

CUC 6 8 5 6 7 5 39

SGF 18 20 20 7 10 8 40

Table 6.10: Correctly parsed constructions in TiGer and TüBa-D/Z (human eval-

uation)

for both the TiGer- and the TüBa-D/Z-trained parsing models. The unlexicalised

parsers yield slightly better results, but the number of CUC sentences is too small

to make a strong claim.

For PP Verb Attachment (PPV), the combination of lexicalisation and Marko-

visation clearly helps: the Stanford parser outperforms both unlexicalised parsers.

For PP Noun Attachment (PPN), the lexicalised Stanford parser trained on TiGer

outperforms the unlexicalised TiGer-trained parsers and also the results for the

Stanford parser trained on the TüBa-D/Z. The unlexicalised parsers do much bet-

ter when trained on the more hierarchical annotation of the TüBa-D/Z, which

apparently makes it easier to disambiguate constituent structure for noun attach-

ment. However, there might be another reason for the better performance of the

TüBa-D/Z-trained parsers. The newspaper articles in the two corpora show a

very different distribution of noun versus verb attachment: around 74% of all

noun PP sequences in TüBa-D/Z in fact show noun attachment, while in TiGer

only approximately 57% of those PPs are attached to the noun. It is hard to

decide if the better results for the TüBa-D/Z-trained parsers are due to the tree

structure in the TüBa-D/Z, or if they are just an artefact of the higher ratio of

noun attachments in the corpus.

In combination with the dependency-based evaluation, the manual evalua-

tion shows that while evalb and, to a smaller degree, LA favor the TüBa-D/Z

annotation scheme, many of the phenomena covered in TePaCoC are easier

to parse with TiGer. Obviously, none of the parsers’ models are able to cover

100



6.6 Manual Evaluation of TePaCoC Phenomena

the hierarchical structure of TüBa-D/Z successfully. A solution which immedi-

ately comes to mind is the use of parent encoding (Johnson, 1998), a treebank

transformation technique which adds local (vertical) context information to the

trees. Each node is augmented with the syntactic node label of its parent node

(for parent annotation) and with the node label of its grandparent node (for

grandparent annotation). In our parsing experiments with the Stanford parser

we set the parameter for vertical Markovisation (hence parent annotation) to 2

for both treebanks, which means that the categorial node labels in the trees are

augmented with the information about the syntactic node labels of their parent

nodes. We run two additional experiments. In the first experiment we set the

parameter for vertical Markovisation for the Stanford parser to 1, which means

that no parent encoding is used. In the second experiment we set the parameter

for vertical Markovisation to 3, which means that the parsing model is enriched

with grandparent information for each node in the tree. We parsed the subset of

the TePaCoC containing the ERC sentences with the new parameter settings.

It is obvious that in order to recognise a clause as a relative clause, the parser

heavily relies on the information whether there is a relative pronoun governed by

the node. We expected, that for the first experiment results would deteriorate,

while for the second experiment results should improve. To our surprise there

was no difference between the parser output for vMarkov=1 and vMarkov=2. We

observed differences between the parser output for the settings vMarkov=2 and

vMarkov=3, but these differences did not concern the recognition of ERC construc-

tions in the test sentences. This means that the problem inherent in the more

hierarchical annotation of the TüBa-D/Z annotation scheme cannot be solved

easily by techniques like parent or grandparent encoding.

The manual evaluation also backs up the dependency-based evaluation and

gives more evidence for the already strong suspicion that the PARSEVAL metric,

while being a useful tool to assess parser performance for parsers trained on the

same training and test sets, is not adequate to give a linguistically motivated

assessment of the quality of parser output across treebanks and languages.

101



6.7 Conclusions

6.7 Conclusions

In this chapter, we showed how human evaluation of a comparable corpus of com-

plex grammatical constructions with 100 sentences from each of the TiGer and

TüBa-D/Z treebanks allows us to detect error types and trace them back to the

annotation decision underlying the error. Our main findings are: TiGer benefits

from the flat annotation which makes it more transparent and straightforward

for the parser to detect constructions like Extraposed Relative Clauses, Forward

Conjunction Reduction, or Subject Gapping with Fronted/Finite Verbs, while

TüBa-D/Z suffers from the more hierarchical structure where relevant clues are

embedded too deep in the tree for the parser to make use of it. While the ad-

ditional layer of topological fields in TüBa-D/Z increases the number of possible

attachment positions, it also reduces the number of rules in the grammar and

improves the learnability especially for small training sets.

In the next chapter I give a short overview of Lexical Functional Grammar

and provide some background on treebank-based automatic acquisition of deep

LFG resources.

102



Chapter 7

Treebank-Based Deep Grammar

Acquisition - Background

In the previous chapters I discussed problems arising from cross-treebank com-

parisons and showed how particular treebank design decisions influence PCFG

parsing performance. In the remainder of the thesis I expand the parsing task

and test the adequacy of two different treebank annotation schemes as part of an

architecture for treebank-based deep grammar acquisition. Chapter 7 provides an

overview of data-driven deep grammar acquisition, focussing on the acquisition of

LFG resources for English. I review work on multilingual treebank-based gram-

mar acquisition and describe early efforts to port the LFG annotation algorithm

to the German TiGer treebank (Cahill et al., 2003; Cahill, 2004; Cahill et al.,

2005). Chapter 8 describes my own work on treebank-based grammar acquisition

for German. I present a substantially revised, extended and improved method

for the acquisition of deep, wide-coverage LFG resources for German, based on

the two different treebanks (TiGer and TüBa-D/Z). An extensive evaluation and

error analysis sheds some light on the impact of treebank design on the grammar

acquisition task.

103



7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

7.1 Treebank-Based Automatic Acquisition of

Deep LFG Resources

Recent years have seen the development of a new and active research area to au-

tomatically acquire deep linguistic resources encoding detailed and fine-grained

linguistic information from treebanks. The research uses Tree Adjoining Gram-

mar (TAG), Categorial Grammar (CCG), Head-Driven Phrase Structure Gram-

mar (HPSG) and Lexical Functional Grammar (LFG), and, to date, has mostly

concentrated on English.

Hockenmaier and Steedman (2002a) converted the Penn-II treebank into a

CCG-derivation treebank. They carried out an extensive preprocessing of the

Penn treebank cleaning up errors and modifying tree structures according to the

requirements of the CCG grammar formalism, binarising the trees and converting

them into CCG derivations and categories. They added co-indexations to lexi-

cal categories to represent long-distance dependencies and generated predicate-

argument structures. The resulting CCGBank (Hockenmaier and Steedman,

2005) is based on 99.44% of the original Penn treebank trees. The CCG re-

sources extracted are then used for statistical parsing (Hockenmaier and Steed-

man, 2002b), employing a standard CKY chart parser and a variety of probability

models. Clark and Curran (2003, 2004) extended Hockenmaier and Steedman’s

work by applying log-linear parsing models to CCG. For large grammars like the

CCG grammar, this requires a very large amount of computational resources.

Therefore, Clark and Curran (2003), following Miyao and Tsujii (2002), applied

the inside-outside algorithm to a packed representation of the parse forest, allow-

ing them to compute the models efficiently.

Nakanishi et al. (2004) and Miyao and Tsujii (2005) developed an approach

based on the HPSG framework, which enables them to extract an HPSG lexicon

from the Penn-II treebank and to develop and train probabilistic models for

parsing. They use discriminative log-linear models for parse disambiguation,

working on a packed representation of parse forests.

Cahill et al. (2002, 2003, 2005) and Cahill (2004) developed a method to

automatically annotate the Penn-II treebank with LFG F-structures to extract

wide-coverage LFG resources. Their work on English provides a method for wide-

coverage, deep, constraint-based grammar acquisition, with results (Cahill, 2004;

104



7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

Cahill et al., 2008) in the same range as or better than the best hand-crafted

grammars developed for English (Briscoe and Carroll, 2002; Kaplan et al., 2004).

The next section briefly outlines the main concepts of LFG and gives an overview

of the core component of the treebank-based LFG acquisition architecture: the

LFG F-structure annotation algorithm.

7.1.1 Overview of Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Bresnan, 2000; Dalrymple, 2001) is a con-

straint-based theory of grammar with at least two levels of representation: Con-

stituent Structure (c-structure), where strings and the hierarchical grouping of

phrases are expressed through context-free phrase structure trees, and Functional

Structure (F-structure), which represents more abstract linguistic information in

the form of grammatical functions (e.g. subject, object, modifier, topic). C-

structure is determined by context-free phrase structure rules (1), and functional

annotations on c-structure nodes link c-structure categories to their correspond-

ing grammatical functions in F-structure.

(1) S → NP VP

(↑ SUBJ)=↓ ↑=↓

The grammar rule in (1) states that a sentence (S) can consist of a noun phrase

(NP) followed by a verb phrase (VP), and the functional annotations identify

the F-structure of the NP as the subject of the sentence ((↑ SUBJ)=↓), while

the VP constitutes the head (↑=↓). C-structure representations are the same

kind of data structures as the CFG trees in the Penn treebank, but without the

traces. F-structures encode more abstract linguistic information approximating

to predicate-argument-adjunct structure, dependencies or simple logical forms.

Figure 7.1 shows a c-structure tree annotated with LFG F-structure equations

together with its corresponding F-structure.16 The subject of the main clause

is also the subject of the extraposed relative clause, which is shown by the arc

16Lexical equations are omitted for reasons of clarity.

105



7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

S

NP

↑-subj =↓

DET

↑-spec : det =↓

Ein

A

NN

↑=↓

Mann

man

VP

↑=↓

VVFIN

↑=↓

kommt

comes

S

↑-adj rel =↓

PRELS

↑-subj =↓

der

who

VVFIN

↑=↓

lacht

laughs

Ein Mann kommt, der lacht.

A man comes, who laughes



































pred ’kommen
〈

Mann
〉

’

subj



























pred ’Mann’

spec



det





pred ’ein’

dettype ’indef’









adj-rel







pred ’lachen
〈

pro
〉

’

subj
[

pred pro
]



































































Figure 7.1: LFG c-structure and F-structure

in Figure 7.1, pointing from the subject Mann (man) in the main clause to the

pronoun (pro) which is subject of the embedded relative clause.

106



7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

LFG is a non-transformational grammar theory where syntactic phenomena

are treated through the specification of rules and constraints in the lexicon. Sim-

ilar to HPSG and CCG, the lexicon plays an important role in LFG.

7.1.2 Automatic F-structure Annotation of the English

Penn-II Treebank

In order to automatically add F-structure information to the Penn treebank,

Cahill et al. (2002) and Cahill (2004) exploit information encoded in the original

treebank. The Penn treebank provides categorial information (like NP or PP) and

additional functional tags such as logical subject, surface subject, predicate etc.

Long-distance dependencies are expressed in terms of traces and co-indexation

in CFG trees. Unlike in the CCG and HPSG-based approaches, in the LFG-

based approach the Penn-II treebank trees are not cleaned-up or restructured

into different trees. The phrase structure trees remain as they are, while a further

level of annotation is added by an F-structure annotation algorithm: functional

equations describing F-structures.

Head−
Lexicalisation

Coordination
Annotation Annotation

Principles

Catch−All

Clean−Up

Left−Right Context

Principles
and Traces

Figure 7.2: Architecture of the F-structure annotation algorithm

The F-structure annotation algorithm is designed in a modular way (Figure

7.2). The first step in the annotation process is the head-lexicalisation mod-

ule. This procedure is based on the head-finding rules of Magerman (1995),

which have been slightly modified. After the head and mother categories for each

phrase have been determined, left-right context annotation principles exploiting

configurational properties of English are applied to assign functional annotations

to each phrasal category. The annotation principles are based on hand-crafted

Left-Right Annotation Matrices, which, for each phrasal category are based on

the most frequent CFG rules expanding this node. This results in high coverage

but in some cases may lead to overgeneralisations. These incorrect annotations

(exceptions) have to be detected and corrected in a later Catch-All and Clean-

107

Chapter7/Chapter7Figs/AAarchitecture2.eps


7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

Up stage during the annotation process. Before that, however, the Coordination

Annotation Principles are applied to trees, dealing with different kinds of coor-

dinations. This task has been assigned to a designated module in order to keep

the Left-Right Annotation Principles simple and perspicuous. After the Catch-

All and Clean-Up module has finished, the trees have been annotated with basic

functional annotations, but long-distance dependencies are still unsolved. The

F-structures defined by these preliminary annotations are referred to as “proto

F-structures”. In order to get “proper” F-structures, where long-distance depen-

dencies are resolved, the annotation algorithm provides the Traces module, which

exploits the information provided by the traces and co-indexation in the Penn-II

treebank and represents long-distance dependencies as corresponding reentrancies

in F-structure.

7.1.3 Using F-structure Information to Guide Parsing

To date most probabilistic treebank-trained parsers are not able to produce traces

and co-indexation in CFG output trees, as present in the original Penn-II tree-

bank. Without traces and co-indexation the F-structure Annotation Algorithm

is only able to produce proto F-structures with long-distance dependencies un-

solved. Cahill et al. (2004) present a solution to this problem: for parsing they

resolve LDDs on the level of F-structures. Their method is based on finite ap-

proximations of LFG functional uncertainty equations (Kaplan and Zaenen, 1988;

Dalrymple, 2001), and subcategorisation frames (O’Donovan et al., 2004) auto-

matically learned from the F-structures generated for the Penn-II treebank.

Cahill (2004) and Cahill et al. (2004) developed two parsing architectures:

the Pipeline Model and the Integrated Model (Figure 7.3). In the Pipeline Model

a PCFG or a history-based, lexicalised generative parser is extracted from the

training sections 01-22 of the original unannotated Penn-II treebank. The parser

is used to parse raw text into CFG trees. The parser output is handed over to the

annotation algorithm, where all the nodes in the parse tree are annotated with

LFG functional equations. The F-structure equations are then handed over to a

constraint solver, which generates F-structures.

In the Integrated Model the original treebank trees are first automatically

annotated with F-structure equations. Then a PCFG is extracted from the anno-

108



7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources

f−Structure
Annotation
Algorithm

Penn−II

Constraint
Solver

PCFG

Trees
Annotated

A−PCFG

Annotated

Trees

Trees

INTEGRATED MODEL

PIPELINE MODEL

Annotated
Trees

Trees

f−Structures

f−Structure
Annotation
Algorithm

Penn−II
Treebank

Treebank
Penn−II

Annotated

Treebank Parser

Parser

proto

Figure 7.3: Two parsing architectures for English

tated trees. The annotated PCFG is then used to parse new text, which outputs

a parse tree complete with functional equations. These equations again are col-

lected and passed over to the constraint solver, which generates the F-structures.

At this stage both models have parsed raw text into proto F-structures, where

LDDs remain unsolved.

7.1.4 Extracting Subcategorisation Frames from the F-

structures Generated from the Penn-II Treebank

The F-structure-annotated Penn-II treebank offers rich semantic information in

terms of predicate-argument structure and can therefore be used for the extraction

of subcategorisation frames (semantic forms). Van Genabith et al. (1999) and

O’Donovan et al. (2004, 2005a) developed a method where, based on a set of

subcategorisable grammatical functions, for each F-structure and each level of

embedding the pred value on that level is determined and all the subcategorisable

grammatical functions present on that level are collected. The semantic forms

extracted in this way are then associated with conditional probabilities and can

be used for e.g. the resolution of long-distance dependencies in parsing, among

others.

109

Chapter7/Chapter7Figs/arch.eps


7.2 Multilingual Treebank-Based LFG Grammar Acquisition

7.1.5 Resolving LDDs on F-structure Level for Parser Out-

put

Parsing initially results in proto F-structures (Figure 7.3), derived from F-structure-

annotated probabilistic parser output trees, where long-distance dependencies re-

main unsolved. In LFG long-distance dependencies are resolved with the help of

functional uncertainty equations (Kaplan and Zaenen, 1988; Dalrymple, 2001).

These uncertainty equations define a path in the F-structure between the sur-

face position of a linguistic element in F-structure and the location where it

should be interpreted semantically. Burke et al. (2004a); Cahill et al. (2004);

Cahill (2004) show that functional uncertainty paths can be automatically ap-

proximated through the extraction of paths for co-indexed material in the au-

tomatically F-structure-annotated Penn-II treebank. For extracted paths con-

ditional probabilities are computed. The LDD resolution algorithm takes these

finite approximations of functional uncertainty paths and the extracted semantic

forms, and, given an LDD trigger (such as FOCUS, TOPIC, TOPIC-REL), tra-

verses the F-structure following the uncertainty paths. It computes probabilities

for possible LDD resolutions, ranked by the product of the probabilities of the

semantic forms and LDD paths. The highest ranked solution is returned.

7.2 Multilingual Treebank-Based LFG Grammar

Acquisition

Cahill et al. (2002, 2004) and Cahill (2004) have presented a successful method

for the treebank-based acquisition of rich, wide-coverage LFG resources for En-

glish. This raises the question whether it possible to apply this approach to other

languages and treebank encodings.

The ParGram project (Butt et al., 2002) has succeeded in producing wide-

coverage LFG grammars for a small number of languages (English, German, and

Japanese, and smaller coverage grammars for French and Norwegian). Contrary

to our approach, the ParGram grammars are hand-crafted, requiring a consider-

able amount of development time.

Cahill et al. (2003); Burke et al. (2004b); O’Donovan et al. (2005b), Cahill

(2004) and Cahill et al. (2005) have provided early and preliminary proof-of-

110



7.3 Automatic Acquisition of Rich LFG Resources for German

concept research on the adaptation of the automatic F-structure annotation al-

gorithm originally developed for English to Spanish, Chinese and German. Hock-

enmaier (2006) reports on the first steps on the automatic induction of rich CCG

lexical resources for German. Hockenmaier transformed the TiGer treebank into

a CCGbank and derived a wide-coverage CCG lexicon, but to date there are no

parsing results for an automatically induced deep German CCG grammar.

The following section reviews previous work on LFG-based Grammar Acqui-

sition for German, based on the early work by Cahill (2004) and Cahill et al.

(2003, 2005).

7.3 Automatic Acquisition of Rich LFG Resources

for German

Cahill (2004) and Cahill et al. (2003, 2005) develop an automatic F-structure an-

notation algorithm for the German TiGer treebank. They extract an F-structure-

annotated PCFG Grammar from the F-structure-annotated TiGer treebank and

present an evaluation of c-structure and F-structure parsing results against a man-

ually constructed gold standard (DCU100) of 100 randomly extracted sentences

from the TiGer treebank, and against 2000 automatically F-structure-annotated

TiGer trees (CCG-style evaluation).

7.3.1 F-Structure Annotation and Evaluation for German

The automatic annotation of the TiGer treebank proceeds in a similar manner to

the English annotation process. Out of the 40 000 sentences of the TiGer tree-

bank, 96.9% receive one covering and connected F-structure, while 1112 sentences

obtain more than one F-structure fragment. A small amount of sentences do not

obtain any F-structure at all, due to feature clashes caused by inconsistencies in

the annotation produced by the annotation algorithm.

Cahill (2004) evaluates the quality of the F-structures extracted from the orig-

inal gold treebank trees against the DCU100, a manually created gold standard

of 100 sentences randomly chosen from the TiGer treebank. These F-structures

were converted into dependency structures adopting the method proposed by

Forst (2003). The triple conversion and evaluation software of Crouch et al.

111



7.3 Automatic Acquisition of Rich LFG Resources for German

(2002) was used. Results (for gold treebank trees) show an overall F-score of

90.2% for preds-only, while the F-score for all grammatical functions is around

7% higher.

7.3.2 Parsing Experiments and Evaluation for German

For German Cahill (2004) and Cahill et al. (2003, 2005) performed parsing ex-

periments, following the Integrated Model described in Section 7.1.3 above. Here

I report results from Cahill (2004). The TiGer treebank was divided into a

training set and a test set (sentences 8000-10000 of the TiGer treebank). The

training set, which consists of all sentences of the TiGer treebank excluding the

test set, was automatically annotated with F-structure equations. From the F-

structure-annotated data an annotated PCFG (A-PCFG) was extracted, which

then was used to parse the test set. A second version of the grammar was gen-

erated (PA-PCFG), using a parent transformation (Johnson, 1998) in addition

to the F-structure annotations. The parser used in the experiments is BitPar

(Schmid, 2004), an efficient parser for highly ambiguous context-free grammars.

After parsing the test set with the A-PCFG and the PA-PCFG, the F-structure

annotations present in the parse trees were collected and passed to a constraint

solver, which generated F-structures from the equations.

Out of the 2000 sentences in the test set parsed with the A-PCFG, 95.5%

received one covering and connected F-structure, while for the PA-PCFG for

97.9% of the sentences one covering and connected F-structure could be gener-

ated. The quality of the parsing results for raw text is evaluated in two ways:

first against the manually created DCU100 gold standard and then against 2000

original TiGer treebank trees automatically annotated with F-structure equations

(CCG-style evaluation). For constituent-based evaluation, Cahill (2004) reports

an evalb labelled bracketing F-score of 69.4% on the parse trees generated with

the A-PCFG against the original 2000 TiGer treebank trees, while the result for

the PA-PCFG is slightly worse with 68.1%.

Evaluating the F-structures against the hand-crafted gold standard, Cahill

(2004) achieves a labelled dependency F-score of 71% for the F-structures gen-

erated by the A-PCFG and 74.6% against the 2000 automatically annotated

F-structures (CCG-style evaluation). For the PA-PCFG the results for the F-

112



7.4 Conclusions

structures are slightly worse than for the A-PCFG, with a decrease of 0.5% for

the manually created gold standard and a decrease of 0.6% for the 2000 trees in

the CCG-style evaluation. These results are in contrast to the effects of parent

transformation for English, where parsing results improve (Johnson, 1998).

7.3.3 Parsing with Morphological Information

Morphological information plays an important role in German. While in English

case assignment often uses configurational information, German makes use of its

rich morphological system in order to determine specific grammatical functions

such as subject, accusative object and so on. Therefore morphology could be

a valuable source of information for the annotation process and for the disam-

biguation of parse trees, e.g. distinguishing the subject, which has to be in the

nominative case, from the object in the accusative. Unfortunately the TiGer tree-

bank (Version 1) does not include morphological annotation. In order to test the

influence of morphological information on parsing results, Cahill (2004) simulates

morphological information in the TiGer trees, using the functional labels in the

TiGer trees. The subject (TiGer label SB) in German has to be in the nomina-

tive case, and the TiGer label OA indicates an accusative object. Automatically

percolating this information down the head-projection in the TiGer tree and as-

signing it to the head nodes of the projection results in a TiGer treebank partly

annotated with case information.

Two grammar transformations were used for the parsing experiments: an

annotated grammar with case information (CA-PCFG) and a parent-transformed

annotated PCFG with case information (CPA-PCFG), but none of them was able

to improve the parsing results over the baseline reported in Section 2.5.2. As a

possible reason for this somewhat unexpected result Cahill (2004) states that

the simulation of case assignment was not fine-grained and accurate enough and

therefore failed to support the parsing process.

7.4 Conclusions

Cahill et al. (2003), Cahill (2004) and Cahill et al. (2005) provide proof-of-concept,

showing that the automatic acquisition of deep, wide-coverage probabilistic LFG

113



7.4 Conclusions

resources for German is possible in principle. After only three person months

of development time they presented an automatically induced LFG grammar for

German which achieved more than 95.7% coverage on unseen TiGer treebank

data, while comparable hand-crafted grammars hardly exceed 70% (Forst, 2003),

even after several years of development time. However, the work of Cahill et al.

is limited in many ways. For evaluation purposes, Cahill (2004) and Cahill et al.

(2003, 2005) could only revert to a hand-crafted gold standard of 100 sentences,

which is too small to cover many of the interesting grammar phenomena present

in the full TiGer data. The set of grammatical functions used for F-structure

annotation was also rather small and coarse-grained, containing only 26 different

features. Cahill et al. did not provide long-distance dependency resolution for

parsing. In the remaining part of my thesis I present a substantially improved

acquisition of deep, wide-coverage LFG resources for German.

114



Chapter 8

Improved Acquisition of Deep,

Wide-Coverage LFG Resources

for German: Preliminaries

8.1 Introduction

The remaining part of my thesis presents a significantly extended and improved

method for the acquisition of deep, wide-coverage LFG resources for evaluating

German, based on the early proof-of-concept work by Cahill et al. (2003); Cahill

(2004); Cahill et al. (2005). This chapter describes the gold standard resources

for evaluating treebank-based deep, wide-coverage LFG resources for German.

I give an overview of different gold standards available for German, as well as

the DCU250, a new gold standard I created for evaluating TiGer treebank-style

F-structures.

8.2 Gold Standards for Evaluation

For German four dependency gold standards are now available for evaluation

purposes: (1) the DCU100 (Cahill et al., 2003; Cahill, 2004), (2) the TiGer De-

pendency Bank (Forst, 2003; Forst et al., 2004) as well as an improved version

of the TiGer DB, converted to XML (Boyd et al., 2007), (3) the DCU250 (my

work) and, last but not least, (4) a small gold standard with 100 sentences from

115



8.2 Gold Standards for Evaluation

DCU100

governable non-govern. atomic

functions functions features

adj-gen adjunct circ-form

adj-rel app comp-form

comp app-clause coord-form

obj conj part-form

obj2 dem pron-type

obl det

obl-ag name-mod

obl-compar number

subj poss

xcomp quant

xcomp-pred

Table 8.1: Grammatical functions in the DCU100

the TüBa-D/Z (Versley and Zinsmeister, 2006).17 I will call this gold standard

the TUBA100.

8.2.1 Gold Standards Based on the TiGer Treebank

The DCU100 was manually constructed by Cahill and Forst (Cahill et al., 2003;

Cahill, 2004). They randomly extracted 100 sentences from a subset of the TiGer

treebank (sentences 8000-10000). These 100 sentences were then converted into

dependency structures following the method of Forst (2003) and manually cor-

rected by Martin Forst. The DCU100 is restricted in two ways: its small size and

also its small number of grammatical function and feature types. The DCU100

distinguishes only 26 different grammatical functions (Table 8.1), which is not

sufficient to support a fine-grained analysis of linguistic phenomena.

The TiGer Dependency Bank (TiGer DB) (Forst, 2003; ?) is much larger

and provides a far more detailed, fine-grained annotation. It contains more

17Thanks to Yannick Versley and Heike Zinsmeister for providing the TüBa-D/Z gold stan-

dard.

116



8.2 Gold Standards for Evaluation

TiGer DB

governable non-govern. atomic

functions functions features

cc ams case

da app circ-form

gl app-cl comp-form

gr cj coord-form

oa cmpd-lemma degree

obj det det-type

og measured fut

op mo gend

op-dir mod mood

op-loc name-mod num

op-manner number pass-asp

oc-inf numverb passive

oc-fin pred-rest perf

pd quant pers

sb rc precoord-form

sbp rs pron-form

topic-disloc pron-type

topic-rel tense

Table 8.2: Grammatical functions and features in the TiGer DB

117



8.2 Gold Standards for Evaluation

DCU250

governable non-govern. atomic

functions functions features

adj-gen adjunct adjunct-type

adj-rel ams case

comp app circ-form

da app-clause comp-form

oa conj coord-form

oa2 det degree

obj measured det-type

obj-gen mod fut

obl-compar name-mod gend

op number mood

pd poss num

sb quant part-form

sbp rs pass-asp

xcomp perf

pers

postcoord-form

precoord-form

pron-form

pron-type

Table 8.3: Grammatical functions and features in the DCU250

118



8.2 Gold Standards for Evaluation

TUBA100

governable non-govern. atomic

functions functions features

cc ams case

da app comp-form

gl app-cl coord-form

gr cfy degree

oa cj det-type

obj det gend

op fragment mood

oc-inf mo num

oc-fin name-mod pass-asp

pd rc perf

sb pron-type

tense

Table 8.4: Grammatical functions and features in the TUBA100

than 1800 sentences of the TiGer treebank, semi-automatically converted into

a dependency-based triple format using a large, hand-crafted LFG grammar for

German (Dipper, 2003). With a set of 52 distinct grammatical functions and

features (Table 8.2) it allows an in-depth description of different grammatical

phenomena in German. However, there is one downside to the TiGer DB: it does

not directly represent the actual surface tokens in the TiGer treebank. Resulting

from the type of linguistic analysis adopted in the TiGer DB (which is based

on the hand-crafted LFG grammar of Dipper (2003), it retokenises the TiGer

strings, as for example for coordinations, for merged prepositions and determin-

ers or for complex lexical items like compounds or pronominal adverbs. In other

cases surface tokens have not been included in the analysis, as for von-PPs which

function as phrasal genitives, where the preposition itself is not represented in

the gold standard. Another case is the particle zu before infinitival verbs, which

is dropped in the analysis. Substantial differences in tokenisation and linguistic

analysis following the hand-crafted LFG grammar of Dipper (2003) make TiGer

DB a problematic gold standard for the evaluation of TiGer treebank-trained and

119



8.2 Gold Standards for Evaluation

machine-learning-based resources. The problems for evaluation are compounded

by the fact that lemmatisation in the TiGer DB is largely based on the grammar

of Dipper (2003) and does not follow the decisions made in the TiGer treebank.

This means that in automatic evaluation of TiGer-treebank-based resources, in

many cases a dependency representation is considered wrong, even if the correct

analysis has been found.

This problem has been addressed by Boyd et al. (2007), who converted the

TiGer DB into a more surface-oriented representation which allows us to match

the dependency triples against the original treebank while preserving the rich lin-

guistic information in the TiGer DB. The converted gold standard is encoded in a

format called Decca-XML, which provides a flexible multi-purpose data structure,

which can easily be adapted to different purposes.

However, there is a further major drawback with regard to the TiGer DB.

Though it was created by transforming annotated trees from the TiGer treebank

into dependency triples, in many cases the input from the TiGer treebank source

does not provide enough information for the detailed description employed in

the TiGer DB. The missing information was obtained by matching the converted

TiGer DB trees against the output of a hand-crafted, broad-coverage LFG gram-

mar (Dipper, 2003). This leads to a many-to-many mapping between the func-

tional labels in the TiGer treebank and the corresponding grammatical features

annotated in the TiGer DB representing the richer annotations in the hand-

crafted grammar of Dipper (2003): for example, modifiers (MO) in the TiGer

treebank can either obtain the annotation modifier (mo), predicate (pd), oblique

directional argument (op dir), or oblique local argument (op loc) in the TiGer

Dependency Bank. Modifiers (mo) in the TiGer DB, on the other hand, can be

encoded as modifiers (MO), appositions (APP), as a measure argument of an

adjective (AMS) or a comparative complement (CC) in the TiGer treebank. For

evaluating machine-learning- and treebank-based grammar acquisition methods,

this makes a mapping between TiGer DB and TiGer- and machine-learning-based

resources very difficult, and in fact strongly biases TiGer DB-based evaluation

in favour of the hand-crafted LFG grammar of Dipper (2003). In order to sup-

port a fair evaluation, I created another gold standard of 250 sentences from the

TiGer treebank, randomly chosen from sentences 8000-10000. The DCU250 uses

a set of 45 different grammatical functions and features (Table 8.3), encoding

120



8.2 Gold Standards for Evaluation

only information which can actually be induced from the TiGer treebank.

The Creation of the DCU250

The feature set of the DCU250 (Table 8.3) is not as detailed as the one in the

TiGer DB (Table 8.2), but it is substantially more fine-grained than the one in

the DCU100 (Table 8.1), and it only encodes information which can be directly

or implicitly derived from the TiGer treebank.

The creation of the DCU250 for 250 sentences randomly selected from the

TiGer treebank used the original F-structure annotation algorithm of Cahill et al.

(2003) and Cahill (2004) for German: I roughly adapted the F-structure annota-

tion algorithm to the new feature set, while accepting a certain amount of noise

and errors. I used the algorithm to automatically generate dependency triples

for the sentences of the DCU250. Then I manually corrected and extended these

triples to produce the DCU250.

8.2.2 A Gold Standard Based on the TüBa-D/Z

The TUBA100 was semi-automatically created by Heike Zinsmeister and Yan-

nick Versley, using the conversion method of Versley (2005) on 100 randomly

selected gold trees from the TüBa-D/Z. Versley’s conversion method uses a set

of hand-crafted rules that transform the original TüBa-D/Z annotations to de-

pendencies, following the format of the Weighted Constraint-Based Dependency

Parser (WCDG) (Foth et al., 2004). The converted output was then adapted to

a set of grammatical features (Table 8.4) maximally similar to the TiGer DB.

This is a great advantage for evaluation, because it allows us to compare not only

different LFG grammar acquisition architectures, but also results for different

treebank annotation schemes.

In Section 8.2.1 I discussed the problems caused by the restricted size of the

DCU100. These problems also apply here. Even though the TUBA100 was

adapted to the fine-grained set of grammatical features used in the TiGer DB,

due to its size the TUBA100 cannot cover all relevant grammatical phenomena

in German and, as it was used for development of the F-structure annotation

algorithm on the TüBa-D/Z, the evaluation results of the automatic annotation

are expected to be less reliable and the overall annotation coverage on TüBa-D/Z

121



8.3 Summary

trees will be lower than the one for TiGer trees.

8.3 Summary

This chapter described four different gold standards based on the TiGer and

TüBa-D/Z treebanks and discussed their adequacy for the evaluation of auto-

matically acquired LFG resources.

In the next Chapter I develop different versions of an F-structure annotation

algorithm for German for TiGer and TüBa-D/Z, and adapted to three of the gold

standards described in Chapter 8, namely the TiGer DB, DCU250 and TUBA100.

122



Chapter 9

Developing F-structure

Annotation Algorithms for

German

9.1 Introduction

This chapter describes the development of F-structure annotation algorithms for

German, based on the feature sets in the TiGer DB, DCU250 and TUBA100 gold

standards. I highlight the differences to the English LFG grammar acquisition

architecture described in Chapter 7, caused by the language-specific properties of

German, which are reflected in the differences between tree structures in the En-

glish Penn-II treebank and the German TiGer and TüBa-D/Z treebanks. Finally,

I present results for automatic F-structure annotation on gold trees for TiGer and

TüBa-D/Z and the TiGerDB, DCU250 and TUBA100 gold standards.

9.2 Developing F-Structure Annotation Algorithms

for the Extended Feature Sets in the TiGer

DB, DCU250 and TUBA100

Before developing annotation algorithms for each of the three gold standards I

divided the TiGer DB into a development set of 1366 sentences and a test set of

123



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

500 sentences. I did the same for the DCU250, but due to the smaller size of the

newly created gold standard, the development set and the test set consist of 125

sentences each. The TUBA100 is too small to be split, so I used all 100 sentences

for both development and testing. It is understood that a larger data set would

be more appropriate, and that the use of the same data for development and

testing may skew results. Section 9.3 reports results both on the development

sets and on the test sets for the TiGer-based gold standards. For the TüBa-D/Z

I give results on the development set only.

The development of the F-structure annotation algorithm for the extended set

of features in the TiGer DB is by no means a straightforward process. Besides the

many-to-many mapping between grammatical functions in both the TiGer and

TiGer DB encoding schemes, the treatment of auxiliary verbs is another major

source of problems. Following the hand-crafted German LFG grammar of Dipper

(2003), in the TiGer DB auxiliaries are not assumed to have a subcategorisation

frame but are rather treated as feature-carrying elements, expressing information

about tense or aspect. This reflects their different status in comparison to modals

or other raising verbs (Butt et al., 1996). While this annotation style is based

on a thorough linguistic analysis and avoids unnecessary structural complexity,

it is not consistent with the annotation in the TiGer treebank, where auxiliaries

are annotated as the head of the sentence. This means that for an evaluation

against the TiGer DB the TiGer treebank-style annotation of auxiliaries has

to be converted to TiGer DB-style, removing the predicates of the auxiliaries

from the F-structure while preserving the grammatical features expressed by the

auxiliaries. However, there are many cases where the extraction of these features

cannot be disambiguated easily.

One example concerns cases where the auxiliary sein (to be) is combined with

a past participle. This construction can either be a Stative Passive, a predicative

argument or a form of the German Perfekt.18 The annotation in the TiGer tree-

bank (and also the one in the TüBa-D/Z) does not provide enough information

to distinguish between these constructions.

Only for impersonal passive constructions does the TiGer treebank anno-

tation reveal the deep grammatical functions of the constituents. In all other

18See also Maienborn (2007) for an analysis of sein + past participle as a copula along with

the adjectivisation of the past participle.

124



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

Read
Tree

Special
CasesMacros Validate

Find
Head

Figure 9.1: The modules of the AA

cases the linguistic function of the construction in question has to be decided

on-the-fly, while the information required for disambiguation is not provided in

the TiGer treebank. In order to solve these ambiguities, valency information

is needed: intransitive verbs do not allow for passivisation. Therefore I auto-

matically extracted subcategorisation frames for all verbs in the TiGer treebank,

which helped to improve the correct annotation of the grammatical features for

the Stative Passive, the German Perfekt and for predicative arguments. However,

even for a treebank with 50 000 sentences the results still suffer from data sparse-

ness and can be improved by a larger coverage valency dictionary. The Constraint

Dependency Grammar (CDG) (Foth et al., 2004) provides such a dictionary with

entries for more than 8200 verbs. I include the CDG valency dictionary in the

annotation algorithm as an external source of knowledge, helping to disambiguate

between Stative Passive and German Perfekt constructions.

The LFG F-structure annotation algorithm (AA) for English and the early

preliminary work for the German TiGer treebank (Cahill et al., 2003; Cahill,

2004; Cahill et al., 2005) was implemented in Java. I reimplemented the AA in

Perl, which combines object-oriented features with powerful handling of regular

expressions. In contrast to the original AA, which was working on Penn-II-style

treebank trees, my implementation of the annotation algorithm takes trees in the

NEGRA export format (Skut et al., 1997) as input.

My German LFG AA proceeds as follows (Figure 9.1): first it reads in the

treebank trees encoded in the NEGRA export format and converts each tree into

a tree object. Then it applies head-finding rules (Table 9.1) which I developed for

TiGer in the style of Magerman (1995), in order to determine the head of each

local node.19 The head-finding rules specify a set of candidate heads, depending

19TiGer provides head annotation for all categorial nodes except NPs, PPs and PNs. Due to

the flat annotation in TiGer, partly resulting from the decision not to annotate unary nodes, the

problem of identifying the correct head for those nodes is more severe than for the TüBa-D/Z,

where the more hierarchical structure results in smaller constituents which, in addition, are all

125

Chapter9/Chapter9Figs/AA.eps


9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

on the syntactic category of the node, and also the direction (left/right) in which

the search should proceed. For prepositional phrases, for example, we start from

the left and look at all child nodes of the PP. If the left-most child node of the

PP has the label KOKOM (comparative particle), we assign it the head of the

PP. If not, we check if it is a preposition (APPR), a preposition merged with

a determiner (APPRART), an apposition (APPO), and so on. If the left-most

child node does not carry one of the candidate labels listed in Table 9.1, we take

a look at the next child node, working our way from left to right.

For some of the nodes these head-finding rules work quite well, while for others

we have to accept a certain amount of noise. This is especially true for the flat

NPs in the TiGer treebank. A Special Cases module checks these nodes at a

later stage in the annotation process and corrects possible errors made in the

annotation.

After determining the heads, the tree is handed over to the Macros module

which assigns F-structure equations to each node. This is done with the help of

macros. Sometimes these macros overgeneralise and assign an incorrect gram-

matical function. In order to deal with this, the Special Cases module corrects

inappropriate annotations made by the Macros module. Finally the Validation

module takes a final look at the annotated trees and makes sure that every node

has been assigned a head and that there is no node with two child nodes carrying

the same governable grammatical function.

9.2.1 Differences between the English and the German

Annotation Algorithm

The most important difference in the design of the English and the German

AAs concerns the application of left-right context rules in the English annotation

algorithm. These rules express annotation generalisations and have been hand-

crafted by looking at the most frequent grammar rules for each node in the Penn-II

treebank and are also applied to unseen low-frequency rules. A sample partial

head-marked. When annotation original treebank trees, the head-finding rules are applied to

NP, PP and PN nodes, when running the AA on parser output trees with erroneous or no GF

labels in the trees, I also make use of head-finding rules for other syntactic categories (see Table

9.1)

126



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

Category Direction Values

AA right ADJD PIS PIAT ADV ADJA

AP right ADJA ADJD CARD ART PIAT NN PIS ADV PDAT VVPP

PTKNEG PWAT TRUNC

AVP right ADV PTKNEG PROAV PWAV ADJD PWAT PIS PTKA PIAT

APPR KOUS PTKANT KON KOUS NN

CAC right KON

CAP right KON APPR ADV

CAVP right KON APPR

CCP right KON

CH right NN NE FM CARD XY KON ADV ITJ

CNP right KON

CO right KON APPR ADV KOKOM PROAV

CPP right KON ADV

CS right KON ADV

CVP right KON

CVZ right KON

DL right NE NN KON ADV NP PP PN CNP S CS

ISU left ADV APPR KON PIS

MTA right ADJA NE NN

NM right NN CARD ADJA

NP left NN NE PPER FM PIS PDS PWS PRELS PRF PPOSS CH CNP

NP PIAT PN CARD AP ADJA ART

PN right NE NNE NN NP CNP

PP left KOKOM APPR APPRART APPO PROAV APZR KOUS NE FM

PDS

QL right CARD

S left VAFIN VMFIN VVFIN VVIMP VAIMP VVPP VAINF VMINF

VVFIN VVIZU

VP left VVPP VVINF VAINF VMINF VAPP VMPP VVIZU VVFIN

VMFIN VZ CVZ CVP ADJD TRUNC PP

VZ right VVINF VMINF VAINF ADJA VVIZU

Table 9.1: Head-finding rules for the TiGer treebank

127



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

left-context head right-context

JJ, ADJP: ↓ = ∈ ↑ adjunct NN, NNS, ... NP: ↓ = ∈ ↑ app

↑=↓

Table 9.2: Left-right context rule used in the English AA

Figure 9.2: TiGer treebank tree example for free word order in German

left-right-context rule for NPs is given in Table 9.2.

The left-context rule states that all adjectives or adjectival phrases to the left

of the head of an NP should be annotated as an adjunct, while the right-context

rule specifies that an NP to the right of the head of an NP is an apposition. The

creation of these left-right-context rules needs linguistic expertise and crucially

depends on configurational properties of English.

For English, these rules successfully specify the correct annotation for the

majority of local nodes in a given tree. For German, however, these rules do not

work as well as for English. Table 9.3 illustrates this point by showing different

possibilities for the surface realisation of a (rather short) German sentence (24).

(24) Die
the

Anklage
prosecution

legt
lies

ihm
him

deshalb
therefore

Befehlsverweigerung
refusal to obey

zur
to the

Last.
burden.

The prosecution therefore charges him with the refusal to obey.

Table 9.3 shows the variability of word order in German. The F-structure-

annotated grammar rule for S in Figure 9.3 tells us that the first NP Die An-

128

Chapter9/Chapter9Figs/last.eps


9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

S → NP VVFIN PPER PROAV NN PP

↑ SUBJ=↓ ↑=↓ ↑ DA=↓ ↓∈↑ MO ↑ OA=↓ ↑ OP=↓

Figure 9.3: F-structure equations for the grammar rule in Figure 9.2

klage (the prosecution) is the subject of the sentence, while the noun Befehlsver-

weigerung (refusal to obey) should be annotated as an accusative object, and

the pronominal adverb deshalb (therefore) is an element of the modifier set. Ta-

ble 9.3, however, illustrates that these constituents can occur in very different

positions to the left or right of the head of the sentence. This shows that, un-

like for a strongly configurational language such as English, the specification of

left-right-context rules for German is not very helpful.

Instead of developing horizontal and strongly configurational context rules, my

AA for German makes extended use of macros, using different combinations of

information such as part-of-speech tags, node labels, edge labels and parent node

labels (as encoded in the TiGer and TüBa-D/Z treebanks). First I apply more

general macros assigning functional annotations to each POS, syntactic category

or edge label in the tree. More specific macros such as the combination of a POS

tag with the syntactic node label of the parent node, or a categorial node with

a specific grammatical function label, can overwrite these general macros. The

order of these macros is crucial, dealing with more and more specific information.

Some of the macros overwrite information assigned before, while others only add

more information to the functional annotation.

To give an example, consider the POS tag ART (determiner). The first macro

is triggered by this POS tag and assigns the F-structure equation ↑=↓, ↓ det-

type = def . The next macro looks at combinations of POS tags and grammatical

function (GF) labels and, for a determiner with the label NK (noun kernel), adds

the equation ↑ spec : det =↓, while the same POS tag gets assigned the functional

equation ↓∈↑ spec : number when occurring with the edge label NMC (numer-

ical component). The annotation for the combination of POS and grammatical

function label can be overwritten when a more specific macro applies, e.g. one

which also considers the parent node for a particular POS-GF-combination.

The determiner with edge label NK has so far been annotated with headword, ↓

det-type = def, ↑ spec : det =↓. This is overwritten with the F-structure equation

129



9
.2

D
e
v
e
lo

p
in

g
F
-S

tru
c
tu

re
A

n
n
o
ta

tio
n

A
lg

o
rith

m
s

fo
r

th
e

E
x
te

n
d
e
d

F
e
a
tu

re
S
e
ts

in
th

e
T

iG
e
r

D
B

,
D

C
U

2
5
0

a
n
d

T
U

B
A

1
0
0

Die Anklage legt ihm deshalb Befehlsverweigerung zur Last.

Die Anklage legt deshalb Befehlsverweigerung ihm zur Last.

Die Anklage legt deshalb ihm Befehlsverweigerung zur Last.

Die Anklage legt deshalb ihm zur Last Befehlsverweigerung.

Befehlsverweigerung legt ihm deshalb die Anklage zur Last.

Befehlsverweigerung legt deshalb ihm die Anklabe zur Last.

Befehlsverweigerung zur Last legt ihm deshalb die Anklage.

Befehlsverweigerung zur Last legt deshalb ihm die Anklage.

Befehlsverweigerung zur Last legt deshalb ihm die Anklage.

Ihm legt die Anklage deshalb Befehlsverweigerung zur Last.

Ihm zur Last legt deshalb die Anklage Befehlsverweigerung.

Ihm zur Last legt die Anklage deshalb Befehlsverweigerung.

Zur Last legt ihm deshalb die Anklage Befehlsverweigerung.

Zur Last legt ihm die Anklage deshalb Befehlsverweigerung.

Zur Last legt die Anklage ihm deshalb Befehlsverweigerung.

Deshalb legt ihm die Anklage Befehlsverweigerung zur Last.

... ... ... ... ... ...

Table 9.3: Example for variable word order in German

130



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

↑ obj : spec : det =↓, if it is the child of a PP node. This is due to the fact that

the annotation guidelines of the TiGer treebank analyse prepositions as the head

of a PP, while the head noun (and its dependents) inside the PP is annotated as

the object of the preposition.

Due to the flat annotation in TiGer, it is not helpful to use vertical context

above parent node level. The AA makes heavy use of the Special Cases mod-

ule, where further annotation rules are specified for most syntactic categories.

One tricky case is that of NPs, which have a totally flat structure in the TiGer

treebank. There are many cases where the information about POS tag and gram-

matical function label is not sufficient, and neither is their relative position to the

head of the phrase. In those cases the presence or absence of other nodes decides

the grammatical function of the node in question.

To illustrate this, consider the three examples in Figures 9.4-9.6. All three

examples show an NP with a noun child node followed by a proper name (PN)

node, but where the grammatical annotations differ crucially. In Figure 9.4,

the PN is the head of the NP. In Figure 9.5, where we have a determiner to

the left of the noun (NN), the noun itself is the head of the NP, while the PN

is an apposition. The third example (Figure 9.6) looks pretty much like the

second one, with the exception that Merkel is in the genitive case. Here the

PN should be annotated as a genitive attribute. This is not so much a problem

for the annotation of the original treebank trees where we have both the correct

grammatical function labels as well as morphological information. For parser

output, however, morphological information is not available and the grammatical

functions assigned are often incorrect.

Compared to the TiGer DB, the reimplementation of the F-structure Anno-

tation Algorithm for the DCU250 was less problematic, because the grammatical

features used in the DCU250 are designed to match the functional labels in the

TiGer treebank. However, problems like the ones described above also apply here.

9.2.2 Differences between the New AA for German and

Cahill et al. (2003, 2005) and Cahill (2004)

The annotation algorithm for German presented in this chapter is based on and

substantially revises and extends preliminary work by Cahill et al. (2003, 2005)

131



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

NP

NN

↓∈=↑: name mod

Kanzlerin

chancellor

PN

↑=↓

NE

↓∈=↑: name mod

Angela

Angela

NE

↑=↓

Merkel

Merkel

Figure 9.4: NP-internal structure in TiGer (PN=head)

NP

ART

↑ spec : det =↓

die

the

NN

↑=↓

Kanzlerin

chancellor

PN

↑ app =↓

NE

↓∈=↑: name mod

Angela

Angela

NE

↑=↓

Merkel

Merkel

Figure 9.5: NP-internal structure in TiGer (PN=apposition)

NP

ART

↑ spec : det =↓

die

the

NN

↑=↓

Regierung

government

PN

↑ gr =↓

NE

↓∈=↑: name mod

Angela

Angela

NE

↑=↓

Merkels

Merkel.gen

Figure 9.6: NP-internal structure in TiGer (PN=genitive to the right)

132



9.2 Developing F-Structure Annotation Algorithms for the Extended
Feature Sets in the TiGer DB, DCU250 and TUBA100

and Cahill (2004). The AA by Cahill et al. provides annotations for a rather

limited set of grammatical functions only (see Chapter 8). The annotation of the

German TiGer treebank as presented by Cahill et al. is a two-stage process, where

in the first stage the AA tries to assign a default LFG equation to each node in

the tree, based on the TiGer grammatical function label assigned to the node. As

this often overgenerates and results in incorrect annotations, in a second stage

the AA overwrites the default annotations for certain grammatical constructions.

These include the identification of PP objects, the behaviour of complementisers,

as well as determining the head of a coordination phrase with more than one

coordinating conjunction. Finally, in a post-processing stage, the AA links trace

nodes present in the Penn treebank-style version of the TiGer treebank to their

reference nodes.

In my work I use a substantially extended set of grammatical functions and

features, as described in Chapter 8. As a result, the annotated resources contain

richer linguistic information and are of higher quality and usefulness compared

to the one of Cahill et al. (2003, 2005) and Cahill (2004). I extend the default

annotations triggered by the grammatical function labels in TiGer and define a

set of macros using vertical context information in the trees, like the syntactic

category or the grammatical function label of the node and its parent node,

and combinations of both (see Section 9.2.1). My annotation algorithm also

makes use of a valency dictionary in order to distinguish between stative passive

constructions and the German Perfekt with sein (to be). In contrast to Cahill

et al. (2003, 2005) and Cahill (2004), who work on Penn-II-style TiGer (Release

1) treebank trees, a converted, context-free version of the original TiGer graph

structure, my version of the annotation algorithm takes trees in the NEGRA

export format (Skut et al., 1997) as input. Therefore the post-processing stage for

linking trace nodes with their corresponding reference nodes becomes unnecessary.

The next section reports on evaluation results for automatic F-structure an-

notation of gold treebank trees.

133



9.3 Results for Automatic F-structure Annotation on Gold Trees

9.3 Results for Automatic F-structure Annota-

tion on Gold Trees

This section reports evaluation results for the automatic F-structure annotation

on original TiGer/ TüBa-D/Z treebank trees for

1. TiGer DB-style F-structures evaluated against the TiGer DB;

2. TiGer treebank-style F-structures evaluated against the DCU250;

3. and TüBa-D/Z-style F-structures (similar to the TiGer DB) evaluated against

the TUBA100.

In the experiments I use a slightly modified version of the TiGer DB, with

the following changes:

• The fine-grained annotation of op-loc, op-dir, op-manner cannot be induced

automatically from the TiGer treebank. Therefore I merged all three func-

tions into the grammatical function op.

• The TiGer DB decomposes German compound words (i.e. it retokenises the

TiGer treebank data). The AA does not include a morphological analyser,

therefore I recomposed the compounds and treat them like regular nouns.

Due to the lack of a morphological analyser, I only include morphological

features in the evaluation of the AA on gold treebank trees. For the anno-

tation and evaluation of raw text (i.e. parser output in Chapter 10) these

features are excluded.

For TiGer DB recall (all grammatical functions) is 84.8%, while precision is

notably higher with 87.8% (Table 9.4). 99.8% of the trees produce one covering

and connected F-structure; 3 out of the 1866 gold trees did not receive an F-

structure, due to clashes caused by inconsistencies in the annotation. The results

reflect the problems described above, caused by the many-to-many mapping of

grammatical functions between the TiGer treebank and the TiGer DB and the

lack of information in the TiGer treebank needed for the fine-grained annotation

in the TiGer DB. Results for the DCU250 test set, in comparison, are significantly

higher with a precision of 96.8% and a recall of 97.5%. Only one out of the 250

sentences did not receive an F-structure.

134



9.4 Summary

Not surprisingly, results for the development sets for both annotation styles

are slightly higher with 97.8% (precision) and 98.1% (recall) for the DCU250

development set and the same precision, but a higher recall of 86.7% for the

TiGer DB development set. Results for the TUBA100 are lower than for the

DCU250 (precision: 95.5%, recall: 94.6%), but significantly higher than for the

TiGerDB. Two sentences in the TUBA100 did not receive an F-structure.

Detailed results broken down by grammatical functions are provided in Tables

9.5, 9.6, 9.7, 9.8 and 9.9. Results for the DCU250 (Tables 9.5 and 9.6) are quite

high for most dependency relations and features. Incorrect assignments mostly

arise where the dependency relation or grammatical feature cannot be induced

from the GF label in the treebank (e.g. numbers (number), name modifiers

(name-mod) or quantifiers (quant)). For the TiGer DB (Tables 9.7 and 9.8)

we also observe low results for cases where the grammatical function label in

the TiGer treebank can be mapped to more than one dependency relation in

the TiGer DB, and vice versa (e.g. appositions (app), modifiers (mo), predicates

(pd)). Another difficult case is low-frequency dependency relations (e.g. reported

speech (rs)). As a result, F-scores for the TiGer DB data sets are significantly

lower than for the DCU250.

Results for the TüBa-D/Z (Table 9.9) reflect a problem specific to the anno-

tation of non-local dependencies in the treebank: head and dependent often end

up in different topological fields, and it is non-trivial to recover the correct depen-

dencies, especially if they are labelled as MOD (ambiguous modifier). In those

cases the correct dependency can only be guessed. Another problem caused by

the design of the TüBa-D/Z is the annotation of appositions (app) (see Section

5.3.1, Figure 5.5), which also leads to low results in the F-structure evaluation.

The results presented here using “perfect” treebank trees with full morphologi-

cal and functional information provide upper bounds for the parsing experiments

reported in the next chapter.

9.4 Summary

In this chapter I described the development of different versions of an F-structure

annotation algorithm for German, based on different treebanks and gold stan-

dard resources. I discussed problems arising through language-specific properties

135



9.4 Summary

development set test set

AA-style Prec. Rec. F-score Prec. Rec. F-score

TiGerDB 87.8 86.7 87.3 87.8 84.8 86.3

DCU250 97.8 98.1 97.9 96.8 97.5 97.1

TUBA100 95.5 94.6 95.0

Table 9.4: Results for automatic F-structure annotation on gold trees

of German like the semi-free word order, which is reflected in the flat tree struc-

ture annotated in the TiGer treebank and the topological fields in TüBa-D/Z,

and showed how the problem can be addressed by applying macros encoding dif-

ferent combinations of local information from syntactic node labels, grammatical

function labels and POS tags.

Evaluating automatic F-structure annotations on gold treebank trees from

the TiGer and TüBa-D/Z treebanks shows that the different versions of the an-

notation algorithm yield satisfactory results on the DCU250 and the TUBA100

test sets. Lower results for the TiGer DB test set, compared to the DCU250,

are due to (i) the more fine-grained linguistic information annotated in the gold

standard which cannot be automatically induced from the TiGer treebank, and

(ii) to many-to-many mapping problems between TiGer and the TiGer DB.

The next chapter reports on parsing experiments with PCFGs extracted from

the TiGer and TüBa-D/Z treebanks, annotated in the TiGer DB style, the

DCU250 style and the TUBA100 style, respectively.

136



9.4 Summary

DEPENDENCY Precision Recall F-Score

adj-gen 100 (104/104) 100 (104/104) 100

adj-rel 100 (25/25) 100 (25/25) 100

ams 100 (1/1) 100 (1/1) 100

app 95 (55/58) 95 (55/58) 95

app-clause 100 (10/10) 100 (10/10) 100

circ-form 100 (2/2) 100 (2/2) 100

comp 96 (22/23) 96 (22/23) 96

comp-form 92 (12/13) 86 (12/14) 89

conj 96 (190/197) 95 (190/201) 95

coord-form 100 (73/73) 99 (73/74) 99

da 100 (8/8) 100 (8/8) 100

degree 98 (259/263) 99 (259/261) 99

det 100 (421/423) 99 (421/426) 99

det-type 100 (421/421) 100 (421/421) 100

fut 100 (11/11) 100 (11/11) 100

gend 100 (834/838) 100 (834/836) 100

measured 100 (3/3) 100 (3/3) 100

mo 95 (675/712) 95 (675/713) 95

mo-type 100 (22/22) 100 (22/22) 100

mod 50 (1/2) 50 (1/2) 50

mood 97 (214/221) 100 (214/214) 98

name-mod 89 (41/46) 98 (41/42) 93

num 98 (1115/1134) 100 (1115/1120) 99

number 77 (24/31) 86 (24/28) 81

oa 98 (97/99) 98 (97/99) 98

obj 98 (342/350) 98 (342/349) 98

obj-gen 100 (1/1) 100 (1/1) 100

obl-compar 100 (10/10) 100 (10/10) 100

op 97 (36/37) 97 (36/37) 97

part-form 100 (14/14) 100 (14/14) 100

pass-asp 100 (29/29) 100 (29/29) 100

pd 100 (37/37) 92 (37/40) 96

perf 100 (27/27) 100 (27/27) 100

pers 96 (262/272) 99 (262/265) 98

poss 100 (26/26) 96 (26/27) 98

postcoord-form 100 (1/1) 100 (1/1) 100

pron-form 100 (8/8) 100 (8/8) 100

pron-type 96 (117/122) 96 (117/122) 96

quant 98 (44/45) 98 (44/45) 98

rs 0 (0/0) 0 (0/2) 0

sb 95 (299/316) 93 (299/320) 94

sbp 100 (6/6) 100 (6/6) 100

tense 97 (214/221) 100 (214/214) 98

tiger-id 100 (131/131) 98 (131/134) 99

xcomp 95 (40/42) 100 (40/40) 98

RESULT: 97.8 98.1 97.9

Table 9.5: Results for automatic F-structure annotation on gold trees (DCU250

development set)

137



9.4 Summary

DEPENDENCY Precision Recall F-Score

adj-gen 100 (70/70) 99 (70/71) 99

adj-rel 93 (14/15) 93 (14/15) 93

ams (0/0) (0/0)

app 87 (27/31) 93 (27/29) 90

app-clause 100 (6/6) 100 (6/6) 100

case 99 (643/647) 100 (643/646) 99

circ-form 100 (3/3) 100 (3/3) 100

comp 100 (17/17) 100 (17/17) 100

comp-form 100 (9/9) 100 (9/9) 100

conj 97 (154/158) 97 (154/159) 97

coord-form 100 (63/63) 97 (63/65) 98

da 100 (11/11) 100 (11/11) 100

degree 99 (164/165) 99 (164/165) 99

det 99 (298/302) 98 (298/305) 98

det-type 99 (299/301) 98 (299/304) 99

fut 100 (5/5) 100 (5/5) 100

gend 99 (586/589) 99 (586/589) 99

measured 100 (1/1) 100 (1/1) 100

mo 93 (458/495) 94 (458/487) 93

mo-type 100 (13/13) 100 (13/13) 100

mod 100 (4/4) 100 (4/4) 100

mood 96 (188/195) 99 (188/189) 98

name-mod 66 (23/35) 92 (23/25) 77

num 98 (828/846) 99 (828/833) 99

number 74 (35/47) 85 (35/41) 80

oa 97 (85/88) 92 (85/92) 94

oa2 100 (1/1) 100 (1/1) 100

obj 98 (238/243) 98 (238/244) 98

obj-gen 100 (1/1) 100 (1/1) 100

obl-compar 100 (4/4) 100 (4/4) 100

op 100 (28/28) 90 (28/31) 95

part-form 95 (18/19) 100 (18/18) 97

pass-asp 97 (28/29) 93 (28/30) 95

pd 96 (24/25) 100 (24/24) 98

perf 88 (21/24) 95 (21/22) 91

pers 96 (244/255) 99 (244/246) 97

poss 100 (16/16) 100 (16/16) 100

pred-restr 100 (4/4) 100 (4/4) 100

pron-form 100 (2/2) 50 (2/4) 67

pron-type 93 (84/90) 89 (84/94) 91

quant 90 (18/20) 86 (18/21) 88

sb 91 (231/253) 94 (231/247) 92

sbp 100 (2/2) 100 (2/2) 100

tense 95 (186/195) 99 (186/188) 97

tiger-id 100 (139/139) 99 (139/140) 100

xcomp 100 (30/30) 100 (30/30) 100

RESULT: 96.8 97.5 97.1

Table 9.6: Results for automatic F-structure annotation on gold trees (DCU250

test set)

138



9.4 Summary

DEPENDENCY Precision Recall F-Score

ams 64 (7/11) 78 (7/9) 70

app 52 (253/484) 83 (253/306) 64

app-cl 69 (57/83) 89 (57/64) 78

cc 45 (25/56) 61 (25/41) 52

circ-form 46 (6/13) 100 (6/6) 63

cj 92 (1447/1573) 91 (1447/1592) 91

comp-form 94 (111/118) 86 (111/129) 90

coord-form 98 (570/579) 96 (570/594) 97

da 92 (110/119) 92 (110/119) 92

det 96 (3369/3512) 95 (3369/3541) 96

det-type 96 (3343/3483) 98 (3343/3400) 97

fut 97 (56/58) 95 (56/59) 96

gl 96 (218/228) 90 (218/241) 93

gr 82 (681/831) 80 (681/853) 81

measured 88 (14/16) 88 (14/16) 88

mo 82 (4799/5849) 81 (4799/5917) 82

mod 94 (31/33) 94 (31/33) 94

name-mod 76 (346/458) 95 (346/364) 84

number 67 (217/325) 55 (217/398) 60

numverb 0 (0/0) 0 (0/6) 0

oa 93 (852/916) 91 (852/936) 92

oa2 0 (0/1) 0 (0/0) 0

obj 91 (2702/2981) 93 (2702/2919) 92

oc-fin 89 (157/176) 84 (157/188) 86

oc-inf 86 (353/412) 86 (353/410) 86

og 86 (6/7) 86 (6/7) 86

op 90 (509/563) 85 (509/597) 88

pass-asp 88 (256/290) 81 (256/318) 84

passive 0 (0/0) 0 (0/2) 0

pd 80 (211/263) 62 (211/341) 70

perf 99 (226/228) 79 (226/286) 88

precoord-form 100 (8/8) 100 (8/8) 100

pred-restr 0 (0/0) 0 (0/1) 0

pron-form 98 (50/51) 93 (50/54) 95

pron-type 75 (724/969) 68 (724/1061) 71

quant 91 (124/137) 66 (124/187) 77

rc 91 (175/193) 83 (175/210) 87

rs 0 (0/0) 0 (0/3) 0

sb 85 (2255/2652) 79 (2255/2862) 82

sbp 80 (45/56) 74 (45/61) 77

tiger-id 93 (1138/1224) 94 (1138/1207) 94

topic-disloc 0 (0/0) 0 (0/2) 0

topic-rel 0 (0/0) 0 (0/1) 0

total 87.8 86.7 87.3

Table 9.7: Results for automatic F-structure annotation on gold trees (TiGer DB

development set)

139



9.4 Summary

DEPENDENCY Precision Recall F-Score

ams 0 (0/5) 0 (0/2) 0

app 53 (65/122) 66 (65/98) 59

app-cl 58 (22/38) 85 (22/26) 69

cc 38 (11/29) 52 (11/21) 44

circ-form 25 (1/4) 100 (1/1) 40

cj 96 (597/625) 91 (597/654) 93

comp-form 87 (52/60) 73 (52/71) 79

coord-form 98 (212/217) 94 (212/225) 96

da 81 (57/70) 79 (57/72) 80

det 96 (1148/1195) 94 (1148/1223) 95

det-type 98 (1163/1185) 97 (1163/1194) 98

fut 100 (27/27) 93 (27/29) 96

gl 93 (98/105) 92 (98/106) 93

gr 83 (196/237) 79 (196/249) 81

measured 100 (7/7) 88 (7/8) 93

mo 77 (1715/2226) 80 (1715/2140) 79

mod 100 (11/11) 100 (11/11) 100

name-mod 77 (99/129) 97 (99/102) 86

number 70 (88/125) 63 (88/139) 67

numverb 0 (0/0) 0 (0/2) 0

oa 92 (381/415) 87 (381/440) 89

oa2 100 (1/1) 100 (1/1) 100

obj 91 (964/1058) 92 (964/1047) 92

oc-fin 79 (59/75) 75 (59/79) 77

oc-inf 88 (127/145) 93 (127/136) 90

og 100 (2/2) 100 (2/2) 100

op 86 (131/153) 48 (131/275) 61

pass-asp 92 (70/76) 80 (70/87) 86

pd 82 (96/117) 66 (96/146) 73

perf 99 (104/105) 84 (104/124) 91

precoord-form 100 (5/5) 100 (5/5) 100

pred-restr 0 (0/0) 0 (0/1) 0

pron-form 100 (27/27) 84 (27/32) 92

pron-type 83 (439/530) 72 (439/607) 77

quant 87 (58/67) 60 (58/96) 71

rc 95 (70/74) 80 (70/87) 87

rs 0 (0/0) 0 (0/1) 0

sb 88 (948/1076) 81 (948/1175) 84

sbp 100 (15/15) 100 (15/15) 100

tiger-id 96 (387/405) 93 (387/414) 95

topic-disloc 0 (0/0) 0 (0/2) 0

total 87.8 84.8 86.3

Table 9.8: Results for automatic F-structure annotation on gold trees (TiGer DB

test set)

140



9.4 Summary

DEPENDENCY Precision Recall F-Score

ams 100 (1/1) 100 (1/1) 100

app 64 (9/14) 50 (9/18) 56

app cl 0 (0/0) 0 (0/1) 0

case 98 (497/506) 97 (497/510) 98

cc 100 (3/3) 60 (3/5) 75

cj 87 (112/129) 93 (112/120) 90

comp form 83 (5/6) 100 (5/5) 91

coord form 90 (35/39) 90 (35/39) 90

da 100 (4/4) 100 (4/4) 100

degree 98 (127/130) 95 (127/134) 96

det 98 (177/181) 96 (177/185) 97

det type 98 (178/181) 97 (178/183) 98

fragment 0 (0/0) 0 (0/2) 0

fut 75 (3/4) 100 (3/3) 86

gend 100 (441/442) 98 (441/449) 99

gl 100 (17/17) 71 (17/24) 83

gr 77 (36/47) 95 (36/38) 85

measured 100 (1/1) 100 (1/1) 100

mo 89 (321/359) 84 (321/383) 87

mod 100 (4/4) 100 (4/4) 100

mood 97 (128/132) 99 (128/129) 98

name mod 89 (24/27) 89 (24/27) 89

num 99 (632/638) 99 (632/639) 99

number 100 (15/15) 83 (15/18) 91

oa 92 (45/49) 90 (45/50) 91

obj 96 (177/184) 94 (177/189) 95

oc fin 82 (9/11) 82 (9/11) 82

oc inf 83 (19/23) 83 (19/23) 83

op 88 (14/16) 88 (14/16) 88

pass asp 81 (13/16) 93 (13/14) 87

pd 87 (27/31) 90 (27/30) 89

perf 100 (8/8) 80 (8/10) 89

pers 98 (173/177) 99 (173/174) 99

pron form 100 (7/7) 100 (7/7) 100

pron type 94 (85/90) 98 (85/87) 96

quant 86 (19/22) 100 (19/19) 93

rc 62 (5/8) 45 (5/11) 53

sb 93 (182/196) 92 (182/197) 93

tense 97 (128/132) 99 (128/129) 98

tiger id 90 (102/113) 93 (102/110) 91

total 95.5 94.6 95.0

Table 9.9: Results for automatic F-structure annotation on gold trees (TUBA100

gold standard)

141



Chapter 10

Parsing

10.1 Introduction

This chapter presents different approaches to automatic treebank-based grammar

extraction (related to the representation of crossing branches in TiGer), parsing

and evaluation for German, based on the TiGer and TüBa-D/Z treebanks. First

I describe the research methodology used in my work, which aims at comparing

the quality of different architectures based on the two treebanks (Section 10.2)

as well as comparing the influence of different conversion methods to transform

the non-projective TiGer dependency graphs into CFG representations (Section

10.2.1).

I present parsing experiments using automatically F-structure-annotated re-

sources based on the two German treebanks, adapted to different feature sets

(TiGer DB, DCU250 and TUBA100) (Figure 10.1). First I evaluate the per-

formance of different parsers and architectures based on the TiGer treebank on

the c-structure and F-structure level against the TiGer DB gold standard (Sec-

tion 10.3.2) and the DCU250 (Section 10.3.3). In Sections 10.3.3.1 and 10.3.3.2

I provide an error analysis and discuss problems specific to different settings in

the grammar extraction architecture, mainly concerning different approaches to

the assignment of grammatical function labels in parse trees and their impact on

F-structure results. I compare two methods: (i) the assignment of grammatical

function labels by the Berkeley parser Petrov and Klein (2007) and (ii) by an

SVM-based grammatical function labeller (FunTag) (Chrupala et al., 2007).

142



10.2 Approaches to Treebank-Based Grammar Extraction, Parsing
and Evaluation

In Section 10.3.4 I report c-structure and F-structure results for TüBa-D/Z-

trained parsing resources. The evaluation against the hand-crafted gold standards

is complemented by a CCG-style evaluation (Hockenmaier and Steedman, 2002a)

against a larger test set of 2000 automatically F-structure-annotated gold trees

from each the TiGer treebank, and from the TüBa-D/Z. Section 10.3.6 discusses

the main differences between the grammar extraction architectures based on the

two different treebanks, TiGer and TüBa-D/Z. In Section 10.4 I summarise my

main findings.

10.2 Approaches to Treebank-Based Grammar

Extraction, Parsing and Evaluation

The two treebanks and the five gold standard resources described above support

different approaches to grammar extraction, F-structure annotation and evalua-

tion for parsing (Figure 10.1). My general approach is as follows: I follow the

pipeline parsing architecture (Figure 7.3) and extract a PCFG from each treebank.

For TiGer, I have to resolve the crossing branches in the trees in a preprocessing

step. I test two different approaches to tree conversion: (i) the split-node conver-

sion of Boyd (2007) and (ii) the raised-node conversion, as described in Kübler

(2005).

10.2.1 Raised versus Split - What’s the Difference?

The TiGer treebank uses trees with crossing branches to represent non-local (or

non-projective) dependencies. Trees with crossing branches cannot be processed

by standard state-of-the-art data-driven and CFG-based parsing technologies.

Because of this, trees with crossing branches have to be transformed into trees

without crossing branches in a preprocessing step, prior to grammar acquisition

or parser training. The standard technique for doing this is outlined in Kübler

(2005). Her method works by attaching all non-head child nodes in a discon-

tiguous tree structure higher up in the tree, until all crossing branches have been

resolved (Figures 10.2,10.3). This approach has the disadvantage of breaking up

the original tree structure and introducing inconsistencies in the trees, which com-

pounds the problem of learnability for the flat annotation in the TiGer treebank,

143



10.2 Approaches to Treebank-Based Grammar Extraction, Parsing
and Evaluation

Figure 10.1: Different approaches to grammar extraction, f-stucture annotation

and evaluation for parsing

144

Chapter10/Chapter10Figs/approaches.eps


10.2 Approaches to Treebank-Based Grammar Extraction, Parsing
and Evaluation

Figure 10.2: Conversion of crossing branches into CFG trees: original tree

resulting in a high number of long, low-frequency rules.

Figure 10.2 shows a TiGer tree with crossing branches for the sentence in (25)

from the TiGer treebank.

(25) Doch
but

ohne
without

die
the

Tiger
tigers

wird
will

es
it

keinen
no

Frieden
peace

geben.
give.

“But without the tigers there will be no peace.”

Figure 10.3 displays the same tree with crossing branches resolved, using

Kübler’s raised-node technique. In the original TiGer tree the PP (ohne die

Tiger) and the NP (keinen Frieden) are both child nodes of the discontinuous

VP. In the raised-node conversion the information about the original attachment

of the PP is lost, and so is the information that the PP is a verb modifier of geben

(to give).

Boyd (2007) proposes an improved method for resolving crossing branches

in TiGer by annotating partial nodes in the trees. This method allows us to

encode the original dependency relations in the converted tree and to reconstruct

the original tree after parsing. In Boyd’s split-node conversion of the tree in

Figure 10.2, the original annotation is encoded by newly inserted paired split

nodes, which are marked by an asterisk (Figure 10.4). This encoding preserves

the information that the PP is a child of the VP by attaching it to a “partial”

145

Chapter10/Chapter10Figs/tiger1.eps


10.2 Approaches to Treebank-Based Grammar Extraction, Parsing
and Evaluation

Figure 10.3: Conversion of crossing branches into CFG trees: raised-node

(Kübler, 2005)

Figure 10.4: Conversion of crossing branches into CFG trees: split-node (Boyd,

2007)

146

Chapter10/Chapter10Figs/tiger-res.eps
Chapter10/Chapter10Figs/tiger-boyd.eps


10.2 Approaches to Treebank-Based Grammar Extraction, Parsing
and Evaluation

VP node in the converted tree. After parsing the partial nodes can be merged

again and the original tree structure can be recovered, provided that the parser

correctly assigned the paired partial nodes in the parser output.

After converting the trees we have two versions of the TiGer treebank (raised-

node and split-node). The raised-node conversion results in a lossy version of

TiGer, while the split-node conversion still encodes the original non-local depen-

dencies in the trees. In TüBa-D/Z, Non-Local Dependencies (NLDs) are encoded

by the means of grammatical function labels. As a result, two of the extracted

PCFGs underpinning the treebank-based pipeline LFG parsing architecture (Fig-

ure 10.1) are “deep” (TiGer split-node and TüBa-D/Z), while the third (TiGer

raised-node) is a “shallow” grammar which can not reproduce the original non-

local information in the training data in the parser output.

10.2.2 Automatic F-structure Annotation

After extracting the CFG grammars I use the three PCFGs to parse the test sets.

The extracted PCFGs include grammatical function labels, merged with the node

labels. I re-convert the parser output of the TiGer split-node PCFG into discon-

tiguous graphs. In the next processing step in the pipeline parsing architecture I

automatically annotate the parser output trees with LFG F-structures.

The different gold standards offer the following possibilities with regard to

F-structure annotation: we can annotate the original TiGer treebank trees with

TiGer DB-style grammatical functions and use the TiGer DB for evaluation, or

we can annotate the trees with DCU250-style grammatical functions and evaluate

the resulting F-structures against the DCU250. For the TüBa-D/Z we annotate

the original treebank trees with TUBA100-style grammatical functions, which

can be evaluated against the TUBA100 gold standard.

The results of the annotation process are F-structure-annotated parse trees,

either in the style of the TiGer DB, the DCU250 or the TUBA100. The functional

equations in the trees are collected and passed over to the constraint solver, which

produces F-structures. From the TiGer raised-node parse trees we obtain “proto”

F-structures with long-distance dependencies unresolved. The TiGer split-node

parse trees as well as the TüBa-D/Z parser output allow for the generation of

proper F-structures as information about non-local dependencies is encoded in

147



10.3 Parsing into LFG F-structures

the tree. The resulting F-structures are evaluated against the TiGer DB, the

DCU250 or the TUBA100, depending on the set of grammatical functions used

in the annotation.

There is yet another possible approach to the evaluation of the automatically

generated F-structures. In the first step the original trees from the TiGer treebank

are annotated with F-structure equations. The annotated gold trees can be used

to automatically create a dependency gold standard for the evaluation of the

F-structures obtained from raw text (CCG style evaluation, (Hockenmaier and

Steedman, 2002a)). The original trees from the two treebanks represent long-

distance dependencies, so the resulting F-structures are proper F-structures with

LDDs resolved. This allows me to produce large data sets for the evaluation

of F-structures either in the TiGer DB-style, TUBA100-style, or DCU250-style

(referred to as TiGerCCG and TUBACCG in Figure 10.1).

10.3 Parsing into LFG F-structures

In Chapter 9 I showed that the improved LFG F-structure annotation algorithm

for German produces good results when annotating gold treebank trees. Now

I want to investigate whether the results of our method are still respectable

when applied to parser output trees. My German AA strongly relies on the

grammatical function labels present in the treebank trees. In contrast to English,

configurational information does not provide much help when disambiguating

the functional structure in a German sentence. Instead, my approach relies on

the combined information provided by syntactic categories, function labels and

contextual information in the treebank trees. Therefore it is to be expected

that when parsing with combined syntactic category and grammatical function

label information, parser errors will have a strong impact on the quality of the

generated F-structures.

Results in the recent shared task on parsing German (Kübler, 2008) overall

are quite discouraging. The best contribution was made by the Berkeley parser

(Petrov and Klein, 2008), which achieved a precision of 69.2 and a recall of 70.4%

(evalb, syntactic categories + grammatical functions) when trained on the TiGer

treebank, using gold part-of-speech tags (including gold grammatical function

labels for terminal nodes). This means that in current state-of-the-art treebank-

148



10.3 Parsing into LFG F-structures

based parsing for German around 30% of the node labels assigned by the parser

are incorrect, which (for this architecture where the parser learns the function

labels) suggests an upper bound for the task of treebank-based LFG parsing for

German. In this context, I investigate the following research questions:

• What is the impact of different treebank designs on treebank-based gram-

mar acquisition?

• Which architecture for grammar acquisition is better suited for German?

• What is the upper bound for treebank-based grammar acquisition for Ger-

man, based on erroneous parser output trees? What are the main problems,

and which strategies can help to overcome these problems?

To enable a meaningful comparison of the two German treebanks, training sets

of the same size from TiGer and TüBa-D/Z are required. Therefore I removed

all gold standard sentences from the two treebanks and extracted a training set

with 25,000 sentences from each of the treebanks.

The training sets were created as follows: I divided the two treebanks into 27

parts, using 27 “buckets”. I put the first sentence into the first bucket, the second

into bucket 2, and so on. After reaching the 27th bucket, I started again with

the first one. For the TüBa-D/Z this results in 27 buckets with 1000 sentences

each (I removed the TUBA100 gold standard sentences as well as the remaining

25 sentences). Then I combined the first 25 buckets into a training set with

25,000 sentences and put all sentences from bucket 26 and 27 into a test set for

the CCG-style evaluation. For TiGer I proceeded in a similar way, but stopped

after all buckets were filled with 1000 sentences each. The remaining treebank

sentences have been discarded.

In order to investigate the impact of the size of the training set on the quality

of the F-structures, I also created a second training set for TiGer. The large

training set consists of all sentences in the TiGer treebank except sentences 8000-

1000 (which include the TiGer DB and the DCU250). The exact size of the large

training set is 48,473 sentences.

149



10.3 Parsing into LFG F-structures

10.3.1 Experimental Setup

In the experiments I used three different parsers: BitPar (Schmid, 2004), the

Stanford Parser (Klein and Manning, 2003) and the Berkeley Parser (Petrov and

Klein, 2007). The Berkeley Parser is a purely data-driven parser, using a split-

and-merge technique to automatically refine the training data. The splits result in

more and more fine-grained subcategories, which are merged again if not proven

useful. The model is language-agnostic and achieved best results in the shared

task on parsing German at ACL 2008 (Petrov and Klein, 2008).

All three parsers were trained on the TiGer and TüBa-D/Z training sets

(25,000 trees) and on the large TiGer training set (48,473 trees). For BitPar

and the Stanford Parser we included grammatical functions in the treebank by

merging the edge labels with the categorial node labels. As a result we get a much

larger set of node labels for the parsers to learn (approximately 720 node labels

for TiGer and 360 for the TüBa-D/Z). The larger number of different node labels

for TiGer is due to the flat annotation scheme in the TiGer treebank, which

results in terminal nodes being assigned many different grammatical function

labels like subject (SB), accusative object (OA), dative object (DA), and so on.

In TüBa-D/Z, due to the more hierarchical tree structure and the annotation

of unary nodes, terminal nodes are assigned two different grammatical function

labels only: head (HD) and non-head (-). For the Berkeley parser I report results

for three different settings:

1. grammatical functions learned by the parser (berk.par)

2. parser trained on treebank trees without grammatical function labels and

grammatical functions added in a post-processing step by an SVM-based

grammatical function labeller (FunTag, (Chrupala et al., 2007)), trained on

gold treebank trees (berk.fun)20

3. same as (2) but grammatical functions added in a post-processing step by

the SVM-based function labeller, trained on parser output (berk.fun.par)

The first setting is the same as for BitPar and the Stanford Parser, where I

merged grammatical function labels and syntactic node labels into new, atomic

20I am grateful to Grzegorz Chrupala who provided the grammatical function labelling soft-

ware.

150



10.3 Parsing into LFG F-structures

labels. In the second setting I removed all grammatical functions from the tree-

bank and trained the Berkeley parser on syntactic categories only. After parsing

I applied the automatic grammatical function labeller to the parser output trees.

The function labeller then assigns grammatical function labels to the syntactic

nodes in the trees (two-step architecture).

FunTag treats the function labelling problem as a binary classification task.

For each syntactic node in the tree, FunTag extracts a set of features from the

gold trees, capturing categorial, configurational and lexical information about

the node and its context. Each training example is assigned a class label (a

specific grammatical function or NULL, if the particular node is not associated

with this specific grammatical function). Off-the-shelf SVM software21 is trained

on the feature set extracted from the gold trees (berk.fun) or parser output trees

(berk.fun.par).

Machine learning-based classifiers yield best results on data sets which are as

similar as possible to the training instances. As we want to assign grammatical

function tags to parser output trees, it seems reasonable to train the classifier on

parser output trees instead of gold trees. Chrupala et al. (2007) tested this train-

ing method on re-parsed data from the English Penn-II treebank and achieved

a significant improvement for the function labelling task over training on the

original treebank trees.

I used the Berkeley parser to re-parse the TiGer treebank and applied the

improved training method outlined in Chrupala et al. (2007) to the re-parsed

treebank (berk.fun.par). All c-structure parsing results are evaluated with evalb

and report labelled F-scores for sentences with sentence length <= 40 without

grammatical functions (noGF) and with grammatical functions (GF).22 All TiGer

results reported in Section 10.3 are for “shallow” parsers trained on the raised-

node conversion of the TiGer treebank. Results for “deep” parsers trained on the

split-node converted TiGer treebank are discussed in Section 11.2.

21SVMlight (Joachims, 2002)
22Restricting c-structure evaluation to shorter sentences allows a more meaningful compar-

ison with related work, where evalb results are usually reported for sentences with length

<= 40. Results for F-structure evaluation in my experiments consider sentences of all lengths.

151



10.3 Parsing into LFG F-structures

10.3.2 C-Structure and F-Structure Parsing Results for

the TiGer DB

Table 10.1 presents c-structure and F-structure parsing results for the three dif-

ferent parsers trained on the TiGer treebank, generating TiGerDB-style LFG

F-structures. For both c-structure and F-structure evaluation, I report cover-

age: on c-structure level the number of sentences receiving a parse tree, and on

F-structure level the percentage of sentences for which the constraint solver pro-

duces an F-structure, resulting in a set of F-structure dependency triples for the

parse tree.

For training on 25,000 trees for c-structure results there is a large difference

of around 10% between F-scores for the different parsers. BitPar achieves an F-

score of 70.9% (noGF) and 60.1% (GF) and is clearly outperformed by the other

two parsers (stanford: 74.5 (noGF) and 63.2 (GF), berk.par: 79.3 (noGF) and

70.2 (GF)).

The Berkeley parser trained on syntactic categories without grammatical func-

tions (berk.fun) produces the best c-structure results (excluding GFs from the

evaluation) for the TiGer treebank with an 81.0% F-score. After applying the

FunTag grammatical function labelling software trained on gold trees, we achieve

an evalb F-score of 70.9% (GF, berk.fun), which is slightly higher than the one

for the parser-assigned grammatical functions (70.2% (GF, berk.par)). The re-

sults for the function labeller trained on parser output, however, are slightly

worse than for the setting where we train the labeller on gold treebank trees (GF,

berk.fun: 70.9; GF, berk.fun.par: 70.8).

Not surprisingly, for all three parsers (bitpar, stanford, berk.par) parsing re-

sults improve when training on the larger TiGer training set (>48,000 trees)

(Figure 10.2). For the parsers trained on syntactic node labels + grammati-

cal function (bitpar, stanford, berk.par), we observe an improvement in F-score

of 2.6% for BitPar and the Berkeley parser (noGF) and of 3.1% for the Stan-

ford parser (noGF), while for the Berkeley parser trained on syntactic nodes only

(berk.fun, berk.fun.par) the improvement is somewhat smaller with 2.2% (noGF).

Including the grammatical function labels in the evaluation (GF), we observe

the same general trend: the Stanford parser makes the most of the larger training

set and shows an improvement of 3.4%, followed by the Berkeley parser with 3.1%

152



10.3 Parsing into LFG F-structures

bitpar stanford berk.par berk.fun berk.fun.par

TIGER25000 - c-structure evaluation

length <= 40 1762 1762 1762 1762 1762

# parse 1752 1759 1757 1759 1759

F-score noGF 70.9 74.5 79.3 81.0 81.0

F-score GF 60.1 63.2 70.2 70.9 70.8

tagging acc. 94.8 97.2 96.0 97.0 97.0

F-structure evaluation - development set

# sent 1366 1366 1366 1366 1366

% f-struct. 87.8 92.9 89.3 92.8 90.3

Precision 70.4 73.9 75.9 77.1 78.3

Recall 71.8 74.1 76.6 64.7 62.1

F-score 71.1 74.0 76.2 70.3 69.3

F-structure evaluation - test set

# sent 500 500 500 500 500

% f-struct. 85.6 89.2 85.4 90.6 88.4

Precision 66.7 70.9 73.1 75.2 75.4

Recall 67.7 70.1 73.7 58.3 55.4

F-score 67.3 70.5 73.4 65.7 63.9

TIGER48000 - c-structure evaluation

# parses 1759 1758 1757 1759 1759

F-score noGF 73.5 77.6 81.9 83.2 83.2

F-score GF 62.6 66.6 73.3 73.0 70.4

tagging acc. 96.1 97.8 97.4 98.0 98.0

F-structure evaluation - development set

# sent 1366 1366 1366 1366 1366

% f-struct. 87.5 93.3 91.4 94.0 90.5

Precision 72.3 75.2 76.9 78.4 77.9

Recall 74.1 75.0 77.7 66.3 62.7

F-score 73.2 75.1 77.3 71.9 69.5

F-structure evaluation - test set

# sent 500 500 500 500 500

% f-struct. 85.4 87.8 88.0 90.0 90.6

Precision 69.1 72.5 74.8 75.6 75.3

Recall 70.2 72.0 74.8 60.3 54.4

F-score 69.7 72.2 74.8 67.1 63.1

Table 10.1: C-structure parsing results (labelled F-score) and F-structure evalu-

ation for different German grammars and parser (TiGer DB)

153



10.3 Parsing into LFG F-structures

bitpar stanford berk.par berk.fun berk.fun.par

TIGER25000 - c-structure evaluation

F-score noGF 70.9 74.5 79.3 81.0 81.0

F-score GF 60.1 63.2 70.2 70.9 70.8

tagging acc. 94.8 97.2 96.0 97.0 97.0

TIGER48000 - c-structure evaluation

F-score noGF 73.5 77.6 81.9 83.2 83.2

F-score GF 62.6 66.6 73.3 73.0 70.4

tagging acc. 96.1 97.8 97.4 98.0 98.0

Table 10.2: C-structure parsing results (labelled F-score) for different German

grammars and parser (TiGer DB) for training sets with 25,000 and 48,000 trees

and BitPar with 2.5%. For the Berkeley and Stanford parsers the improvement

on the larger amount of training data is more profound when including grammat-

ical function labels in the evaluation. This confirms our suspicion that merging

syntactic nodes with grammatical function labels increases the problem of sparse

data for the TiGer treebank. In the two-step architecture, where grammatical

function labels are assigned by FunTag, we do not observe the same increase

in results. Training the grammatical function labeller on gold treebank trees

(berk.fun), F-score increases 2.1% (GF), while for the berk.fun.par setting, where

I trained FunTag on parser output trees, there is a decrease in F-score of 0.4%.

Figure 10.5 shows the learning curve for the Berkeley parser trained without

grammatical functions. In the beginning, the curve is very steep up to a training

size of around 20,000 trees. After that, adding more training data does not have

such a strong effect on F-scores any more, and from a training size of 35,000 on

there is a slight improvement only, if any. It seems as if the problem of parsing

German is unlikely to be solved by merely increasing the size of the treebanks.

For the Berkeley parser trained on a combination of syntactic nodes and gram-

matical functions, the number of labels to be learned by the parser increases

dramatically. This is likely to result in data sparseness, and I expect a learning

effect even at a training size of more than 40,000 trees. Figure 10.6 shows the

learning curve for the Berkeley parser when trained on the merged node labels

including grammatical functions. There is a profound learning effect resulting in

a very steep rise for the first 27,500 trees in the training set. From then on the

curve does not flatten, but takes a jagged course. We achieve best results for the

maximum training size of 48,473 trees. Extrapolating from this it is likely that

154



10.3 Parsing into LFG F-structures

10000 20000 30000 40000

74
76

78
80

82
Learning Curves for Berkeley (Syntactic Categories only)

Size of Training Set

f−
S

co
re

Figure 10.5: Constituency parsing learning curves for the Berkeley parser (no

GF, berk.fun)

155

Chapter10/Chapter10Figs/LCberkeleyoGF.eps


10.3 Parsing into LFG F-structures

adding more training data would succeed in further boosting parser performance

for the Berkeley parser trained on grammatical functions.

Most interestingly, Berkeley constituency parsing F-scores are significantly

better when trained on syntactic nodes only (79.3 vs. 81.0 (noGF) for TIGER25000

and 81.9 vs. 83.2 (noGF) for TIGER48000). However, one should keep in mind

that parse trees without grammatical functions do not give a sufficient representa-

tion of syntactic information in German, as they fail to encode basic information

about predicate-argument structure.

For F-structure evaluation (Table 10.1) we observe the same parser ranking as

for the constituent-based evaluation. For both the development and test set, the

Stanford parser gives better results than BitPar, and the Berkeley parser trained

on a combination of syntactic nodes and grammatical functions outperforms the

Stanford parser. When trained on syntactic nodes only (berk.fun, berk.fun.par),

performance for the F-structures generated from the Berkeley parser output de-

creases drastically. While precision is higher with around 78% for the development

set and close to 76% for the test set, recall is between 15-20% lower than for the

berk.par F-structures. Despite achieving very similar evalb results for the setting

including grammatical functions, it seems as if there is a fundamental difference

between berk.par and berk.fun parse trees. This is a surprising finding which I

investigate and discuss in Section 10.3.3.2. While showing low recall, the parser

output for the combination of Berkeley parser and function labeller (berk.fun and

berk.fun.par) yields the highest number of F-structures. This seems to be some-

what contradictory, but simply means that berk.fun and berk.fun.par produce

a higher number of F-structures than the other parsers, while the F-structures

themselves are not complete. Take for example a parse tree with a subordinated

clause where FunTag failed to assign a grammatical function label to the sub-

clause. As a result, the subclause may not be represented on F-structure level,

causing a severe decrease in recall.

10.3.3 C-Structure and F-Structure Parsing Results for

the DCU250

Table 10.3 presents c-structure and F-structure parsing results for the three dif-

ferent parsers trained on the TiGer treebank, generating DCU250-style LFG F-

156



10.3 Parsing into LFG F-structures

10000 20000 30000 40000

60
62

64
66

68
70

72
74

Learning Curves for the Berkeley Parser

Size

F
.s

co
re

Figure 10.6: Constituency parsing learning curves for the Berkeley parser (GF,

berk.par)

157

Chapter10/Chapter10Figs/LC.eps


10.3 Parsing into LFG F-structures

structures.

Similar to the TiGerDB-style F-structures, there is a gap of around 10%

between evalb F-scores for the different parsers. BitPar produces an F-score

of 70.1% (noGF) and 58.6% (GF), the Stanford parser achieves 73.7% (noGF)

and 62.2% (GF), and the Berkeley parser gives results between 79.3%-81% (noGF:

berk.par, berk.fun, berk.fun.par) and around 70% when including grammatical

functions in the evaluation (GF). Evalb results for the DCU250 for all parsers

are slightly lower than results for the TiGer DB.

F-structure results show the same trend as for the TiGerDB, but on aver-

age are approximately 10% higher. As before, the two-step architecture (Berke-

ley/FunTag) produces F-structures with highest precision, but at the cost of a

severe decrease in recall. Somewhat unexpected are the higher results on the

test set for the DCU250 for most parsers and settings. Only the Berkeley parser

trained on syntactic nodes + grammatical functions (berk.par) produces better

results for the DCU250 development set than for the test set. A possible expla-

nation are the high percentage of sentences (12%) in the development set which

did not receive a valid F-structure. Because of this it is likely that more difficult

sentences have been excluded from the evaluation.

The better results for the test set suggest that the development set is some-

what harder to parse than the test set. This assumption is supported by the

differences in sentence length in both data sets. In the test set the average sen-

tence length is 22.1 with only 3 sentences showing a word length > 40, while in

the development set the average sentence length is 23.8, including 13 sentences

with more than 40 words. The longest sentence in the test set has a sentence

length of 49 words, while in the development set there are 5 sentences with more

than 60 words, and the maximum sentence length is 100 words.

Overall, best results for the DCU250 are achieved by the Berkeley parser for

the parsing model including grammatical functions in the node labels (berk.par).

For the 25,000 training set we get an F-score of 80.5% on the test set, and for

the large training set (48,000 sentences) it further increases up to 83.0%. This,

however, comes at the cost of a high number of sentences not receiving a F-

structure. Precision for the two-step architecture (Berkeley/FunTag) is close to

90% (TIGER48000), but achieves low recall only, while the number of F-structure

clashes for the berk.par setting is higher than for berk.fun and berk.fun.par.

158



10.3 Parsing into LFG F-structures

bitpar stanford berk.par berk.fun berk.fun.par

TIGER25000 - c-structure evaluation

# sent < 40 234 234 234 234 234

# parse 233 234 234 234 234

F-score noGF 70.1 73.7 76.6 79.3 79.3

F-score GF 58.6 62.2 66.9 68.4 68.0

tagging acc. 94.6 96.6 95.4 96.5 96.5

TiGer F-structure evaluation - development set

# sent 125 125 125 125 125

% f-struct. 87.2 91.2 88.8 92.2 90.4

Precision 76.5 79.6 81.0 86.7 86.7

Recall 76.2 74.5 80.7 58.0 57.8

F-score 76.3 77.0 80.8 69.5 69.4

TiGer F-structure evaluation - test set

# sent 125 125 125 125 125

% f-struct. 90.4 95.2 92.0 93.6 93.6

Precision 77.0 80.9 81.4 86.7 86.5

Recall 77.7 79.9 79.7 68.1 68.4

F-score 77.3 80.4 80.5 76.3 76.4

TIGER48000 - c-structure evaluation

# sent < 40 234 234 234 234 234

# parses 234 234 226 234 234

F-score noGF 71.6 75.2 81.9 81.4 81.4

F-score GF 59.6 63.8 72.4 70.8 70.9

tagging acc. 96.0 97.6 96.9 97.6 97.6

TiGer F-structure evaluation - development set

# sent 125 125 125 125 125

% f-struct. 88.8 95.2 88.8 92.0 88.0

Precision 77.1 80.0 84.7 89.3 89.3

Recall 77.2 75.8 83.7 63.3 62.0

F-score 77.1 77.9 84.2 74.1 73.2

F-structure evaluation - test set

# sent 125 125 125 125 125

% f-struct. 88.8 96.8 94.4 96.8 96.0

Precision 78.1 81.7 83.6 86.8 87.3

Recall 79.0 80.0 82.5 70.0 69.7

F-score 78.5 80.8 83.0 77.5 77.5

Table 10.3: C-structure parsing results (labelled F-score) and F-structure evalu-

ation for different German grammars and parser (DCU250)

159



10.3 Parsing into LFG F-structures

berk.par berk.fun

# F-structures 1220 1268

# clashes 146 98

error type: ≥ 2 GF in local tree

HD 46 22

OA 29 18

SB 23 26

OC 19 5

DA 3 1

all with ≥ 2 GF 120 72

Table 10.4: Types of errors in berk.par and berk.fun

10.3.3.1 Error Analysis

The observations from the TiGer DB/DCU250 evaluation raise the following ques-

tions:

1. What causes the higher number of clashes resulting in fewer F-structures in

the Berkley parser output when trained on syntactic nodes + grammatical

functions (berk.par)?

2. What is the reason for the low recall for F-structures generated on the

output of the function labeller?

To answer the first question I looked at the parse trees in the TiGer DB

development set which did not receive a F-structure. For the Berkeley parser

trained on categories and grammatical functions (berk.par), there are 146 F-

structure clashes, while for the FunTag-labeled trees from the Berkeley parser

trained on syntactic nodes, only (berk.fun) 98 trees did not receive an F-structure

(Table 10.4). 41 of the trees exhibiting a clash were the same in both settings,

berk.par and berk.fun.

For the 146 trees in the berk.par output not receiving a F-structure, most

clashes (120) were caused by the parser assigning the same governable grammati-

cal function twice to child nodes of the same parent node, thus violating the LFG

coherence condition. 46 out of the 146 trees had an S or VP node with two heads

160



10.3 Parsing into LFG F-structures

(HD), 23 had more than one subject (SB), 29 had more than one accusative ob-

ject (OA), 3 two dative objects (DA), and 19 more than one clausal object (OC)

child node.

For the 98 trees in the berk.fun output not receiving a F-structure, 22 out of

the 98 trees had a clause with two heads (HD), 26 had more than one subject

(SB), 18 had more than one accusative object (OA), 1 two dative objects (DA),

and 5 more than one clausal object (OC) child node. This shows that most of

the clashes, namely 120 out of the 146 clashes in the berk.par parser output and

72 out of the 98 clashes in the berk.fun output are caused by the assignment of

2 or more identical GF labels in the same local tree.

This type of error is caused by the split-and-merge technique applied by the

Berkeley parser and by horizontal Markovisation, where long grammar rules are

broken up to avoid data sparseness. Hence the parser does not have as much

context information as before, which results in errors like the ones described

above. FunTag has a similar problem: the grammatical function labelling task

is designed as a binary classification problem, where each node in the tree is

assigned a GF label, independently of the other node labels in the tree.

Another reason for the high number of clashes is POS tag errors. In many

cases where there are two head child nodes in a sentence or verb phrase, the

parser assigned the label VVFIN (finite full verb) to an infinite verb or a past

participle (Figure 10.7). In the output of the Berkeley parser trained on syntactic

node labels only, these POS errors do not occur. The problem arises from the

flat annotation in the TiGer treebank, where many terminal nodes are directly

attached to the sentence node, with grammatical function labels attached to the

terminals. This blows up the set of POS tags when merging grammatical function

labels with the node labels. As a result it becomes much harder for the parser

to assign the correct POS tag when trained on the larger label set of syntactic

nodes + grammatical functions.

Coordinations constitute another problem. Figure 10.8 shows a Berkeley parse

tree where the parser did not recognise the coordinated sentence, but attached

all terminal nodes to the same S node. As a result the tree shows a very flat

structure with two finite verbs directly attached to the sentence node. As both

finite verbs are assigned the label (HD) by the Parser or FunTag, respectively,

parse trees with this particular error do no get a F-structure. This error type

161



10.3 Parsing into LFG F-structures

(26) [...]
[...]

darüber
about it

läßt
let

sich
refl

trefflich
felicitous

streiten
dispute

“that’s open to dispute”

S

HD

VVFIN

läßt

OA

PRF

sich

MO

ADV

trefflich

HD

VVFIN

streiten

Figure 10.7: POS tag error by the Berkeley parser trained with GF

occurs for both the parser-assigned as well as the FunTag-assigned grammatical

functions.

The error analysis above explains the lower number of trees without a valid

F-structure in the berk.par parser output, but does not account for the low recall

values for the two-step labelling architecture based on the Berkeley parser trained

on syntactic nodes only and FunTag. The next section takes a detailed look at

the output of the grammatical function labeller.

10.3.3.2 Evaluating FunTag

Despite the better constituent-based parsing results (evalb, GF (berk.par, berk.-

fun, berk.fun.par)), results for F-structure evaluation are better for F-structures

generated from Berkeley parser output when trained on extended node labels in-

cluding grammatical functions (berk.par) than for the two-stage function labelling

architecture. This is more evidence for the already strong claim that Parseval

scores do not reflect real parser output quality.

In fact, there may be a structural difference between parser output trees from

parsers trained on a combination of syntactic nodes and grammatical functions

and parsers trained on syntactic nodes only, which is not reflected in the Par-

seval results. Parse trees generated by a grammatical function-trained parser

might be better at capturing important properties of the semi-free German word

order, even if this is not reflected in the evalb evaluation. To investigate the

differences between the different types of parse trees I first evaluate the sets of

162



10.3 Parsing into LFG F-structures

(27) Boernsen
Boernsen

dementiert
denies

dies
this

zwar
indeed

energisch,
energetically,

streitet
disclaims

aber
but

ein
an

Interesse
interest

an
in

dem
the

Job
job

nicht
not

grundsätzlich
generally

ab
particle

“Boernsen resolutely denies this, but does not generally deny an interest in the

job”

Figure 10.8: Berkeley parser error

grammatical functions a) learned by the parser and b) assigned by the FunTag

function labelling software. Then I present an error analysis for sentences which

did not obtain a F-structure.

In the evaluation I compare results for TiGer treebank grammatical func-

tions assigned by the parser (bitpar, stan, berk.par) and by FunTag (berk.fun,

berk.fun.par). In the berk.fun setting the function labelling software was trained

on gold trees from the TiGer treebank (TIGER48000). In the berk.fun.par set-

ting, the SVM is not trained on gold treebank trees, but on training instances

extracted from parser output trees. Table 10.5 shows F-scores for grammatical

function labels for the TiGer DB test set. I also assigned grammatical functions

to gold treebank trees (gold) using FunTag, which yields an upper bound of 97%

F-score. Overall results for the two-step approach, where grammatical function

tags are assigned by FunTag after parsing, are slightly higher than for the parser-

assigned GFs. For FunTag trained on gold treebank trees we obtain an F-score

of 86.2%, while the improved training method (training on parser output trees)

achieves best results with 86.8%. Results for parser-assigned grammatical func-

tion tags are lower with 78.4% (BitPar), 81.7% (Stanford) and 84.6% (Berkeley).

This is a bit of a puzzle: results for the CFG trees as well as for the grammati-

163

Chapter10/Chapter10Figs/boernsen2.eps


10.3 Parsing into LFG F-structures

GF bitpar stan berk.par berk.fun berk.fun.par

AC 97.6 98.9 98.7 99.0 99.0

ADC - - - - -

AG 62.0 72.1 77.7 75.0 75.8

AMS 35.3 58.1 53.8 42.9 44.4

APP 36.9 43.9 52.8 58.0 59.5

AVC 20.0 72.7 75.0 70.6 85.7

CC 52.6 62.0 56.3 43.1 43.0

CD 94.6 96.7 96.7 96.4 97.1

CJ 57.9 58.3 65.1 72.2 72.6

CM 72.4 83.6 77.4 77.9 77.9

CP 92.2 96.7 95.9 97.1 97.1

CVC 3.6 10.9 20.0 60.4 63.0

DA 12.6 28.8 45.1 50.5 50.5

DH 14.8 13.3 12.5 33.3 30.0

DM - - - - -

EP 33.6 76.8 74.6 83.0 85.7

HD 91.2 94.1 94.3 95.0 95.6

JU 73.4 93.2 92.7 90.8 95.3

MNR 45.0 52.1 56.1 59.9 62.4

MO 65.3 71.1 76.0 77.5 78.6

NG 77.0 92.8 93.7 96.1 96.7

NK 92.5 93.4 95.1 95.9 96.2

NMC 78.4 93.6 95.8 96.7 100.2

OA 48.5 55.4 64.2 66.8 66.1

OA2 - - - - -

OC 53.9 54.5 57.7 60.4 60.5

OG 0.0 0.0 0.0 18.2 18.2

OP 15.1 11.7 25.9 55.2 52.4

PAR 39.3 35.8 39.0 48.1 48.0

PD 37.1 41.7 46.9 58.7 58.9

PG 15.8 10.2 49.3 63.3 63.3

PH 37.8 67.8 62.7 65.8 73.6

PM 95.9 97.5 97.7 97.5 98.0

PNC 72.2 77.9 81.5 82.8 84.0

RC 60.4 63.3 77.1 59.1 58.4

RE 29.1 34.4 23.9 33.7 33.9

RS 7.4 13.3 13.3 10.5 31.6

SB 68.8 73.3 79.6 78.6 79.4

SBP 14.3 8.5 57.1 77.2 74.2

SP - - - - -

SVP 88.2 95.6 92.4 94.8 94.8

UC 0.0 44.4 43.1 40.7 54.2

TOTAL: 78.4 81.7 84.6 86.2 86.8

Table 10.5: F-scores for TiGer grammatical functions assigned by the different

parsers and by the function labeller (TiGer DB)

164



10.3 Parsing into LFG F-structures

cal function tags for the berk.fun and berk.fun.par settings are better than for the

three parsers when trained on a combination of syntactic nodes and grammatical

functions, but F-scores for F-structure evaluation for the two-step architecture of

berk.fun and berk.par are substantially lower than for the combined approach.

While precision for the two-step approach is around 2% higher than for the parser-

assigned GFs, recall decreases dramatically to 62-64.7% for the development set

and to 55-58% for the test set (Figure 10.1) for training on 25,000 trees (and

similarly for training on 48,000 trees).

Below I take a look at the FunTag output for the gold standard-trained and the

parser output-trained function labeller and discuss the differences in F-structures

arising from the different input.

Looking at the most crucial differences in grammatical function labelling be-

tween the parser-assigned grammatical functions and the ones assigned by Fun-

Tag, we cannot find an explanation for the lower recall for F-structures in the

two-step architecture. Table 10.8 shows results (accuracy: number of correctly

labelled GFs / number of GFs in the gold standard) for grammatical functions

occurring at least 100 times in the gold standard. For most of them (22 out

of 28), FunTag F-scores are higher than results for the parser-assigned labels.

Exceptions are genitive attributes (AG), comparative complements (CC), dative

objects (DA), clausal objects (OC), relative clauses (RC) and subjects (SB).

The low recall in the FunTag output is not caused by incorrect function la-

belling, but by missing grammatical functions, violating the LFG completeness

condition. Note that the evaluation in Tables 10.5 and 10.8 reports F-score and

accuracy for those syntactic nodes only which have a corresponding node in the

parser output. Evaluating grammatical functions is not straightforward. Follow-

ing previous research in function labelling (Blaheta and Charniak, 2000; Chrupala

et al., 2007), in order to know against what to evaluate, for each grammatical

function label in the parser output which is attached to a syntactic node, we have

to find a corresponding node in the gold tree. Table 10.6 shows the number of

matching node instances found in both the gold standard and the parser output

(matching nodes), the number of instances with a GF assigned by the parser or

by FunTag (GF labels), and the number of correctly assigned GF labels (match-

ing node-GF label pairs). There are almost 1000 more node-GF label pairs in the

berk.fun and berk.fun.par settings having a corresponding node-GF label in the

165



10.3 Parsing into LFG F-structures

matching GF matching

setting nodes labels node-GF label pairs

berk.par 38885 39256 36284

berk.fun 39889 39357 37103

berk.fun.par 39867 39039 37189

Table 10.6: GF evaluation: number of matching nodes in the gold standard and

in the parser output (matching categorial nodes), number of GFs assigned in the

test set (GF labels), number of correcly assigned GFs (matching node-GF-label

pairs)

gold berk.par berk.fun berk.fun.par

all S nodes 2980 3001 2979 2979

S with GF 1399 1396 1067 998

Table 10.7: Number of S nodes with and without a GF in the gold trees and in

the parser output

gold standard.

However, if we look at particular syntactic categories such as S, we find ap-

proximately the same number (about 3000) of S nodes in the gold standard and

in the various parser outputs (Table 10.7). Out of these, 1399 S nodes in the

gold standard are associated with a grammatical function (S nodes which are at-

tached to the root node do not bear a grammatical function label). In the output

of berk.par, where the function labelling was done by the parser, we have nearly

the same number of grammatical function labels (1396), while for the two-step

architecture (berk.fun and berk.fun.par) only about 1000 S nodes are assigned a

grammatical function. S nodes without a GF label often fail to obtain the correct

or in fact any LFG F-structure equation and are therefore often not included in

the F-structure (and with them all child nodes of the S node), which drastically

reduces recall for the two-step architecture (Berkeley/FunTag).

166



10.3 Parsing into LFG F-structures

GF berk.par berk.fun berk.fun.par

AC (3651/3688) 0.990 (3652/3688) 0.990 (3660/3688) 0.992

AG (798/1049) 0.761 (773/1049) 0.737 (786/1049) 0.749

APP (89/175) 0.509 (104/175) 0.594 (104/175) 0.594

CC (48/103) 0.466 (33/103) 0.320 (32/103) 0.311

CD (809/839) 0.964 (819/839) 0.976 (823/839) 0.981

CJ (1392/2280) 0.611 (1584/2280) 0.695 (1578/2280) 0.692

CM (72/104) 0.692 (74/104) 0.712 (74/104) 0.712

CP (347/361) 0.961 (352/361) 0.975 (351/361) 0.972

DA (80/195) 0.410 (75/195) 0.385 (74/195) 0.379

HD (4912/5207) 0.943 (4933/5207) 0.947 (4966/5207) 0.954

MNR (605/1075) 0.563 (614/1075) 0.571 (638/1075) 0.593

MO (3478/4562) 0.762 (3503/4562) 0.768 (3485/4562) 0.764

NG (230/244) 0.943 (232/244) 0.951 (237/244) 0.971

NK (14860/15495) 0.959 (14869/15495) 0.960 (14918/15495) 0.963

NMC (250/263) 0.951 (263/263) 1.000 (263/263) 1.000

OA (880/1360) 0.647 (883/1360) 0.649 (855/1360) 0.629

OC (884/1575) 0.561 (873/1575) 0.554 (874/1575) 0.555

OP (72/343) 0.210 (150/343) 0.437 (136/343) 0.397

PAR (40/138) 0.290 (51/138) 0.370 (49/138) 0.355

PD (186/416) 0.447 (236/416) 0.567 (231/416) 0.555

PG (56/115) 0.487 (75/115) 0.652 (76/115) 0.661

PH (74/131) 0.565 (74/131) 0.565 (89/131) 0.679

PM (195/203) 0.961 (196/203) 0.966 (197/203) 0.970

PNC (848/1045) 0.811 (870/1045) 0.833 (868/1045) 0.831

RC (200/276) 0.725 (137/276) 0.496 (131/276) 0.475

RE (23/122) 0.189 (25/122) 0.205 (25/122) 0.205

SB (2083/2661) 0.783 (2047/2661) 0.769 (2046/2661) 0.769

SVP (194/208) 0.933 (199/208) 0.957 (199/208) 0.957

TOTAL (37562/44681) 0.841 (37931/44681) 0.849 (38013/44681) 0.851

Table 10.8: Accuracy for grammatical functions assigned by the Berkeley parser

(berk.par) and in the two-step architecture (berk.fun, berk.fun.par) (TiGer DB)

167



10.3 Parsing into LFG F-structures

bitpar stanford berk.par berk.fun berk.fun.par

TüBa-D/Z-25000 - c-structure evaluation

# sent < 40 98 98 98 98 98

# parse 98 98 98 98 98

F-score no GF 84.4 86.6 89.3 89.2 89.2

F-score GF 72.7 75.5 80.2 76.3 76.0

tagging acc. 94.7 96.4 96.5 96.4 96.4

TüBa-D/Z F-structure evaluation

# sent 100 100 100 100 100

% f-struct. 98.0 96.0 96.0 99.0 99.0

Precision 68.2 73.6 76.9 75.8 77.0

Recall 42.0 41.1 45.1 39.3 34.5

F-score 52.0 52.7 56.9 51.7 47.7

TiGer25000 - F-structure evaluation

# sent 100 100 100 100 100

% f-struct. 93.0 95.0 94.0 98.0 94.0

Precision 66.5 70.0 72.9 76.4 77.8

Recall 66.3 67.5 70.9 61.3 60.8

F-score 66.4 68.7 71.8 68.0 68.2

TiGer48000 - F-structure evaluation

# sent 100 100 100 100 100

% f-struct. 93.0 96.0 89.0 95.0 90.0

Precision 68.7 72.1 73.3 76.1 75.9

Recall 69.8 71.4 70.6 58.7 59.9

F-score 69.2 71.7 72.0 66.3 64.4

Table 10.9: TüBa-D/Z c-structure and TüBa-D/Z / TiGer F-structure evaluation

for different German grammars and parser (TUBA100)

10.3.4 C-Structure and F-Structure Parsing Results for

the TüBa-D/Z

In Chapter 6 I investigated the impact of treebank design on PCFG parsing.

In this section I present a task-based evaluation of the treebanks by comparing

the suitability of TiGer and TüBa-D/Z for the automatic acquisition of LFG

resources.

Table 10.9 presents parsing results for c-structures and F-structures for the

TüBa-D/Z and TiGer trained parsers (with and without FunTag) against TUBA-

100. Evalb results for the TüBa-D/Z-trained parser outputs are, as usual, far

higher than the ones for TiGer, with F-scores in the range of 84.4% (bitpar, noGF)

to 89.3% (berk.par, noGF). Training on TüBa-D/Z, the Berkeley parser yields

slightly higher results when trained on syntactic nodes including grammatical

168



10.3 Parsing into LFG F-structures

functions (berk.par, noGF: 89.3% vs. berk.fun, noGF: 89.2%), but considering

the small size of the TUBA100 test set we should take this with a grain of salt.

At the level of F-structure we can now compare results for F-structures gen-

erated from the output of the three parsers trained on TiGer (25,000 and 48,000

trees) and on the TüBa-D/Z. The TiGer-trained parser output has been anno-

tated with a version of the annotation algorithm adapted to the TiGer DB, for

the TüBa-D/Z-trained parser output I used the TUBA100-style annotation al-

gorithm. Looking at precision, results for the two versions of the annotation

algorithm are quite similar. For F-structures annotated with the TUBA100-style

annotation algorithm on TüBa-D/Z-trained parser output, however, recall is dra-

matically low. This is partly due to the small size of the TUBA100, which is not

sufficient as a development/test set for grammar development. However, there

are other reasons, too.

For the FunTag approach, the same problem we encountered when assigning

TiGer treebank-style grammatical functions applies to the TüBa-D/Z, too. Due

to missing grammatical function labels in the FunTag output, recall for the two-

step architecture is much lower than for the setting where GF tags are assigned by

the parser. Furthermore, we also observe a very low recall for F-structures gen-

erated from parser output from the TüBa-D/Z-trained parsers (bitpar, stanford,

berk.par). In addition to the restricted size of the TUBA100, there are prob-

lems with regard to the annotation scheme of the TüBa-D/Z for treebank-based

grammar acquisition.

One problem is caused by the TüBa-D/Z annotation scheme, where phrases

which do not display a clear dependency relation to the other constituents in

the tree are simply attached directly to the virtual root node. Arguably this

treatment is suitable for phrases separated by a colon or a dash (Figure 10.9),

but is widely applied to other phrases, too (Figure 10.10). In contrast to this, the

TiGer annotation scheme would annotate the adjectival phrase exzellent gespielt

von Catherine Deneuve (brilliantly performed by Catherine Deneuve) in Figure

10.10 as a sister node of the NP and assign the label APP (apposition). The

TüBa-D/Z annotation scheme results in crossing branches (which have to be

resolved; see Figure 10.10), and the final tree structure makes it impossible for

the LFG F-structure annotation algorithm do disambiguate the sentence and

find a suitable dependency relation for the node attached to the root node. In

169



10.3 Parsing into LFG F-structures

(28) Landesvorsitzende
state executive president

Ute
Ute

Wedemeier
Wedemeier

:
:

Ein
an

Buchungsfehler
accounting error

Figure 10.9: High attachment for independent phrases in TüBa-D/Z

most cases this TüBa-D/Z annotation practice cannot be resolved and so phrases

attached high are often not represented in the F-structure, and this contributes

to the low recall for the TüBa-D/Z F-structures.

Another problem is caused by the high degree of underspecification in the

TüBa-D/Z annotation. The label MOD, for example, describes an ambiguous

modifier. It is not possible to determine which node is modified by a MOD-

labelled node. The MOD label occurs with high frequency in the TüBa-D/Z (>

24,300).

(30) (NX (NX-HD 150
150

000
000

Mark)
mark

(NX– Sammelgelder))
charity moneyNOM

(31) (NX (NX-HD der
the

Vorstand)
management

(NX– der
(of) theGEN

Wohlfahrtsorganisation))
charity organisationGEN

(32) (NX (NX-HD Friede)
peace

(NX– den
(for) theDAT

Hütten))
barracksDAT

(33) (NX (NX-HD ein
a

Dogmatiker)
dogmatist

(NX– wie
like

Perot))
PerotNOM

Another case of underspecification is the annotation of appositions in the TüBa-

D/Z (see Section 5.3.1). The same is true for TüBa-D/Z internal NP structure

170

Chapter10/Chapter10Figs/notAttached1.eps


10.3 Parsing into LFG F-structures

(29) Ein
A

Krimistück
murder mystery

mit
with

feinem
fine

,
,
melancholischem
melancholic

Ton
tone

,
,
in
in

dem
which

eine
a

Frau
woman

,
,
exzellent
excellent

gespielt
played

von
by

Catherine
Catherine

Deneuve
Deneuve

,
,
wieder
again

zu
to

Sinnen
senses

kommt
comes

A murder mystery with a subtle, melancholic note, in which a woman, bril-

liantly performed by Catherine Deneuve, comes to her right mind

Figure 10.10: High attachment for independent phrases in TüBa-D/Z

in general. At first glance it seems as if the TüBa-D/Z annotation of NPs and

PPs is more specific than the one in TiGer, because TüBa-D/Z explicitly marks

the head (HD) of an NP, or the prepositional object NP inside a PP, while

TiGer uses the underspecified label NK (noun kernel) for all nouns, adjectives and

determiners attached to the NP or PP. However, examples (30-33) (TüBa-D/Z)

and (34-37) (TiGer) show that, despite the head annotation in the TüBa-D/Z,

the TüBa-D/Z trees reveal less information than the TiGer trees. In the TiGer

annotation scheme, the second constituent in (31) e.g. would be annotated with

the grammatical function label AG (genitive attribute, as in (35)), (32) would

obtain the label DA (dative attribute, as in (36)), and (33) would be annotated

as comparative complement as in (37). In the TüBa-D/Z, all four examples

(30-33) exhibit the same tree structure, with the second NP (NX) assigned the

default label ’-’ (non-head). Part of the missing information can be retrieved

from morphological annotations, but this would require an extensive treebank

transformation and probably result in a sparse data problem. For parser output

trees morphological information is not in general available. Moreover, the focus

of this thesis is on investigating treebank design and its impact on parsing and

171

Chapter10/Chapter10Figs/notAttached2.eps


10.3 Parsing into LFG F-structures

LFG grammar acquisition. As things stand, the grammars extracted from TiGer

encode more specific information than the TüBa-D/Z grammars.

(34) (NP (NM-NK 150
150

000)
000

(NN-NK
mark

Mark) (NN-NK
charity moneyNOM

Sammelgelder))

(35) (NP (ART-NK der)
the

(NN-NK
management

Vorstand) (NP-AG
(of) theGEN

der
charity organisationGEN

Wohlfahrtsorganisation))

(36) (NP (NN-NK Friede)
peace

(NP-DA den
(for) theDAT

Hütten))
barracksDAT

(37) (NP (ART-NK ein)
a

(NN-NK Dogmatiker)
dogmatist

(NP-CC wie
like

Perot))
PerotNOM

Moving on to the annotation of grammatical functions in the trees, we note

a substantial gap between TiGer and TüBa-D/Z (Table 10.10). In the original

treebanks we have roughly the same number of grammatical functions (44 in

TiGer versus 40 in the TüBa-D/Z). In the parser/FunTag output of the TiGer-

trained parsers on the TiGer CCG2000 test set (fully presented in Section 10.3.5

below) there are between 39 and 41 different grammatical functions, a number

only slightly lower than the one attested in the TiGer CCG2000 gold test set (42),

while the number of different TüBa-D/Z GF labels in TüBa-D/Z-trained parser

output against the CCG2000 gold standard is far smaller with 33 different gram-

matical function labels. The number of different GF labels reproduced by the

different TüBa-D/Z-trained parsers and FunTag varies widely. While the Berke-

ley parser trained on a combination of syntactic nodes and grammatical functions

assigns 31 different GFs (a number close to the one in the gold test set), the other

parsers perform considerably worse with 27 (BitPar) and 24 (Stanford) different

grammatical function labels. The SVM-based function labeller performs even

worse. In both settings (berk.fun, berk.par) FunTag only manages to reproduce

19 of the original TüBa-D/Z GF labels.

This raises the suspicion that the design of the GF label set in the TüBa-

D/Z is not optimal for machine learning-based NLP applications, such as data-

driven parsing, function labelling and grammar acquisition. As already men-

tioned in Section 2.2, many of the grammatical functions in the TüBa-D/Z occur

with a low frequency only (e.g. OA-MODK, ON-MODK, OADVPK, OG-MOD,

172



10.3 Parsing into LFG F-structures

CCG2000 gold bitpar stanford berk.par berk.fun berk.fun.par

TiGer 42 41 42 41 40 39

TüBa-D/Z 33 27 24 31 19 19

Table 10.10: Number of different grammatical functions in the TiGer/TüBa-D/Z

CCG2000 test set and reproduced by the different parsers and FunTag

OADJP-MO, OADVP-MO, FOPPK, MODK), which makes it extremely difficult

for statistical methods to learn these labels.

Table 10.11 shows F-scores for TüBa-D/Z grammatical function labelling for

the TüBa CCG2000 test set. With the exception of BitPar, which shows better

results on the TüBa-D/Z test set (compare Table 10.5 for TiGer GF results), all

other parsers perform better on assigning TiGer grammatical functions. Compar-

ing performance for the main grammatical functions (subject (ON), accusative

object (OA) and dative object (DA), Table 10.12), Table 10.11 shows that for

dative objects the TüBa-D/Z-trained Berkeley parser outperforms the TiGer-

trained parsing model (one-step architecture), while for all other grammatical

functions we obtain better results for TiGer. Again the SVM-based FunTag

shows poor performance on the TüBa-D/Z data, while for TiGer the function la-

beller trained on parser output (berk.fun.par) outperforms all other GF labelling

approaches on subjects, accusative and dative objects.

The asymmetric behaviour of FunTag (TiGer vs. TüBa-D/Z) might be due to

the different data structures in the treebanks. It seems as if the topological fields

in TüBa-D/Z remove necessary contextual information, which would otherwise

be encoded in the FunTag training feature set.

10.3.5 C-Structure and F-Structure Parsing Results in a

CCG-Style Evaluation

In order to put the (potentially preliminary) results on the small (hand-crafted)

TüBa-D/Z test set TUBA100 into perspective, I complement the evaluation with

a CCG-style experiment Hockenmaier (2003), where I evaluate on a larger test set

of 2000 sentences (TiGer CCG2000 and TüBa CCG2000) from both TiGer and

TüBa-D/Z. The CCG-style gold standard is generated automatically by applying

173



1
0
.3

P
a
rsin

g
in

to
L
F
G

F
-stru

c
tu

re
s

GF bitpar stanford berk.par berk.fun berk.fun.par

APP (111/543) 0.279 (314/674) 0.545 (557/708) 0.818 (167/234) 0.708 (129/228) 0.640

ES (0/6) - (0/6) - (0/6) - (0/4) - (0/4) -

FOPP (21/241) 0.130 (24/276) 0.136 (96/282) 0.374 (20/86) 0.323 (15/86) 0.265

FOPPK (0/0) - (0/1) - (0/1) - (0/0) - (0/0) -

FOPPMOD (0/9) - (0/5) - (0/9) - (0/5) - (0/5) -

HD (24707/25429) 0.970 (25790/26293) 0.974 (26181/26600) 0.984 (9532/9874) 0.965 (9534/9858) 0.967

KONJ (1269/1512) 0.840 (1329/1583) 0.852 (1552/1759) 0.884 (434/570) 0.783 (422/559) 0.789

MOD (1201/1517) 0.703 (1218/1628) 0.716 (1388/1683) 0.801 (423/601) 0.752 (418/601) 0.757

MODMOD (4/11) 0.400 (4/16) 0.235 (6/17) 0.387 (0/7) - (0/7) -

OA (613/1109) 0.540 (669/1193) 0.593 (879/1223) 0.720 (189/442) 0.482 (170/442) 0.466

OADJP (0/8) - (0/6) - (0/10) - (0/3) - (0/3) -

OADVP (0/9) - (0/11) - (1/10) 0.154 (1/4) 0.400 (1/4) 0.400

OADVPMO (0/0) - (0/1) - (0/1) - (0/0) - (0/0) -

OAK (0/1) - (0/1) - (0/1) - (0/0) - (0/0) -

OAMOD (0/42) - (0/76) - (8/94) 0.119 (0/30) - (0/30) -

OD (22/161) 0.190 (25/169) 0.215 (84/171) 0.575 (11/62) 0.275 (11/62) 0.275

ODMOD (0/0) - (0/2) - (0/2) - (0/1) - (0/1) -

OG (0/4) - (0/4) - (0/3) - (0/1) - (0/1) -

ON (2000/2350) 0.776 (1992/2445) 0.782 (2244/2525) 0.861 (758/1000) 0.723 (725/1000) 0.728

ONK (0/1) - (0/1) - (0/2) - (0/1) - (0/1) -

ONMOD (2/71) 0.048 (6/86) 0.116 (10/97) 0.145 (0/39) - (0/39) -

OPP (96/274) 0.344 (98/317) 0.326 (153/326) 0.453 (24/106) 0.329 (16/106) 0.254

OPPK (0/1) - (0/1) - (0/1) - (0/0) - (0/0) -

OPPMOD (0/16) - (0/14) - (0/20) - (0/5) - (0/5) -

OS (79/166) 0.532 (126/195) 0.604 (165/208) 0.637 (21/62) 0.359 (21/62) 0.385

OSMOD (0/8) - (0/8) - (1/8) 0.182 (0/3) - (0/3) -

OV (945/980) 0.956 (930/1004) 0.941 (973/991) 0.975 (310/332) 0.944 (313/332) 0.946

PRED (149/398) 0.456 (170/455) 0.462 (242/457) 0.565 (53/183) 0.406 (51/183) 0.394

PREDK (0/1) - (1/1) 1.000 (1/2) 0.667 (0/0) - (0/0) -

PREDMOD (1/7) 0.154 (0/16) - (0/22) - (0/12) - (0/12) -

VMOD (682/1169) 0.524 (750/1266) 0.554 (955/1361) 0.680 (299/450) 0.657 (280/450) 0.662

VMODK (1/1) 1.000 (0/0) - (0/1) - (0/1) - (0/1) -

VPT (179/179) 1.000 (180/180) 1.000 (181/181) 1.000 (56/56) 1.000 (56/56) 1.000

Total 0.881 0.889 0.919 0.883 0.886

Table 10.11: F-scores for grammatical functions assigned by the different parsers and by the function labeller (TüBa-

D/Z, CCG2000)

174



10.3 Parsing into LFG F-structures

GF bitpar stan berk.par berk.fun berk.fun.par

TiGer25000 - GF evaluation

DA 20.0 31.3 52.5 75.9 77.1

OA 67.5 70.9 79.5 85.3 87.0

SB 82.9 84.3 90.0 88.7 91.9

All GF 90.0 90.9 93.1 94.5 95.6

TüBa-D/Z-25000 - GF evaluation

OD 19.0 21.3 56.8 46.1 45.4

OA 52.8 57.1 69.0 58.1 56.0

ON 77.4 77.9 85.2 80.8 81.3

All GF 88.1 88.9 91.9 87.1 87.5

Table 10.12: Evaluation of main grammatical functions in TiGer and TüBa-

D/Z (dative object: DA/OD, accusative object: OA, prepositional object: OP,

subject: SB/ON) on the CCG2000 test set

the LFG F-structure annotation algorithm to gold treebank trees. I evaluate

the parser output F-structures against the automatically generated gold tree F-

structures. The CCG-style evaluation provides a fairer basis for comparing the

results for the different versions of the annotation algorithm. I expect that the

larger size of the TiGer DB gold standard (both development and test sets) helped

to improve results for TiGer treebank-based F-structure annotation, especially

for recall. The CCG-style experiment should, at least partly, make up for this,

as the F-structures are evaluated against automatically annotated F-structures

from gold tree input. This means that grammar phenomena which did not occur

in the gold standard (development sets) and thus cannot be dealt with by the

annotation algorithm are excluded from the evaluation.

Table 10.13 shows evalb results for c-structures and F-structures for TiGer

and TüBa-D/Z. We observe the same parser ranking as before (BitPar > Stan-

ford > Berkeley), and again the Berkeley parser gives the best constituency re-

sults for the TiGer training set when trained on syntactic nodes only (berk.fun,

berk.fun.par), while for the TüBa-D/Z data the parser trained on a combination

of syntactic node labels with grammatical functions gives slightly better results

(berk.par). This confirms our findings from the TUBA100-based TüBa-D/Z eval-

175



10.3 Parsing into LFG F-structures

bitpar stanford berk.par berk.fun berk.fun.par

TiGer25000 - c-structure evaluation

# sent <= 40 1939 1939 1939 1939 1939

# parses 1935 1938 1935 1937 1937

F-score noGF 73.9 75.7 80.6 82.4 82.4

F-score GF 62.7 64.2 71.0 73.5 74.3

tagging acc. 95.8 97.3 96.3 96.8 96.8

TiGer25000 - F-structure evaluation (CCG-style)

# sent 2000 2000 2000 2000 2000

% f-struct. 91.3 92.0 92.0 95.3 93.4

Precision 79.2 81.9 84.5 87.9 88.6

Recall 79.2 80.7 84.0 72.6 69.8

F-score 79.2 81.3 84.2 79.5 78.1

TüBa-D/Z-25000 - c-structure evaluation

# sent <= 40 1929 1929 1929 1929 1929

# parses 1927 1927 1911 1927 1927

F-score 87.2 88.3 91.5 90.9 90.9

F-score GF 73.4 77.1 83.2 78.1 77.6

tagging acc. 94.6 96.4 96.7 96.6 96.6

TüBa-D/Z-25000 - F-structure evaluation (CCG-style)

# sent <= 40 2000 2000 2000 2000 2000

% f-struct. 90.5 91.3 92.4 92.1 90.6

Precision 73.6 77.3 81.0 81.1 81.7

Recall 45.3 46.1 52.0 38.7 35.4

F-score 56.1 57.7 63.3 52.4 49.4

Table 10.13: C-structure parsing results (labelled F-score) and F-structure eval-

uation for different TiGer and TüBa-D/Z grammars and parser (CCG-style)

uation in the last section.

On the F-structure level, F-scores for the CCG-style evaluation are clearly

higher than for evaluating against the different hand-crafted gold standards (Ta-

ble 10.14). This is not so much due to a higher precision (in fact results for

the DCU250 gold standard for the TiGer-trained parsers, to take but one exam-

ple, are only around 1-3% lower), but to a better recall, resulting from the fact

that some constructions causing a clash when evaluating against the F-structures

for the hand-crafted gold standards are missing in the automatically generated

CCG-style gold standard, too. F-structures generated from the output of TüBa-

D/Z-trained parsers show lower precision than for TiGer-trained parsers, but

even here best results are still over 80%. Recall, however, is again very low with

a best score of 52% for the TüBa-D/Z-trained Berkeley parser (berk.par), most

likely due to the limited size of the TUBA100 development set for constructing

176



10.3 Parsing into LFG F-structures

GF TiGer (berk.par) TüBa-D/Z (berk.par)

prec. rec. f-sc. prec. rec. f-sc.

adj gen 823/931=88 823/963=85 87 232/269=86 232/636=36 51

adj rel 107/246=43 107/236=45 44 47/187=25 47/144=33 28

ams 11/14=79 11/23=48 59 0/0=0 0/3=0 0

app 301/433=70 301/436=69 69 99/134=74 99/430=23 35

app clause 12/82=15 12/97=12 13

circ form 6/11=55 6/7=86 67 0/0=0 0/1=0 0

comp 127/244=52 127/205=62 57 502/635=79 502/668=75 77

comp form 94/119=79 94/116=81 80 51/111=46 51/68=75 57

conj 1342/1727=78 1342/1807=74 76 882/1188=74 882/1697=52 61

coord form 657/694=95 657/717=92 93 414/455=91 414/651=64 75

da 64/159=40 64/156=41 41 58/109=53 58/150=39 45

det 3941/4054=97 3941/4065=97 97 2056/2160=95 2056/3628=57 71

det type 3979/4008=99 3979/4026=99 99 2135/2181=98 2135/3679=58 73

fut 4/5=80 4/6=67 73 46/51=90 46/60=77 83

measured 5/5=100 5/7=71 83 1/2=50 1/8=12 20

mo 5056/7048=72 5056/7036=72 72 2256/2847=79 2256/6387=35 49

mo type 177/179=99 177/181=98 98

mod 37/44=84 37/40=92 88 12/15=80 12/27=44 57

name mod 417/467=89 417/480=87 88 137/147=93 137/516=27 41

number 293/360=81 293/362=81 81 108/150=72 108/259=42 53

oa 827/1196=69 827/1175=70 70 656/1114=59 656/1127=58 59

obj 3340/3527=95 3340/3531=95 95 837/923=91 837/3076=27 42

obj gen 1/5=20 1/11=9 13

obl compar 14/39=36 14/58=24 29

op 85/233=36 85/317=27 31 107/284=38 107/311=34 36

part form 172/192=90 172/187=92 91

pass asp 99/104=95 99/103=96 96 196/219=89 196/225=87 88

pd 177/296=60 177/328=54 57 193/364=53 193/449=43 47

perf 34/38=89 34/36=94 92 208/219=95 208/239=87 91

poss 268/281=95 268/282=95 95 161/174=93 161/249=65 76

postcoord form 8/22=36 8/12=67 47 6/11=55 6/17=35 43

precoord form 7/8=88 7/7=100 93 4/4=100 4/7=57 73

pred restr 6/17=35 6/9=67 46

pron form 43/49=88 43/45=96 91 87/94=93 87/98=89 91

pron type 1078/1212=89 1078/1236=87 88 1401/1492=94 1401/1685=83 88

quant 278/310=90 278/319=87 88 49/57=86 49/227=22 35

sb 3239/3870=84 3239/3946=82 83 2050/2704=76 2050/3178=65 70

sbp 34/49=69 34/51=67 68

tiger id 1672/1778=94 1672/1812=92 93 1636/2020=81 1636/2231=73 77

xcomp 909/1114=82 909/1045=87 84 102/199=51 102/159=64 57

Table 10.14: Dependency relations for TiGer and TüBa-D/Z (CCG-style,

berk.par)

177



10.3 Parsing into LFG F-structures

the TüBa-D/Z annotation algorithm and the TüBa-D/Z representation and an-

notation design problems identified in Section 10.3.4. The CCG-style experiment

confirms the results from the evaluation on the small TUBA100 test set on a

much larger data set. The overall best result is an F-structure F-score of 84.2%

for the TiGer-trained Berkeley parser (setting berk.par).

10.3.6 LFG F-structure Annotation with TiGer and TüBa-

D/Z Trained Parsing Resources - Conclusions

So far the results of our experiments indicate that the annotation scheme of

the TiGer treebank is more adequate for the automatic acquisition of LFG re-

sources and treebank-based parsing into LFG representations. The GF label set

in the TüBa-D/Z has been designed with the secondary aim of expressing non-

local dependencies between nodes, while the TiGer grammatical functions focus

solely on encoding more detailed linguistic information about the grammatical

function of the node itself. Therefore one might assume that, despite encoding

less fine-grained linguistic information, the TüBa-D/Z approach to encode non-

local dependencies with the help of grammatical function labels is superior to the

treatment in TiGer, where the same information is expressed through crossing

branches, which have to be resolved before parsing and so can result in a loss of

information. However, this is only true if the TüBa-D/Z grammatical functions

expressing non-local dependencies can be reproduced by a parser or a function

labeller with sufficient reliability and coverage. If this is not possible, the TüBa-

D/Z way of annotating grammatical functions seems less suitable than the one

in TiGer.

Other potential problems for LFG F-structure annotation on TüBa-D/Z trees

have already been addressed in Chapter 6. The parser-based F-structure evalu-

ations presented in this chapter give further evidence for the difficulties arising

from the more hierarchical (and hence in a sense less transparent) structure of

the TüBa-D/Z. To give just one example: in the TüBa-D/Z-style F-structures for

the different parsers/settings, none of the 9 relative clauses (rc) in the TUBA100

(Table 10.15) were identified, while for the TiGer-style F-structures between 2

and 4 of the 11 relative clauses in the TUBA100 were annotated correctly in the

F-structures.

178



10.4 Summary

Overall, it seems as if treebank-based grammar acquisition for the TüBa-D/Z

in general is possible, but raises serious problems. The annotation scheme of

the TüBa-D/Z seems to be less adequate to support our approach of LFG-based

grammar acquisition and parsing, and a number of important problems have to

be addressed, especially for increasing recall, before we can expect high-quality

results for treebank-based acquisition of LFG resources based on the TüBa-D/Z

treebank.

10.4 Summary

This chapter presents an extensive evaluation of the different grammar acquisi-

tion and parsing architectures, using different parsers and FunTag, an automatic

grammatical function labeller. I compared performance for the system based on

two different German treebanks. Results for the different gold standards and

training sets show the same general trends:

• All experiments result in the same parser ranking: BitPar < Stanford <

Berkeley.

• For constituent-based evaluation (evalb), the TiGer treebank-trained Berke-

ley parser trained on syntactic nodes only outperforms the same parser

trained on a combination of syntactic nodes and grammatical function la-

bels, while TüBa-D/Z-trained parsers achieve better results when trained

on a combination of syntactic categories and grammatical function labels.

• For a parser trained on TiGer syntactic nodes without grammatical func-

tions, enlarging the size of the training data does not improve parsing perfor-

mance significantly. For a parser trained on TiGer syntactic nodes merged

with grammatical functions, increased training sets may produce improved

results.

• While precision for F-structures generated from Berkeley parser output is

quite high, recall is still a major problem, especially for the two-step archi-

tecture (Berkeley/FunTag), but also for Tüba-D/Z-generated F-structures.

179



1
0
.4

S
u
m

m
a
ry

TüBa-D/Z-25000

GF bitpar stanford berk.par berk.fun berk.fun.par

(prec/rec) F-score (prec/rec) F-score (prec/rec) F-score (prec/rec) F-score (prec/rec) F-score

ams (100/100) 100 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0

app (20/4) 7 (50/9) 15 (40/18) 25 (38/14) 20 (50/9) 15

app-cl (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0

cc (100/20) 33 (100/40) 57 (100/20) 33 (0/0) 0 (0/0) 0

cj (69/32) 43 (69/26) 38 (67/43) 52 (72/30) 42 (71/29) 41

comp-form (67/40) 50 (100/20) 33 (100/80) 89 (100/20) 33 (100/20) 33

coord-form (86/46) 60 (94/37) 53 (83/50) 62 (92/29) 44 (92/29) 44

da (0/0) 0 (0/0) 0 (25/25) 25 (0/0) 0 (0/0) 0

degree (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0

det (100/53) 70 (100/50) 67 (99/59) 74 (100/40) 57 (100/28) 44

det-type (98/54) 70 (98/51) 67 (99/61) 75 (97/41) 57 (96/28) 44

fut (100/67) 80 (100/50) 67 (100/67) 80 (67/67) 67 (67/67) 67

gl (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0

gr (100/32) 48 (82/37) 51 (86/51) 64 (88/37) 52 (100/24) 38

measured (0/0) 0 (0/0) 0 (100/100) 100 (0/0) 0 (0/0) 0

mo (64/27) 38 (77/27) 40 (71/32) 44 (68/23) 34 (66/19) 30

mod (100/25) 40 (100/50) 67 (0/0) 0 (0/0) 0 (0/0) 0

name-mod (100/7) 12 (100/36) 53 (85/38) 52 (100/25) 40 (100/14) 25

number (100/25) 40 (75/19) 30 (100/19) 32 (100/12) 22 (50/6) 11

oa (37/48) 42 (50/52) 51 (66/71) 69 (60/60) 60 (69/52) 59

obj (80/19) 31 (90/21) 34 (93/30) 45 (93/15) 25 (91/11) 20

oc-fin (62/45) 53 (29/36) 32 (42/45) 43 (75/55) 63 (67/55) 60

oc-inf (50/75) 60 (62/75) 68 (61/64) 62 (77/71) 74 (81/71) 76

op (28/28) 28 (16/17) 16 (38/44) 41 (33/11) 17 (67/11) 19

pass-asp (56/69) 62 (67/77) 71 (71/77) 74 (89/62) 73 (89/62) 73

pd (38/21) 27 (33/14) 20 (38/29) 33 (44/24) 31 (62/27) 37

perf (100/64) 78 (100/64) 78 (100/73) 84 (100/55) 71 (100/55) 71

pron-form (100/100) 100 (100/100) 100 (100/100) 100 (100/100) 100 (100/100) 100

pron-type (96/85) 90 (96/88) 92 (89/84) 86 (98/75) 85 (98/75) 85

quant (60/17) 26 (60/17) 26 (75/33) 46 (75/17) 27 (75/17) 27

rc (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0

sb (69/55) 61 (80/54) 65 (77/62) 68 (84/54) 66 (87/52) 65

tiger-id (76/77) 76 (74/74) 74 (79/79) 79 (80/83) 81 (80/79) 80

total (68.2/42.0) 52.0 (73.6/41.1) 52.7 (72.9/49.1) 58.6 (75.6/37.6) 50.2 (76.7/32.9) 46.0

Table 10.15: F-scores for F-structure annotation on different parser output and by the function labeller (TUBA100)

180



10.4 Summary

Comparing results for the different treebanks, I show that TüBa-D/Z-based

dependency results are significantly lower than the ones for the TiGer-based ar-

chitecture. Even when evaluated against the TUBA100 gold standard, results for

F-structures generated under the TiGer treebank-based architecture are higher

than the ones achieved in the TüBa-D/Z-based architecture. To be sure, this is

partly due to the limited size of the data set used for grammar development, but

also an artifact of the annotation scheme of the TüBa-D/Z: one major drawback

follows from the more hierarchical tree structure, which results in data structures

which are less transparent for PCFG parsers, because relevant information is em-

bedded deep in the tree and is not captured in the local context encoded in the

grammar rules. Another problem is caused by the high degree of underspecifica-

tion in the TüBa-D/Z. Nodes which, due to ambiguous dependencies, have been

attached high up at the root of the tree do not contribute meaningful dependen-

cies and add to the low recall scores for the TüBa-D/Z. Finally, the TüBa-D/Z

design decision to encode non-local dependencies with the help of grammatical

function labels is not optimal to support PCFG parsing. The parsers have con-

siderable difficulties to learn these labels, which can be seen by the low overall

number of different labels reproduced in the parser output, as well as by the

modest results for grammatical function labelling for parser output and for the

SVM-based grammatical function labelling software.

As a result of the problems for GF label learning, non-local dependencies

are not represented adequately in the TüBa-D/Z parser output. In TiGer, the

conversion to CFG trees by raising the non-head child nodes of discontiguous

trees results in a loss of information. However, the flat annotation yields some

transparency and allows us to recover at least some of the non-local dependencies,

while for the TüBa-D/Z this is not possible.

In the next Chapter I present two extensions to the LFG grammar acquisition:

the recovery of LDDs in the parse trees and a method for improving coverage,

based on subcat frames automatically extracted from LFG F-structures.

181



Chapter 11

Extensions: Recovering LDDs

and Improving Coverage with

SubCat Frames

11.1 Introduction

Chapter 10 presented parsing experiments using the automatic F-structure anno-

tation algorithm described in Chapter 9. Evaluation results showed good preci-

sion for the automatically generated F-structures. However, a number of problems

have become apparent in the evaluation:

• low recall especially for F-structures automatically generated from TüBa-

D/Z-trained parser output;

• low recall for F-structures automatically generated from the two-step archi-

tecture due to missing GFs in the FunTag output;

• low coverage (% of F-structures) due to clashes in the constraint solver,

caused by conflicting grammatical functions assigned by the parser or Fun-

Tag;

• missing long distance dependencies (LDDs) due to the raising-based res-

olution (Kübler, 2005) of crossing branches in TiGer, resulting in shallow

“proto” F-structures.

182



11.2 Recovering LDDs in the Parse Trees

This chapter addresses two of these problems, namely the low coverage and

missing long-distance dependencies in the F-structures derived from the raising

approach to convert crossing branches into CFG trees to train parsers. First I ap-

ply Boyd (2007)’s split node method for converting discontiguous trees into CFG

representations, and compare the performance of the raised node Kübler (2005)

and split node Boyd (2007) conversion methods on F-structure level. Then I

present a method to improve coverage using automatically extracted subcate-

gorisation frames.

11.2 Recovering LDDs in the Parse Trees

Chapter 10 evaluated F-structures generated from the TiGer parser output where

crossing branches were resolved using the raised-node conversion method. This

results in shallow F-structures with long-distance dependencies unresolved. For

the TüBa-D/Z, results for GF labelling are clearly not good enough to support

meaningful resolution of LDDs based on the grammatical function labels in the

parser output trees.

In this Section I will look at F-structures generated from parser output from

a parser trained on a version of TiGer, where discontiguous trees have been

resolved by inserting partial nodes in the trees (split-node conversion). Boyd

(2007) performs a labeled dependency-based evaluation and reports a significant

improvement for subjects, accusative objects, dative objects and prepositional

objects for the improved representation of non-local dependencies in the tree.

I applied Boyd (2007)’s method to the large TiGer training set (48,000 sen-

tences) and trained the Berkeley parser on the data, where syntactic nodes and

grammatical functions were merged into new atomic labels. Tables 11.1 and

11.2 show results for F-structures generated from Berkeley parser output from

raised-node (Kübler, 2005) and split-node converted versions of TiGer.

For both development and test set, results for the Berkeley parser without

partial node annotation are slightly higher. For some dependencies, however,

we observe a substantial improvement when using Boyd’s technique. F-scores

for the annotation of relative clauses, for example, rise from 36% to 45% for

the development set, and from 33% to 46% for the test set. Results for dative

objects are also better with 46% vs. 50% (development set) and 46% vs. 51%

183



11.2 Recovering LDDs in the Parse Trees

GF berk.raised berk.split

prec. rec. f-sc. prec. rec. f-sc.

ams (5/7) 71 (5/8) 62 67 (5/9) 56 (5/7) 71 63

app (174/403) 43 (174/271) 64 52 (180/384) 47 (180/263) 68 56

app cl (13/53) 25 (13/58) 22 23 (15/25) 60 (15/56) 27 37

cc (4/37) 11 (4/28) 14 12 (6/17) 35 (6/31) 19 25

circ form (5/9) 56 (5/5) 100 71 (4/8) 50 (4/4) 100 67

cj (955/1301) 73 (955/1363) 70 72 (854/1173) 73 (854/1206) 71 72

comp form (93/103) 90 (93/109) 85 88 (77/87) 89 (77/99) 78 83

coord form (470/502) 94 (470/516) 91 92 (419/447) 94 (419/456) 92 93

da (44/94) 47 (44/96) 46 46 (45/89) 51 (45/90) 50 50

det (2899/3100) 94 (2899/3132) 93 93 (2665/2842) 94 (2665/2904) 92 93

det type (2953/3080) 96 (2953/3026) 98 97 (2719/2832) 96 (2719/2808) 97 96

fut (44/51) 86 (44/47) 94 90 (44/46) 96 (44/50) 88 92

gl (156/160) 98 (156/206) 76 85 (148/153) 97 (148/205) 72 83

gr (561/780) 72 (561/766) 73 73 (505/699) 72 (505/713) 71 72

measured (10/12) 83 (10/15) 67 74 (8/10) 80 (8/12) 67 73

mo (3408/5074) 67 (3408/5166) 66 67 (3008/4479) 67 (3008/4760) 63 65

mod (3/30) 10 (3/83) 4 5 (3/27) 11 (3/67) 4 6

name mod (302/401) 75 (302/330) 92 83 (278/388) 72 (278/312) 89 79

number (220/345) 64 (220/355) 62 63 (182/302) 60 (182/331) 55 58

oa (608/837) 73 (608/810) 75 74 (579/745) 78 (579/744) 78 78

obj (2180/2641) 83 (2180/2575) 85 84 (1961/2435) 81 (1961/2387) 82 81

oc fin (97/146) 66 (97/160) 61 63 (82/129) 64 (82/144) 57 60

oc inf (287/390) 74 (287/352) 82 77 (255/342) 75 (255/313) 81 78

og (0/0) 0 (0/6) 0 0 (1/3) 33 (1/6) 17 22

op (345/471) 73 (345/533) 65 69 (301/428) 70 (301/496) 61 65

part form (0/135) 0 (0/0) 0 0 (0/130) 0 (0/0) 0 0

pass asp (235/260) 90 (235/276) 85 88 (199/225) 88 (199/259) 77 82

pd (130/226) 58 (130/295) 44 50 (115/194) 59 (115/271) 42 49

perf (220/229) 96 (220/253) 87 91 (193/201) 96 (193/227) 85 90

precoord form (0/8) 0 (0/7) 0 0 (0/4) 0 (0/5) 0 0

pred restr (0/7) 0 (0/1) 0 0 (0/10) 0 (0/1) 0 0

pron form (32/32) 100 (32/40) 80 89 (29/29) 100 (29/36) 81 89

pron type (524/795) 66 (524/856) 61 63 (470/727) 65 (470/787) 60 62

quant (108/184) 59 (108/158) 68 63 (105/183) 57 (105/148) 71 63

rc (61/165) 37 (61/174) 35 36 (63/122) 52 (63/158) 40 45

rs (0/0) 0 (0/1) 0 0 (0/0) 0 (0/1) 0 0

sb (1798/2442) 74 (1798/2484) 72 73 (1658/2210) 75 (1658/2290) 72 74

sbp (24/41) 59 (24/52) 46 52 (27/39) 69 (27/53) 51 59

(19986/25986) (19986/25721) (18184/23534) (18184/23767)

total 76.9 77.7 77.3 77.3 76.5 76.9

Table 11.1: F-scores for F-structure annotation on Berkeley parser output with

(split) and without (raised) LDDs resolved (TiGerDB development set) trained

on TiGer48000

184



11.2 Recovering LDDs in the Parse Trees

(test set), and the annotation of analytic future tense with werden improve from

90% to 92% (development set) and from 83% to 90% (test set). The annotation

of coordination forms also shows an improvement, due to better recall: F-scores

increase from 92% to 93% for the development set and from 88% to 91% for the

test set.

I was not able to replicate Boyd (2007)’s improvement for subjects and ac-

cusative objects using the Berkeley parser. On the TiGer DB development set,

the F-score for subjects (sb) increased from 73% to 74%, and for accusative ob-

jects (oa) from 74% to 78%. On the test set, however, F-scores for the split-node

conversion show a decrease of 4% for subjects (sb), and no improvement for ac-

cusative objects (oa). Note that the split-node conversion yields higher precision

for oa (69% (berk.split) vs. 67% (berk.raised)) but lower recall (65% (berk.split)

vs. 67% (berk.raised)).

The split-node method for converting the TiGer trees to CFG representa-

tions works well for “pure” PCFG parsers like BitPar and LoPar (Boyd, 2007),

where only those rules are used for parsing which have been seen in the training

data. Unfortunately, parsing results for BitPar are around 10% (evalb labelled

F-score) lower than results for the Berkeley parser or the Stanford parser, and

results for a dependency-based evaluation (Kübler et al., 2008) also show that

the two parsers which apply Markovisation and treebank-refinement techniques

outperform “pure” PCFG parsers like BitPar and LoPar by a large margin. As

mentioned before, however, both the Stanford and the Berkeley parser have con-

siderable problems when parsing partial nodes. As CFG rules are broken up

under Markovisation and new rules are generated, split nodes are often incom-

plete, with one partial node missing in the parser output (i.e. Markovisation may

lose one or the other of the split nodes). Due to the incomplete representation of

partial nodes in the parser output, the original attachment in the tree cannot be

recovered. This results in lower recall scores for the split-node conversion.

While in theory the TüBa-D/Z annotation as well as the improved conver-

sion method of Boyd (2007) for TiGer provide a means to recover LDDs in the

parser output, the quality of the actual parser output trees is not good enough to

successfully resolve LDDs in the trees. Currently, the automatic annotation al-

gorithm applied to parser output from grammars extracted from the raised-node

converted Tiger treebank yields better overall F-structures (evaluated against the

185



11.2 Recovering LDDs in the Parse Trees

GF berk.raised berk.split

prec. rec. f-sc. prec. rec. f-sc.

ams (0/4) 0 (0/1) 0 0 (0/3) 0 (0/1) 0 0

app (51/111) 46 (51/85) 60 52 (38/101) 38 (38/74) 51 43

app cl (1/19) 5 (1/17) 6 6 (1/8) 12 (1/14) 7 9

cc (1/16) 6 (1/18) 6 6 (1/10) 10 (1/13) 8 9

circ form (1/1) 100 (1/1) 100 100 (1/2) 50 (1/1) 100 67

cj (328/448) 73 (328/478) 69 71 (280/398) 70 (280/407) 69 70

comp form (43/46) 93 (43/50) 86 90 (33/38) 87 (33/42) 79 82

coord form (152/165) 92 (152/179) 85 88 (139/152) 91 (139/154) 90 91

da (21/40) 52 (21/52) 40 46 (19/34) 56 (19/40) 48 51

det (931/981) 95 (931/1023) 91 93 (813/864) 94 (813/913) 89 92

det type (957/984) 97 (957/998) 96 97 (852/878) 97 (852/892) 96 96

fut (22/26) 85 (22/27) 81 83 (18/21) 86 (18/19) 95 90

gl (62/68) 91 (62/81) 77 83 (46/52) 88 (46/67) 69 77

gr (141/193) 73 (141/207) 68 70 (131/186) 70 (131/191) 69 69

measured (3/3) 100 (3/6) 50 67 (3/3) 100 (3/5) 60 75

mo (1130/1823) 62 (1130/1773) 64 63 (970/1592) 61 (970/1559) 62 62

mod (0/7) 0 (0/8) 0 0 (0/10) 0 (0/8) 0 0

name mod (78/101) 77 (78/87) 90 83 (64/94) 68 (64/71) 90 78

number (76/121) 63 (76/118) 64 64 (71/116) 61 (71/113) 63 62

oa (238/355) 67 (238/356) 67 67 (197/286) 69 (197/302) 65 67

obj (736/896) 82 (736/875) 84 83 (626/781) 80 (626/771) 81 81

oc fin (27/58) 47 (27/61) 44 45 (24/49) 49 (24/47) 51 50

oc inf (94/129) 73 (94/114) 82 77 (70/106) 66 (70/94) 74 70

og (0/0) 0 (0/2) 0 0 (0/0) 0 (0/2) 0 0

op (83/134) 62 (83/231) 36 45 (63/108) 58 (63/202) 31 41

part form (0/53) 0 (0/0) 0 0 (0/46) 0 (0/0) 0 0

pass asp (66/73) 90 (66/78) 85 87 (61/64) 95 (61/74) 82 88

pd (51/95) 54 (51/112) 46 49 (48/83) 58 (48/105) 46 51

perf (77/80) 96 (77/92) 84 90 (68/69) 99 (68/78) 87 93

postcoord form (0/5) 0 (0/0) 0 0 (0/3) 0 (0/0) 0 0

precoord form (0/3) 0 (0/4) 0 0 (0/2) 0 (0/3) 0 0

pred restr (0/8) 0 (0/0) 0 0 (0/3) 0 (0/1) 0 0

pron form (19/20) 95 (19/22) 86 90 (13/13) 100 (13/15) 87 93

pron type (296/401) 74 (296/446) 66 70 (221/313) 71 (221/352) 63 66

quant (49/81) 60 (49/77) 64 62 (45/83) 54 (45/71) 63 58

rc (20/55) 36 (20/65) 31 33 (22/38) 58 (22/58) 38 46

rs (0/0) 0 (0/1) 0 0 (0/0) 0 (0/1) 0 0

sb (689/923) 75 (689/943) 73 74 (567/790) 72 (567/819) 69 70

sbp (9/11) 82 (9/14) 64 72 (6/8) 75 (6/12) 50 60

(6789/9078) (6789/9076) (5830/7907) (5830/7936)

total 74.8 74.8 74.8 73.7 73.5 73.6

Table 11.2: F-scores for F-structure annotation on Berkeley parser output with

(split) and without (raised) LDDs resolved (TiGerDB test set)

186



11.3 Improving Coverage with SubCat Frames

TiGer DB test set where LDDs are resolved) than the ones generated in the other

settings.

11.3 Improving Coverage with SubCat Frames

So far I have presented different architectures for treebank-based LFG grammar

acquisition and parsing for German. Some of the approaches achieve quite good

results for precision, but recall is still a serious problem. Especially for the two-

step model, where I train the Berkeley parser on syntactic nodes only and assign

the grammatical functions in a post-processing step, missing context sensitivity

of the function labeller leads to clashes in the constraint solver when resolving

the F-structure equations. Many of these clashes are caused by the presence of

more than one governable grammatical function of the same type in the same lo-

cal tree. Below I describe an attempt to solve this problem and to disambiguate

grammatical function labels with the help of automatically extracted subcate-

gorisation frames.

I automatically extract subcategorisation frames from the TiGer treebank to

resolve ambiguities when the same governable grammatical function appears twice

in the same local tree. Figure 11.1 shows a parser output tree from the TiGer DB

development set where FunTag annotated both the sentence-initial NP as well as

the personal pronoun with the subject label. Both nodes are, in fact, probable

candidates for the subject role: the NP because of its sentence-initial position,

the personal pronoun due to its property of being animate. The word form of

the determiner, which, for humans, identifies the NP as a dative object, does not

have enough weight to influence the decision of FunTag, probably due to sparse

data.

Subcat frame information can help to disambiguate cases like the one above

(Figure 11.1). The idea is quite simple: if we know the most probable subcat-

egorisation frame for the head verb of the sentence, we can assign grammatical

functions to nodes in the tree according to the subcat frame.

To be able to do this, we need subcategorisation frames for all verbs in the

treebank. I automatically extract these frames from the F-structure-annotated

treebanks, which encode all governable functions for each predicate and allow us

to compute the probability for each particular subcat frame.

187



11.3 Improving Coverage with SubCat Frames

S

SB

NP

ART

Dem

the

NN

Sozialabbau

cuts in social welfare

HD

VVFIN

erteilten

gave

SB

PPER

sie

they

MO

ADV

allerdings

admittedly

OA

NP

ART

eine

a

NN

Absage

rejection

Figure 11.1: FunTag error: the same GF (SB) appearing twice in the same local

tree

11.3.1 SubCat Frame Extraction

In my subcat frame extraction experiments I follow O’Donovan et al. (2004) and

O’Donovan et al. (2005a), who describe the large-scale induction and evaluation

of lexical resources from the Penn-II and Penn-III treebanks.

O’Donovan et al. extract grammatical syntactic-function-based subcategori-

sation frames (LFG semantic forms) as well as traditional CFG category-based

subcategorisation frames with varying degrees of detail. They extract subcat

frames with and without subcategorised PPs, and they are able to specify the

syntactic category of a subcategorised grammatical function. Furthermore, they

distinguish between active and passive frames, which crucially improves the qual-

ity of the induced resources. In contrast to other approaches, the method of

O’Donovan et al. does not predefine the number and type of the frames to be

induced.

O’Donovan et al. associate probabilities with frames, conditioned on the

lemma form of the predicate. Most important, the induced frames fully reflect

non-local dependencies in the data, which makes them a truly deep linguistic

resource.

I apply the method of O’Donovan et al. (2004, 2005a) to the German treebanks

and acquire LFG semantic forms from the automatically F-structure-annotated

TiGer and TüBa-D/Z treebanks.

188



11.3 Improving Coverage with SubCat Frames

S

PPER

↑-subj =↓

Sie

She

VVFIN

↑=↓

gab

gave

NE

↑-da =↓

Anna

Anna

NP

↑-oa =↓

ART

↑-spec : det =↓

ein

a

NN

↑=↓

Buch

book

Sie gab Anna ein Buch

She gave a book to Anna

























pred ’geben
〈

subj, da, oa
〉

’

subj
[

pred pro
]

da
[

pred ’Anna’
]

oa





spec:det:pred ’ein’

pred ’Buch’





























Figure 11.2: LFG c-structure and F-structure

SubCat Frame Extraction: Methodology

In order to be able to extract verb frames from the two treebanks, I first annotated

the treebanks with LFG F-structure equations, using the automatic annotation

algorithm described in Section 10.2. In my experiments I use two different data

sets. In order to support a meaningful comparison of subcat frames induced from

TiGer and TüBa-D/Z, I annotated the two training sets with 25 000 sentences

each, as used in the parsing experiments in Chapter 10. For TiGer, I also repeated

the experiment with the larger training set with 48,473 sentences. The set of

semantic forms extracted from the large training set was then used for resolving

ambiguities caused by duplicate governable function labels.

189



11.3 Improving Coverage with SubCat Frames

After annotating the data with LFG F-structure equations and producing

the F-structures using a constraint solver, the subcategorisation frame extraction

algorithm traverses each F-structure f and, for each predicate in f , collects all

governable grammatical functions on the same level. For the tree in Figure 11.2

and its corresponding F-structure I extract the following LFG semantic form

(11.1).

sf(geben([subj, da, oa]) (11.1)

Including syntactic information from the CFG tree into the subcategorisation

frame results in frame (11.2). I distinguish four different POS tags: verbs (v),

nouns (n), prepositions (p) and pronouns (pro).

sf(geben([subj(pro), da(n), oa(n)]) (11.2)

The frames can be refined by including additional information like subcate-

gorised PPs (11.3) or by specifying the form of a complementiser (11.4).

sf(stellen([subj(n), oa(n), pp(auf)]) (11.3)

sf(sagen([subj(n), comp(dass)]) (11.4)

The set of grammatical features used in the annotation algorithm also allows

us to distinguish between syntactic and semantic roles, as in the diathesis alter-

nation, where the syntactic subject in the active verb frame corresponds to the

semantic role often referred to as Agent, while for passive voice the syntactic

subject corresponds to a semantic role often expressed as Theme, Patient or

Experiencer (Examples 38,39).

sf(braten([subj(n), oa(n)]) (11.5)

(38) AnnaAGENT brät einen StorchTHEME

Anna fries a stork

Anna is frying a stork

190



11.3 Improving Coverage with SubCat Frames

sf(braten([subj(n)], passive : stativ) (11.6)

(39) Der
The

StorchTHEME

stork
ist
is

gebraten
fried

The stork has been fried

The passive : stative in Example (11.6) identifies the frame as a stative pas-

sive verb frame, adding the information which is crucial for the correct semantic

interpretation of the whole expression. The F-structure annotations allow us to

distinguish between different passive aspects like stative passive, dynamic passive

or modal passive.

Semantic Forms for TiGer and TüBa-D/Z

Depending on the granularity of the subcat frame extraction, I extract the sub-

categorisation frames in Table 11.3 for the TiGer training set (25,000 sentences),

the TüBa-D/Z training set (25,000 sentences) and for the large TiGer training

set (48,473 sentences).

lemma gf gf(POS) gf(POS), gf(POS), pp

types pp passive, comp

TüBa-D/Z 2638 6999 10202 10894 11489 verb

(25 000) 106 107 231 231 231 prep

TiGer 3434 8514 12644 12810 14002 verb

(25 000) 103 141 280 280 284 prep

TiGer 4590 12170 19085 19389 21582 verb

(48 000) 118 179 353 353 359 prep

Table 11.3: Subcat frame types for verbs and prepositions for TiGer and

TüBa-D/Z; gf=grammatical functions; gf(POS)=gf + POS/syntactic informa-

tion; gf(POS),pp=including prepositions; gf(POS),pp,passive,comp=including

voice and comp-form

The first column shows the number of different lemma types in the data sets.

We observe a far higher number of different verb types in the TiGer treebank

191



11.3 Improving Coverage with SubCat Frames

than in the TüBa-D/Z, which is consistent with the difference in vocabulary size

reported in Section 5.2. For the closed word class of prepositions the frequencies

are quite close, with 106 vs. 103 in TüBa-D/Z and TiGer (25,000 sentences).

For the large data set (TiGer) the number is slightly higher with 118 different

types, while for the open word class of verbs the number of lemma types increases

considerably to 4590 for the full TiGer set.

The next four columns report the number of subcategorisation frame types

extracted from the treebanks for different degrees of information. The more fine-

grained the information encoded in the semantic forms, the higher the number of

different frame types we extract. For all four classes (1: grammatical functions

(gf), 2: gf with syntactic information (gf(POS)), 3: gf(POS) with prepositions

(gf(POS), pp), 4: gf(POS), pp, including passive voice and word form of com-

plementiser (gf(POS), pp, passive, comp)), the number of frame types extracted

from TiGer is significantly higher than the one extracted from the TüBa-D/Z.

As discussed in Section 5.2, there are two possible reasons for this: stylistic dif-

ferences between the two newpapers as well as the length of time period covered

by the articles, which influences the variety of topics and also the number of ha-

pax legomena (which often are names of persons, institutions or locations) in the

newspaper text.

11.3.2 Using SubCat Frames for Disambiguation

The motivation for extracting the subcat frames is based on the idea to use

them to correct erroneously function-labelled parse trees, where the parser or the

function labeller assigned incorrect (here duplicate) grammatical function labels,

causing clashes when resolving the F-structure equations.

I proceed as follows: the tree in Figure 11.1 would give us the (erroneous)

subcategorisation frame in (11.7), where we have a subject NP (subj(n)) and a

personal pronoun also bearing the subject label (subj(pro)).

sf(erteilen([subj(n), subj(pro), oa(n)]) (11.7)

In order to correct the analysis and generate an F-structure for this tree, one of

the duplicate grammatical functions has to be changed. I automatically generate

regular expressions describing all possible solutions for resolving the conflict (11.8,

192



11.3 Improving Coverage with SubCat Frames

11.9, and 11.10).23

sf(erteilen([X(n), subj(pro), oa(n)]) (11.8)

sf(erteilen([subj(n), X(pro), oa(n)]) (11.9)

sf(erteilen([subj(n), subj(pro), X(n)]) (11.10)

Next I retrieve the automatically extracted subcat frames for the lemma

erteilen (Table 11.4) from the F-structure-annotated TiGer or TüBa-D/Z, as

required. I consider all subcat frames with the same number of arguments as in

the erroneous form (11.7). Let us assume we extracted 10 different subcat frames

for erteilen, out of which three frames have three arguments (Table 11.4). Out

of these three subcat frames, we are looking for one with an NP or a noun as

first argument, followed by a pronoun, and again an NP/noun as its last argu-

ment. Note that the arguments in the subcat frames are ordered according to

their position in the surface string, in order to capture preferences like realising

the subject in a sentence-initial position. Only one out of the three subcat frames

meets these requirements, and this is the one giving us the correct grammatical

function assignment (da(n), sb(pro), oa(n)) for the example under consideration.

In cases where there is more than one matching frame, the frame with the highest

probability is chosen.

Following this method, the annotation algorithm tries to validate all parser

output trees with conflicting grammatical functions and to assign the correct

function labels according to subcat frame information, ranked according to their

probability conditioned on the lemma form.

Results for SubCat Frame-Based Disambiguation

Table 11.5 shows F-structure evaluation results for the subcat frame-based dis-

ambiguation method trained on TiGer and using the TiGer DB dependency gold

standard. I applied the approach to the parser output of the Berkeley parser

(berk.par) and to the output of the two-step architecture (berk.fun, berk.fun.par)

23(11.10) is not correct, either, but we can be sure that there will be no subcat frame from

the F-structure-annotated treebanks matching this template.

193



11.3 Improving Coverage with SubCat Frames

lemma form arguments probability

sf(erteilen ([ da(n), sb(pro), oa(n) ]), 0.037037037037037).

sf(erteilen ([ sb(n) ]), 0.037037037037037).

sf(erteilen ([ sb(pro)), oa(n) ]), 0.037037037037037).

sf(erteilen ([ da(n), sb(n), oa(n) ]), 0.222222222222222).

sf(erteilen ([ oa(n), sb(pro) ]), 0.148148148148148).

sf(erteilen ([ da(n), sb(n) ]), 0.037037037037037).

sf(erteilen ([ sb(n), da(n), oa(n) ]), 0.259259259259259).

sf(erteilen ([ sb(n), oa(n) ]), 0.111111111111111).

sf(erteilen ([ oa(n) ]), 0.0740740740740741).

sf(erteilen ([ sb(n), da(n) ]), 0.037037037037037).

Table 11.4: Automatically extracted subcat frames for erteilen (to give, to grant)

and evaluated the resulting F-structures against the TiGer DB development and

test set.

For all three parser settings (berk.par, berk.fun, berk.fun.par) there is a slight

decrease in F-score when applying the subcat frame disambiguation method. Cov-

erage, however, increases considerably. The gain is more profound for the FunTag

architecture, where we achieve up to 5% absolute increased F-structure coverage.

The disambiguation method does improve coverage, but there still remain about

10-15% of the sentences which cannot be resolved into a F-structure.

This means that the coverage of our automatically extracted subcat frames is

not yet good enough. Table 11.6 shows the number of GF label conflicts in the

parser/FunTag output trees, and also the number of conflicts for which we found a

disambiguating subcat frame. The coverage problem might also be due to the fact

that I encoded the surface position of the arguments in a sentence into the subcat

frames. This produces very precise subcategorisation frames, but at the cost of

coverage and sparse data. To overcome the problem I implemented a back-off

method, where for cases where the system does not find a linearised subcat frame,

I permute the arguments in the frame and test all possible combinations in order

to find a matching subcat frame. Table 11.7 shows results for the subcat frame-

based disambiguation with back-off. Precision and recall are more or less the

same as in Table 11.5, while the number of resolved conflicts in the FunTag output

194



11.3 Improving Coverage with SubCat Frames

% valid

precision recall F-score F-structures

TiGer48000 - F-structure evaluation - development set

berk.par 77.7 78.3 78.0 88.5%

berk.par.sf 77.0 77.9 77.4 91.2%

berk.fun 78.9 71.1 74.8 88.4%

berk.fun.sf 78.3 70.8 74.4 93.0%

berk.fun.par 78.3 68.0 72.7 85.4%

berk.fun.par.sf 77.4 67.6 72.1 90.5%

TiGer48000 - F-structure evaluation - test set

berk.par 76.0 76.5 76.2 84.2%

berk.par.sf 74.8 75.9 75.3 86.2%

berk.fun 76.5 66.7 71.3 84.2%

berk.fun.sf 76.0 66.9 71.1 88.2%

berk.fun.par 76.3 61.7 68.2 83.4%

berk.fun.par.sf 75.4 60.3 67.0 88.8%

Table 11.5: F-structure evaluation results for subcat frame-based disambiguation

method on the TiGerDB

195



11.3 Improving Coverage with SubCat Frames

# GF conflicts sf sf + back-off

berk.par 95 40 46

berk.fun 160 87 95

berk.fun.par 172 94 99

Table 11.6: Number of conflicting GF labels and number of matching subcat

frames without and with back-off (TiGer DB development and test set) trained

on TiGer48000

% valid

precision recall F-score F-structures

TiGer48000 - F-structure evaluation - test set

berk.par.sf 74.8 75.9 75.3 86.2%

+ back-off 74.8 75.9 75.3 86.2%

berk.fun.sf 76.0 66.9 71.1 88.2%

+ back-off 75.8 66.7 71.0 88.4%

berk.fun.par.sf 75.4 60.3 67.0 88.8%

+ back-off 75.4 60.3 67.0 89.2%

Table 11.7: F-structure evaluation results for the subcat frame-based disambigua-

tion method + back-off for the TiGer DB

increases further (Table 11.6), as does the number of F-structures. For the parser-

assigned grammatical functions we do not observe any further improvement.

For the Berkeley parser-assigned grammatical function labels, a total of 46 GF

conflicts could be solved using linearised subcat frames plus the back-off method,

while for the remaining 49 cases no matching subcat frame was found (Table

11.6). In the gold standard-trained FunTag output, we found 160 conflicting

grammatical function labels, 95 of which could be solved, while in the parser

output-trained FunTag setting the number of conflicting GF labels was higher

at 172, as was the number of cases where the conflict could be solved (99) by

applying the subcat frame-based method.

The subcat frame-based approach to improve F-structure coverage with the

help of automatically extracted subcat frames yields an absolute improvement of

196



11.4 Conclusions

up to 5% more valid F-structures. However, Table 11.6 also shows that for nearly

half of the incorrectly labelled trees, no matching subcat frame could be found.

This means that the TiGer treebank is not large enough as a resource for subcat

frame extraction to yield sufficient coverage.

11.4 Conclusions

This chapter presented two extensions to the F-structure annotation algorithm

for German:

1. the generation of proper F-structures for the TiGer treebank, based on

Boyd (2007)’s split-node conversion method to recover LDDs in the parser

output;

2. a method to improve coverage, based on automatically extracted subcate-

gorisation frames.

The proper F-structures with LDDs resolved show better results for some

of the dependencies included in the F-structure evaluation, while overall results

are slightly higher for F-structures generated from parser output of the Berke-

ley parser trained on the “shallow” raised-node version of the TiGer treebank.

The main problem for recovering LDDs is caused by incomplete representations

of partial nodes in Markovisation-based parser output (Berkeley parser). This

means that the original tree structure cannot be reconstructed, which results in

lower recall for F-structures generated from berk.split parser output as well as in

incorrect F-structure analyses. A possible solution to this problem might consist

of a preprocessing step, where parser output trees with incomplete partial node

representations are mapped against tree structures from the original split-node-

converted treebank, and the corrupted trees are corrected. The mapping process,

however, is not straightforward. For each partial node in the parser output miss-

ing its corresponding split node, we have to decide whether a second partial node

should be inserted, or whether we should delete the single partial node from the

parser output tree. In the first case, we have to find a grammar rule in the gold

trees which can be mapped to the grammar rule for the erroneous parser output

tree. Due to the flat tree structure in TiGer, which result in many low-frequency

197



11.4 Conclusions

rules, we might not be able to find a fitting rule, and further generalisations over

the actual tree structure are necessary. This comes at the risk of introducing

more noise into the trees.

The second extension presented in this chapter describes a method for im-

proving coverage based on subcategorisation frames bootstrapped from the F-

structure-annotated TiGer treebank. The method achieves an improvement in

coverage of more than 5% on the output of the two-step architecture (evalu-

ated against the TiGer DB test set), and a less profound improvement of 2%

for F-structures generated in the one-step architecture. While these results are

promising, the error analysis showed that the method still suffers from sparse

data: for half of the incorrectly labelled tree structures in the parser output no

matching subcat frame could be found. This means that including a larger subcat

frame resource might further improve coverage.

198



Chapter 12

Parsing: Related Work

12.1 Introduction

The last four chapters described the substantially extended and improved ac-

quisition of deep, wide-coverage LFG resources for German (Chapters 8,9) and

presented parsing architectures and experiments parsing German into LFG F-

structures (Chapters 10,11). This chapter discusses related work and shows how

my research compares to a wide-coverage hand-crafted LFG grammar (Dipper,

2003; Rohrer and Forst, 2006; Forst, 2007).

12.2 Related Work

The only other broad-coverage LFG grammar for German I am aware of is the

hand-crafted LFG (Dipper, 2003; Rohrer and Forst, 2006; Forst, 2007) developed

in the ParGram project (Butt et al., 2002). The ParGram German LFG uses 274

LFG-style rules (with regular expression-based right-hand sides) and several lex-

icons with detailed subcategorisation information and a guessing mechanism for

default lexical entries (Rohrer and Forst, 2006). Preprocessing in the experiments

reported in Rohrer and Forst (2006) includes modules for tokenisation, morpho-

logical analysis and manual marking of named entities, before the actual parsing

takes place. An additional disambiguation component based on maximum en-

tropy models is used for reranking the output of the parser. Forst (2007) tested

parser quality on 1497 sentences from the TiGer DB and reported a lower bound,

199



12.2 Related Work

ParGram TiGerDB DCU250 CCG2000

up. log. low. raised raised raised raised raised + sf

GF bound lin. bound + sf + sf DCU250-style

da 67 63 55 44 45 38 35 41

gr 88 84 79 71 70 87 87 87

mo 70 63 62 65 63 73 72 72

oa 78 75 65 69 68 63 61 70

quant 70 68 67 67 64 78 78 88

rc 74 62 59 34 32 30 28 44

sb 76 73 68 74 74 79 80 83

preds

only 79.4 75.7 72.6 72.7 71.5 78.6 77.9 80.9

coverage on the NEGRA treebank (>20,000 sentences)

81.5 81.5 81.5 88.2 89.5 88.7 89.9 89.9

Table 12.1: F-scores for selected grammatical functions for the ParGram LFG

(upper bounds, log-linear disambiguation model, lower bounds) and for the TiGer

grammars (berk.par)

where a parse tree is chosen randomly from the parse forest, an upper bound, us-

ing the parse tree with the highest F-score (evaluated against the gold standard),

as well as results for parse selection done by the log-linear disambiguation model.

Table 12.1 shows results for the ParGram LFG and for the automatically in-

duced grammars on selected grammatical relations and on all grammatical func-

tions excluding morphological and other features (preds only). The automatically

induced TiGer DB and DCU250-style grammars were trained on the full TiGer

treebank (>48,000 sentences, excluding the test data), while the CCG2000-style

grammar was trained on the 25,000 sentences training set. I report results for

the test sets from the TiGer DB, the DCU250 and the CCG2000.

The hand-crafted LFG outperforms the automatically induced grammars on

most GFs for the TiGer DB, but results are not directly comparable. The TiGer

DB-based evaluation is biased in favour of the hand-crafted LFG. Named entities

in the ParGram LFG input are marked up manually, while for our grammars

these multiword units often are not recognised correctly and so are punished

during evaluation, even if part of the unit is annotated correctly. Furthermore,

200



12.3 Discussion

the hand-crafted ParGram LFG grammar was used in the creation of the TiGer

DB gold standard in the first place, ensuring compatibility as regards tokenisation

and overall linguistic analysis.

F-scores for the DCU250 are in roughly the same range as the ones for the

hand-crafted grammar. For high-frequency dependencies like subjects (sb) or

modifiers (mo), results of the two grammars are comparable. For low-frequency

dependencies like dative objects (da) or relative clauses (rc), however, the hand-

crafted LFG outperforms the automatic LFG F-structure annotation algorithm

by far. Coverage for the automatically induced grammars is considerably higher

than for the hand-crafted LFG grammar. Rohrer and Forst (2006) report a cov-

erage of 81.5% (full parses) when parsing the NEGRA treebank, which contains

newspaper text from the same newspaper as in the TiGer treebank. By contrast,

the automatically induced TiGer grammars achieve close to 90% coverage on the

same data. On the TiGer treebank Rohrer and Forst (2006) report coverage of

86.44% full parses, raising the possibility that, as an effect of enhancing gram-

mar coverage by systematically extracting development subsets from TiGer, the

ParGram LFG is tailored closely to the TiGer treebank.

The CCG2000 test set is equally biased towards the TiGer treebank-based

LFG resources, as it only represents what is encoded in the automatic F-structure

annotation algorithm. The best F-structure parsing results, 81.9% F-score for the

hand-crafted ParGram LFG against TiGer DB and the 80.9% F-score against

the CCG2000 for the treebank-based LFG, clearly show the bias. The truth is

somewhere in between: The TiGer DB evaluation of the treebank-based LFG

resources attempts to a limited extend to counter the bias of the original TiGer

DB resource towards the hand-crafted LFG grammar by removing distinctions

which cannot be learned from TiGer data only, and by relating TiGer DB to

(some of) the original TiGer tokenisation using the version prepared by Boyd

et al. (2007). The resulting resource still favours the hand-crafted LFG resources,

which outperform the treebank-based resources by about 5% points absolute.

12.3 Discussion

Our automatically extracted grammars yield better coverage than the hand-

crafted LFG of (Dipper, 2003; Rohrer and Forst, 2006; Forst, 2007), but with

201



12.3 Discussion

ParGram TiGerDB DCU250 CCG2000

up. log. low. raised raised raised raised raised + sf

GF bound lin. bound + sf + sf DCU250-style

F-score precision

da 67 63 55 58 54 50 57 68

gr 88 84 79 68 68 88 88 87

mo 70 63 62 63 62 77 76 75

oa 78 75 65 68 71 80 82 74

quant 70 68 67 58 56 69 69 91

rc 74 62 59 50 49 50 50 48

sb 76 73 68 76 77 84 87 88

preds

only 83.3 76.2 73.7 76.0 83.7 84.4 85.4 85.5

Table 12.2: Precision for selected grammatical functions for the ParGram LFG

and for the TiGer grammars (two-step architecture; berk.fun)

regard to F-score the ParGram LFG still outperforms the automatically acquired

grammars. The lower results for our grammars are not due to low precision:

Table 12.2 contrasts F-scores for the Pargram LFG with results for precision as

achieved by the automatically acquired TiGer grammars (two-step architecture,

berk.fun).24 Future work should therefore focus on improving recall in order to

achieve results comparable with or better than hand-crafted grammars.

In Chapter 11 I showed that recall for the two-step architecture can be im-

proved using subcategorisation frames automatically extracted from the TiGer

treebank. However, the TiGer treebank is not large enough as a resource for sub-

cat frame extraction. Subcat frames automatically induced from a larger data

set might provide further improvements.

Another unsolved problem is the encoding of LDDs in treebank annotation

schemes for (semi-)free word order languages. Currently, neither the TiGer tree-

bank and even less so the TüBa-D/Z way of representing non-local dependencies

can be learned successfully by statistical parsers. An approach to resolving LDDs

on F-structure level was described in Section 7.1.5 and successfully implemented

as part of the English treebank-based LFG acquisition and parsing architectures

24Unfortunately, Forst (2007) does not report results for precision and recall.

202



12.3 Discussion

(Cahill et al., 2004; Cahill, 2004). However, the method of Cahill et al. relies

on complete F-structures, which means that the recall problem must have been

solved before we can reliably and profitably compute LDDs on F-structure level

for German.

203



Chapter 13

Conclusions

Automatic acquisition of deep, wide-coverage linguistic resources is of great im-

portance for many areas of NLP. Successful lines of research have been presented

for the automatic acquisition of rich and deep resources for English and the

Penn-II treebank, but so far it has not been clear whether these approaches are

as successful when applied to other languages with linguistic characteristics sub-

stantially different from English and treebanks with data structures and encoding

conventions different from the Penn treebanks.

In this thesis I address these questions and present a thorough comparison

of two German treebanks with different annotation schemes. I investigate the

impact of language-specific properties and treebank-specific data structures on

PCFG parsing and data-driven LFG grammar acquisition. Below I summarise

my main findings.

13.1 Is German Harder to Parse than English?

In Chapter 4 I show that the claim that German is not harder to parse than

English (Kübler, 2005; Kübler et al., 2006; Maier, 2006) does not hold. I present

controlled error insertion experiments showing that the PARSEVAL metric is not

a valid evaluation measure for cross-treebank comparisons and that it does not

fully reflect parser output quality in a linguistically adequate way. More evidence

for the inadequacy of PARSEVAL was presented in Chapter 6, where we show

that constituency-based parsing results do not necessarily correlate with results

204



13.2 Comparing Treebank Design - TiGer and TüBa-D/Z

of a dependency-based evaluation, the latter being more suitable to capture lin-

guistically relevant information like predicate-argument structure. Results from

a manual evaluation on a testsuite with complex German grammatical construc-

tions, the TePaCoC, reinforce the findings from the dependency-based evaluation.

Even more evidence comes from the evaluation of automatically annotated LFG

F-structures in Chapter 10, where again there was no consistent agreement be-

tween constituency-based parsing results and results for LFG F-structures, rep-

resenting functional dependency relations.

13.2 Comparing Treebank Design - TiGer and

TüBa-D/Z

The question of whether German is harder to parse than English or not is not yet

decided. However, semi-free word order together with case syncretism increases

structural ambiguity and poses a great challenge for the design of treebanks. I

investigate the question as to which of the annotation schemes of the two German

treebanks, TiGer and TüBa-D/Z, is more suitable for PCFG parsing and for

the automatic acquisition of deep, wide-coverage LFG resources. In Chapter 5 I

discuss methodological problems arising for cross-treebank comparisons. Chapter

6 presents a way to compare PCFG parser performance for parsers trained on

treebanks as different as the TiGer treebank and the TüBa-D/Z. Results from a

labelled dependency-based evaluation provides evidence that the flat annotation

in TiGer is more transparent and so compensates for the high number of long,

low-frequency rules. These results are backed up by a manual evaluation of

a carefully selected testsuite, the TePaCoC, containing sentences with complex

grammatical constructions from each of the treebanks. The testsuite allows us

to detect error types and trace them back to the treebank annotation decision

underlying the error. It complements the evaluation using automatic metrics and

supports a linguistically motivated assessment of parser output quality across

different treebanks.

In Chapter 8 I discuss the pros and cons of specific design decisions in TiGer

and TüBa-D/Z for the automatic acquisition of deep, wide-coverage LFG re-

205



13.3 Is Treebank-Based Grammar Induction for German feasible?

sources. I show that the annotation in TüBa-D/Z causes several problems for

the grammar acquisition task, one of them being the design of the grammati-

cal function labels, which in the TüBa-D/Z include information about non-local

dependencies in the trees. This would, in theory, allow us to generate proper

LFG F-structures with LDDs resolved. My experiments, however, show that

these labels are harder to learn than the grammatical function labels in TiGer,

which exclusively focus on encoding functional information related to the syntac-

tic nodes they are assigned to. The close relationship between nodes and labels

makes them easy to understand for humans, and also improves their learnability

for machine learning-based methods. In addition, the TüBa-D/Z labels encode

less specific linguistic information than the labels in the TiGer treebank.

13.3 Is Treebank-Based Grammar Induction for

German feasible?

In Chapter 10 I present approaches to acquire deep, wide-coverage LFG resources

for German. In my experiments I test the performance of three parsers trained

on two treebanks. I compare the impact of two methods for converting crossing

branches in TiGer into CFG trees. I assess the quality of parser-assigned gram-

matical functions in the trees, which for German are essential for automatic F-

structure annotation, and grammatical function labels learned by an SVM-based

function labeler.

I provide an extensive evaluation against three hand-crafted gold standards

and against a larger data set of automatically annotated dependency triples

(CCG-style evaluation). Error analysis shows that precision for F-structures

generated from TiGer-trained parser output is quite high, especially for the F-

structures generated from the output of the SVM-based function labeler. Cov-

erage, however, is a serious problem, reflected in low recall, especially for the

SVM-based function labeling architecture. Here the local decisions made by the

SVM in combination with the flat annotation in the TiGer treebank result in

violations of the LFG coherence condition, due to the assignment of more than

one governable grammatical function of the same type in the same local tree. I

206



13.4 Future Work

present a method to improve coverage with the help of subcategorisation frames,

automatically extracted from LFG F-structures, generated from the annotated

TiGer treebank.

It is difficult to directly compare my results with the hand-crafted LFG gram-

mar of Rohrer and Forst (2006). The automatically acquired grammars are su-

perior with regard to coverage, and yield precision scores in the same range as

the ones for the hand-crafted grammar. Comparing the overall F-scores, the

hand-crafted LFG outperforms the treebank-based grammars.

13.4 Future Work

The main problems for the automatic acquisition of LFG resources for German

are the following:

• the low CFG parsing results for German, especially when considering com-

bined node and grammatical function labels;

• low recall especially for the SVM-based architecture;

• the adequate representation of LDDs in the treebank.

Improving results for syntactic parsing of German is essential for data-driven

grammar acquisition, as our approach heavily relies on the grammatical function

labels in the German treebanks. In order to improve results, we need to improve,

or to develop new parsing techniques which can handle the high ambiguity caused

by the semi-free German word order together with case syncretism. The approach

of assigning GF labels in a post-processing step, using an SVM-based function

labeler, showed promising results. However, the gain in precision was paid at the

cost of an unacceptable decrease in recall. The SVM classifier treats the problem

as a binary classification task, treating each GF label on its own. Future work

should investigate joint models for the assignment of grammatical functions, in

order to prevent conflicts between multiple subjects or objects assigned to the

same local tree.

Another possible line of research could look into the feature sets used to train

the SVM. These features claim to be language-independent (Chrupala et al.,

207



13.4 Future Work

2007) and have been used successfully to assign grammatical function labels to

the English Penn-II treebank (Bies et al., 1995), the Spanish Cast3LB treebank

(Civit and Marti, 2004) as well as the Penn Chinese treebank (Xue et al., 2005).

However, I do believe that language-dependent as well as treebank-dependent

feature tuning could substantially improve the method, as it cannot be expected

that the same extraction method will capture all relevant clues for all treebank

encoding schemes and for typologically different languages.

The most challenging problem consists of an appropriate representation of

non-local dependencies for a semi-free word order language. The two German

treebanks chose different ways to solve this problem, which both proved to be

difficult for machine learning methods. The question at hand is how one can

identify and encode features which express non-local dependencies without caus-

ing a sharp increase in the number of categories that need to be learned, resulting

in data sparseness, and the question whether those categories can be distinguished

based on local distribution only. This problem has to be solved before we can

hope to automatically acquire really high-quality deep linguistic resources for

German.

208



References

Arun Abhishek and Frank Keller. Lexicalization in crosslinguistic probabilistic

parsing: The case of french. In 43rd Annual Meeting of the Association for

Computational Linguistics (ACL-05), pages 306–313, Ann Arbor, Michigan,

2005. 24, 35

Hiyan Alshawi, editor. The Core Language Engine. MIT Press, Cambridge, MA,

1992. 22

Michiel Bacchiani, Michael Riley, Brian Roark, and Richard Sproat. Map adap-

tation of stochastic grammars. Computer Speech and Language, 20(1):41–68,

2006. 22

Judith Berman. Topicalization vs. left dislocation of sentential arguments in

german. In Proceedings of the 1st International Lexical Functional Grammar

Conference (LFG-96), pages 75–88, Grenoble, Suitzerland, 1996. 15

Manfred Bierwisch. Grammatik des deutschen verbs. Studia grammatica, 2, 1963.

15

Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre. Bracketing Guide-

lines for Treebank II Style Penn Treebank Project. University of Pennsylvania,

1995. 208

Ezra W. Black, Steven Abney, Dan Flickinger, Claudia Gdaniec, Ralph Grishman,

Philip Harrison, Donald Hindle, Robert Ingria, Fred Jelinek, Judith Klavans,

Mark Liberman, Mitch Marcus, Salim Roukos, Beatrice Santorini, and Tomek

Strzalkowski. A procedure for quantitatively comparing the syntactic coverage

209



REFERENCES

of english grammars. In In Proceedings of the DARPA Speech and Natural

Language Workshop, pages 306–311, San Mateo, CA, 1991. 9, 22, 23, 35, 36

Don Blaheta and Eugene Charniak. Assigning function tags to parsed text. In

Proceedings of the first conference on North American chapter of the Associa-

tion for Computational Linguistics, San Francisco, CA, USA, 2000. 165

Rens Bod. A computational model of language performance: Data oriented pars-

ing. In The 14th International Conference on Computational Linguistics, pages

855–859, Nantes, France, 1992. 22

Adriane Boyd. Discontinuity revisited: An improved conversion to context-free

representations. In Proceedings of the Linguistic Annotation Workshop (LAW

2007), pages 41–44, Prague, Czech Republic, 2007. x, 8, 143, 145, 146, 183,

185, 197

Adriane Boyd and Detmar Meurers. Revisiting the impact of different annota-

tion schemes on pcfg parsing: A grammatical dependency evaluation. In ACL

Workshop on Parsing German (PaGe-08), pages 24–32, Columbus, OH, 2008.

59, 60

Adriane Boyd, Markus Dickinson, and Detmar Meurers. On representing depen-

dency relations – insights from converting the german tigerdb. In Proceedings

of the 6th International Workshop on Treebanks and Linguistic Theories (TLT-

07), pages 31–42, Bergen, Norway, 2007. 115, 120, 201

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George

Smith. The TIGER Treebank. In Erhard W. Hinrichs and Kiril Simov, editors,

Proceedings of the First Workshop on Treebanks and Linguistic Theories, pages

24–42, Sozopol, Bulgaria, 2002. 14, 21

Thorsten Brants. Tnt - a statistical part-of-speech tagger. In Proceedings of

the Sixth Conference on Applied Natural Language Processing (ANLP), pages

224–231, Seattle, WA, 2000. 29

Michael R. Brent. Automatic acquisition of subcategorization frames from un-

tagged text. In The 29th annual meeting on Association for Computational

Linguistics, pages 209–214, Berkeley, CA, 1991. 3

210



REFERENCES

Michael R. Brent. From grammar to lexicon: Unsupervised learning of lexical

syntax. Computational Linguistics, 19(2):243–262, 1993. 3

Joan Bresnan. Lexical-Functional Syntax. Blackwell, Oxford, 2000. 105

Ted Briscoe and John Carroll. Robust accurate statistical annotation of general

text. In Proceedings of the 3rd International Conference on Language Resources

and Evaluation (LREC-02), pages 1499–1504, Las Palmas, Canary Islands,

2002. 105

Ted Briscoe and John A. Carroll. Automatic extraction of subcategorization

from corpora. In Proceedings of the 5th ANLP Conference, pages 356–363,

Washington DC, 1997. 3

Ted Briscoe, Claire Grover, Bran Boguraev, and John A. Carroll. A formalism and

environment for the development of a large grammar of english. In Proceedings

of the 4th ACL/SIBPARSE International Workshop on Parsing Technologies,

pages 703–708, Milan, Italy, 1987. 22

Michael Burke, Aoife Cahill, Mairéad McCarthy, Ruth O’Donovan, Josef van

Genabith, and Andy Way. Evaluating automatic f-structure annotation for

the penn-ii treebank. Journal of Language and Computation; Special Issue on

Treebanks and Linguistic Theories, pages 523–547, 2004a. 110

Michael Burke, Olivia Lam, Aoife Cahill, Rowena Chan, Ruth O’Donovan, Adams

Bodomo, Josef van Genabith, and Andy Way. Treebank-based acquisition of

a chinese lexical-functional grammar. In Proceedings of the 18th Pacific Asia

Conference on Language, Information and Computation (PACLIC-18), pages

161–172, Tokyo, Japan, 2004b. 1, 4, 110

Miriam Butt, Maŕıa-Eugenia Ni no, and Frédérique Segond. Multilingual process-

ing of auxiliaries within lfg. In Proceedings of KONVENS 1996, pages 111–122,

Bielefeld, Germany, 1996. 124

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian

Rohrer. The parallel grammar project. In Proceedings of COLING-02 Work-

shop on Grammar Engineering and Evaluation, Taipei, Taiwan, 2002. 110,

199

211



REFERENCES

Aoife Cahill. Parsing with Automatically Acquired, Wide-Coverage, Robust, Prob-

abilistic LFG Approximations. PhD dissertation, School of Computing, Dublin

City University, Dublin, Ireland, 2004. 1, 4, 5, 7, 10, 24, 28, 29, 103, 104, 107,

108, 110, 111, 112, 113, 114, 115, 116, 121, 125, 133, 203

Aoife Cahill, Mairéad McCarthy, Josef van Genabith, and Andy Way. Automatic

annotation of the penn-treebank with lfg f-structure information. In LREC-02

workshop on Linguistic Knowledge Acquisition and Representation - Bootstrap-

ping Annotated Language Data, Third International Conference on Language

Resources and Evaluation (LREC-02), post-conference workshop, pages 8–15,

Paris, France, 2002. 1, 4, 104, 107, 110

Aoife Cahill, Martin Forst, Mairéad McCarthy, Ruth O’ Donovan, Christian

Rohrer, Josef van Genabith, and Andy Way. Treebank-based multilingual

unification-grammar development. In Proceedings of the Workshop on Ideas

and Strategies for Multilingual Grammar Development, at the 15th European

Summer School in Logic Language and Information, Vienna, Austria, 2003. 1,

4, 5, 7, 10, 24, 103, 104, 110, 111, 112, 113, 114, 115, 116, 121, 125, 131, 133

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef van Genabith, and Andy

Way. Long-distance dependency resolution in automatically acquired wide-

coverage pcfg-based lfg approximations. In 42nd Annual Meeting of the As-

sociation for Computational Linguistics (ACL-04), pages 319–326, Barcelona,

Spain, 2004. 108, 110, 203

Aoife Cahill, Martin Forst, Michael Burke, Mairéad McCarthy, Ruth O’Donovan,

Christian Rohrer, Josef van Genabith, and Andy Way. Treebank-based acqui-

sition of multilingual unification grammar resources. Journal of Research on

Language and Computation; Special Issue on Shared Representations in Mul-

tilingual Grammar Engineering, pages 247–279, 2005. 1, 4, 5, 7, 10, 103, 104,

110, 111, 112, 113, 114, 115, 125, 131, 133

Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan Riezler, Josef van Gen-

abith, and Andy Way. Wide-coverage deep statistical parsing using automatic

dependency structure annotation. Computational Linguistics, 34(1):81–124,

2008. 1, 105

212



REFERENCES

John A. Carroll and Ted Briscoe. Apportioning development effort in a probabilis-

tic lr parsing system through evaluation. In Proceedings of the ACL/SIGDAT

Conference on Empirical Methods in Natural Language Processing, pages 92–

100, Philadelphia, PA, 1996. 23, 30, 36

John A. Carroll, Ted Briscoe, and Antonio Sanfilippo. Parser evaluation: a

survey and a new proposal. In Proceedings of the 1st International Conference

on Language Resources and Evaluation, pages 447–454, Granada, Spain, 1998.

23, 31

Eugene Charniak. Tree-bank grammars. Technical report, Department of Com-

puter Science, Brown University, Portland, OR, 1996. 22

Eugene Charniak and M. Johnson. Coarse-to-fine nbest-parsing and maxent dis-

criminative reranking. In 43rd Annual Meeting of the Association for Com-

putational Linguistics (ACL-05), pages 173–180, Ann Arbor, Michigan, 2005.

22

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis,

Isaac Haxton, Catherine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar, and

Theresa Vu. Multilevel coarse-to-fine pcfg parsing. In Proceedings of the North

American Chapter of the Association for Computational Linguistics (NAACL-

06), pages 168–175, New York, NY, 2006. 22

John Chen and Vijay K. Shanker. Automated extraction of tags from the penn

treebank. In Proceedings of the 6th International Workshop on Parsing Tech-

nologies (IWPT-00), pages 65–76, Trento, Italy, 2000. 4

Grzegorz Chrupala, Nicolas Stroppa, Josef van Genabith, and Georgiana Dinu.

Better training for function labeling. In Proceedings of the Conference on Re-

cent Advances in Natural Language Processing (RANLP 2007), pages 133–138,

Borovets, Bulgaria, 2007. 142, 150, 151, 165, 207

Montserrat Civit and Ma Marti. Building cast3lb: A spanish treebank. Research

on Language and Computation, 2(4):549–574, December 2004. 208

Stephen Clark and James R. Curran. Log-linear models for wide-coverage ccg

parsing. In Proceedings of the SIGDAT Conference on Empirical Methods in

213



REFERENCES

Natural Language Processing (EMNLP ’03), pages 97–104, Sapporo, Japan,

2003. 104

Stephen Clark and James R. Curran. Parsing the wsj using ccg and log-linear

models. 2004. 104

Michael Collins. Three generative, lexicalised models for statistical parsing. In

35th Annual Meeting of the Association for Computational Linguistics (ACL-

97, jointly with the 8th Conference of the EACL), pages 16–23, Madrid, Spain,

1997. 22, 25

Anna Corazza, Alberto Lavelli, and Giorgio Satta. Measuring parsing difficulty

across treebanks. Technical report, 2008. 62, 72

Richard S. Crouch, Ronald M. Kaplan, Tracy H. King, and Stefan Riezler. A com-

parison of evaluation metrics for a broad coverage parser. In Beyond PARSE-

VAL – Towards Improved Evaluation Measures for Parsing Systems; LREC-02

Workshop, pages 67–74, Las Palmas, Spain, 2002. 111

Mary Dalrymple. Lexical-Functional Grammar. Academic Press, London, United

Kingdom, 2001. 105, 108, 110

Michael Daum, Kilian Foth, and Wolfgang Menzel. Automatic transformation of

phrase treebanks to dependency trees. In Proceedings of the 4th International

Conference on Language Resources and Evaluation (LREC-04), pages 1149–

1152, Lisbon, Portugal, 2004. 82

Stefanie Dipper. Implementing and documenting large-scale grammars — ger-

man lfg, doctoral dissertation, ims, university of stuttgart. Arbeitspapiere des

Instituts für Maschinelle Sprachverarbeitung (AIMS), 9(1), 2003. 8, 119, 120,

124, 199, 201

Erich Drach. Grundgedanken der Deutschen Satzlehre. reprint Darmstadt, Wis-

senschaftliche Buchgesellschaft, 1963, Diesterweg, Frankfurt/M., 1937. 15

Amit Dubey. Statistical Parsing for German: Modeling Syntactic Properties and

Annotation Differences. PhD dissertation, Computational Linguistics, Saar-

land University, Saarbrücken, Germany, 2004. 30, 81

214



REFERENCES

Amit Dubey. What to do when lexicalization fails: Parsing german with suffix

analysis and smoothing. In 43rd Annual Meeting of the Association for Com-

putational Linguistics (ACL-05), pages 314–321, Ann Arbor, Michigan, 2005.

29, 30

Amit Dubey and Frank Keller. Probabilistic parsing for german using sister-head

dependencies. In 41st Annual Meeting of the Association for Computational

Linguistics (ACL-03), pages 96–103, Sapporo, Japan, 2003. 6, 14, 20, 24, 25,

26, 35

Oskar Erdmann. Grundzüge der deutschen Syntax nach ihrer geschichtlichen

Entwicklung dargestellt. Verlag der J. G. Cotta’schen Buchhandlung, Stuttgart,

1886. 15

Sisay Fissaha, Daniel Olejnik, Ralf Kornberger, Karin Müller, and Detlef

Prescher. Experiments in german treebank parsing. In Proceedings of the

6th International Conference on Text, Speech and Dialogue (TSD-03), pages

50–57, Ceske Budejovice, Czech Republic, 2003. 20, 24, 25, 31

Martin Forst. Treebank conversion - creating an f-structure bank from the tiger

corpus. In Proceedings of the 8th International Lexical Functional Grammar

Conference (LFG-03), pages 205–216, Saratoga Springs, NY, USA, 2003. 111,

114, 115, 116

Martin Forst. Filling statistics with linguistics - property design for the disam-

biguation of german lfg parses. In Proceedings of the ACL Workshop on Deep

Linguistic Processing, pages 17–24, Prague, Czech Republic, 2007. 199, 201,

202

Martin Forst, Núria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia

Hansen-Schirra, and Valia Kordoni. Towards a dependency-based gold stan-

dard for german parsers - the tiger dependency bank. In Proceedings of the

COLING Workshop on Linguistically Interpreted Corpora (LINC ’04), pages

31–38, Geneva, Switzerland, 2004. 115

Jennifer Foster, Joachim Wagner, Djamé Seddah, and Josef van Genabith. Adapt-

ing wsj-trained parsers to the british national corpus using in-domain self-

215



REFERENCES

training. In Proceedings of the 10th International Conference on Parsing Tech-

nologies (IWPT-07), pages 33–35, Prague, Czech Republic, 2007. 22

Kilian Foth. Eine umfassende Dependenzgrammatik des Deutschen. Technical re-

port, Fachbereich Informatik, Universität Hamburg, Hamburg, Germany, 2003.

82

Kilian Foth, Michael Daum, and Wolfgang Menzel. A broad-coverage parser for

german based on defeasible constraints. In Proceedings of KONVENS 2004,

Vienna, Austria, 2004. 121, 125

Anette Frank. A (discourse) functional analysis of asymmetric coordination. In

Proceedings of the 7th International Lexical Functional Grammar Conference

(LFG-02), Athens, Greece, 2002. 92

Michael Gamon, Eric Ringger, Zhu Zhang, Robert Moore, and Simon Corston-

Oliver. Extraposition: a case study in german sentence realization. In Proceed-

ings of the 19th International Conference on Computational Linguistics, pages

1–7, Morristown, NJ, USA, 2002. 12, 84

Daniel Gildea. Corpus variation and parser performance. In Proceedings of the

2001 Conference on Empirical Methods in Natural Language Processing, pages

167–202, Pittsburgh, PA, USA, 2001. 22

Claire Grover, John A. Carroll, and Ted Briscoe. The alvey natural language

tools grammar (4th release). Technical Report 284, University of Cambridge:

Computer Laboratory, Cambridge, UK, 1993. 22

Hubert Haider. Downright down to the right. In Uli Lutz and Jürgen Pafel,

editors, On Extraction and Extraposition in German, Linguistik Aktuell 11,

pages 245–271. John Benjamins, Amsterdam, 1996. 88

Karin Harbusch and Gerard Kempen. Clausal coordinate ellipsis in german: The

tiger treebank as a source of evidence. In Proceedings of the Sixteenth Nordic

Conference of Computational Linguistics (NODALIDA), pages 81–88, Tartu,

Estonia, 2007. 85

Simon Herling. Ueber die topik der deutschen sprache. Abhandlungen des frank-

furtischen Gelehrtenvereines für deutsche Sprache, 3:296–362, 1821. 15

216



REFERENCES

Caroline Heycock and Anthony Kroch. Minimale syntax. verb movement and the

status of subjects: Implications for the theory of licensing. Groninger Arbeiten

zur germanistischen Linguistik, 36:75–102, 1993. 92

Donald Hindle and Mats Rooth. Structural ambiguity and lexical relations. Com-

putational Linguistics, 19:103–120, 1993. 22, 84

Julia Hockenmaier. Parsing with generative models of predicate-argument struc-

ture. In 41st Annual Meeting of the Association for Computational Linguistics

(ACL-03), pages 359–366, Sapporo, Japan, 2003. 173

Julia Hockenmaier. Creating a ccgbank and a wide-coverage ccg lexicon for ger-

man. In Proceedings of the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics (COLING-ACL-06), pages 505–512, Sydney, Australia, 2006. 4,

111

Julia Hockenmaier and Mark Steedman. Acquiring compact lexicalized grammars

from a cleaner treebank. In Proceedings of Third International Conference on

Language Resources and Evaluation, pages 1974–1981, Las Palmas, Canary

Islands, Spain, 2002a. 4, 104, 143, 148

Julia Hockenmaier and Mark Steedman. CCGbank: User’s Manual. Philadelphia,

PA, 2005. 104

Julia Hockenmaier and Mark Steedman. Generative models for statistical parsing

with combinatory categorial grammar. In 40th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL-02), pages 335–342, Philadelphia,

PA, 2002b. 104

Tilman Höhle. Der begriff ’mittelfeld’, anmerkungen über die theorie der topol-

ogischen felder. In Akten des Siebten internationalen Germanistenkongresses,

pages 329–340, Göttingen, Germany, 1986. 15

Tilman Höhle. Assumptions about asymmetric coordination in german. Grammar

in progress. Glow essays for Henk van Riemsdijk, pages 221–235, 1990. 92

217



REFERENCES

Thorsten Joachims. Learning to Classify Text using Support Vector Machines

(Kluwer International Series in Engineering and Computer Science). Springer,

Berlin, 2002. 151

Mark Johnson. Pcfg models of linguistic tree representations. Computational

Linguistics, 24(4):613–632, 1998. 24, 26, 27, 101, 112, 113

John Judge, Michael Burke, Aoife Cahill, Ruth O’Donovan, Josef van Genabith,

and Andy Way. Strong domain variation and treebank-induced lfg resources. In

Proceedings of the 10th International Lexical Functional Grammar Conference

(LFG-05), pages 186–204, Bergen, Norway, 2005. 22

Ronald M. Kaplan and John Maxwell. Constituent coordination in lexical-

functional grammar. In Proceedings of the 12th International Conference on

Computational Linguistics, pages 303–305, Budapest, Hungary, 1988. 84

Ronald M. Kaplan and John T. Maxwell III. An algorithm for functional uncer-

tainty. In Proceedings of the 12th International Conference on Computational

Linguistics (COLING-88), pages 297–302, Budapest, Hungary, 1988. 22

Ronald M. Kaplan and Annie Zaenen. Long-Distance Dependencies, Constituent

Structure and Functional Uncertainty, pages 17–42. Chicago University Press,

1988. 108, 110

Ronald M. Kaplan, Stefan Riezler, Tracy H. King, John. T. Maxwell III, Alexan-

der Vasserman, and Richard Crouch. Speed and accuracy in shallow and deep

stochastic parsing. In Proceedings of the Human Language Technology Con-

ference and the 4th Annual Meeting of the North American Chapter of the

Association for Computational Linguistics (HLT-NAACL-04), pages 97–104,

Boston, MA, 2004. 1, 105

Andreas Kathol. Linearization vs. phrase structure in german coordination con-

structions. Cognitive Linguistics, 4(10):303–342, 1999. 92

Adam Kilgariff. Comparing corpora. International Journal of Corpus Linguistics,

6(1):1–37, 2001. 66

218



REFERENCES

Dan Klein and Chris Manning. Accurate unlexicalized parsing. In 41st Annual

Meeting of the Association for Computational Linguistics (ACL-03), pages 423–

430, Sapporo, Japan, 2003. 22, 26, 29, 82, 150

Sandra Kübler. How do treebank annotation schemes influence parsing results?

Or how not to compare apples and oranges. In Proceedings of the 5th In-

ternational Conference on Recent Advances in Natural Language Processing

(RANLP 2005), pages 293–300, Borovets, Bulgaria, 2005. x, 6, 8, 20, 35, 36,

49, 69, 88, 143, 146, 182, 183, 204

Sandra Kübler. The page 2008 shared task on parsing german. In ACL Workshop

on Parsing German (PaGe-08), pages 55–63, Columbus, OH, 2008. 27, 31, 148

Sandra Kübler and Heike Telljohann. Towards a dependency-oriented evaluation

for partial parsing. In Beyond PARSEVAL – Towards Improved Evaluation

Measures for Parsing Systems (LREC-02 Workshop), Canary Islands, Spain,

2002. 31, 56, 96

Sandra Kübler, Erhard W. Hinrichs, and Wolfgang Maier. Is it really that difficult

to parse german? In Proceedings of the 2006 Conference on Empirical Meth-

ods in Natural Language Processing, EMNLP 2006, pages 111–119, Sydney,

Australia, 2006. 6, 9, 26, 27, 31, 35, 36, 48, 49, 50, 55, 59, 60, 204

Sandra Kübler, Wolfgang Maier, Ines Rehbein, and Yannick Versley. How to

compare treebanks. In Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC-08), pages 2322–2329, Marrakech,

Morocco, 2008. 81, 185

Sandra Kübler, Ines Rehbein, and Josef van Genabith. Tepacoc - a testsuite

for testing parser performance on complex german grammatical constructions.

In Proceedings of the 7th International Workshop on Treebanks and Linguistic

Theories (TLT-09), pages 15–28, Groningen, Netherlands, 2009. 81

Vladimir. I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics, 10:707–710, 1966. 37, 42

219



REFERENCES

Dekang Lin. A dependency-based method for evaluating broad-coverage parsers.

In Proceedings of the 14th International Joint Conference on Artificial Intelli-

gence (IJCAI-95), pages 1420–1427, 1995. 23, 31, 96

Dekang Lin. A dependency-based method for evaluating broad-coverage parsers.

Natural Language Engineering, 4:1420–1427, 1998. 23, 31, 56, 96

David M. Magerman. Statistical decision-tree models for parsing. In 33rd Annual

Meeting of the Association for Computational Linguistics (ACL-95), pages 276–

283, Cambridge, MA, 1995. 22, 107, 125

Claudia Maienborn. Das zustandspassiv: Grammatische einordnung - bildungs-

beschränkungen - interpretationsspielraum. Zeitschrift für Germanistische Lin-

guistik, 1(35):83–114, 2007. 124

Wolfgang Maier. Annotation schemes and their influence on parsing results. In

Proceedings of the COLING-ACL-06 Student Research Workshop, pages 19–24,

Sydney, Australia, 2006. 6, 9, 20, 35, 36, 48, 49, 55, 204

Christopher Manning and Hinrich Schütze. Foundations of Statistical Natural

Language Processing. MIT Press, Cambridge, MA, 1999. 31

Mitchell Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of English: The Penn Treebank. Computational Lin-

guistics, 19(2):313–330, 1993. 1, 22

David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training

for parsing. In Proceedings of the 2006 Conference of the North American

Chapter of the Association for Computational Linguistics on Human Language

Technology (NAACL-06), pages 152–159, New York, NY, 2006a. 22

David McClosky, Eugene Charniak, and Mark Johnson. Reranking and self-

training for parser adaptation. In Proceedings of the 21st International Con-

ference on Computational Linguistics and 44th Annual Meeting of the Associ-

ation for Computational Linguistics (COLING-ACL-06), pages 337–344, Syd-

ney, Australia, 2006b. 22

220



REFERENCES

Scott Miller and Heidi J. Fox. Automatic grammar acquisition. In Proceedings

of the workshop on Human Language Technology, pages 268–271, Plainsboro,

NJ, 1994. 3

Yusuke Miyao and Jun’ichi Tsujii. Probabilistic disambiguation models for wide-

coverage hpsg parsing. In 43rd Annual Meeting of the Association for Compu-

tational Linguistics (ACL-05), pages 83–90, Ann Arbor, MI, 2005. 4, 104

Yusuke Miyao and Jun’ichi Tsujii. Maximum entropy estimation for feature

forests. In Proceedings of the 2nd International Conference on Human Language

Technology Research, pages 292–297, San Diego, CA, 2002. 104

Gereon Müller. On extraposition and successive cyclicity. In Robert Freidin and

Howard Lasnik, editors, Syntax. Critical Concepts in Linguistics, volume III of

Transformations (2), pages 65–92. Routledge, London & New York, 2006. 88

Stefan Müller. Zur Analyse der scheinbar mehrfachen Vor-

feldbesetzung. Linguistische Berichte, 203:297–330, 2005.

http://hpsg.fu-berlin.de/∼stefan/Pub/mehr-vf-lb.html. 15

Hiroko Nakanishi, Yusuke Miyao, and Jun’ichi Tsujii. Using inverse lexical rules

to acquire a wide-coverage lexicalized grammar. In IJCNLP 2004 Workshop

on Beyond Shallow Analyses - Formalisms and Statistical Modeling for Deep

Analyses, Sanya City, Hainan Island, China, 2004. 4, 104

John Nerbonne and Wybo Wiersma. A measure of aggregate syntactic distance.

In Proceedings of the Workshop on Linguistic Distances, at the 21st Interna-

tional Conference on Computational Linguistics and 44th Annual Meeting of

the Association for Computational Linguistics (COLING-ACL-06), pages 82–

90, Sydney, Australia, 2006. 62

Ruth O’Donovan, Michael Burke, Aoife Cahill, Josef van Genabith, and Andy

Way. Large-scale induction and evaluation of lexical resources from the penn-

ii treebank. In 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04), pages 367–374, Barcelona, Spain, 2004. 108, 109, 188

Ruth O’Donovan, Michael Burke, Aoife Cahill, Josef van Genabith, and Andy

Way. Large-scale induction and evaluation of lexical resources from the penn-ii

221

http://hpsg.fu-berlin.de/~stefan/Pub/mehr-vf-lb.html


REFERENCES

and penn-iii treebanks. Computational Linguistics, 31(3):329–366, 2005a. 109,

188

Ruth O’Donovan, Aoife Cahill, Josef van Genabith, and Andy Way. Automatic

acquisition of spanish lfg resources from the cast3lb treebank. In Proceedings

of the 10th International Lexical Functional Grammar Conference (LFG-05),

pages 334–352, Bergen, Norway, 2005b. 4, 110

Stephan Oepen. Beyond the science of the wall street journal. Talk at the Unified

Linguistic Annotation Workshop (ULA-07). Bergen, Norway, 2007. 22

Fernando Pereira and Yves Schabes. Inside-outside reestimation from partially

bracketed corpora. In 30th Annual Meeting of the Association for Computa-

tional Linguistics (ACL-92), pages 128–135, Newark, DE, 1992. 3

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In

Proceedings of the Human Language Technology Conference and the 7th Annual

Meeting of the North American Chapter of the Association for Computational

Linguistics (HLT-NAACL-07), pages 404–411, Rochester, NY, 2007. 22, 24,

142, 150

Slav Petrov and Dan Klein. Parsing german with language agnostic latent variable

grammars. In ACL Workshop on Parsing German (PaGe-08), pages 33–39,

Columbus, OH, 2008. 24, 27, 31, 148, 150

Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Univer-

sity of Chicago Press and CSLI Publications, Chicago, IL, 1994. 84

Anna N. Rafferty and Christopher D. Manning. Parsing three german treebanks:

Lexicalized and unlexicalized baselines. In ACL Workshop on Parsing German

(PaGe-08), pages 40–46, Columbus, OH, 2008. 24, 29, 30

Ines Rehbein and Josef van Genabith. Evaluating evaluation measures. In

Proceedings of the 16th Nordic Conference of Computational Linguistics

NODALIDA-2007, pages 372–379, Tartu, Estonia, 2007a. 36

Ines Rehbein and Josef van Genabith. Why is it so difficult to compare treebanks?

tiger and tba-d/z revisited. In Proceedings of the 6th International Workshop

222



REFERENCES

on Treebanks and Linguistic Theories TLT-07, pages 115–126, Bergen, Norway,

2007b. 63

Ines Rehbein and Josef van Genabith. Treebank annotation schemes and parser

evaluation for German. In Proceedings of the 2007 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL-07), pages 630–639, Prague, Czech Re-

public, 2007c. 36

Brian Roark and Michiel Bacchiani. Supervised and unsupervised pcfg adaptation

to novel domains. In Proceedings of the 2003 Conference of the North American

Chapter of the Association for Computational Linguistics on Human Language

Technology (NAACL-03), pages 126–133, Edmonton, AB., Canada, 2003. 22

Christian Rohrer and Martin Forst. Improving coverage and parsing quality of a

large-scale lfg for german. In Proceedings of the 5th International Conference

on Language Resources and Evaluation (LREC-06), pages 2206–2211, Genoa,

Italy, 2006. 8, 199, 201, 207

Ivan A. Sag, Gerald Gazdar, Thomas Wasow, and Steven Weisler. Coordination

and how to distinguish categories. Technical report, CSLI-84-3. Center for the

Study of Language and Information, Stanford, CA, 1984. 84

Geoffrey Sampson. A proposal for improving the measurement of parse accuracy.

International Journal of Corpus Linguistics, 5(1):53–68, 2000. 36

Geoffrey Sampson and Anna Babarczy. A test of the leaf-ancestor metric for

parse accuracy. Journal of Natural Language Engineering, 9:365–380, 2003. 23,

31, 36, 42, 70

Geoffrey Sampson, Robin Haigh, and Eric Atwell. Natural language analysis

by stochastic optimization: a progress report on project april. Journal of

Experimental and Theoretical Artificial Intelligence, 1:271–287, 1989. 22, 31

Nathan C. Sanders. Measuring syntactic differences in british english. In Proceed-

ings of the COLING-ACL-07 Student Research Workshop, pages 1–6, Prague,

Czech Republic, 2007. 62

223



REFERENCES

Michael Schiehlen. Annotation strategies for probabilistic parsing in german. In

Proceedings of the 20th International Conference on Computational Linguistics

(COLING-04), pages 390–396, Geneva, Switzerland, 2004. 6, 20, 24, 26, 27,

28, 29, 30

Anne Schiller, Simone Teufel, and Christine Thielen. Guidelines für das tagging

deutscher textkorpora mit stts. Technical report, Universität Stuttgart and

Universität Tübingen, Tübingen, Germany, 1995. 14

Helmut Schmid. LoPar: Design and implementation. Technical report, Univer-

sität Stuttgart, Stuttgart, Germany, 2000. 24, 35, 59, 82

Helmut Schmid. Efficient parsing of highly ambiguous context-free grammars with

bit vectors. In Proceedings of the 20th International Conference on Computa-

tional Linguistics (COLING-04), pages 162–168, Geneva, Switzerland, 2004.

50, 69, 82, 95, 112, 150

Satoshi Sekine and Michael Collins. Evalb - bracket scoring program. Retrievable

from: http://cs.nyu.edu/cs/projects/proteus/evalb/, 1997. 24

Robert Sharman, Fred Jelinek, and Robert Mercer. Generating a grammar for

statistical training. In Proceedings of the DARPA Speech and Natural Language

Workshop, pages 267–274, Hidden Valley, PA, 1990. 3, 22

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An anno-

tation scheme for free word order languages. In Proceedings of the 5th Applied

Natural Language Processing Conference (ANLP-97), pages 88–95, Washing-

ton, D.C., 1997. 4, 13, 21, 24, 125, 133

Mark Steedman. Dependency and coordination in the grammar of dutch and

english. Language, 61:523–568, 1985. 84

Mark Steedman. Gapping as constituent coordination. Linguistics and Philoso-

phy, 13:207–263, 1990. 92

Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler, and Heike Zinsmeister.

Stylebook for the Tübingen Treebank of Written German (TüBa-D/Z). Univer-

sität Tübingen, Germany, 2005. 14

224



REFERENCES

Josef Van Genabith, Louisa Sadler, and Andy Way. Data-driven compilation of lfg

semantic forms. In Workshop on Linguistically Interpreted Corpora (LINC-99),

pages 69–76, Bergen, Norway, 1999. 109

Yannick Versley. Parser evaluation across text types. In Proceedings of the

4th Workshop on Treebanks and Linguistic Theories (TLT-05), pages 209–220,

Barcelona, Spain, 2005. 20, 22, 24, 28, 29, 82, 121

Yannick Versley and Heike Zinsmeister. From surface dependencies towards

deeper semantic representations. In Proceedings of the 5th Workshop on Tree-

banks and Linguistic Theories (TLT-06), pages 115–126, Prague, Czech Re-

public, 2006. 116

Dieter Wunderlich. Some problems of coordination in german. Natural language

parsing and linguistic theories, 4(4):289–316, 1988. 92

Fei Xia. Extracting tree adjoining grammars from bracketed corpora. In Proceed-

ings of the 5th Natural Language Processing Pacific Rim Symposium (NLPRS-

99), Bejing, China, 1999. 4

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. The penn chinese

treebank: Phrase structure annotation of a large corpus. Natural Language

Engineering, 11(2):207–238, 2005. 208

225



Appendix: Example Trees for

Five Grammatical Constructions

in TePaCoC

226



A
p
p
e
n
d
ix

Figure 1: PP Attachment in TiGer

(40) Auf
By

dem
the

Umweg
detour

über
via

die
the

129a-Ermittlungen
129a-investigations

könnten
could

die
the

Bemühungen
efforts

der
of the

Autonomen
autonomous activists

um
for

ein
a

bißchen
little

bürgerliche
middle-class

Respektierlichkeit
respectability

im
in the

Keim
bud

erstickt
nipped

werden.
be.

“With the 129a investigations, the efforts of the autonomous activists for a little middle-class respectability could be

nipped in the bud.”

227

Appendix/AppendixFigs/PPtiger.eps


A
p
p
e
n
d
ix

Figure 2: PP Attachment in TüBa-D/Z

(41) Wie
How

kann
can

einer
one

sich
refl.

derart
so

empören
revolt

über
about

den
the

Wortbruch
breach of promise

bei
concerning

den
the

Großflächen-Plakaten,
large-scale posters,

dessen
whose

Partei
party

selbst
itself

Großflächen-Plakate
large-scale posters

in
in

Auftrag
commission

gegeben
given

und
and

geklebt
posted

hat?
has?

“How can someone bristle at the breach of promise concerning the large-scale posters when his party has commissioned

and posted such posters?”

228

Appendix/AppendixFigs/PPtuba.eps


A
p
p
e
n
d
ix

Figure 3: Extraposed Relative Clauses in TiGer

(42) ...da
...that

immer
always

mehr
more

Versicherte
insurants

nur
just

noch
still

eine
a

Rente
pension

erhielten,
would receive,

die
which

niedriger
lower

ist
is

als
than

die
the

Sozialhilfe
social welfare

“... that more and more insurants receive a pension lower than social welfare”

229

Appendix/AppendixFigs/tiERC.eps


A
p
p
e
n
d
ix

Figure 4: Extraposed Relative Clauses in TüBa-D/Z

(43) Warum
Why

also
so

soll
shall

man
one

homosexuellen
homosexual

Paaren
couples

nicht
not

das
that

gönnen,
grant,

was
which

sie
they

nun
now

mal für
for

ihr
their

Glück
luck

wichtig
important

finden?
find?

“So why shouldn’t homosexual couples be granted what they think is important to their happiness.”

230

Appendix/AppendixFigs/ERCtuba.eps


A
p
p
e
n
d
ix

Figure 5: Forward Conjunction Reduction in TiGer

(44) Die
The

Schatzmeister
treasurers

der
of the

beiden
both

Parteien
parties

protestierten
protested

dagegen
against it

und
and

kündigten
announced

juristische
legal

Schritte
action

an.
verb part.

“The treasurers of both parties protested and announced they would take legal action.”

231

Appendix/AppendixFigs/FCRtiger.eps


A
p
p
e
n
d
ix

Figure 6: Forward Conjunction Reduction in TüBa-D/Z

(45) Nationalspieler
Member of the national team

Bode
Bode

klagte
complained

erneut
again

über
about

eine
an

alte
old

Oberschenkelzerrung
strain of the thigh

und
and

konnte
could

nicht
not

das
the

komplette
complete

Trainingsprogramm
training regime

absolvieren.
finish.

“Member of the national team Bode again complained about a strain of the femural muscle and could not finish the

training.”

232

Appendix/AppendixFigs/FCRtuba.eps


A
p
p
e
n
d
ix

Figure 7: Subject Gap with Fronted/Finite Verbs in TiGer

(46) Statt dessen
Instead

leugnet
denies

man
one

Tatsachen
facts

und
and

verdreht
twists

sie.
them.

“Instead, the facts are denied and twisted.”

233

Appendix/AppendixFigs/SGFtiger.eps


A
p
p
e
n
d
ix

Figure 8: Subject Gap with Fronted/Finite Verbs in TüBa-D/Z

(47) Immer
Always

kommt
comes

einer
someone

und
and

stiehlt
steals

mir
me

meine
my

Krise.
crisis.

“Every time, someone comes and steals my crisis.”

234

Appendix/AppendixFigs/SGFtuba.eps


A
p
p
e
n
d
ix

Figure 9: Coordination of Unlike Constituents in TiGer

(48) Das
This

ist
is

eigentlich
actually

ein
a

Witz
joke

und
and

nicht
not

zu
to

verstehen.
understand.

“This actually is a joke and hard to understand.”

235

Appendix/AppendixFigs/tiCUC.eps


A
p
p
e
n
d
ix

Figure 10: Coordination of Unlike Constituents in TüBa-D/Z

(49) Die
The

Älteren
elderly

sind
are

teurer,
more expensive,

haben
have

familiäre
familial

Verpflichtungen
commitments

und
and

oft
often

ein
a

Haus
house

abzuzahlen.
to repay.

“The elderly are more expensive, have family commitments and often have to pay off a house.”

236

Appendix/AppendixFigs/CUCtuba.eps

	1 Introduction
	1.1 Outline of the Thesis

	2 The Data
	2.1 Language-Specific Properties of German
	2.2 Two German Treebanks: TiGer and TüBa-D/Z
	2.3 Differences between TiGer and NEGRA
	2.4 Summary

	3 Background and Related Work (PCFG Parsing for German)
	3.1 Introduction
	3.2 State-of-the-Art for German Data-Driven Parsing
	3.2.1 Morphological Information
	3.2.2 The Pitfalls of Evaluation
	3.2.3 Significance Tests for Parser Performance

	3.3 Conclusions

	4 Evaluating Evaluation Measures
	4.1 Introduction
	4.2 Controlled Error Insertion Experiments for German
	4.3 Experiment I
	4.3.1 Experimental Setup
	4.3.2 Error Insertion
	4.3.3 Results for Controlled Error Insertion for the Original Treebank Trees
	4.3.4 The Leaf-Ancestor Metric (LA)
	4.3.5 Comparing LA and PARSEVAL

	4.4 Experiment II
	4.4.1 Experimental Setup
	4.4.2 Converting the TüBa-D/Z Trees to TiGer-Style Trees
	4.4.3 The Conversion Process: A Worked Example
	4.4.4 Results for Converted Parser Output

	4.5 Experiment III
	4.5.1 Dependency-Based (DB) Evaluation
	4.5.2 Experimental Setup
	4.5.3 Results
	4.5.4 Related Work

	4.6 Conclusions

	5 TiGer and TüBa-D/Z: Apples and Oranges
	5.1 Introduction
	5.2 Comparing the Treebanks
	5.2.1 Sentence Length / Word Length / Vocabulary Size
	5.2.2 Principal Component Analysis (PCA) of POS Tags
	5.2.3 Perplexity
	5.2.4 Parsing Experiments

	5.3 Annotating the TüBa-D/Z in the TiGer Annotation Scheme
	5.3.1 Qualitative Evaluation of TiGer and TüBa-D/Z Parser Output

	5.4 Conclusions

	6 TePaCoC - A New Testsuite for Cross-Treebank Comparison
	6.1 Introduction
	6.2 Experimental Setup
	6.3 TePaCoC - Testing Parser Performance on Complex Grammatical Constructions
	6.3.1 Extraposed Relative Clauses (ERC)
	6.3.2 Forward Conjunction Reduction (FCR)
	6.3.3 Subject Gap with Fronted/Finite Verbs (SGF)
	6.3.4 Coordination of Unlike Constituents (CUC)

	6.4 Constituent Evaluation
	6.5 Dependency Evaluation
	6.6 Manual Evaluation of TePaCoC Phenomena
	6.7 Conclusions

	7 Treebank-Based Deep Grammar Acquisition - Background
	7.1 Treebank-Based Automatic Acquisition of Deep LFG Resources
	7.1.1 Overview of Lexical Functional Grammar
	7.1.2 Automatic F-structure Annotation of the English Penn-II Treebank
	7.1.3 Using F-structure Information to Guide Parsing
	7.1.4 Extracting Subcategorisation Frames from the F-structures Generated from the Penn-II Treebank
	7.1.5 Resolving LDDs on F-structure Level for Parser Output

	7.2 Multilingual Treebank-Based LFG Grammar Acquisition
	7.3 Automatic Acquisition of Rich LFG Resources for German
	7.3.1 F-Structure Annotation and Evaluation for German
	7.3.2 Parsing Experiments and Evaluation for German
	7.3.3 Parsing with Morphological Information

	7.4 Conclusions

	8 Improved Acquisition of Deep, Wide-Coverage LFG Resources for German: Preliminaries
	8.1 Introduction
	8.2 Gold Standards for Evaluation
	8.2.1 Gold Standards Based on the TiGer Treebank
	8.2.2 A Gold Standard Based on the TüBa-D/Z

	8.3 Summary

	9 Developing F-structure Annotation Algorithms for German
	9.1 Introduction
	9.2 Developing F-Structure Annotation Algorithms for the Extended Feature Sets in the TiGer DB, DCU250 and TUBA100
	9.2.1 Differences between the English and the German Annotation Algorithm
	9.2.2 Differences between the New AA for German and Cahill et al. (2003, 2005) and Cahill (2004)

	9.3 Results for Automatic F-structure Annotation on Gold Trees
	9.4 Summary

	10 Parsing
	10.1 Introduction
	10.2 Approaches to Treebank-Based Grammar Extraction, Parsing and Evaluation
	10.2.1 Raised versus Split - What's the Difference?
	10.2.2 Automatic F-structure Annotation

	10.3 Parsing into LFG F-structures
	10.3.1 Experimental Setup
	10.3.2 C-Structure and F-Structure Parsing Results for the TiGer DB
	10.3.3 C-Structure and F-Structure Parsing Results for the DCU250
	10.3.3.1 Error Analysis
	10.3.3.2 Evaluating FunTag

	10.3.4 C-Structure and F-Structure Parsing Results for the TüBa-D/Z
	10.3.5 C-Structure and F-Structure Parsing Results in a CCG-Style Evaluation
	10.3.6 LFG F-structure Annotation with TiGer and TüBa-D/Z Trained Parsing Resources - Conclusions

	10.4 Summary

	11 Extensions: Recovering LDDs and Improving Coverage with SubCat Frames
	11.1 Introduction
	11.2 Recovering LDDs in the Parse Trees
	11.3 Improving Coverage with SubCat Frames
	11.3.1 SubCat Frame Extraction
	11.3.2 Using SubCat Frames for Disambiguation

	11.4 Conclusions

	12 Parsing: Related Work
	12.1 Introduction
	12.2 Related Work
	12.3 Discussion

	13 Conclusions
	13.1 Is German Harder to Parse than English?
	13.2 Comparing Treebank Design - TiGer and TüBa-D/Z
	13.3 Is Treebank-Based Grammar Induction for German feasible?
	13.4 Future Work


