
CCG-Augmented

Hierarchical Phrase-Based

Statistical Machine

Translation

Hala Almaghout

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University
School of Computing

Supervisor: Prof. Andy Way and Dr. Jie Jiang

July 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11311179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Ph.D. is entirely my own work, that
I have exercised reasonable care to ensure that the work is original, and does not
to the best of my knowledge breach any law of copyright, and has not been taken
from the work of others save and to the extent that such work has been cited and
acknowledged within the text of my work.

Signed:

(Candidate) ID No.:

Date:



Contents

List of Figures v

List of Tables xii

Abstract xvii

Acknowledgements xix

1 Introduction 1

1.1 Main Findings of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Thesis Structure: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9

2.1 Statistical Machine Translation . . . . . . . . . . . . . . . . . . . . . 9

2.2 Word-Based SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Phrase-Based SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Phrase Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 The Log-Linear Model . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Minimum Error Rate Training . . . . . . . . . . . . . . . . . . 17

2.3.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Rescoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Hierarchical Phrase-Based SMT . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 HPB SMT Grammar . . . . . . . . . . . . . . . . . . . . . . . 21

i



2.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 HPB SMT vs. PB SMT . . . . . . . . . . . . . . . . . . . . . 28

2.5 Syntax Augmentation for SMT Systems . . . . . . . . . . . . . . . . 29

2.5.1 Source Syntax Augmentation for SMT Systems . . . . . . . . 30

2.5.2 Target Syntax Augmentation for SMT Systems . . . . . . . . 31

2.5.3 Source and Target Syntax Augmentation for SMT Systems . . 33

2.6 Syntax Augmented Machine Translation . . . . . . . . . . . . . . . . 34

2.6.1 Rule Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Combinatory Categorial Grammar . . . . . . . . . . . . . . . . . . . . 38

2.7.1 CCG Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.2 CCG Combinatory Rules . . . . . . . . . . . . . . . . . . . . . 40

2.7.3 CCG Supertagging . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.4 Incorporating CCG in SMT Systems . . . . . . . . . . . . . . 44

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 CCG Categories as Nonterminal Labels in Hierarchical Rules 47

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Using CCG Categories to Label Nonterminals in Hierarchical Rules . 53

3.4 CCG-based Labels vs. CF-PSG-based Labels . . . . . . . . . . . . . . 56

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Data and Settings . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Arabic-to-English Experimental Results . . . . . . . . . . . . 64

3.5.4 Chinese-to-English Experimental Results . . . . . . . . . . . . 66

3.5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



4 Simplifying CCG-based Nonterminal Labels 93

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 CCG Contextual Labels . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Feature-stripped CCG Labels . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Data and Settings . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Baseline Systems . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 CCG-Augmented Systems . . . . . . . . . . . . . . . . . . . . 102

4.5.4 Small Data Set Experiments . . . . . . . . . . . . . . . . . . . 103

4.5.5 Large Data Set Experiments . . . . . . . . . . . . . . . . . . . 109

4.5.6 Large Language Model Experiments . . . . . . . . . . . . . . . 111

4.5.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Extending CCG-based Syntactic Constraints in Hierarchical Phrase-

Based SMT 127

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Preference Grammars . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Extended CCG-based Syntactic Labels . . . . . . . . . . . . . . . . . 135

5.4 CCG-augmented Glue Grammar . . . . . . . . . . . . . . . . . . . . . 136

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.1 Data and Settings . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.2 Experimental Results on IWSLT Data . . . . . . . . . . . . . 143

5.5.3 Experimental Results on News Data . . . . . . . . . . . . . . 149

5.5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

iii



6 Conclusions 171

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 177

iv



List of Figures

2.1 Word alignments between an Arabic source sentence and its corre-

sponding English target translation. . . . . . . . . . . . . . . . . . . 11

2.2 The pipeline of the PB SMT system. . . . . . . . . . . . . . . . . . . 12

2.3 Source-to-target and target-to-source word alignments between an

Arabic source sentence and its corresponding English target transla-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Extraction of the intersection and union alignment points from the

alignment matrices of the sentence pair illustrated in Figure 2.3. . . . 15

2.5 A set of phrase pairs extracted according to word alignments from

the sentence pair illustrated in Figure 2.3. . . . . . . . . . . . . . . . 16

2.6 A set of hierarchical rules extracted from the sentence pair illustrated

in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Derivation tree of the English translation produced by the HPB SMT

system for the Arabic sentence 	
�

	
�

�
HQå�

	
k

�
éJ
k. PA

	
mÌ'@

�
èPAj.

�
JË @

�
HA¿Qå

�
�

AêËAÖÞ� @P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Parse tree of the English sentence in Figure 2.1 along with its aligned

Arabic words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



2.9 A set of SAMT initial rules extracted from the Arabic–English exam-

ple in Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 A set of SAMT hierarchical rules extracted from the Arabic–English

example in Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 CCG parse tree of the sentence Marcel proved and I disproved com-

pleteness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 The CF-PSG parse tree of the English sentence She teaches classes. . 49

3.2 The CF-PSG parse tree of the English sentence She teaches classes

in the morning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The best sequence of CCG supertags assigned to the English sentence

She teaches classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 The best sequence of CCG supertags assigned to the English sentence

She teaches classes in the morning. . . . . . . . . . . . . . . . . . . . 51

3.5 A CCG parse tree of the the English sentence Shura council rejects

issuance of new press law and its aligned Arabic sentence. . . . . . . 55

3.6 A set of initial rules augmented with CCG categories extracted from

the Arabic–English sentence pair in Figure 3.5. . . . . . . . . . . . . 55

3.7 A set of hierarchical rules augmented with CCG categories extracted

from the Arabic–English sentence pair in Figure 3.5. . . . . . . . . . 56

3.8 CF-PSG parse tree of the sentence Australia is one of the countries

which have diplomatic relations with North Korea. . . . . . . . . . . . 58

3.9 CCG parse tree of the sentence Australia is one of the countries which

have diplomatic relations with North Korea . . . . . . . . . . . . . . . 59

3.10 Label frequency counts for the CCG-augmented HPB system, the

SAMT system, and the 1-best CCG and CF-PSG systems built on

the Arabic–English news data. . . . . . . . . . . . . . . . . . . . . . 72

vi



3.11 Label frequency counts for the CCG-augmented HPB system, the

SAMT system, and the 1-best CCG and CF-PSG systems built on

the Chinese–English news data. . . . . . . . . . . . . . . . . . . . . . 73

3.12 An example of a missing word in the output of the SAMT system,

which was captured by the CCG-augmented HPB system. . . . . . . 80

3.13 The derivation tree of the English translation produced by the SAMT

system for the Arabic sentence ? AK
 @Yë Ém× ¼A
	
Jë Éë. . . . . . . . . . . 81

3.14 The derivation tree of the English translation produced by the CCG-

augmented HPB system for the Arabic sentence ? AK
 @Yë Ém× ¼A
	
Jë Éë. 81

3.15 An example of a wrong translation of a word produced by the CCG-

augmented HPB system. . . . . . . . . . . . . . . . . . . . . . . . . 82

3.16 An example of a missing verb in the output of the SAMT system.

The CCG-augmented system captures the verb translation. . . . . . . 83

3.17 The derivation tree of the English translation produced by the SAMT

system for the Arabic sentence QjJ. Ë @ P@ðYK. H. A�

@

	
à


@ ÈAÒ

�
JkAK. Y

�
®
�
Jª

�
K Éë

?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.18 The derivation tree of the English translation produced by the CCG-

augmented HPB system for the Arabic sentence 	
à


@ ÈAÒ

�
JkAK. Y

�
®
�
Jª

�
K Éë

? QjJ. Ë @ P@ðYK. H. A�

@. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.19 An example of equally right translations produced by the SAMT and

CCG-augmented HPB systems. The SAMT system output has a

higher BLEU score than that of the CCG-augmented HPB system. . 85

vii



3.20 An example of wrong translations produced by the SAMT and CCG-

augmented HPB systems. The SAMT system output has a higher

BLEU score than that of the CCG-augmented HPB system. . . . . . 85

3.21 An example of a better translation produced by the CCG-augmented

HPB system compared to that of the SAMT system. The CCG-

augmented HPB system has a lower BLEU score. . . . . . . . . . . . 86

3.22 An example of a wrong reordering of an adjective and a noun in

the output of the SAMT system. The CCG-augmented HPB system

captures the right order. . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.23 The derivation tree of the English translation produced by the SAMT

system for the Arabic sentence ? ú


¾J
�ºÓ Ñª¢Ó H. Q

�
¯

@ ©

�
®K


	áK



@. . . . . 87

3.24 The derivation tree of the English translation produced by the CCG-

augmented HPB system for the Arabic sentence Ñª¢Ó H. Q
�
¯

@ ©

�
®K


	áK



@

? ú


¾J
�ºÓ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.25 An example of wrong translation of a word in the output of the CCG-

augmented HPB system. The HPB baseline system produces the right

translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.26 An example of a missing word in the output of the HPB baseline sys-

tem. The CCG-augmented HPB system captures the word translation. 90

4.1 An Arabic source sentence and its aligned English translation along

with its CCG parse tree. . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 A set of phrases extracted from the Arabic–English sentence pair in

Figure 4.1 along with the CCG category and CCG contextual labels

assigned to them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



4.3 A set of phrases extracted from the Arabic–English sentence pair in

Figure 4.1 along with the feature-stripped CCG category and CCG

contextual labels assigned to them. . . . . . . . . . . . . . . . . . . . 100

4.4 Label frequency counts for our CCG-augmented HPB systems built

on the Arabic–English small UN data set. . . . . . . . . . . . . . . . 116

4.5 BLEU scores of our CCG-augmented HPB systems and baseline sys-

tems for Arabic-to-English translation on each of the small UN data

set, the UN large data set and the small UN data set with a large

language model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 BLEU scores of our CCG-augmented HPB systems and the base-

line systems for Arabic-to-English translation on the news, UN and

IWSLT data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 BLEU scores of our CCG-augmented HPB systems and the baseline

systems for Chinese-to-English news translation on each of the small

data set, the large data set and the small data set with a large lan-

guage model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.8 BLEU scores of our CCG-augmented HPB systems and the baseline

systems for Chinese-to-English translation on the IWSLT data set

and the news small data set. . . . . . . . . . . . . . . . . . . . . . . 121

4.9 BLEU scores of our CCG-augmented HPB systems and the baseline

systems for French-to-English translation on each of the small data

set, the large data set and the small data set with a large language

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 An English sentence along with the best sequence of CCG supertags

assigned to its words. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 A set of phrases extracted from the sentence illustrated in Figure 5.1

along with the corresponding extended CCG labels. . . . . . . . . . . 136

ix



5.3 The derivation tree of the English translation produced by the CCG-

augmented HPB system which uses the syntax-free glue grammar for

the Arabic sentence �
éJ



K @

	
Y

	
ªË @

�
HA«A

	
J�Ë@ ú




	
¯ PAÒ

�
J
�
��B@

	
àñÊ

	
�

	
®K
 I.

	
KAg. B@. . . 137

5.4 The algorithm for calculating the syntactic feature psyn during glue

grammar rule application. . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 The derivation tree of the English translation produced by the CCG-

augmented HPB system for the Arabic sentence 	
àñ Ê

	
�

	
® K
 I.

	
KA g. B@

�
éJ



K @

	
Y

	
ªË @

�
HA«A

	
J�Ë@ ú




	
¯ PAÒ

�
J
�
��B@ using the CCG-augmented glue grammar.140

5.6 Translations produced by our 3-category CCG-augmented HPB sys-

tems for the Arabic sentence ©
	
P̄ ú




	
¯ Y«A��
 Y

�
¯ @

	
Yë

	
à


@ úÍ@ PA

�
�.


@ ð

AJ
�
�
@ ð AK. ðPð


@

�
H@ñ�


@ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.7 The derivation tree of the English translation produced by the 3-

category CCG-augmented HPB system which uses hard syntactic con-

straints for the Arabic sentence ©
	
P̄ ú




	
¯ Y«A��
 Y

�
¯ @

	
Yë

	
à


@ úÍ@ PA

�
�.


@ ð

AJ
�
�
@ ð AK. ðPð


@

�
H@ñ�


@. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.8 The derivation tree of the English translation produced by the 3-

category CCG-augmented HPB system which uses soft syntactic con-

straints for the Arabic sentence ©
	
P̄ ú




	
¯ Y«A��
 Y

�
¯ @

	
Yë

	
à


@ úÍ@ PA

�
�.


@ ð

AJ
�
�
@ ð AK. ðPð


@

�
H@ñ�


@. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.9 The derivation tree of the English translation produced by the 3-

category CCG-augmented HPB system which uses the CCG-augmented

glue grammar for the Arabic sentence ú



	
¯ Y«A��
 Y

�
¯ @

	
Yë

	
à


@ úÍ@ PA

�
�.


@ ð

AJ
�
�
@ ð AK. ðPð


@

�
H@ñ�


@ ©

	
P̄. . . . . . . . . . . . . . . . . . . . . . . . . . 163

x



5.10 The derivation tree of the English translation produced by the 3-

category CCG-augmented HPB system which uses CCG-augmented

glue grammar for the Arabic sentence Õç
�
'

�
HA¢jÖÏ @ è

	
Yë

	
à


@ QK


	PñË@ ÈA
�
¯

. Éª
	
®ËAK. ÉJ


	
ª

�
�

�
�Ë @

�
IÊ

	
gX Y

�
¯ð AîD
Ê« H. PAj.

�
JË @ Z @Qk. @. . . . . . . . . . . . . 169

xi



List of Tables

3.1 Data used in our experiments. . . . . . . . . . . . . . . . . . . . . . 62

3.2 BLEU, TER and METEOR scores of the HPB and PB baselines, the

CCG-augmented HPB and SAMT systems, and the 1-best CCG and

CF-PSG systems for Arabic-to-English news translation. . . . . . . . 65

3.3 BLEU, TER and METEOR scores of the HPB and PB baselines, the

CCG-augmented HPB and SAMT systems, and the 1-best CCG and

CF-PSG systems for Arabic-to-English speech expressions translation. 66

3.4 BLEU, TER and METEOR scores of the HPB and PB baselines, the

CCG-augmented HPB and SAMT systems, and the 1-best CCG and

CF-PSG systems for Chinese-to-English news translation. . . . . . . . 67

3.5 BLEU, TER and METEOR scores of the HPB and PB baselines, the

CCG-augmented HPB and SAMT systems, and the 1-best CCG and

CF-PSG systems for Chinese-to-English speech expressions transla-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Translation model size in terms of number of rules/phrases in the HPB

and PB baselines, the CCG-augmented HPB and SAMT systems, and

the 1-best CCG and CF-PSG systems built on the Arabic–English

and Chinese–English news and IWSLT data. AE stands for Arabic–

English, and CE stands for Chinese–English. . . . . . . . . . . . . . 70

xii



3.7 Number of different syntactic labels used by the SAMT system, the

CCG-augmented HPB system, the 1-best CCG and CF-PSG sys-

tems to annotate the target side of the Chinese–English and Arabic–

English news and IWSLT data . . . . . . . . . . . . . . . . . . . . . 71

3.8 Percentage of target-side X-labelled phrases and rules extracted by

the SAMT and CCG-augmented HPB systems built on the Chinese–

English and Arabic–English IWSLT and news data. . . . . . . . . . 74

3.9 BLEU, TER and METEOR scores of the CCG-augmented HPB and

SAMT systems when excluding X-labelled phrases and rules from the

translation model built on the Arabic–English news and IWSLT data. 75

3.10 BLEU, TER and METEOR scores of the CCG-augmented HPB and

SAMT systems when excluding X-labelled phrases and rules from

the translation model built on the Chinese–English news and IWSLT

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Number of phrases which are annotated by the CCG-augmented HPB

system but not by the SAMT system and vice versa. . . . . . . . . . 76

3.12 Cases that result from manually comparing higher BLEU score sen-

tences from the output of the CCG-augmented HPB system to their

counterparts from the output of the SAMT system. . . . . . . . . . 79

3.13 Cases that result from manually comparing higher BLEU score sen-

tences from the output of the SAMT system to their counterparts

from the output of the CCG-augmented HPB system. . . . . . . . . 82

3.14 Cases that result from manually comparing higher BLEU score sen-

tences from the output of the CCG-augmented HPB system to their

counterparts from the output of the HPB baseline system. . . . . . . 88

3.15 Cases that result from manually comparing higher BLEU score sen-

tences from the output of the HPB baseline system to their counter-

parts from the output of the CCG-augmented HPB system. . . . . . 89

xiii



4.1 Data used in our experiments. . . . . . . . . . . . . . . . . . . . . . 101

4.2 Experimental results for our CCG-augmented HPB systems and base-

line systems on the Arabic–English small news data set. Systems are

ordered according to their descending BLEU score. . . . . . . . . . . 103

4.3 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Arabic–English IWSLT data. . . . . . . . . 104

4.4 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Arabic–English small UN data set. . . . . . 105

4.5 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Chinese–English small news data set. . . . . 106

4.6 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Chinese–English IWSLT data. . . . . . . . . 107

4.7 Experimental results for our CCG-augmented HPB systems and the

baseline systems on 20k of the Chinese–English IWSLT data. . . . . 108

4.8 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the French–English small data set. . . . . . . . . 109

4.9 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Arabic–English large data set. . . . . . . . . 110

4.10 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Chinese–English large data set. . . . . . . . 111

4.11 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the French–English large data set. . . . . . . . . 112

4.12 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Arabic–English small data set using a large

language model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.13 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the Chinese–English small data set using a large

language model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xiv



4.14 Experimental results for our CCG-augmented HPB systems and the

baseline systems on the French–English small data set using a large

language model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.15 Number of different labels used by our CCG-augmented HPB systems

to annotate the target side of the Arabic–English small UN data set. 115

4.16 A summary of performance improvements (+) and degradations (–

) obtained using our label simplification approaches under different

factors compared with the CCG-augmented HPB system which uses

CCG categories as nonterminal labels. The * symbol indicates that

the system outperforms the HPB baseline system. . . . . . . . . . . 124

5.1 Percentage of glue grammar rules out of the total rules participating in

the derivations produced by each of the SAMT and CCG-augmented

HPB systems built on the Chinese–English and Arabic–English news

and IWSLT data (cf. Section 3.5 page 60). . . . . . . . . . . . . . . . 130

5.2 Experimental results for our CCG-augmented HPB systems which use

extended syntactic constraints and the HPB baseline system on the

Arabic–English IWSLT data. CCGpref refers to the CCG-augmented

HPB systems which use soft syntactic constraints. CCGglue refers

to the systems which use the CCG-augmented glue grammar. The

subscripted number at the end of the name of each system indicates

its degree. The asterisk marks the best score achieved in each system

group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Experimental results for our CCG-augmented HPB systems which

use extended syntactic constraints and the HPB baseline system on

the Chinese–English IWSLT data. . . . . . . . . . . . . . . . . . . . . 146

5.4 Number of different labels, rule table size and percentage of unlabelled

nonterminals in the rule table of the CCG-augmented HPB systems

of degrees from one to five built on the Arabic–English IWSLT data. 148

xv



5.5 Number of different labels, rule table size and percentage of unlabelled

nonterminals in the rule table of the CCG-augmented HPB systems

of degrees from one to five built on the Chinese–English IWSLT data. 149

5.6 Experimental results for our CCG-augmented HPB systems which

use extended syntactic constraints and the HPB baseline system on

Arabic–English short sentences from the news data. . . . . . . . . . . 150

5.7 Experimental results for our CCG-augmented HPB systems which

use extended syntactic constraints and the HPB baseline system on

Arabic–English long sentences from the news data. . . . . . . . . . . 152

5.8 Experimental results for our CCG-augmented HPB systems which

use extended syntactic constraints and the HPB baseline system on

the Arabic–English long and short sentences from the news data. . . . 154

5.9 Number of incomplete trees in the translation output produced by

our CCG-augmented HPB systems which use extended syntactic con-

straints of different degrees for the short sentence test set. Hier de-

notes the number of incomplete trees because of a hierarchical rule

whereas Glue denotes the number of incomplete trees because of a

glue grammar rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.10 Number of incomplete trees in the translation output produced by

our CCG-augmented HPB systems which use extended syntactic con-

straints of different degrees for the long sentence test set. . . . . . . 158

xvi



Abstract

Augmenting Statistical Machine Translation (SMT) systems with syntactic infor-

mation aims at improving translation quality. Hierarchical Phrase-Based (HPB)

SMT takes a step toward incorporating syntax in Phrase-Based (PB) SMT by mod-

elling one aspect of language syntax, namely the hierarchical structure of phrases.

Syntax Augmented Machine Translation (SAMT) further incorporates syntactic in-

formation extracted using context free phrase structure grammar (CF-PSG) in the

HPB SMT model. One of the main challenges facing CF-PSG-based augmentation

approaches for SMT systems emerges from the difference in the definition of the

constituent in CF-PSG and the ‘phrase’ in SMT systems, which hinders the abil-

ity of CF-PSG to express the syntactic function of many SMT phrases. Although

the SAMT approach to solving this problem using ‘CCG-like’ operators to combine

constituent labels improves syntactic constraint coverage, it significantly increases

their sparsity, which restricts translation and negatively affects its quality.

In this thesis, we address the problems of sparsity and limited coverage of syn-

tactic constraints facing the CF-PSG-based syntax augmentation approaches for

HPB SMT using Combinatory Cateogiral Grammar (CCG). We demonstrate that

CCG’s flexible structures and rich syntactic descriptors help to extract richer, more

expressive and less sparse syntactic constraints with better coverage than CF-PSG,

which enables our CCG-augmented HPB system to outperform the SAMT system.

We also try to soften the syntactic constraints imposed by CCG category nontermi-

nal labels by extracting less fine-grained CCG-based labels. We demonstrate that

CCG label simplification helps to significantly improve the performance of our CCG

category HPB system. Finally, we identify the factors which limit the coverage of

the syntactic constraints in our CCG-augmented HPB model. We then try to tackle

these factors by extending the definition of the nonterminal label to be composed of

a sequence of CCG categories and augmenting the glue grammar with CCG com-
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binatory rules. We demonstrate that our extension approaches help to significantly

increase the scope of the syntactic constraints applied in our CCG-augmented HPB

model and achieve significant improvements over the HPB SMT baseline.
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Chapter 1

Introduction

Despite the demonstrated success of Statistical Machine Translation (SMT) as a fast

and cost-effective approach to perform automatic translation, translation quality of

SMT systems is far from perfect. The earliest efforts to enhance the quality of SMT

systems are represented in the evolution of the translation unit from words in word-

based SMT models (Brown et al., 1988, 1990) through continuous word segments

(phrases) in the Phrase-Based (PB) SMT model (Koehn et al., 2003) to hierarchi-

cal phrases in the Hierarchical Phrase-Based (HPB) SMT model (Chiang, 2005).

However, translation units in these approaches are extracted via purely statistical

methods and use the surface form of the words and their structure without incorpo-

rating any deeper syntactic information. The lack of syntactic knowledge in these

SMT models causes them to err in performing translation, which can negatively

affect translation quality. This has led to the emergence of approaches to incorpo-

rating syntactic knowledge represented as the syntactic structure and/or function

of words/phrases in the source side, the target side and both sides of SMT systems.

HPB SMT tries to model the hierarchy of statistically extracted phrases, which

is one aspect of language syntax. The HPB SMT model extracts a synchronous

context free grammar (SCFG) from the parallel corpus without using any syntac-

tic annotation. One of the earliest attempts to incorporate syntactic annotation

into HPB SMT is Syntax Augmented Machine Translation (SAMT) (Zollmann and

1



Venugopal, 2006). SAMT uses context free phrase structure grammar (CF-PSG) to

annotate phrases and nonterminals in the HPB SMT model. One of the challenges

facing the incorporation of CF-PSG into the HPB SMT model emerges from the

difference in the definition of the constituent in CF-PSG and the ‘phrase’ in SMT.

A constituent in CF-PSG is a group of words which acts grammatically as a single

unit. In contrast, the notion of the ‘phrase’ in SMT systems extends to including

any continuous sequence of words extracted on statistical basis. Annotating phrases

in SMT systems with CF-PSG constituent labels covers only phrases which corre-

spond to syntactic constituents according to the CF-PSG formalism, thus leaving

many phrases without syntactic annotation. As the flexible notion of the phrase

in SMT systems is one of its most important strengths, excluding phrases which

do not correspond to syntactic constituents will have a negative effect on perfor-

mance (Koehn et al., 2003). On the other hand, phrases which are syntactically

unannotated escape the control of syntactic constraints, which can have a negative

effect on translation quality.

SAMT tries to increase the coverage of the syntactic annotation for HPB SMT

over a limited set of CF-PSG constituent labels using a set of operators which

combine CF-PSG constituent labels into more complex labels. These operators are

inspired from Combinatory Categorial Grammar (CCG) (Steedman, 2000), which

defines constituent labels in terms of functors and arguments. Although these ‘CCG-

like’ operators help SAMT to increase the coverage over the CF-PSG constituent

labels, they are not genuine in the sense that they are not part of the original CF-

PSG formalism as is the case in CCG, which we believe limits the benefits sought

from including them.

In light of previous research which demonstrated the advantages of incorporating

CCG in PB SMT (Hassan et al., 2007, 2009), we argue that CCG has many advan-

tages over CF-PSG when incorporating it in the HPB SMT model, which leads us

to our first research question:

RQ1: Is CCG better than CF-PSG when using it to annotate nonterminals and
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phrases in the HPB SMT model?

In this thesis, we follow the SAMT approach to augmenting phrases and non-

terminals in the HPB SMT model with syntactic labels. We use CCG categories

instead of CF-PSG-based labels to annotate phrases and nonterminals in the HPB

SMT model. We compare our CCG-augmented HPB system with the SAMT system

in terms of label coverage, sparsity, and expressiveness:

• Label coverage measures the proportion of phrases which are syntactically

annotated (i.e. assigned a left-hand-side label) in the training data.

• Label sparsity measures the proportion of the labels which have rare occur-

rences in the training data.

• Label expressiveness refers to how accurate the labels are in expressing the

syntactic function of the phrases without being redundant (i.e. different labels

express the same syntactic function).

We demonstrate that CCG category labels provide more coverage for phrases

than SAMT labels. This results from CCG’s flexible structures, which provide the

ability to label phrases even when they do not correspond to grammatical con-

stituents in traditional terms. Furthermore, we show that CCG category labels

are less sparse than SAMT labels although they present richer syntactic informa-

tion. This leads to smaller translation models and more reliable rule probabilities.

Moreover, we demonstrate that CCG category labels represent richer and more ac-

curate syntactic information than SAMT labels. SAMT tries to enrich the CF-PSG

constituent labels using ‘CCG-like’ operators. This helps to increase the cover-

age of the labels but creates redundant labels, which fragments label probability

and increases label sparsity. In contrast, CCG categories are the building units of

a grammar formalism. This makes nonterminal labels based on CCG categories

inherently rich, accurately reflecting the syntactic context and dependents of the

word/phrase without being redundant, which gives them larger expressive power
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than SAMT labels. These advantages of CCG categories over SAMT labels are

reflected in our experimental results, which demonstrate that our CCG-augmented

HPB system outperforms the SAMT system in terms of BLEU (Papineni et al.,

2002), METEOR (Lavie and Abhaya, 2007) and TER (Snover et al., 2006) scores

in most of the experiments conducted on Arabic-to-English and Chinese-to-English

translation. These results were re-enforced by our manual analysis which compares

the translation output of our CCG-augmented HPB system to the HPB baseline

and SAMT systems, and gives insights into the strengths and weaknesses of our

CCG-augmented HPB system.

Although our CCG category system achieves better performance than the SAMT

system, it does not outperform the HPB baseline system in most of the conducted

experiments. We argue that this might be due to the sparsity of CCG labels, which

impose strict syntactic constraints on the decoding search space. Thus, we want to

examine whether softening these syntactic constraints by extracting less fine-grained

CCG-based labels than CCG categories will help to improve the performance of our

CCG category HPB system. This leads us to our second research question:

RQ2: Does softening the syntactic constraints imposed by CCG category non-

terminal labels by simplifying them help to improve performance?

We address this question following two approaches. The first approach repre-

sents only contextual information of CCG categories in nonterminal labels. The

second approach removes syntactic features held by some CCG categories from the

nonterminal label representation. We also combine these two approaches together.

Although these approaches reduce the amount of syntactic information represented

in the nonterminal labels and thus might affect their accuracy, the simplified CCG

labels still represent rich syntactic information but impose less strict syntactic con-

straints than CCG categories, which might overcome the damage that results from

using less accurate labels and thus improve performance. We conduct experiments

which examine the effect on performance of our label simplification approaches un-

der different factors: the language pair, the size and domain of the data, and the size
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of the language model. Our experiments demonstrate that CCG label simplifica-

tion helps to significantly improve performance over the CCG category HPB system

for Arabic-to-English, Chinese-to-English and French-to-English translation. Fur-

thermore, our experiments demonstrate that the performance of the different label

simplification approaches varied according to the different examined factors.

When addressing RQ1, we demonstrate that CCG categories have better cover-

age for phrases and nonterminals than SAMT labels. However, CCG categories do

not provide a full coverage for phrases and nonterminals in the HPB SMT model.

This leads to the next research question:

RQ3: Why is the coverage of the syntactic constraints limited in our CCG-

augmented HPB system ?

The research conducted to address RQ1 partially answers the previous research

question. Our experiments demonstrate that up to 70% of extracted phrases are

labelled with CCG categories in our CCG category HPB system. This means, of

course, that at least 30% of the extracted phrases are left unannotated, which is one

reason for the limited coverage of the syntactic constraints in our CCG-augmented

HPB system. Another important reason for the limited scope of the syntactic con-

straints not only in our CCG-augmented HPB system but also in the SAMT system

is that only part of the HPB grammar is augmented with syntax, namely hierarchi-

cal rules, whereas glue grammar rules are not syntactically augmented, which means

they do not apply any syntactic constraints. We show that the application of glue

grammar rules constitutes at least 30% of the total rules used in the derivations of

the SAMT and CCG-augmented HPB systems, which indicates the limited coverage

of syntactic constraints applied in these systems. We argue that non-syntactically

aware translation rules and phrases are one of the major causes for the production

of ungrammatical translations. Accordingly, we argue that extending the syntactic

constraints in our CCG-augmented HPB system helps to improve its performance,

which leads us to our fourth research question RQ4:

RQ4: Does extending the syntactic constraints in our CCG-augmented HPB
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system help to improve performance?

We address this research question following a two-fold approach. Firstly, we

extend the definition of the syntactic label to be composed of more than one CCG

category. Secondly, we augment glue grammar with CCG combinatory rules which

are applied during glue grammar rule application. We also try to apply our extension

approaches in a soft manner under the Preference Grammars paradigm (Venugopal

et al., 2009) in order to avoid the negative effect on performance of applying strict

syntactic constraints. We conduct experiments which examine the application of

our extension approaches on data from different domains. We also explore the effect

of sentence length on the performance of our systems. Our experiments demon-

strate that our extension approaches help to significantly improve the performance

of our CCG-augmented HPB system over the HPB baseline for Arabic-to-English

and Chinese-to-English translation. Furthermore, our experiments show that our

extension approaches help to significantly increase the coverage of the syntactic

constraints applied in our CCG-augmented HPB system. Our experimental results

demonstrate that our extension approaches show different performance trends de-

pending on the sentence length, data domain and the strictness of the syntactic

constraints. We therefore conduct an in-depth analysis to explain these different

trends and discuss the problems facing our approaches.

1.1 Main Findings of the Thesis

The main findings of the thesis are summarised as follows:

• Using CCG categories extracted from CCG parsing chart as nonterminal labels

in the HPB SMT model is demonstrated to achieve better performance than

the CF-PSG-based SAMT labels. The CCG category labels are demonstrated

to be more expressive, less sparse and have better coverage than the SAMT

labels.

• Extracting less fine-grained CCG-based nonterminal labels from CCG cate-
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gories helps to significantly improve performance over the CCG category HPB

system.

• The syntax-free glue grammar and the syntactically unannotated phrases are

the factors limiting the coverage of the syntactic constraints in our CCG-

augmented HPB system.

• Extending the coverage of the syntactic constraints in our CCG-augmented

HPB system by increasing the coverage of the CCG-based nonterminal labels

and augmenting glue grammar rules with CCG combinatory rules helps to

significantly improve the performance of our CCG-augmented HPB system

over the HPB baseline system.

1.2 Thesis Structure:

The remainder of this thesis is organized as follows:

• Chapter 2 reviews work related to the research presented in this thesis. The

chapter puts a special focus on the PB, HPB and SAMT SMT models, which

are closely related to our models. The chapter also provides an overview of

different syntax augmentation approaches for SMT systems in addition to an

introduction to CCG, which is the grammar formalism we use in our research.

• Chapter 3 introduces our CCG-augmented HPB system which uses CCG cat-

egories as nonterminal labels. The chapter presents the research conducted to

address our first research question (RQ1).

• Chapter 4 presents our approaches towards the simplification of CCG-based

nonterminal labelling. The chapter presents the research conducted to address

our second research question (RQ2).

• Chapter 5 discusses the limitations on the coverage of the syntactic constraints

in our CCG-augmented HPB system, which is related to our third research
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question (RQ3). The chapter also introduces our approaches to target these

limitations by extending the syntactic constraints in our CCG-augmented HPB

system, which addresses our last research question (RQ4).

• Chapter 6 presents conclusions and provides avenues for future work.

1.3 Publications

Publications which are based on the research conducted in this thesis include:

• (Almaghout et al., 2010a) entitled “CCG augmented hierarchical phrase-based

machine translation” was published in proceedings of the 7th International

Workshop on Spoken Language Translation (IWSLT 2010).

• (Almaghout et al., 2010b) entitled “The DCU machine translation systems for

IWSLT 2010” was published in proceedings of the 7th International Workshop

on Spoken Language Translation (IWSLT 2010).

• (Almaghout et al., 2011) entitled “CCG contextual labels in hierarchical phrase-

based SMT” was published in proceedings of the 15th conference of the Euro-

pean Association for Machine Translation (EAMT 2011).

• (Banerjee et al., 2011) entitled “The DCU machine translation systems for

IWSLT 2011” was published in proceedings of the International Workshop on

Spoken Language Translation (IWSLT 2011).

• (Almaghout et al., 2012) entitled “ Extending CCG-based syntactic constraints

in hierarchical phrase-based SMT” was published in proceedings of the 16th

conference of the European Association for Machine Translation (EAMT 2012).
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Chapter 2

Related Work

In this chapter, we shed light on the work conducted in the Statistical Machine

Translation (SMT) research field related to the work presented in this thesis. We

start by giving an introduction to SMT in Section 2.1, which is followed by an

introduction to word-based SMT in Section 2.2. We then give a detailed description

of Phrase-Based and Hierarchical Phrase-Based SMT, which are state-of-the-art

SMT approaches on which our work is based, in Sections 2.3 and 2.4, respectively.

In Section 2.5, we provide an overview of the syntax augmentation approaches for

SMT systems. This is followed in Section 2.6 by a detailed overview of Syntax

Augmented Machine Translation, with which our work shares many similarities.

Finally, Section 2.7 provides an introduction to Combinatory Categorial Grammar

(CCG), which is the grammar formalism we use throughout our work, in addition

to an overview of previous CCG-augmented SMT systems.

2.1 Statistical Machine Translation

Early MT systems based on rule-based transfer models met with a limited success.

Manually transforming the translation expertise of the translator into a large num-

ber of complex machine-understandable transfer rules has been demonstrated to be

difficult and expensive to implement and maintain. That is why these MT systems
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had a limited application using domain-specific language only. The increase in com-

putational power and the availability of translated texts in electronic format opened

new avenues for MT research which explore the extraction of translation knowl-

edge automatically form already translated texts using statistical machine learning

methods. These approaches are known as Statistical Machine Translation (SMT).

SMT is by far the dominant MT approach used today. SMT uses a statistical

machine learning algorithm to extract translation knowledge encapsulated in already

translated texts through a process called training. The model that is built via the

training process is then used to translate a new input text in the source language into

an output text in the target language, a process known as decoding. The earliest

SMT system was introduced by IBM researchers (Brown et al., 1988, 1990). Brown

et al. (1990) define the problem of SMT as finding the most probable translation ê

for a given source sentence f , as in (2.1):

ê = argmax
e

p(e|f) = argmax
e

p(f |e)p(e) (2.1)

Equation (2.1) represents the noisy channel model for SMT, which is a genera-

tive model that considers the source-language sentence (observed sentence) f as a

distorted version of the target-language sentence e. The decoding process in this

model tries to find the best target-language sentence ê which produced the ob-

served sentence f . Equation (2.1) combines two models which participate in the

decoding process: the translation model component p(f |e) and the language model

(LM) component p(e). The LM provides an estimation of the fluency of the target-

translation e. The translation model calculates the probability of translating the

source sentence f into the target sentence e. In early SMT models (Brown et al.,

1988, 1990), translation model probability was calculated based on word-to-word

translation probability (cf. Section 2.2). However, in state-of-the-art SMT models,

the calculation of the translation model probability is based on the probability of a

longer translation unit, which is called the phrase (cf. Section 2.3).
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2.2 Word-Based SMT

Brown et al. (1993) define what have come to be known as the IBM Models, a set of

word-based generative SMT models that use the word as its main translation unit.

These models learn mappings between the words of the source-language sentence

and the words of the target-language sentence, in a process known as word align-

ments. IBM Models use Expectation Maximization (Dempster et al., 1977) to learn

word alignments which maximise the likelihood of a sentence-aligned corpus during

training. They define the translation probability p(f |e) according to the equation

in (2.2):

p(f |e) =
∑

a

p(f, a|e) (2.2)

where a is a vector which defines for each word fi in f the position of the corre-

sponding word ej in e. Each word in e can have at most one aligned word from

f , whereas each word in f can have one or more aligned words from e. Figure 2.1

shows word alignments between the Arabic source sentence and its corresponding

English translation shura council rejects issuance of new press law. We can see that

all the English words are aligned to at most one Arabic word, whereas some Arabic

words such as P@Y�@ are aligned to more than one English word. We can also notice

the different ordering of some words between the Arabic and English sentences.

shura council rejects issuance of new press lawshura council rejects issuance of new press lawshura council rejects issuance of new press law

مجلس الشورى يرفض إصدار قانون جديد مجلسللصحافة الشورى يرفض إصدار قانون جديد مجلسللصحافة الشورى يرفض إصدار قانون جديد للصحافة

Figure 2.1: Word alignments between an Arabic source sentence and its correspond-
ing English target translation.

Word-based SMT systems do not achieve a good translation quality. However,

they are able to produce good quality alignments (Brown et al., 1993). Nowadays,
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word-to-word SMT models are only used by current Phrase-Based SMT systems to

learn word alignments as part of the training process.

2.3 Phrase-Based SMT

The use of the word as the basic translation unit cannot capture the translation and

reordering of multi-word blocks. That led to the development of approaches which

use a more complex translation unit composed of a continuous string of words – the

phrase – which is why these approaches are called Phrase-Based (PB) SMT (Koehn

et al., 2003). Figure 2.2 demonstrates the pipeline of the PB SMT system, which

consists of three main stages: training, tuning and testing (decoding). Training

consists of two main stages: word alignment (cf. Section 2.2) and phrase extraction

(cf. Section 2.3.1).

Training

Tuning

Testing (Decoding)Test set

Word alignment

Phrase extraction

Translation  
Model 

(phrase table)

Feature 
Weights

Development set

Language 
Model

Output 
Translation

Source text

Target text

Parallel corpus

Figure 2.2: The pipeline of the PB SMT system.

The power of PB SMT does not only lie in the use of the phrase as the basic

translation unit, but also in the following points (Goutte et al., 2009):
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• The use of the log-linear framework (Och and Ney, 2002) to calculate trans-

lation probability (cf. Section 2.3.2). This allows for the incorporation of

different models than the translation and language models used in the noisy

channel model.

• The use of Minimum Error Rate Training (MERT) (Och, 2003) (cf. Sec-

tion 2.3.3) to tune the weights of the different features incorporated in the

log-linear model in terms of an MT evaluation metric such as BLEU (Pap-

ineni et al., 2002).

• Efficient heuristic beam search performed by the PB SMT system during de-

coding avoids conducting an exhaustive search of translation possibilities (cf.

Section 2.3.4).

• PB SMT uses rescoring procedures to select the best translation from a set of

candidate translations (cf. Section 2.3.5), which allows for an easy and fast

incorporation of new features.

These aforementioned concepts have been used by not only the PB SMT system

but also by other phrase-based systems such as Hierarchical Phrase-Based (HPB)

SMT (Chiang, 2005) (cf. Section 2.4) and SMT with Syntactified Target Language

Phrases (SPMT) system (Marcu et al., 2006) (cf. Section 2.5.2).

shura council rejects issuanceshura council rejects issuanceshura council rejects issuance

مجلس الشورى يرفض مجلسإصدار الشورى يرفض مجلسإصدار الشورى يرفض إصدار

shura council rejects issuanceshura council rejects issuanceshura council rejects issuance

issuance of new press lawissuance of new press lawissuance of new press law

إصدار قانون جديد إصدارللصحافة قانون جديد إصدارللصحافة قانون جديد للصحافة

issuance of new press lawissuance of new press lawissuance of new press law

Figure 2.3: Source-to-target and target-to-source word alignments between an Ara-
bic source sentence and its corresponding English target translation.
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2.3.1 Phrase Extraction

Och and Ney (2003) propose an approach to extracting phrases in PB SMT from

word alignments. As word alignments are asymmetric (cf. Section 2.2), the first step

in the phrase extraction process is to calculate the alignments between the sentence

pair in both source-to-target and target-to-source directions. Figure 2.3 shows word

alignments in both directions for the sentence pair in Figure 2.1. We can see that

the only difference between the alignments in different directions is that the word

of is aligned to an Arabic word in the English-to-Arabic direction, whereas it is

not aligned to any word in the other direction. After calculating the bidirectional

alignments, the intersection and union of the alignment points in both directions are

calculated. Figure 2.4 shows the extraction of the intersection and union alignment

points from the alignment matrices of the sentence pair illustrated in Figure 2.3.

The intersection presents a high-precision alignment whereas the union presents a

high-recall alignment (Koehn et al., 2003). The phrase extraction process starts

from the intersection alignment and uses it as a backbone to which alignment points

from the union alignment are subsequently added according to some heuristics such

as “diag” and “diag-and” (Koehn et al., 2003).

After applying the previous steps, phrase pairs which are consistent with word

alignments are extracted. This means that words in each phrase are only aligned to

each other and do not align to any other word outside the phrase. Figure 2.5 shows

some valid phrase pairs extracted according to the previous steps from the sentence

pair illustrated in Figure 2.3.

After extracting phrase pairs from the parallel corpus, the phrase translation

probability distribution is calculated. Koehn et al. (2003) use relative frequency to

calculate the probability of the target phrase ē given the source phrase f̄ , which is

called the direct translation probability, as in (2.3):

p(ē|f̄) =
count(ē, f̄)∑
ē count(ē, f̄)

(2.3)
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Figure 2.4: Extraction of the intersection and union alignment points from the
alignment matrices of the sentence pair illustrated in Figure 2.3.

Koehn et al. (2003) show that extracting syntactic phrases which correspond to

syntactic constituents only is harmful to the performance. It is worth mentioning

here that the approaches we present in this thesis use CCG, which recognizes non-

traditional syntactic constituents.

2.3.2 The Log-Linear Model

The log-linear model (also known as the maximum entropy model in the NLP litera-

ture) has been utilized for a number of NLP tasks such as POS tagging (Ratnaparkhi,

1996) and statistical parsing (Johnson et al., 1999), due to its ability to easily incor-

porate complex overlapping discriminative features in the model. In equation (2.1),

the calculation of the translation probability is based on the the reversed translation

model p(f |e) and the LM p(e) only. By contrast, the log-linear model of SMT allows

more models to participate in calculating translation probability as in (2.4):
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issuance ofإ��ار

shura councilرى��	ا ���

new����

lawن����

council���

shuraرى��	ا

shura council rejects issuance ofرى ���� إ��ار��	ا ���

issuance of new press law ������	 ���� إ��ار ����ن

rejects issuance ofا��ار ����

shura council rejects ���� رى��	ا ���

new press law ������	 ���� ن����  

new press������	 ����

Figure 2.5: A set of phrase pairs extracted according to word alignments from the
sentence pair illustrated in Figure 2.3.

p(e|f) =
∏

i

hi(f, e)
λi (2.4)

log p(e|f) =
∑

i

λi log hi(f, e)

where hi(f, e) represents the feature functions and λi are the weights of these feature

functions. Feature functions typically used in PB SMT are (Koehn et al., 2003; Och

and Ney, 2004):

• Direct phrase translation probability p(ē|f̄) calculated according to equation

(2.3).

• Inverse phrase translation probability p(f̄ |ē).

• The LM p(e).

• Direct lexical weighting pw(ē|f̄).

• Inverse lexical weighting pw(f̄ |ē).

• Word/Phrase penalty which is the number of words/phrases in the target

translation (cf. Koehn (2010) page 140).
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• Relative distortion probability d(ai − bi−1) where ai is the start position of

the source phrase fi which is translated into the target phrase ei, and bi−1 is

the end position of the source phrase fi−1 which is translated into the target

phrase ei−1.

• Lexicalised reordering model p(orientation|ē, f̄) which learns how likely each

orientation of the current phrase pair (monotone, swap and discontinuous) is

with respect to the previous phrase pair (Koehn et al., 2005).

Each of these features try to improve one aspect affecting the final translation qual-

ity. Phrase translation probabilities reflect how well the target and source phrases

translate to each other. The LM feature helps to ensure the fluency of the pro-

duced translation. The lexical weighting features examine how well the words of

the source and target phrases translate to each other. The Word/Phrase penalty

helps to avoid the tendency of PB systems to produce short translations. Relative

distortion probability enables the phrase reordering range to be limited, because

large phrase movement have been demonstrated to negatively affect the transla-

tion performance (Koehn et al., 2005). Lexicalised reordering model provides more

sophisticated reordering than the distortion probability by encouraging reordering

patterns based on lexical evidences from the source and target phrases. We use the

aforementioned features in the log-linear model of the HPB SMT systems we build

in our experiments, except for the relative distortion probability and lexicalised

reordering model features which are specific to the PB SMT systems.

2.3.3 Minimum Error Rate Training

Minimum Error Rate Training (MERT) (Och, 2003) is an algorithm for finding

the log-linear weights λ which achieve the best translation quality in terms of an

automatic MT evaluation metric on a training corpus as in (2.5):

λ̂ = argmax
λ

BLEU(Ê, R) (2.5)
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Ê = argmaxE log p(E|F )

= argmaxE
∑

(e,f) log p(e|f)

= argmaxE
∑

(e,f)

∑
i λihi(f, e)

(2.6)

where F and E represent the source and target side of the data used to train the

log-linear model, respectively. In equation (2.5), the BLEU (Papineni et al., 2002)

automatic MT evaluation metric is used to evaluate the best translation Ê using

the reference set R. However, optimization can be performed with respect to other

automatic MT evaluation metrics. Och (2003) approximates the maximization in

equation (2.6) by calculating the n-best candidate translations of the source training

data F . Thus, the optimization of the log-linear model weights λ is performed

according to the following steps:

1. Set λ̂ to manually defined values.

2. Find the n-best translations for F using the current values of λ̂.

3. Combine the current n-best translations with the previous ones. If the n-best

translations do not change then stop.

4. Calculate the new values for λ̂ based on the n-best translations according to

Equation (2.5), then go to step 2.

The algorithm is guaranteed to converge as, in the worst case, the set of n-

best translations would contain all possible translations. MERT works well for a

small number of features (typically less than 10 features). However, its performance

degrade when using it with a large number of features.

2.3.4 Decoding

The basic PB SMT translation algorithm (Koehn, 2004a) tries to translate a source

sentence f by first segmenting it into all possible continuous word segments. Then,

different translation options for each segment are explored with the possibility of
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translating the segments out of order. Each of the partial translation states (or

‘hypotheses’) constructed during decoding has a number of properties which include

its probability, the words it covers from the source sentence, the target translation

of the covered segment and a pointer to the previous hypothesis. The probability

of a hypothesis is the probability of translating its source segment multiplied by

the probability of its previous hypothesis. The algorithm continues to produce

hypotheses until all the words of the source sentence have been covered, forming a

connected search graph. Finally, the ‘best’ translation (i.e. the translation with the

highest probability) is retrieved from the search graph.

The number of hypotheses generated according to this algorithm is exponential

in the source sentence length, which makes MT an NP-complete problem (Knight,

1999). This means that conducting an exhaustive search for the best translation is

infeasible. Consequently, a set of heuristic-based techniques are applied in order to

reduce the size of the search space and guide the search process. A beam search

algorithm, which was originally developed for speech recognition (Jelinek, 1997), is

used to achieve this goal. The beam search algorithm for SMT (Koehn, 2004a) uses

a number of stacks which act as priority queues. Each stack contains hypotheses

which cover the same number of source words sorted according to their probability.

Whenever a hypothesis is expanded, the new hypothesis is placed in the appropriate

stack. If the newly added hypothesis falls outside the beam of its stack, it will

be pruned away. Two types of pruning can be applied: histogram pruning and

threshold pruning (Koehn, 2004a). Histogram pruning keeps a fixed number of

hypotheses whereas threshold pruning prunes hypotheses whose probability is less

than the best hypothesis probability by a certain factor. The complexity of the

beam search algorithm for PB SMT decoding is quadratic with the sentence length

and linear with the stack size (Koehn et al., 2003).
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2.3.5 Rescoring

After generating the n-best translations by the decoder, they can be rescored using

models which are either hard or expensive to be incorporated during the n-best

generation such as a large-order LM and sentence-level features. Rescoring also

helps to test the addition of new features in a fast and easy way without the need

to reimplement the search algorithm for each feature.

2.4 Hierarchical Phrase-Based SMT

Hierarchical Phrase-Based (HPB) SMT (Chiang, 2005, 2007) is a tree-based SMT

model which extracts a synchronous Context Free Grammar (SCFG) (Lewis and

Stearns, 1968) from a parallel corpus without using syntactic annotation. SCFGs

are a generalization of inversion transduction grammars (Wu, 1997). SCFGs have

the ability to generate pairs of strings at the same time instead of a single string as

in the normal CFG. In HPB SMT, the synchronous CFG is used to parse the source

sentence while generating the target translation. Synchronous CFG rules used by

HPB SMT are called hierarchical rules or hierarchical phrases, which are the basic

translation unit used by the HPB SMT model.

HPB SMT was designed to build upon the strengths of PB SMT. Continuous

phrase pairs extracted in PB SMT form the basis for hierarchical rule extraction.

Thus, the HPB SMT grammar combines the ability of continuous phrases to trans-

late expressions and perform word reordering with the ability of HPB SMT hier-

archical rules to translate discontinuous phrases and learn phrase reordering. In

addition, the HPB SMT framework uses the log-linear model to combine the vari-

ous component models which participate in the calculation of translation probability

(cf. Section 2.3.2), and performs tuning through Minimum Error Rate Training just

like the PB SMT framework. Furthermore, HPB SMT uses the beam search decod-

ing algorithm used in PB SMT decoding (cf. Section 2.3.4) combined with chart

decoding in addition to rescoring techniques originally developed for PB SMT (cf.
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Section 2.3.5).

The pipeline of the HPB SMT system shares many similarities with the pipeline

of the PB SMT system illustrated in Figure 2.2. The shaded stages in this figure

denote the shared stages between HPB SMT and PB SMT. The HPB SMT system

needs an extra stage after phrase extraction during training, which is rule extraction.

Another difference between HPB SMT and PB SMT is the decoding algorithm used.

HPB SMT uses chart decoding (c.f. Section 2.4.3) but it combines it with the beam

search pruning used by PB SMT to prune the search space during decoding.

2.4.1 HPB SMT Grammar

The HPB SMT grammar uses two types of rules: hierarchical rules and glue grammar

rules. In the following we provide the definition, extraction and function of each of

the hierarchical rules and glue grammar rules.

Hierarchical Rules

Hierarchical rules are rewrite rules with aligned pairs of right-hand sides, taking the

following form:

X →< α, β,∼>

where X is a nonterminal, α and β are both strings of terminals and nonterminals,

and ∼ is a one-to-one correspondence between nonterminal occurrences in α and

nonterminal occurrences in β. α represents the source side of the hierarchical rule

while β represents the target side of the hierarchical rule. Hierarchical rules are

extracted from a word-aligned parallel corpus < F,E,A >, where F and E are the

source and target sides of the parallel corpus, respectively, and A is the bidirectional

alignment between source and target sentences in the parallel corpus. The hierarchi-

cal rule extraction starts by extracting continuous phrases (called ‘initial phrases’)

according to the approach of Och and Ney (2003) (cf. Section 2.3.1). Afterwards,
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new X law ���� ن���	XX

shura council X1 issuance of X2 press law  رى��������  2Xإ��ار	���ن  1X ���� اS
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X1 rejects issuance of X21X ����  2إ��ارX X, S

X1 rejects X2 1X   ����2XX, S

X council ����XX

X press law ن���	X������  X

new X  ����XX

Figure 2.6: A set of hierarchical rules extracted from the sentence pair illustrated
in Figure 2.3.

hierarchical rules are extracted by recursively subtracting initial phrase pairs from

bigger initial phrase pairs and replacing the subtracted phrase pairs with the nonter-

minal symbol X, which denotes a gap. More than one phrase pair can be subtracted

simultaneously from its container phrase pair, leading to more than one nontermi-

nal on each side of the hierarchical rule. In this case, co-indexation is used to align

source-side nonterminals with target-side nonterminals. The initial rules extracted

from the sentence pair in Figure 2.3 are the same as PB SMT phrases illustrated

in Figure 2.5. Figure 2.6 shows a set of hierarchical phrases extracted from these

initial rules. The rule whose target side is X council captures the inversion of the

nouns in addition construction between Arabic and English. Note also that the rule

whose target side is X press law captures the differences in reordering of adjectives

and nouns between Arabic and English.

Extracting hierarchical rules according to the aforementioned approach produces

a large number of rules. Thus, Chiang (2005) proposes a set of techniques which

limit the size of the extracted grammar:

• The length of initial phrases is limited to 10 words on the source side. The

number of words and nonterminals in the source side is limited to 5.

• Adjacent nonterminals are prohibited in the source side of the rule in order to
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avoid superious ambiguity.

• The number of nonterminals on each side of the rule is limited to 2.

• Unaligned words are prohibited at the boundaries of the initial phrase.

• The rule should have at least one pair of aligned words (e.g. every rule must

contain at least one terminal symbol).

In contrast to PB SMT, HPB SMT does not need a separate phrase reordering

model given the availability of hierarchical phrases, which capture highly lexicalized

phrase reordering, whereas continuous phrases only capture word reordering. Initial

rules, which are identical to phrase pairs used in PB SMT, give HPB SMT the power

of continuous phrases too. Furthermore, hierarchical rules enable the translation

of discontinuous phrases. This is important to capture many linguistic phenomena

which are not directly (or even impossible to be) captured by PB SMT. For example,

negation in French consists of two words ne and pas between which the negated verb

lies. Thus, one of the rules which translate a negated verb in French to English has

the form as in (2.7):

X →< ne X pas , does not X > (2.7)

During translation, the nonterminal on the source side is replaced with the French

verb and the nonterminal on the target side is replaced with the corresponding

English verb translation. However, PB SMT cannot directly model this translation

pattern and needs to divide the negation expression into two parts and then translate

each part separately, which might lead to a poor translation of the French negation

expression.

Glue Grammar Rules

Glue grammar rules perform monotone phrase concatenation, which means that they

combine target phrases together without performing any reordering. They consist
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of the following two rules as in (2.8) and (2.9):

S →< S X , S X > (2.8)

S →< X , X > (2.9)

The main role of the rule (2.8) is to produce translation by concatenating target

subphrases. The rule (2.9) initiates glue grammar tree building by transforming

the nonterminal X to the symbol S to be later used in rule (2.8). Glue grammar

helps to avoid producing an empty translation which results from hierarchical rules

sparsity. Furthermore, glue grammar rules are used to reduce the complexity of

chart decoding by limiting the application of the hierarchical rules to a certain

threshold above which only glue grammar rules are applied. This has the same

effect as limiting reordering in PB SMT. Glue grammar rules can also be applied

below this limit but their application cannot alternate with hierarchical rules, and

they always form a left-balanced binary tree on top of the hierarchical rules in the

derivation tree as illustrated in Figure 2.7.

24



2.4.2 Training

For each rule X →< α, β >, HPB SMT uses features originally developed in PB

SMT to score the rule (cf. Section 2.3.2). These features include the direct and

inverse phrase translation probabilities p(α|β) and p(β|α), direct and inverse lexical

weighting probabilities pw(α|β)) and pw(β|α), and word/phrase penalty. These fea-

tures are combined using the log-linear model (cf. Section 2.3.2) and their weights

are tuned using Minimum Error Rate Training (Och, 2003) (cf. Section 2.3.3).

Each target sentence might be derived from the source sentence in many possi-

ble ways. Thus, in order to calculate the phrase translation and lexical weighting

probabilities for each rule in the grammar, we need to know all possible derivations

of each target sentence in the corpus. However, we only have the observed sentences

and derivations are a hidden variable. That is why heuristics are used to calcu-

late these probabilities. These heuristics assign each initial phrase pair occurrence

a count equals to one. Then, this count is distributed equally among all the rules

extracted from this initial phrase pair. Finally, phrase translation probabilities are

calculated according to relative-frequency estimation.

2.4.3 Decoding

Translation in HPB SMT is a parsing-generation process. During this process,

the source side of the sentence to be translated is parsed using the source side

of the hierarchical rules. At the same time, the target translation is generated

simultaneously using the target side of the hierarchical rules. The decoding process is

continued until the whole source sentence is parsed. There are many possible ways to

parse the source sentence. This leads to a derivation forest which produces multiple

candidate translations. At the end of the translation process, the ‘best’ translation

ê of these candidate translations is the one which maximizes the probability of the

derivation D as in (2.10):
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ê = argmax
D:f(D)=f

p(D) (2.10)

where the probability of the derivation D is calculated according to the log-linear

model as in (2.11):

p(D) =
∏

(X→<α,β>)∈D

∏

i

λihi(X →< α, β >) (2.11)

In order to perform efficient translation with the HPB SMT model, a chart

parsing algorithm is used to perform decoding. Chart parsing (Kay, 1980) is a dy-

namic programming-based approach which uses a data structure called the chart.

Chart parsing helps to cut parsing computational costs by reusing previously parsed

segments stored in the chart instead of re-parsing them. Various chart parsing algo-

rithms have been used to perform decoding in HPB SMT. CKY+ (Chappelier and

Rajman, 1998), which is a variant of the CKY (Cocke-Kasami-Younger) algorithm,

has been used in several HPB decoders (Zollmann and Venugopal, 2006; Hoang

et al., 2009a; Li et al., 2009; Stein et al., 2011). Other HPB approaches (Watanabe

et al., 2006; Cai et al., 2009) used Earley parsing (Earley, 1970) to perform HPB

decoding.

During the chart decoding process, the parser uses translation rules as inference

rules to prove weighted chart items. The process is continued until the parser reaches

the goal which is the S (sentence) symbol at the root of the chart. Chart items take

the form [X, i, j], which indicates a subtree spanning the source words i to j and its

root has the X symbol as a label. Each chart item [X, i, j] has a weight w, which

is the multiplication of the weight of the rule R : X →< α, β > which produced

[X, i, j] with the weights of the subitems which substituted the nonterminals in the

rule R to produce [X, i, j]. The goal item in this case is [S, 0, n], where n is the

length of the source sentence f . The complexity of this decoding process is O(n3).

Incorporating the LM in scoring chart items during HPB SMT decoding further

complicates the process. To calculate the LM feature of order m for a sequence
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of words, the m-1 context words at the start and end of the sequence should be

known. Thus, representing chart items as [X, i, j] is not sufficient to calculate the

LM feature during decoding. Instead, chart items should take into account the m-1

target boundary words at each side, which are necessary to calculate the LM feature

for future items. Therefore, chart items should take the form [X, i, j, e], where e is

the part of the target string produced by the subtree spanned by the item which is

necessary to calculate the LM feature for future items. However, incorporating e in

chart items leads to an explosion of the number of different chart items produced

by the parser, increasing decoding complexity as in (2.12):

O
(
n3
[
|T |2(m−1)

]K)
(2.12)

where |T | is the number of English terminal symbols and K is the number of non-

terminals permitted on each side of the rule. This makes the decoding process

intractable (Chiang, 2007), and necessitates the application of pruning techniques

to reduce the size of the explored search space.

One other possible way of incorporating the LM in HPB SMT decoding is to

use it to rescore the n-best list of translations. However, Chiang (2007) argues that

the size of the n-best list should be extremely high in this case, because the number

of different translations is exponential in the length of the source sentence. Chiang

(2007) proposes a better solution which is called cube pruning. Cube pruning is

a compromise between rescoring the n-best translations using the LM, and incor-

porating the LM in scoring the chart items during decoding. It imposes a beam

limit on the number of chart items added to a cell in the chart, and calculates LM

score-augmented chart items which fall inside the beam only. Cube pruning for

a consequent chart cell starts by sorting its antecedent chart items by their score

including the LM score. Afterwards, rules are applied on antecedent chart items,

resulting in consequent chart items, which are then added to the consequent chart

cell. Rule application is continued until a consequent chart item falls outside the
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beam of the consequent chart cell.

2.4.4 HPB SMT vs. PB SMT

The HPB SMT system has been demonstrated as being capable of beating PB sys-

tems in large-scale evaluations (Chiang, 2005). Several studies have been conducted

to investigate the reasons behind the improvement which the HPB SMT system has

over the PB SMT system. Lopez (2008) argues that HPB SMT advantages over PB

SMT lie in its ability to perform better lexicalized reordering and translate discon-

tinuous phrases. He also suggests that the performance of the HPB SMT system

can be further improved using a better parameterization through specialized features

similar to the ones used by lexicalized reordering models used in PB SMT (Koehn

et al., 2005). Zollmann et al. (2008) compare the performance of PB and HPB sys-

tems on Chinese-to-English and Arabic-to-English translation under different LM

size conditions. They found that for Chinese-to-English translation, the HPB SMT

system maintained an improvement over the PB SMT system even under large LM

condition, which helps the PB reordering model. However, for Arabic-to-English

translation, the HPB SMT system did not achieve a consistent improvement over

the PB SMT system. They conclude that the HPB SMT system outperforms the

PB SMT system for language pairs which are sufficiently non-montonic (i.e. they

need long reordering ranges) such as Chinese–English, whereas both systems per-

form equally on language pairs which have weaker reordering phenomena, such as

Arabic–English. In terms of expressiveness, Zollmann et al. (2008) found that the

PB SMT system was not able to produce 22% of the translations generated by the

HPB SMT system for the Chinese–English NIST MT06 test set using forced trans-

lation (i.e. forcing the system to generate only hypotheses which are consistent

with a specific output), which indicates that HPB SMT has a better expressiveness

thanks to its ability to translate discontinuous phrases. Auli et al. (2009) extend

the work of Zollmann et al. (2008) by exploring the mutual reachability of the PB

and HPB SMT systems to the 1-best translation generated by the other system.
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They show that most of the translations generated by the HPB SMT system which

was not reachable by the PB SMT system were due to the stronger ability of hier-

archical rules to model word deletion during translation. Furthermore, their study

shows that most of the translations generated by the PB SMT system which was

not reachable by the HPB SMT system were due to the ability of the PB SMT

system to model reordering of phrases without lexical evidence, which is not possi-

ble in the HPB SMT model. Despite these structural differences between the HPB

and PB SMT models, Auli et al. (2009) demonstrate that there is a high overlap

in the search spaces of the PB and HPB SMT systems. They conclude that the

difference in performance between the HPB and PB SMT systems is due to different

parameterization performed by each system.

Despite HPB SMT’s more powerful reordering and better expressiveness com-

pared to PB SMT, the latter still has a smaller translation model and a less complex

decoding process, which enables a faster and less resource-demanding translation.

2.5 Syntax Augmentation for SMT Systems

Since the emergence of the first SMT models, many approaches have been devised

to provide these models with syntactic knowledge. The evolution of SMT models

has been accompanied with a comparable development of SMT syntax augmenta-

tion methods which tried to integrate syntax into the source side, the target side or

both sides of the translation process. Such SMT syntax augmentation methods vary

in complexity and expressiveness from using simple syntactic descriptions applied

at the word or phrase level, to more complex trees which represent multilevel syn-

tactic structures. These methods also explored the integration of syntax extracted

using different grammar formalisms such as context free phrase structure grammar,

categorial grammar and dependency grammar into SMT systems.

The main goal behind incorporating syntax in the source side of SMT systems

is to improve the adequacy of translation, which indicates the extent to which the
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meaning of the source sentence is preserved by its translation. Source-side syn-

tax helps to disambiguate the meaning of words/phrases in the input according to

their syntactic role (Carpuat and Wu, 2007; Stroppa et al., 2007; Haque et al., 2009).

Furthermore, using syntax in the source side helps to perform more complex linguis-

tically motivated reordering guided by source-side syntactic information. Systems

which use syntactic structures in the source side are sometimes called tree-to-string

models (Huang et al., 2006; Liu et al., 2006). Incorporating syntactic information in

the target side of SMT systems helps to improve the fluency (i.e. grammaticality) of

translation output. Target-side syntax helps to ensure that the translation output

conforms to the target-language grammar. Systems which use syntactic structures in

the target side are sometimes called string-to-tree models (Galley et al., 2006). Re-

cently, a number of SMT systems have tried to improve both translation adequacy

and fluency by incorporating both source- and target-side syntactic information.

These systems try to define a set of linguistically motivated rules which transform

the source syntactic structure into a target syntactic structure, hence they are called

tree-to-tree models (Zhang et al., 2008; Liu et al., 2009; Chiang, 2010).

2.5.1 Source Syntax Augmentation for SMT Systems

Quirk et al. (2005) use source-side dependency parse trees to extract dependency

treelet translation pairs, which are arbitrary connected subgraphs of the dependency

tree, and a tree-based reordering model. In contrast to continuous phrases extracted

in PB SMT, dependency treelets are able to translate discontinuous phrases. In ad-

dition, dependency treelets allow the application of more powerful, linguistically

motivated reordering models. Liu et al. (2006) define a translation model based

on tree-to-string alignment templates, which are automatically extracted from the

source side of a parsed parallel corpus. Alignment templates produce terminals and

nonterminals and define how to transform a source-side parse tree into a target

string. Huang et al. (2006) define a syntax-driven translation model which extracts

transformation rules based on extended tree-to-string transducers that have multi-
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level trees on the source side. The translation starts by parsing the source sentence.

Then, transformation rules are used to recursively generate the target string from

the source analysis. Mylonakis and Sima’an (2011) define a joint probability trans-

lation model which extracts a binary synchronous context free grammar from a

parallel corpus. Nonterminals in the extracted grammar are labelled with source-

side syntax-based labels similar to the ones used by Zollmann and Venugopal (2006).

This model learns the latent translation structure separately from the emission of

translation output, which helps to capture complex reordering patterns.

2.5.2 Target Syntax Augmentation for SMT Systems

One of the first attempts to incorporate syntax in the earliest noisy channel MT

model is the work of Yamada and Knight (2001). They describe a translation model

which modifies the noisy channel model to accept parse trees rather than words as an

input. The channel produces the output string by performing a set of operations at

each node of the input tree. These operations, namely word translation, reordering

and insertion, try to model the linguistic differences between translated languages

such as case and word order. The decoder based on this translation model (Yamada

and Knight, 2002) searches for the most probable parse tree in the output language

given a string of the foreign language in a way similar to parsing a sentence.

While the LM used in the decoder of Yamada and Knight (2002) is a regular n-

gram-based LM, Charniak et al. (2003) accompany the translation model of Yamada

and Knight (2001) with a syntax-based LM proposed by Charniak (2001). This LM

searches for the most probable parse tree in a parse forest built for the translation

output by the decoder. Schwartz et al. (2011) provide a formal definition of an

incremental syntax-based LM which is incorporated into the PB SMT model. The

LM works in a left-to-right fashion which is the same mechanism used in PB SMT

decoding.

Galley et al. (2004) define a method under which the minimum set of syntax-

based transformation rules which explain the parallel data are extracted. These
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rules are extracted automatically from source strings aligned to target parse trees.

Galley et al. (2004) demonstrate that the minimal linguistically motivated transfor-

mation rules learnt according to this method are capable of fully explaining the data

in the parallel corpus and of capturing complex translation patterns beyond local

child node reordering suggested by previous models (Yamada and Knight, 2001).

Galley et al. (2006) extend the method of Galley et al. (2004) by adopting multi-

ple derivations instead of a single one in the rule extraction process, in addition to

accounting for multiple interpretations for unaligned words. They found that using

rules with a larger context helps to improve the performance over using minimal

rules only.

The SPMT translation approach (Marcu et al., 2006) extracts minimal transfor-

mation rules under extended tree-to-string (xRs) transducers (Knight and Graehl,

2005). The SPMTmodel utilises feature functions originally developed under the PB

SMT model (Koehn et al., 2003) and combines them using the log-linear model (Och,

2003). The difference between the transformation rules extracted by SPMT and the

ones extracted by the model proposed by Galley et al. (2004) is that SPMT rules do

not allow discontinuous phrases on the source side, while the rules in the model of

Galley et al. (2004) are able to translate discontinuous phrases, which gives them a

larger expressive power than SPMT rules (Marcu et al., 2006). In addition, SPMT

extracts minimal transformation rules with respect to the statistically extracted

source phrase compared to the whole source sentence in Galley et al. (2004).

String-to-dependency MT approaches take advantage of target-side dependency-

based syntactic information to capture syntactic relations between distant words

and provide better coverage for phrases which do not correspond to syntactic con-

stituents. Shen et al. (2008) use dependency grammar in the target side of the

translation process. They extract hierarchical string-to-tree translation rules whose

target sides are well-formed dependency structures. They show that the flexibility

of dependency structures compared to phrase structure grammar helps to provide a

better coverage for non-constituent rules. While Shen et al. (2008) exclude phrases
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which correspond to malformed dependency structures from participating in the

translation process, Stein et al. (2010) do not exclude these phrases. They instead

use a binary feature to mark the phrases which correspond to well-formed depen-

dency structures. In addition, they use a feature in the log-linear model to judge the

validity of the dependency structure that results from a phrase replacing a nontermi-

nal in a hierarchical rule. A dependency-based LM is also used to rerank the n-best

translations. Peter et al. (2011) extends the work of Stein et al. (2010) by exploring

the effect of integrating the dependency-based LM in the decoding process, which

was demonstrated to achieve better performance than using the dependency-based

LM in rescoring the n-best translations only.

2.5.3 Source and Target Syntax Augmentation for SMT Sys-

tems

Zhang et al. (2008) propose a tree sequence alignment-based translation model. A

tree sequence (Liu et al., 2007) is an ordered sequence of tree fragments covering a

phrase. Using tree sequences in rule extraction gives more flexibility and thus helps

to increase rule coverage. Furthermore, tree sequences enable complex reordering

patterns to be captured and discontinuous phrases to be translated while at the same

time being able to handle phrases which do not correspond to syntactic constituents.

Liu et al. (2009) argue that using the 1-best parse for rule extraction in syntax-based

SMT systems – especially tree-to-tree systems – is one of the main challenges facing

these systems. They believe that using the 1-best parse only leads to the extraction

of noisy translation rules, which damages the performance of tree-to-tree systems.

As a solution, they propose to use a packed forest on both the source and the target

sides of the parallel corpus to extract translation rules based on synchronous tree

substitution grammar (Eisner, 2003), which helped to achieve a significant improve-

ment over conventional tree-based models. Chiang (2010) tries to tackle problems

affecting the performance of tree-to-tree translation models, which are limited rule
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coverage and strong syntactic constraints imposed by the model. He tries to increase

rule coverage by using fuzzy hierarchical rule extraction similar to the approaches

used by Zollmann and Venugopal (2006) and Zhang et al. (2008). This rule extrac-

tion approach provided full coverage for extracted phrases in the translation model.

Chiang (2010) also tries to improve the performance of the tree-to-tree system by

using soft syntactic constraints in the model, which allows mismatches between rule

nonterminal labels and the labels of phrases substituting them. He incorporates

a set of syntax-based source and target features into the log-linear model to mea-

sure how unlabelled derivations used during decoding conform with the syntactic

constraints learnt from syntactically annotated training data. This gives the model

more flexibility to decide how and when to apply these constraints.

2.6 Syntax Augmented Machine Translation

HPB SMT tries to model one aspect of language syntax, which is the hierarchical

structures of the language. The HPB SMT rules are extracted from the parallel

corpus according to word alignments without using any syntactic annotation. Thus,

the lack of syntactic knowledge in the HPB SMT model may lead to the production

of ungrammatical translations.

Syntax Augmented Machine Translation (SAMT) (Zollmann and Venugopal,

2006) provides the HPB SMT model with syntactic knowledge extracted from con-

text free phrase structure grammar-based parse trees of target-side sentences in the

training corpus. This knowledge is represented as syntactic labels attached to non-

terminals and left-hand sides of hierarchical rules. These labels act as syntactic

constraints which restrict nonterminal replacement during decoding to only those

phrases bearing the same syntactic label as that of the nonterminal. In this way,

the syntactic functions of the phrases will direct the decoding process.
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Figure 2.8: Parse tree of the English sentence in Figure 2.1 along with its aligned
Arabic words.

2.6.1 Rule Extraction

SAMT rules are extracted according to the following steps:

• Each sentence in the target side is assigned a context free phrase structure

grammar-based parse tree. Figure 2.8 shows the parse tree of the English

sentence in Figure 2.1 along with its aligned Arabic words.

• Phrase pairs are extracted from the parallel corpus according to the PB SMT

phrase extraction method (cf. Section 2.3.1).

• A syntactic label is assigned to each of the previously extracted phrase pairs.

This syntactic label corresponds to the syntactic constituent in the parse tree

that covers the target phrase. In case the target phrase does not fully span

a constituent in the parse tree, the phrase is assigned an extended category

according to the following cases:

– C1+C2 if the target side of the phrase pair spans two adjacent syntactic

constituents C1 and C2. In Figure 2.8, the phrase new press spans two
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adjacent constituents: JJ and NN. Thus, the label assigned to this phrase

is JJ+NN.

– C1/C2 if the phrase spans a part of a syntactic constituent C1 missing a

constituent C2 to its right. In Figure 2.8, the phrase shura council rejects

spans a sentence S missing a noun phrase NP to its right, which corre-

sponds to the phrase issuance of new press law. Therefore, the phrase

shura council rejects is assigned S/NP as a syntactic label.

– C1\C2 if the phrase spans a part of a syntactic constituent C1 missing a

constituent C2 to its left.

– If the phrase does not correspond to any of the previous cases, it is

assigned a general symbol X, which means that there is no syntactic con-

straint imposed on the phrase. Nonterminals holding the X label do not

impose any syntactic constraint on the phrases replacing them, allowing

for any phrase to replace the nonterminal no matter what syntactic label

it holds.

Note that the forward and backward slash operator used in SAMT emulate

the forward and backward operators in CCG categories (cf. Section 2.7.1).

• Hierarchical rules are extracted from the syntactically annotated phrases ac-

cording to the hierarchical rule extraction algorithm (Chiang, 2005) (cf. Sec-

tion 2.4.1).

Figure 2.9 shows a set of initial rules extracted from the sentence pair illustrated

in Figure 2.8 along with the syntactic labels assigned to their left-hand sides. Fig-

ure 2.10 shows some of the SAMT hierarchical rules extracted from these initial

rules.

SAMT uses the same glue grammar rules as HPB SMT (cf. Section 2.4.1), which

means that phrases are concatenated regardless of their nonterminal labels during

glue grammar rule application.
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βαLHS

issuance of new press lawار ����ن	
� إ����� 	�	�NP

shura council rejects issuance of���� ار  ا���رى	
� إ��S/NP

rejects issuance ofار	
� إ��VP/NP

shura council rejects�����S/NP ا���رى ��

shura councilا���رى ����NP

new press������ 	�	�JJ+NN

issuance ofار	
NP/NPإ

new press lawن���� ������ 	�	�NP

new	�	�JJ

lawن����NN

council����NN

shuraا���رىNNP

Figure 2.9: A set of SAMT initial rules extracted from the Arabic–English example
in Figure 2.8.

2.6.2 Decoding

SAMT uses the same chart decoding algorithm as HPB SMT (cf. Section 2.4.3).

Attaching labels to nonterminals blows up the size of the grammar, as each unla-

belled HPB SMT rule would have many differently labelled counterparts. During

decoding, a chart item [X, i, j, e] in HPB SMT would have multiple corresponding

chart items, each of which has a different left-hand-side label instead of the general

X label. This further complicates the decoding process, raising its complexity when

incorporating the LM as in (2.13):

O
(
n3
[
|N ||T |2(m−1)

]K)
(2.13)

where |N | is the number of different nonterminal symbols used by the system, which

is equal to one in equation (2.12).
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shura council rejects NP ا���رى �	
�   ���X  S

βαLHS

new NN lawX ن���� ����NP

shura council VBZ1 issuance of JJ2 press law  ا���رى �	
� 1X  2إ��ار����نX  ����	�S

shura council VBZ1 issuance of new press NN2 ا���رى �	
� 1X  2إ��ارX  ����	� ����S

shura council rejects NP/NPا���رى �	
�   ���X  S/NP

NP1 rejects issuance of NP21X �2X Sإ��ار  ��

NP1 rejects NP2 1X   ���2X  S

NNP  council �	
�XNP

JJ press law ن����X ����	�NP

Figure 2.10: A set of SAMT hierarchical rules extracted from the Arabic–English
example in Figure 2.8.

2.7 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman, 2000) is a grammar formal-

ism based on Categorial Grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953). Most of

the language grammar in CCG is stored in the lexicon, in contrast with context

free phrase structure grammar, which expresses the grammar of the language as

context free production rules (Chomsky, 1957). The CCG lexicon contains words

paired with rich syntactic categories called “supertags”. CCG uses a small set of

simple combinatory rules to combine CCG categories during parsing. These rules

allow the construction of free derivation structures and non-standard constituents,

which enables CCG to handle grammatical phenomena such as coordination and

long-range dependencies quite naturally. Another important feature of CCG is its

transparent interface between syntax and compositional semantics. CCG lexical

categories and rules have a well-defined semantic interpretation, which enables a

semantic representations to be built directly during parsing. An English CCG gram-

mar is extracted from the CCGbank which is a corpus of CCG derivations translated

semi-automatically from the Penn Treebank (Hockenmaier, 2003; Hockenmaier and

Steedman, 2007), and augmented with local and long-range word-word dependen-
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S

S/NP

(S/NP)\(S/NP)

S/NPS/NP

S/(S\NP)S/(S\NP)

NP(S\NP)/NPNP(X\X)/X(S\NP)/NPNP

completenessdisapprovedIandprovedMarcel

>T >T

>B >B

>

<

Figure 2.11: CCG parse tree of the sentence Marcel proved and I disproved com-
pleteness.

cies. At the time of writing of this thesis, a CCGbank and a CCG parser (Clark

and Curran, 2007) were fully developed for English only. That is why all our ex-

periments focus on translation into English. It is worth noting that the approaches

presented in this thesis are not limited to translation into English; it can be applied

on translation into any language for which a CCG parser has been developed. Cur-

rently, approaches to extracting CCG treebanks from context free phrase structure

grammar-based treebanks are being developed for other languages (Hockenmaier,

2006; Boxwell and Brew, 2010; Tse and Curran, 2010). Figure 2.11 illustrates a

CCG derivation tree assigned to the English sentence Marcel proved and I disproved

completeness. The supertags assigned to each word in the sentence represent the

first level of the CCG derivation tree.

2.7.1 CCG Categories

CCG categories are divided into atomic and complex categories. Examples of atomic

categories are: S (sentence), N (noun), NP (noun phrase). Complex categories such

39



as S\NP and (S\NP)/NP are functions which specify the type and directionality

of their arguments and the type of their result. Complex categories come in the

following formats:

• X\Y is a functor which takes as an argument the category Y to its left (which

might be a primitive or complex category) and the result is the category X

(which might also be a primitive or complex category).

• X/Y is a functor which takes as an argument the category Y to its right (which

might be a primitive or complex category) and the result is the category X

(which might also be a primitive or complex category).

Representing CCG categories as functors and arguments directly reflects the

dependents and local context of the word or the phrase. For example, the lexical

category of the verb read in the sentence I read is S\NP, which means that this

category needs an NP (which plays the role of the subject in this case) as a left

argument and the result of this category when an NP comes to its left is a sentence

S. By contrast, in the sentence I read a book, the lexical category assigned to the

verb read in this case is (S\NP)/NP, which means that it needs an NP as a left

argument (which plays the role of the subject) and another NP as a right argument

(the object), and the result of this category when all of its arguments are fulfilled

is a whole sentence S. Thus, the complex lexical category (S\NP)/NP represents a

transitive verb while the lexical category S\NP represents an intransitive verb.

2.7.2 CCG Combinatory Rules

CCG combinatory rules define how to combine CCG categories. As most of the CCG

grammar is contained in the lexicon, CCG combinatory rules consist of three simple

rules: application rules, composition rules and type-raising rules. Application rules

are originally part of the Categorial Grammar, which is a context free grammar.

Composition and type-raising rules provide CCG with enough expressive power to

be a mildly context-sensitive grammar (Joshi, 1985) and enable it to deal with many
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grammatical phenomena such as non-constituent coordination (cf. Figure 2.11),

crossed dependencies, relative clauses and long-range dependencies.

Application Rules

There are two types of application rules:

• Forward application rule: combines category X/Y with category Y to its right

and the result is category X.

α : X/Y β : Y

αβ : X
>

In Figure 2.11, the forward application rule is applied between the category

S/NP, which corresponds to the phrase Marcel proved and I disproved and the

category NP, which corresponds to the word completeness, and the result is

the sentence category S.

• Backward application rule: combines category X\Y with category Y to its left

and the result is category X.

β : Y α : X\Y
βα : X

<

In Figure 2.11, the backward application rule is applied between the category

(S/NP)\(S/NP), which corresponds to the phrase and I disproved and the

category S/NP, which corresponds to the phrase Marcel proved, and the result

is the category S/NP.

Composition Rules

Composition rules are divided into:

• Forward composition rule: combines category X/Y with category Y/Z and the

result is category X/Z.
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α : X/Y β : Y/Z

αβ : X/Z
>

In Figure 2.11, the forward composition rule is applied between the category

S/(S\NP), which is the category that results from type-raising the category

NP of the word Marcel, and the category (S\NP)/NP, which corresponds to

the word proved, and the result is the category S/NP.

• Backward composition rule: combines category Y\Z with category X\Y and

the result is category X\Z.

β : Y \Z α : X\Y
βα : X\Z <

Type-raising Rules

Type-raising rules turn arguments into functions over functions over such arguments.

There are two types of type-raising rules:

• Forward type-raising rule: transforms category X into T/(T\X).

α : X

α : T/(T\X)
>

• Backward type-raising rule: transforms category X into T\(T/X).

α : X

α : T\(T/X)
<

In Figure 2.11, the forward type-raising rule is applied on the category NP of

each of the words Marcel and I, resulting in the category S/(S\NP). Type-raising in

this case allowed the application of the forward composition rule between the subject

Marcel and the verb proved to obtain a single category S/NP corresponding to the

phrase Marcel proved. The category S/NP of the phrase I disproved is obtained in

the same way.
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2.7.3 CCG Supertagging

According to lexicalized grammars such as Lexicalized Tree Adjoining Grammar

(LTAG) (Joshi and Schabes, 1991), Head-driven Phrase Structure Grammar (Pol-

lard and Sag, 1994) and CCG, each word has a number of different lexical descriptors

(supertags), which correspond to the different syntactic contexts in which the word

may appear. The richness of syntactic information reflected by these descriptors

massively increases their number. Thus, exploring every possible supertag for each

word in the sentence during parsing will create a huge search space for the parser and

reduce its speed significantly. A solution to this problem is supertagging (Bangalore

and Joshi, 1999), which is the process of disambiguating the set of supertags assigned

to the words of the sentence according to the word context before parsing. Banga-

lore and Joshi (1999) use statistics about supertag co-occurrences collected from

a parsed corpus to reduce the number of supertags assigned to the words of the

sentence. This removes the burden of supertag disambiguation from the parser and

reduces the derivation search space, which results in faster parsing. Supertagging

was originally developed for LTAG (Bangalore and Joshi, 1999). Later, a number of

CCG supertagging approaches were devised (Clark, 2002a; Curran and Clark, 2003;

Clark and Curran, 2004, 2007). After supertagging, the CCG parser only has to use

combinatory rules to combine supertags assigned to the words to parse the sentence.

That is why supertagging a sentence is considered to be “almost parsing” (Banga-

lore and Joshi, 1999). This helps to build an efficient CCG parser in spite of CCG

spurious ambiguity, which was one of the main hurdles in the way of building an

efficient CCG parser. Clark and Curran (2004) integrate the Maximum Entropy

CCG supertagger of Curran and Clark (2003) into a wide-coverage CCG parser,

which helped to obtain accurate and robust parsing that is significantly faster than

comparable systems using other common grammar formalisms (Clark and Curran,

2004). Recently, Hassan et al. (2009) built an incremental linear-time CCG parser

which is about ten times faster than the parser of Clark and Curran (2007).
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2.7.4 Incorporating CCG in SMT Systems

CCG has many unique qualities which makes it an attractive grammar formal-

ism to be incorporated in SMT systems. First, CCG allows for flexible structures

thanks to its combinatory rules. Thus, it is possible to assign a CCG category to

phrases which do not represent standard syntactic constituents. This is an impor-

tant feature for SMT systems as SMT phrases are statistically extracted, and do

not necessarily correspond to syntactic constituents in other theories of grammar.

For example, in Figure 2.11, the phrase Marcel proved and I disproved has a CCG

category S/NP although it is not considered a standard syntactic constituent in

CF-PSG-based grammar theories. Second, CCG supertags present rich syntactic

information at the lexical level about the dependents and local context of each word

in the sentence. Therefore, CCG supertags reflect important information about the

syntactic structure of the sentence without the need to build a full parse tree. This

allows SMT systems to build grammaticality metrics based on examining sequences

of CCG supertags of the words of the translation output. Third, being a mildly

context-sensitive grammar, CCG can deal with many grammatical phenomena such

as long-range dependencies, coordination and relative clauses, which current SMT

systems have difficulty representing. Fourth, CCG categories are rich syntactic de-

scriptors which reflect rich syntactic information about the syntactic function of

the word/phrase. Thus, annotating phrases in SMT systems with CCG categories

provides rich information about their grammatical function, which helps to use the

phrases in their appropriate grammatical context during translation. Finally, CCG

can be efficiently parsed thanks to the process of supertagging performed prior to

parsing (cf. Section 2.7.3). This is especially important for computationally com-

plex SMT systems. For these reasons, in addition to previous research in SMT, our

research has tried to incorporate CCG into SMT in order to improve translation

quality.
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CCG-augmented SMT Systems

One of the earliest works which incorporates CCG into an SMT system was that

of Hassan et al. (2007). They integrate CCG supertags into the target LM and

the target side of the translation model of the PB SMT model. They also inte-

grate a grammaticality metric over supertag sequences into the n-gram LM. This

metric penalizes the number of violations of combinatory rules in a sequence of

supertags. (Birch et al., 2007) use CCG supertags as a factor in the factored PB

SMT translation model (Koehn and Hoang, 2007) following two approaches: the

first approach generates CCG supertags as a target-side factor in the factored trans-

lation model, and then applies an n-gram language model over them. The second

approach uses supertags as a source-side factor to direct the decoding process. Their

experiments showed that sequence models over target-side CCG supertags performed

better than the model which does not use supertags, as well as the model which uses

sequence models over POS tags. However, they show that the improvement gained

from using target-side CCG supertags is largely due to better local reordering. They

suggest that using better reordering models or larger language models will lead to

similar and more reliable improvements.

Hassan et al. (2009) integrate target-side CCG parsing in the Direct Translation

Model (Ittycheriah and Roukos, 2007). They use a linear time incremental CCG

parser, which is based on an incremental interpretation of the mechanisms of CCG.

This parser builds CCG parsing states which are associated with translation states

during decoding. Each parsing state posits a syntactic constraint on the next parsing

state in such a way that the subsequent parsing states define a valid dependency

structure. This helps to prune hypotheses which do not constitute a valid parsing

state. In addition, they integrate a set of syntactic features based on CCG supertags,

combinatory rules and parsing states in the direct translation model.

Haque et al. (2009) provide the PB SMT system with source-side contextual

information by incorporating CCG supertags as source-language context features

for phrases in the PB SMT model. They demonstrate that CCG-based contextual
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features are more powerful than contextual features based on words and part of

speech tags. In later work, Haque et al. (2010) incorporate the source-side CCG

contextual features into the HPB SMT model. Similar to the results obtained for

the PB SMT system, incorporating CCG contextual features in the HPB SMT

system was demonstrated to outperform contextual features based on words and

part of speech tags.

Recently, Mehay and Brew (2012) built a CCG-based syntactic reordering model

to be incorporated into the PB SMT model. They use CCG categories extracted

from the CCG parse chart to label target-side phrases in the translation model.

Then, a syntactic reordering model is trained on the annotated data to learn phrase

orientation (monotone, swap, discontinuous) based on the CCG label of the target

phrase. They demonstrate that their CCG-based syntactic reordering model helps to

achieve significant improvements over the bidirectional MSD lexicalized reordering

model (Tillmann, 2004) for Urdu-to-English translation.

2.8 Summary

In this chapter, we provided a detailed description of the PB and HPB SMT frame-

works, which are the most dominant approaches in SMT nowadays, and on which

many approaches including the one presented in this thesis are based. In addition,

we provided an overview of the syntax augmentation approaches for SMT systems

with a special focus on SAMT. Finally, we introduced CCG, on which we base

our syntax augmentation approach for HPB SMT, in addition to the previous ap-

proaches which incorporated CCG into SMT. In the next chapter, we present our

CCG-based syntax augmentation approach for HPB SMT model and compare it

with the context free phrase structure grammar-based SAMT approach.
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Chapter 3

CCG Categories as Nonterminal

Labels in Hierarchical Rules

In this chapter, we present an approach to incorporating CCG-based syntactic in-

formation in the HPB SMT model. Our goal is to improve the grammaticality of

the translation output, that is why we use CCG categories to label target-side non-

terminals and phrases in hierarchical rules. Augmenting the HPB SMT model with

syntactic information by labelling nonterminals and phrases in hierarchical rules with

syntax-based labels was first explored in SAMT (Zollmann and Venugopal, 2006).

Our approach follows SAMT, but with a difference in the grammar formalism used;

while SAMT uses context free phrase structure grammar (CF-PSG), our approach

uses CCG. In this chapter, we attempt to answer our first research question (RQ1),

by addressing whether CCG is better than CF-PSG in labelling nonterminals in the

HPB SMT model.

In Section 3.1, we explain the motivation behind the idea of using CCG instead

of CF-PSG to label nonterminals and phrases in the HPB SMT model. Section 3.2

reviews related work in the area of target-side sytnax-augmentation for HPB SMT.

Section 3.3 provides an explanation of our algorithm for using CCG categories to

label nonterminals in hierarchical rules. In Section 3.4, we present a comparison

between the CCG-based nonterminal labels extracted by our approach and the CF-
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PSG-based labels extracted by SAMT. In Section 3.5, we present the experiments

we conducted to compare the performance of our approach with the state-of-the-

art HPB and PB baseline systems in addition to the SAMT system. Furthermore,

we examine the coverage of the syntactic labels, their sparsity and the size of the

translation model in both the CCG-augmented HPB system and the SAMT system.

In addition, we manually analyse the output of our CCG-augmented HPB system in

comparison with the SAMT and HPB systems. Section 3.6 provides the conclusions

for this chapter.

3.1 Motivation

One of the major challenges facing the incorporation of CF-PSG into SMT mod-

els results from the difference in the definition of the phrase between SMT and

CF-PSG. A phrase in CF-PSG is a group of words which behave grammatically

as a single unit. By contrast, ‘phrases’ in SMT are continuous groupings of words

heuristically extracted from word alignments (cf. Section 2.3.1) with no requirement

on linguistic grammaticality. Accordingly, the syntactic labels used by CF-PSG

to label constituents cannot express the syntactic function of many SMT phrases.

SAMT (Zollmann and Venugopal, 2006) (cf. Section 2.6) tries to tackle this prob-

lem by extending the standard CF-PSG-based constituent labels using a number of

CCG-like slash operators and a ‘plus’ operator, which combine the standard con-

stituent labels into more complex syntactic labels. This helps to express the syntactic

function of a bigger set of phrases (i.e. better label coverage). Nonetheless, using

such a method to invent new syntactic labels is largely influenced by the parse tree

structure from which the labels are extracted, which leads to the extraction of dif-

ferent syntactic labels for the same phrase even when it plays the same syntactic

role but within different tree structures. This creates redundant labels and limits

the ability of the labels to accurately express the correct syntactic function of the

extracted phrases. Furthermore, label redundancy leads to the enlargement of the
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number of different syntactic labels used to label nonterminals and phrases in the

HPB SMT model, which increases label sparsity and leads to the extraction of larger

and sparser translation models in addition to tightening the syntactic restrictions

imposed by the model, making them hard to satisfy at decoding time.

S

NP

PRP

She

VP

VBZ

teaches

NP

NNS

classes

Figure 3.1: The CF-PSG parse tree of the English sentence She teaches classes.

S

NP

PRP

She

VP

VBZ

teaches

NP

NNS

classes

PP

IN

in

NP

DT

the

NN

morning

Figure 3.2: The CF-PSG parse tree of the English sentence She teaches classes in
the morning.

Figure 3.1 shows the CF-PSG parse tree of the English sentence She teaches

classes. The SAMT label assigned to the phrase She teaches in this sentence is

S/NP, which means that it is a sentence lacking a noun phrase playing the role of

the object to its right. Figure 3.2 shows the same phrase She teaches participating

in a different syntactic tree structure which is of the sentence She teaches classes in

the morning. In this case, SAMT assigns the phrase She teaches PRP+VBZ as a

syntactic label, although it has the same syntactic function, namely a transitive verb

with its subject, in both sentences. However, the attachment of the prepositional
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phrase in the morning as an adjunct to the verb teaches in the second case prevents

SAMT from assigning S/NP as a syntactic label to the phrase She teaches. This

example highlights the sensitivity of the SAMT labelling approach to the specific

structure of the parse tree from which the phrases are extracted, which what causes

the phrase She teaches to have redundant labels. The same example highlights

issues with SAMT label accuracy. The syntactic label PRP+VBZ attached to the

phrase She teaches in Figure 3.2 does not accurately reflect the syntactic function of

this phrase, because the label does not indicate that the verb teaches is a transitive

verb which needs a noun phrase playing the role of the object to its right. A SAMT

rule, whose target side is < PRP + V BZ classes in the morning >, might be

extracted from this tree, which allows an intransitive verb and its subject to replace

the nonterminal, leading to the production of ungrammatical translation.

In our approach, we try to extract nonterminal labels which are rich and provide

better coverage for SMT phrases than SAMT labels while being less sparse at the

same time. To achieve this we use another grammar formalism, namely Combinatory

Categorial Grammar (CCG) (Steedman, 2000), to label phrases and nonterminals

in hierarchical rules. We believe that CCG simple combinatory rules in addition

to its lexicalized nature allow more flexible structures compared to CF-PSG, which

gives CCG category labels the potential to provide better coverage for SMT phrases

than SAMT labels. Furthermore, CCG categories are inherently rich, accurately re-

flecting information about the syntactic context and dependents of a word/phrase.

Moreover, CCG categories are the constituent labels in the CCG formalism, which

helps CCG category labels to avoid label redundancy problem from which SAMT

labels suffer. Thus, CCG enables us to extract more accurate and richer nonter-

minal labels, while at the same time being less sparse compared to SAMT labels.

Figures 3.3 and 3.4 show the best sequence of CCG supertags assigned to the words

of the same sentences in Figures 3.1 and 3.2, respectively. If we combine the su-

pertags of the words of the phrase She teaches in Figure 3.3, we obtain S[dcl]/NP

as the category representing the syntactic function of the phrase, namely a sentence
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lacking a NP to its right. The same CCG category results from combining the su-

pertags of the words of the same phrase in Figure 3.4. Thus, if we assign the CCG

category that results from combining the supertags of the words of the phrase as its

syntactic label, we guarantee the extraction of rich syntactic labels which are not

redundant.

S[dcl]/NP

NP(S[dcl]\NP)/NPNP

classesteachesShe

>

Figure 3.3: The best sequence of CCG supertags assigned to the English sentence
She teaches classes.

NP[nb]/N

the

S[dcl]/NP

N((S\NP)\(S\NP))/NPNP(S[dcl]\NP)/NPNP

morninginclassesteachesShe

>

Figure 3.4: The best sequence of CCG supertags assigned to the English sentence
She teaches classes in the morning.

3.2 Related Work

Several researches have tried to augment the HPB SMT model with target-side syn-

tax by imposing syntax-based restrictions on phrases replacing nonterminals during

decoding. One of the most prominent works in this field is the SAMT approach of

Zollmann and Venugopal (2006) (cf. Section 2.6). SAMT attaches CF-PSG-based
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labels to target-side nonterminals and phrases in the HPB SMT translation model.

These labels ensure that the phrase with the correct syntactic function is used to

replace each nonterminal during decoding. Vilar et al. (2008) use CF-PSG to extract

syntactic features which score source and target phrases according to the degree to

which they match a syntactic constituent. If a phrase is not spanned by a single

constituent, a score is calculated based on the minimum number of words that need

to be added or deleted from the phrase so that it matches a syntactic constituent.

Chiang (2010) extends the SAMT-based nonterminal labelling approach so that an

indefinite number of constituents can be incorporated into the label. This approach

is used to extract tree-to-tree translation rules which provide full coverage of the

training data.

Vilar et al. (2010) derive labels for nonterminals in hierarchical rules using a

clustering method that does not use any syntactic information. Phrase pairs are

clustered according to classes assigned to source and target words. This method

has the advantage of using a small set of labels without the need for any syntactic

preprocessing for the training data. Zollmann and Vogel (2011) use lexical tags to

label phrases and nonterminals in hierarchical rules. These lexical tags can be POS

tags or word-based classes extracted using an automatic clustering method. The first

word and the last word tags in the phrase are used to extract its left-hand-side label.

They also use a clustering-based approach to label phrases based on feature vectors

which contain information about the tags of the words within the phrase in addition

to the tags of the contextual words surrounding the phrase. Then, clusters are

extracted from the feature vectors using the K-means (MacQueen, 1967) algorithm.

Finally, each phrase is labelled with the appropriate cluster to which its feature

vector belongs. Weese et al. (2012) used CCG categories to label nonterminals

in the HPB SMT model. They explored two label extraction approaches. The

first approach extracts CCG categories from the 1-best parse trees of target-side

sentences in the parallel corpus. The second approach extracts CCG labels from

the CCG parsing charts of target-side sentences. They compared their CCG-based
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models with the SAMT model in terms of rule table size and label sparseness.

They found that their CCG-based nonterminal labelling approaches extracted less

sparse labels than the SAMT approach. Furthermore, they found that their CCG-

based systems were faster and have smaller rule tables than the SAMT system. Li

et al. (2012) augment the HPB SMT model with syntactic information extracted

from source-side dependency structures. They annotate nonterminals in hierarchical

rules with syntactic labels extracted from the POS tags of the head words within

source-side phrases. They demonstrate that their head-driven system outperforms

a SAMT system which uses syntax on the source side.

Recently, approaches which try to use semantic information in nonterminal la-

belling have emerged. Baker et al. (2010) try to incorporate semantic information

into syntax-based nonterminal labels extracted using CF-PSG. The syntactic labels

extracted from target-side parse trees are augmented with named entities and modal-

ities. Gao and Vogel (2011) incorporate target-side predicate-argument structures

into HPB SMT. They use Semantic Role Labelling (SRL) to annotate nonterminals

in the HPB SMT model to form an SRL-aware SCFG which works side by side with

the basic HPB SMT unlabelled SCFG.

3.3 Using CCG Categories to Label Nonterminals

in Hierarchical Rules

In light of previous research which demonstrated the advantages of using CCG in

SMT systems (Birch et al., 2007; Hassan et al., 2007, 2009) (cf. Section 2.7.4), and

following the SAMT approach (Zollmann and Venugopal, 2006) in imposing target-

side syntactic constraints in HPB SMT by syntactically labelling nonterminals in

hierarchical rules, we try to employ target-side CCG-based syntactic constraints in

HPB SMT. This is accomplished by using CCG categories extracted from CCG forest

trees of target-side sentences in the training corpus to label phrases and nonterminals

in the HPB SMT model. The CCG-based labelling algorithm proceeds according to
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the following steps:

• Each target-side sentence from the parallel corpus is supertagged by assigning

the best sequence of CCG supertags to its words.

• CCG forest trees are built for each target-side sentence based on its best

sequence of supertags. The forest trees are represented in a parsing chart

which contains all possible CCG categories for each subspan in the sentence.

Figure 3.5 shows only the best CCG parse tree of the English sentence Shura

council rejects issuance of new press law and its aligned Arabic sentence.

• Phrase pairs are extracted from the parallel corpus according to the PB SMT

phrase extraction approach (cf. Section 2.3).

• Each target-side phrase is assigned a syntactic label which corresponds to

the highest-scoring CCG category covering the phrase in the chart. In other

words, each target-side phrase is assigned a CCG category which results from

the highest-scoring combination of the supertags of its words. In case there

is no CCG category covering the phrase, a general X label is assigned to it.

This X label indicates that there is no syntactic constraint imposed on the

phrase. X-labelled nonterminals do not impose any syntactic constraint on

the phrases replacing them. Figure 3.6 shows a set of initial rules, which have

CCG categories assigned to their left-hand sides, extracted from the sentence

pair in Figure 3.5.

• Hierarchical rules are extracted from the CCG-labelled sentence pairs accord-

ing to the same HPB SMT rule extraction method (Chiang, 2005) (cf. Sec-

tion 2.4.1). This results in hierarchical rules which have CCG categories as-

signed to their nonterminals and left-hand sides. Figure 3.7 shows a set of

hierarchical rules augmented with CCG categories extracted from the sentence

pair in Figure 3.5.
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S[dcl]\NP

S[dcl]

NP

NP\NP

NP

NNP

NNPN

NN/NN/N(NP\NP)/NPN(S[dcl]\NP)/NPNN/N

lawpressnewofissuancerejectscouncilshura

���س ا	�ورى ر�ض ا�دار ���ون �دد ������	

> >

>

>

<

>

<

Figure 3.5: A CCG parse tree of the the English sentence Shura council rejects
issuance of new press law and its aligned Arabic sentence.

βαLHS

issuance of new press lawار ����ن	
� إ����� 	�	�NP

shura council rejects issuance of���� ار  ا���رى	
� إ��S[dcl]/NP

rejects issuance ofار	
)��� إS[dcl]\NP(/NP

shura council rejects�����S[dcl]/NP ا���رى ��

shura councilا���رى ����NP

new press������ 	�	�N/N

issuance ofار	
NP/NPإ

new press lawن���� ������ 	�	�NP

new	�	�N/N

lawن����N

council����N

shuraا���رىN/N

Figure 3.6: A set of initial rules augmented with CCG categories extracted from the
Arabic–English sentence pair in Figure 3.5.
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shura council rejects NP ا���رى �	
�   ���X  S[dcl]

βαLHS

new N /N lawX ن���� ����NP

shura council (S[dcl]\NP)/NP1 issuance of 
N/N2 press law 


	� ا���رى�  1X  2إ��ار����نX ����	�S[dcl]

shura council (S[dcl]\NP)/NP1 issuance of 
new press N2


	� ا���رى�  1X  2إ��ارX  ����	� ����S[dcl]

shura council rejects NP/NPا���رى �	
�   ���X  S[dcl]/NP

NP1 rejects issuance of NP21X �2X S[dcl]إ��ار  ��

NP1 rejects NP2 1X   ���2X  S[dcl]

N/N  council �	
�XNP

N/N press law ن����X ����	�NP

Figure 3.7: A set of hierarchical rules augmented with CCG categories extracted
from the Arabic–English sentence pair in Figure 3.5.

We argue that CCG is more suitable to label nonterminals in hierarchical rules

than CF-PSG, which corresponds to our first research question (RQ1). In Sec-

tions 3.4 and 3.5, we try to give logical and empirical arguments in favour of this

hypothesis, respectively.

3.4 CCG-based Labels vs. CF-PSG-based Labels

Being a lexicalized grammar, CCG has many properties which favour its integra-

tion in SMT systems over CF-PSG. Firstly, CCG has flexible structures which can

be easily combined using a small set of CCG combinatory rules. This enables the

CCG parser to assign CCG categories to words as well as phrases even when they

do not correspond to a standard syntactic constituent. This is a very important

feature for SMT, as phrases used in SMT systems are extracted according to purely

statistical methods; therefore, they do not necessarily correspond to grammatical

constituents. To increase the coverage of CF-PSG constituent labels, SAMT used a

set of CCG-like slash operators and a ‘plus’ operator, which extend the set of syn-
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tactic labels used to label nonterminals, and enable the system to extract syntactic

labels for part of the phrases which do not correspond to grammatical constituents

(cf. Section 2.6.1). Nevertheless, SAMT labelling rules have limited flexibility in

comparison with the flexibility of CCG structures and will fail to label phrases which

do not comply with SAMT labelling rules. Secondly, a CCG category attached to

a word/phrase presents information about the local syntactic context and depen-

dents of the word/phrase, combining only the elements on which the word/phrase

imposes syntactic constraints. This makes a CCG category a rich syntactic de-

scription which accurately represents the syntactic function of the word/phrase. In

contrast, SAMT labels, which are formed by combining CF-PSG-based syntactic

constituents using binary operators, might combine constituents that do not neces-

sarily impose syntactic constraints on one another. As a result, SAMT labels are

not syntactically as rich or as accurate as CCG categories. Thirdly, most of the

CF-PSG parsers are trained on the Penn Treebank (Marcus et al., 1993), which

has many flat structures. Flat structures are a major problem facing the extrac-

tion of syntax-augmented translation rules, because they lead to the extraction of

translation rules with weak generalization ability (Wang et al., 2010). A solution

to the problem of flat structures is to perform tree binarization. Wang et al. (2010)

use Expectation Maximization (Dempster et al., 1977) to learn binarization prefer-

ence (left or right) for each tree node as a priori to extract tree transducer-based

translation rules (Knight and Graehl, 2005). By contrast, CCG trees are all binary

trees, because all CCG combinatory rules are binary. This eliminates the problem

of flat structures and enables translation rules with good generalization ability to

be extracted. Lastly, CCG supertagging, which disambiguates the set of supertags

assigned to the words of the sentence before parsing, drastically reduces the parsing

search space and makes CCG efficient to parse compared to CF-PSG (Clark and

Curran, 2004) (cf. Section 2.7.3).

Figures 3.8 and 3.9 illustrate the CF-PSG-based parse tree and the CCG parse

tree of the sentence: Australia is one of the countries which have diplomatic relations
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Figure 3.8: CF-PSG parse tree of the sentence Australia is one of the countries
which have diplomatic relations with North Korea.
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Figure 3.9: CCG parse tree of the sentence Australia is one of the countries which
have diplomatic relations with North Korea
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with North Korea, respectively. Suppose that this sentence is a target translation

of a sentence in some foreign language, and a phrase pair, whose target side is

one of the countries, is extracted from this sentence. In this case, SAMT assigns

NP/SBAR to this phrase as its syntactic category. However, this phrase apparently

does not necessarily need an SBAR as a part of its syntactic context and thus this

label does not accurately reflect the syntactic function of this phrase. By contrast,

a CCG parser assigns the category NP to this phrase, which results from combining

the supertags NP, NP\NP, NP/N and N of the words one, of, the and countries,

respectively as illustrated in Figure 3.9. The category NP accurately reflects the

syntactic function of the phrase one of the countries. It is a complete noun phrase

on its own and does not need an SBAR constituent to its right as part of its syntactic

context as its assigned SAMT label indicates. We can see from the CCG parse tree

in Figure 3.9 that CCG uses the supertag (NP\NP)/(S\NP) of the relative pronoun

which to link the relative clause have diplomatic relations with North Korea with the

noun phrase one of the countries, rather than putting the responsibility of linking

the relative clause on the noun phrase. Moreover, SAMT fails to find a syntactic

category for the phrase: is one of the, because this phrase crosses phrase boundaries

and thus does not comply with any of the SAMT labelling rules. By contrast,

our CCG-based approach succeeds in extracting a syntactic category (S\NP)/N for

this phrase by simply combining the supertags (S\NP)/NP, NP, (NP\NP)/NP and

NP/N of the words is, one, of and the, respectively. This category indicates that

this phrase needs a noun phrase playing the role of the subject to its left and a noun

to its right in order to form a complete sentence.

3.5 Experiments

This section presents the results of our experiments which compare our CCG-

augmented HPB SMT system with both a SAMT system and a HPB SMT baseline

system. We conducted experiments in the news and travelling speech expressions
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domains for Arabic-to-English and Chinese-to-English translation. The travelling

speech expressions experiments were conducted as part of our participation in the

IWSLT 2010 (International Workshop on Spoken Language Translation) evaluation

campaign1 in each of the BTEC (basic travelling expressions) Arabic-to-English

translation task and the DIALOG (spoken dialogues in travel situations) Chinese-

to-English translation task. Our system was the third and fourth best-performing

system on the BTEC Arabic-to-English 2009 and 2010 test sets, respectively.

3.5.1 Data and Settings

In our speech expressions experiments, we used the data provided by the IWSLT

2010 evaluation campaign.2 The Chinese–English training corpus consists of 63234

sentence pairs from the IWSLT 2010 Chinese–English training data for the DIALOG

task. The development and test sets are IWSLT evaluation data sets provided for the

Chinese-to-English DIALOG task for 2008 and 2009 evaluations, respectively with

500 sentence pairs each. The development set has 15 references and the test set has

7 references. The Arabic–English training corpus consists of 21484 sentence pairs

from the IWSLT 2010 training data provided for the Arabic-to-English BTEC task.

The development and test sets are the IWSLT evaluation data sets provided for the

BTEC task for 2007 and 2008 evaluations, respectively with 489 sentence pairs in

the development set and 507 sentence pairs in the test set. The development set

has 7 references and the test set has 16 references. For the Arabic-to-English news

experiments, we used a corpus comprised of 48065 sentence pairs selected randomly

from the Arabic News corpus from LDC.3 For the Chinese-to-English news experi-

ments, we used data comprised of 51044 sentence pairs selected randomly from the

FBIS corpus. The development and test sets for the Arabic-to-English and Chinese-

to-English news experiments have 500 sentence pairs each with a single reference for

each sentence. Table 3.1 summarizes the data sets used in our experiments.
1http://iwslt2010.fbk.eu/node/1
2http://iwslt2010.fbk.eu/node/27
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004T17
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Corpus Training set Development set Test set
AEnews 48065 500 500
CEnews 51044 500 500
AEIWSLT 21484 489 507
CEIWSLT 63234 500 500

Table 3.1: Data used in our experiments.

All the English data used in our experiments is lower cased and tokenized.

The Arabic data is segmented according to the D3 segmentation scheme (Sadat

and Habash, 2006) using MADA (Morphological Analysis and Disambiguation for

Arabic) (Habash et al., 2009). The Chinese data is segmented using ICTCLAS

Chinese lexical analyser (Zhang et al., 2003). The GIZA++ toolkit4 is used to per-

form word and phrase alignment and the “grow-diag-final-and” refinement method is

adopted (Koehn et al., 2003). Minimum error rate training (Och, 2003) is performed

to tune all our SMT systems. The 5-gram language models in all the experiments are

built from the target side of the training corpus using the SRILM toolkit5 (Stolcke,

2002) with modified Kneser-Ney smoothing (Kneser and Ney, 1995).

We used paired bootstrap resampling (Koehn, 2004b) to compute the statistical

significance at p-level=0.05 for all the improvements in our experiments in this

thesis.

3.5.2 Systems

The HPB and PB Baselines

We build our HPB baseline using the Moses Chart Decoder6 (Hoang et al., 2009b)

with maximum phrase length and maximum rule span set to 12 words. Extracted

hierarchical rules contain up to 2 nonterminals. Maximum chart span is set to 20

words. Cube pruning pop-up limit is set to 1000. The PB baseline system is built

using the Moses Phrase-Based Decoder (Koehn et al., 2007) with maximum phrase
4http://fjoch.com/GIZA++.html
5http://www-speech.sri.com/projects/srilm/
6http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
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length set to 12 words.

The SAMT System

For the SAMT system, we parse the English side of the training corpus using the

Berkeley parser which is trained on the Wall Street Journal section of the Penn

Treebank with 6 merge-split-smooth cycles (Petrov and Klein, 2007).7 We build

our SAMT system using the Moses Chart Decoder with SAMT4 scheme.8 For the

SAMT system, we also set maximum phrase length and maximum rule span to 12

words. Rules extracted contain up to 2 nonterminals. Cube pruning pop-up limit

and maximum chart span are set to the same values as the HPB baseline system.

The 1-best CF-PSG System

This system uses labels extracted from the 1-best CF-PSG-based parse trees of the

target side of the training data. The Berkeley parser is used to parse the target side

of the training data. Then, we label each target-side phrase with the label of the

constituent which covers the phrase in the parse tree. If the phrase is not spanned

by a constituent in the parse tree, it is discarded. The Moses Chart Decoder is then

used to extract the HPB grammar and perform decoding with the same settings as

the HPB baseline system.

The CCG-Augmented HPB System

We use the CCG parser from C&C tools9 (Clark and Curran, 2007) to build the

parsing chart for each sentence in the English side of the training data for our CCG-

augmented HPB system experiments. We then annotate target-side phrases with

CCG categories extracted from the parsing chart as described in Section 3.3. Finally,

we build our CCG-augmented HPB system using the Moses Chart Decoder. We use

the same phrase and rule extraction settings as the HPB baseline system. Cube
7http://code.google.com/p/berkeleyparser/
8http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
9http://svn.ask.it.usyd.edu.au/trac/candc/
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pruning pop-up limit and maximum chart span are also set to the same values as

the HPB baseline system.

The 1-best CCG System

This system uses labels extracted from the 1-best CCG parse trees of the target

side of the training data. The C&C parser is used to parse the target side of the

training data. Each target-side phrase is labelled with the CCG category which

covers the phrase in the 1-best parse tree. If the phrase does not correspond to a

CCG category in the parse tree, it is discarded. The Moses Chart Decoder is then

used to extract the HPB grammar and perform decoding with the same settings as

the HPB baseline system.

3.5.3 Arabic-to-English Experimental Results

Tables 3.2 and 3.3 show the BLEU, TER and METEOR scores of the HPB and

PB baselines, the CCG-augmented HPB and SAMT systems, and the 1-best CCG

and CF-PSG systems for Arabic-to-English news and speech expressions translation,

respectively.

Table 3.2 shows that the PB baseline system is the best-performing system in

terms of BLEU, METEOR and TER scores, outperforming the next best-performing

system, namely our CCG-augmented HPB system by a slight improvement of 0.16

absolute BLEU points, which corresponds to a 0.96% relative BLEU improvement.

The result of the paired bootstrap test shows that the PB baseline system is better

than our CCG-augmented HPB system in 72% of the samples, which is not statisti-

cally significant at p-level=0.05. Our CCG-augmented HPB system outperforms the

HPB baseline on TER and BLEU scores, beating it by 0.37 absolute BLEU points,

which corresponds to a 1.63% relative improvement. The result of the paired boot-

strap resampling test demonstrates that our CCG-augmented HPB system is better

than the HPB baseline system in 88% of the samples at p-level=0.05, which is not

statistically significant. In addition, our CCG-augmented HPB system outperforms
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the SAMT system on BLEU, TER and METEOR scores. Our CCG-augmented

system is better than the SAMT system by 0.13 absolute BLEU points, which corre-

sponds to a 0.57% relative improvement. However, the paired bootstrap resampling

test shows that our CCG-augmented HPB system is better than the SAMT system

in 71% of the samples, which is not statistically significant at p-level=0.05. Table 3.2

also shows that the 1-best CCG and CF-PSG systems underperform in comparison

with our CCG-augmented HPB system and the SAMT system by 0.18 and 0.2 ab-

solute BLEU points, which corresponds to relative decreases of 0.78% and 0.88%,

respectively. The table also demonstrates that the 1-best CCG system outperforms

the 1-best CF-PSG systems by 0.16 absolute BLEU points, which corresponds to a

0.7% relative improvement. However, this improvement is statistically insignificant

at p-level=0.05.

System BLEU TER METEOR
PB 23.13 64.00 57.11
CCG 22.97 64.12 56.15
SAMT 22.83 64.63 55.96
CCG 1-best 22.79 64.12 56.79
CF-PSG 1-best 22.63 64.65 56.59
HPB 22.60 64.32 56.21

Table 3.2: BLEU, TER and METEOR scores of the HPB and PB baselines, the
CCG-augmented HPB and SAMT systems, and the 1-best CCG and CF-PSG sys-
tems for Arabic-to-English news translation.

For Arabic-to-English speech expressions translation, Table 3.3 shows that the

HPB baseline system is the best-performing system in terms of BLEU, TER and

METEOR scores, outperforming the second best-performing system, namely the

SAMT system by 0.85 absolute BLEU points, which corresponds to a 1.87% rel-

ative improvement. The paired bootstrap resampling test demonstrates that this

improvement is statistically significant at p-level=0.05. Our CCG-augmented HPB

system performs very closely to the SAMT system, with only 0.01 absolute BLEU

points the difference between the two systems. The PB baseline performs also so

closely to our CCG-augmented system with a small difference of 0.01 absolute BLEU
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points between the two systems. The 1-best CCG and CF-PSG systems underper-

form in comparison with our CCG-augmented HPB system and the SAMT system

by 3.04 and 4.12 absolute BLEU points, which corresponds to relative decreases

of 7.9% and 5.8%, respectively. The 1-best CCG system outperforms the 1-best

CF-PSG system by 1.07 absolute BLEU points, which corresponds to a 2.2% rel-

ative improvement. However, this improvement is not statistically significant at

p-level=0.05.

System BLEU TER METEOR
HPB 53.20 30.95 71.43
SAMT 52.33 31.13 70.45
CCG 52.32 31.89 70.86
PB 52.31 32.42 70.80
CCG 1-best 49.28 33.81 69.01
CF-PSG 1-best 48.21 35.14 67.59

Table 3.3: BLEU, TER and METEOR scores of the HPB and PB baselines, the
CCG-augmented HPB and SAMT systems, and the 1-best CCG and CF-PSG sys-
tems for Arabic-to-English speech expressions translation.

3.5.4 Chinese-to-English Experimental Results

Tables 3.4 and 3.5 show the BLEU, TER and METEOR scores of the HPB and PB

baselines, the CCG-augmented HPB and SAMT systems, and the 1-best CCG and

CF-PSG systems for Chinese-to-English news and speech expressions translation,

respectively.

Table 3.4 shows that our CCG-augmented HPB system outperforms the SAMT

system in terms of BLEU, METEOR and TER scores. Our CCG-augmented HPB

system outperforms the SAMT system by 0.34 absolute BLEU points, which corre-

sponds to a 1.48% relative improvement. The result of the paired bootstrap resam-

pling test shows that our CCG-augmented HPB system is better than the SAMT

system in 84% of the samples, which is not statistically significant at p-level=0.05 .

Our CCG-augmented HPB system does not outperform the HPB baseline system in

any of the evaluation metrics. The HPB baseline outperforms our CCG-augmented
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System BLEU TER METEOR
PB 23.74 67.78 52.56
HPB 23.65 66.81 52.76
CCG 23.30 67.50 52.32
SAMT 22.96 68.01 51.43
CCG 1-best 22.87 67.31 52.25
CF-PSG 1-best 22.66 67.60 50.98

Table 3.4: BLEU, TER and METEOR scores of the HPB and PB baselines, the
CCG-augmented HPB and SAMT systems, and the 1-best CCG and CF-PSG sys-
tems for Chinese-to-English news translation.

HPB system by 0.35 absolute BLEU points, which corresponds to a 1.5% relative

improvement. The result of the paired bootstrap resampling test shows than the

HPB baseline system is better than our CCG-augmented HPB system in 84% of the

samples, which is not statistically significant at p-level=0.05. The table also shows

that the 1-best CCG and CFG-PSG systems underperform in comparison with our

CCG-augmented HPB system and the SAMT system by 0.43 and 0.3 absolute BLEU

points, which corresponds to relative decreases of 1.9% and 1.3%, respectively. The

1-best CCG system outperforms the 1-best CF-PSG by 0.21 absolute BLEU points,

which corresponds to a 0.93% relative improvement. However, this improvement is

not statistically significant at p-level=0.05.

For Chinese-to-English speech expressions translations, Table 3.5 shows that the

HPB baseline system is also the best-performing system in terms of BLEU, TER

and METEOR scores, outperforming the second best-performing system, namely the

CCG-augmented HPB system by 2.63 absolute BLEU points, which corresponds to

a 5.54% relative improvement. Our CCG-augmented HPB system outperforms the

SAMT system in terms of BLEU, METEOR and TER scores. Our CCG-augmented

HPB system outperforms the SAMT system by 2.66 absolute BLEU points, which

corresponds to a 5.83% relative improvement. The result of the paired bootstrap re-

sampling test shows that our CCG-augmented HPB system is better than the SAMT

system in 100% of the samples, which is statistically significant at p-level=0.05. In

addition, our CCG-augmented HPB system outperforms the PB baseline system by
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System BLEU TER METEOR
HPB 50.89 32.53 66.81
CCG 48.26 36.17 64.88
PB 47.69 34.20 65.35
CCG 1-best 45.93 38.16 64.35
SAMT 45.60 36.20 64.16
CF-PSG 1-best 43.88 39.29 63.46

Table 3.5: BLEU, TER and METEOR scores of the HPB and PB baselines, the
CCG-augmented HPB and SAMT systems, and the 1-best CCG and CF-PSG sys-
tems for Chinese-to-English speech expressions translation.

0.57 absolute BLEU points, which corresponds to a 1.19% relative improvement. The

result of the paired bootstrap resampling test shows that our CCG-augmented HPB

system outperforms the PB baseline system in 54% of the samples at p-level=0.05,

which is not statistically significance. Our CCG-augmented HPB system does not

outperform the PB baseline in METEOR and TER scores. The table also demon-

strates that the 1-best CCG and CF-PSG systems underperform in comparison with

our CCG-augmented HPB system and the SAMT system by 2.33 and 1.72 absolute

BLEU points, which corresponds to relative decreases of 4.8% and 3.8%, respec-

tively. The 1-best CCG system outperforms the 1-best CF-PSG system by 2.05

absolute BLEU points, which corresponds to a 4.7% relative improvement. This

improvement is statistically significant at p-level=0.05. It is worth noting that the

1-best CCG system outperforms the SAMT system by 0.33 absolute BLEU points,

which corresponds to a relative improvement of 0.7%.

3.5.5 Analysis

The experimental results presented in Sections 3.5.3 and 3.5.4 show that our CCG-

augmented HPB system outperformed the SAMT system in terms of BLEU score

in all the experiments except for the Arabic-to-English speech expressions transla-

tion experiment, in which both systems performed similarly. However, our CCG-

augmented HPB system was not able to outperform the HPB baseline system in

most of the experiments. In order to analyse the performance of the SAMT and
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CCG-augmented HPB systems beyond automatic evaluation metrics, we compare

the models of these systems in terms of rule table size, label sparsity, and label

coverage. We also perform manual analysis comparing the translation quality of

our CCG-augmented HPB system with each of the HPB baseline and the SAMT

systems on selected sentence pairs.

Rule Table Size

Table 3.6 shows the number of rules/phrases in the translation model of the HPB and

PB baselines, the CCG-augmented HPB and SAMT systems, the 1-best CCG and

CF-PSG systems built on the Arabic–English and Chinese–English news and IWSLT

data. We can see that the SAMT system has bigger rule tables than the CCG-

augmented HPB system on all the data sets. The rule table of the SAMT system

has about 1.67 and 1.44 times as many rules as the rule table of the CCG-augmented

HPB system built on the Chinese–English IWSLT and news data, respectively. The

size of the rule table of the SAMT system is about 1.81 and 1.48 times the size of the

rule table of the CCG-augmented system built on the Arabic–English IWSLT and

news data, respectively. The table shows that the translation models of our CCG-

augmented HPB and the SAMT systems are significantly larger than the translation

models of the HPB and PB baseline systems. The 1-best CCG and CF-PSG systems

have significantly less rules than the CCG-augmented HPB and SAMT systems.

The table also demonstrate that the 1-best CCG system has 1.54 and 1.44 times

as many rules as the 1-best CF-PSG system on Chinese–English IWSLT and news

data, respectively. For Arabic-to-English translation on news and IWSLT data,

the 1-best CCG system has 1.5 and 1.42 times as many rules as the 1-best CF-PSG

system, respectively. The CCG category labels are richer and thus more fine-grained

than CF-PSG constituent labels, which is why the 1-best CCG systems have more

rules than the 1-best CF-PSG systems. The 1-best CCG and CF-PSG systems

have smaller translation models than the PB and HPB baseline systems, because

phrases which do not correspond to syntactic constituents in the 1-best systems are
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System CEnews AEnews CEIWSLT AEIWSLT

HPB 25,062,994 36,226,020 3,468,512 1,722,831
PB 4,433,124 6,281,738 981,070 494,843
SAMT 45,761,909 58,208,162 10,983,675 5,248,422
CCG 31,667,277 39,370,226 6,578,072 2,895,825
CCG 1-best 1,881,731 3,347,679 542,884 274,945
CF-PSG 1-best 1,219,192 2,217,336 376,897 193,655

Table 3.6: Translation model size in terms of number of rules/phrases in the HPB
and PB baselines, the CCG-augmented HPB and SAMT systems, and the 1-best
CCG and CF-PSG systems built on the Arabic–English and Chinese–English news
and IWSLT data. AE stands for Arabic–English, and CE stands for Chinese–
English.

discarded.

Label Sparsity

Given that we use the same rule extraction method with the same phrase length and

rule span parameters for both the CCG-augmented HPB and SAMT systems, the

number of rules extracted by each system depends on how many different syntactic

labels assigned to phrase pairs extracted from the training corpus. The number

of different syntactic labels used in syntax-augmented hierarchical SMT models is

a key factor affecting their performance. Sparse syntactic labels increase the size

of the model and produce low-probability rules, which causes the generalization

ability of the system to deteriorate. Furthermore, the enlargement of the number

of different syntactic labels used in the model poses hard to satisfy restrictions on

the decoding search space, preventing the system from producing many potentially

better translations. That is why we conduct a comparison between the CCG-based

and CF-PSG-based HPB systems by checking the number of different syntactic

labels used to annotate the target side of the training data. Table 3.7 shows the

number of different syntactic labels used by the SAMT system, the CCG-augmented

HPB system, the 1-best CCG and CF-PSG systems to annotate the target side of the

Chinese–English and Arabic–English news and IWSLT data. Table 3.7 demonstrates

that the SAMT system uses about 10 times as many different syntactic labels as
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System CEnews AEnews CEIWSLT AEIWSLT

SAMT 6113 5808 4969 4103
CCG 545 528 456 409
CCG 1-best 800 788 521 434
CF-PSG 1-best 69 69 67 65

Table 3.7: Number of different syntactic labels used by the SAMT system, the
CCG-augmented HPB system, the 1-best CCG and CF-PSG systems to annotate
the target side of the Chinese–English and Arabic–English news and IWSLT data

the CCG-augmented HPB system to annotate the target side of the Arabic–English

and Chinese–English news and IWSLT data. The table also shows that the 1-best

CCG systems built on different data sets use significantly more labels than the

corresponding 1-best CF-PSG systems.

To obtain a closer look at label sparsity in each system, we calculate the dis-

tribution of label frequency counts at frequencies ranging from 10 to 10,000,000

(log scale) in Figures 3.10 and 3.11 for the labels used by each system to annotate

the target side of the Arabic–English and Chinese–English news data, respectively.

Each column represents the number of labels which occurred a number of times in

the training data less than or equal to the number which corresponds to the column

label and more than the number which corresponds to the previous column label.

Having more labels at low frequencies indicates increased label sparsity. We can

see that about 70% of the labels in the SAMT system occur less than 100 times

in the Chinese–English and Arabic–English news data. By contrast, about 50% of

the labels in our CCG-augmented HPB system occur more than 1000 times in the

training data, which means that our CCG-augmented HPB system uses less sparse

labels than the SAMT system. The figures also demonstrate that the labels used

in the 1-best CCG system are sparser than the labels used in the 1-best CF-PSG

system.

71



AE SAMT

0

500

1000

1500

2000

2500

3000

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Frequency

N
u

m
b

er
 o

f 
L

ab
el

s

AE CCG

0

20

40

60

80

100

120

140

160

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Frequency

N
u

m
b

er
 o

f 
L

ab
el

s

AE CF-PSG 1-best

0

5

10

15

20

25

30

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Frequency

N
u

m
b

er
 o

f 
L

ab
el

s

AE CCG 1-best

0

50

100

150

200

250

300

350

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Frequency

N
u

m
b

er
 o

f 
L

ab
el

s

Figure 3.10: Label frequency counts for the CCG-augmented HPB system, the
SAMT system, and the 1-best CCG and CF-PSG systems built on the Arabic–
English news data.
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Figure 3.11: Label frequency counts for the CCG-augmented HPB system, the
SAMT system, and the 1-best CCG and CF-PSG systems built on the Chinese–
English news data.
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System CEnews AEnews CEIWSLT AEIWSLT

SAMTphrases 70% 69% 50% 44%
CCGphrases 46.81% 47.44% 33% 30%
SAMTrules 71% 55% 64% 58%
CCGrules 60% 52% 53% 49%

Table 3.8: Percentage of target-side X-labelled phrases and rules extracted by the
SAMT and CCG-augmented HPB systems built on the Chinese–English and Arabic–
English IWSLT and news data.

Label Coverage

We investigate the percentage of phrases which bear the general X label out of the

target-side phrases in the Chinese–English and Arabic–English news and IWSLT

training data annotated by our CCG-augmented HPB system and the SAMT sys-

tem. We also calculate the percentage of rules which use the X label on at least

one of its target-side nonterminals or on its left-hand side out of the total rules in

the translation models of our CCG-augmented HPB system and the SAMT system.

Table 3.8 shows that the SAMT system fails to assign a syntactic label to 50%

of the total phrase pairs whereas the CCG-augmented HPB system assigns the X

label to 33% of the total phrase pairs extracted from the Chinese–English IWSLT

training corpus. For the Chinese–English news data, the SAMT system fails to as-

sign a syntactic label to 70% of the total phrase pairs compared to 46.81% of the

total phrase pairs assigned the X label by the CCG-augmented HPB system. For

Arabic–English data, the figures are similar to the Chinese–English data with the

CCG-augmented HPB system succeeding in labelling more phrases that the SAMT

system. The table also shows that the SAMT system extracts more rules which use

the X label than our CCG-augmented HPB system on the different Arabic–English

and Chinese–English data sets. This indicates that our CCG labelling method has

better coverage than the SAMT method. This is no doubt due to the flexibility of

CCG structures and combinatory rules which help to achieve better coverage than

extending the CF-PSG constituent labels using SAMT operators.

We also conduct experiments which examine the effect on performance of ex-
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cluding the X-labelled phrases and rules from the translation model of each of the

SAMT and CCG-augmented HPB systems built on the Chinese–English and Arabic–

English news and IWSLT data. Tables 3.9 and 3.10 show the BLEU, METEOR and

TER scores for the resulting systems for Arabic-to-English and Chinese-to-English

translation, respectively. When we compare Table 3.9 with Tables 3.2 and 3.3, we

can see that excluding the X-labelled rules and phrases from the translation model

decreases the performance of both the SAMT and the CCG-augmented HPB sys-

tems on the Arabic–English news and IWSLT data. We obtain the same result when

comparing Table 3.9 with Tables 3.4 and 3.5 for Chinese–English news and IWSLT

data. Thus, discarding the X-labelled rules and phrases has a negative effect on

performance, which indicates that they play an important role in translation.

System BLEU TER METEOR
CCGnews 22.21 64.52 56.10
SAMTnews 22.08 64.76 55.53
CCGIWSLT 51.07 32.87 69.62
SAMTIWSLT 51.18 32.37 69.81

Table 3.9: BLEU, TER and METEOR scores of the CCG-augmented HPB and
SAMT systems when excluding X-labelled phrases and rules from the translation
model built on the Arabic–English news and IWSLT data.

For Arabic-to-English translation, Table 3.9 shows that excluding X-labelled

phrases and rules from the rule table of the CCG-augmented HPB system causes

decreases of 0.76 and 1.25 absolute BLEU points, which corresponds to relative de-

creases of 3.3% and 2.4% on news and IWSLT data, respectively. For the SAMT

system, discarding X-labelled phrases and rules leads to 0.75 and 1.15 absolute

BLEU points decreases, which corresponds to relative decreases of 3.3% and 2.2%

on news and IWSLT data, respectively. Table 3.9 shows that the CCG-augmented

HPB system outperforms the SAMT system by 0.13 absolute BLEU points on the

news data, which corresponds to a 0.59% relative improvement. This improvement is

not statistically significant at p-level=0.05. By contrast, the SAMT system outper-

forms the CCG-augmented HPB system on the IWSLT data by 0.11 absolute BLEU
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points, which corresponds to a 0.21% relative improvement. This improvement is

not statistically significant at p-level=0.05.

System BLEU TER METEOR
CCGnews 23.18 66.74 52.56
SAMTnews 22.80 67.27 51.61
CCGIWSLT 47.62 33.86 65.97
SAMTIWSLT 45.28 37.24 63.20

Table 3.10: BLEU, TER and METEOR scores of the CCG-augmented HPB and
SAMT systems when excluding X-labelled phrases and rules from the translation
model built on the Chinese–English news and IWSLT data.

For Chinese-to-English translation, Table 3.10 shows that excluding X-labelled

phrases and rules from the rule table of the CCG-augmented HPB system causes

decreases of 0.12 and 0.64 absolute BLEU points, which corresponds to relative de-

creases of 0.5% and 1.3% on news and IWSLT data, respectively. For the SAMT

system, discarding X-labelled phrases and rules leads to 0.16 and 0.32 absolute

BLEU points decreases, which corresponds to relative decreases of 0.7% and 0.7%

on news and IWSLT data, respectively. Table 3.10 shows that the CCG-augmented

HPB system outperforms the SAMT system by 0.38 and 2.34 absolute BLEU points,

which corresponds to relative improvements of 1.7% and 5.1% on news and IWSLT

data, respectively. The improvement achieved on the IWSLT data only is statisti-

cally significant.

System CEnews AEnews CEIWSLT AEIWSLT

CCG 1046374 1119984 163177 62125
SAMT 890508 946405 143787 58915

Table 3.11: Number of phrases which are annotated by the CCG-augmented HPB
system but not by the SAMT system and vice versa.

We also calculate the number of initial phrases in the rule table which are an-

notated by the CCG-augmented HPB system but not by the SAMT system and

vice versa as illustrated in Table 3.11. The table shows that our CCG-augmented

HPB system is able to label more initial phrases which the SAMT system fails to
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label. For Arabic-to-English news and speech expressions translation, our CCG-

augmented HPB system annotates 173579 and 3210 more phrases which the SAMT

system fails to label, which constitutes 18.3% and 5.5% relative increase on the

phrases annotated by the SAMT system and not by the CCG-augmented HPB sys-

tem, respectively. For Chinese-to-English news and speech expressions translation,

our CCG-augmented HPB system annotates 155866 and 19390 more phrases which

the SAMT system fails to label, which constitutes 6.6% and 13.5% relative increases

on the phrases annotated by the SAMT system and not by the CCG-augmented

HPB system, respectively. This highlights the fact that our CCG-augmented HPB

system uses labels with a better coverage than the SAMT system. An example of

the phrases which are labelled by our CCG-augmented HPB system but not by the

SAMT system is the phrase:

considered a gross mistake for which they should be held accountable

which is extracted from the following sentence:

The deputies said that the ministry’s insistence on such a practice is considered

a gross mistake for which they should be held accountable.

Our CCG-augmented HPB system assigns the aforementioned phrase S[pss]\NP

(which means a past participle verb phrase in passive mode) as a syntactic label,

whereas the SAMT system fails to label this phrase.

Manual Analysis

We used BLEU, METEOR and TER automatic MT evaluation metrics to compare

the performance of our CCG-augmented HPB system with the SAMT and the HPB

baseline systems. Although these metrics provide a fast and convenient way to

evaluate the performance of MT systems and have been demonstrated to correlate

well with human judgement (Papineni et al., 2002; Snover et al., 2006; Lavie and

Abhaya, 2007), they suffer from many shortcomings. BLEU, METEOR and TER

evaluate a translation output by the MT system by measuring its resemblance to a

human-generated translation of the source sentence (called the ‘reference’) based on
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different criteria. Some data sets have more than one reference for each sentence.10

However, natural languages are creative and have a large degree of flexibility, which

makes it impossible to restrict the correct possible translations of a sentence to a sin-

gle or even a number of reference translations. Moreover, it has been demonstrated

that the effect of the number of references used in tuning with MERT varies among

different automatic evaluation metrics (He and Way, 2010). Furthermore, due to

efficiency reasons, most automatic evaluation metrics including the ones used in our

experiments do not perform any deep syntactic analysis of the translation output

in order to evaluate its grammaticality. For these reasons, automatic evaluation

metrics have the potential to misjudge the accuracy and adequacy of the translation

output, causing better translations according to human evaluators to be sometimes

poorly scored by these metrics, and vice versa.

In order to provide a closer look at the strengths and weaknesses of our CCG-

augmented HPB system compared to the other HPB systems (the SAMT and HPB

baseline systems), we conducted a manual analysis on selected sentence pairs taken

from the translation output produced by these systems for the Arabic–English

IWSLT test set we used in our experiments. The selection procedure of sentence

pairs to undergo manual analysis from the output of the two systems to be compared

was performed as follows:

• Sentence-level BLEU scores were calculated for each sentence in the translation

output of each system. It is worth noting that BLEU is designed to evaluate

translation quality on the corpus level, not on the sentence level. However,

we use sentence-level BLEU scores to obtain an approximate estimation of

sentence-level translation quality.

• The BLEU score difference was calculated for each sentence pair in the trans-

lation outputs of the systems to be compared.
10Such as the NIST 2009 Open Machine Translation (OpenMT) Evaluation data set

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2010T23 and the IWSLT
2010 data set used in our experiments http://iwslt2010.fbk.eu/node/27.
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• Sentence pairs whose BLEU score difference was larger than an empirically de-

fined threshold were selected for manual analysis. The threshold was gradually

increased until the number of selected sentences is less than 100.

Case Number Percentage
Missing verb 3 10%
Missing translation of word/phrase 7 24%
Wrong reordering of adjective and noun 1 3%
Wrong translation of word/phrase 8 29%
Equally right 3 10%
Equally wrong 6 21%
Better quality 1 3%
Total 29

Table 3.12: Cases that result from manually comparing higher BLEU score sentences
from the output of the CCG-augmented HPB system to their counterparts from the
output of the SAMT system.

After selecting sentence pairs from the translation outputs of the systems to be

compared according to the previous steps, we divided the sentence pairs into two

groups. The first group contains the sentence pairs which have a higher BLEU

score for the first system compared with the second system, whereas the second

group contains the sentence pairs which have a higher BLEU score for the second

system compared with the first system. Then, I manually analysed sentence pairs

in each group and classified each sentence pair according to the reason for which

the system with the lower BLEU score produced worse translation quality than the

other system.

CCG-augmented HPB System vs SAMT System Tables 3.12 and 3.13 show

the results of the manual analysis conducted on sentence pairs from the output of

the SAMT and CCG-augmented HPB systems which have a BLEU score difference

larger than a threshold equal to 0.1. We obtained 29 sentences for which the CCG-

augmented HPB system outperformed the SAMT system and 36 sentences in the

reverse case, which constitute 5.7% and 7% of the total sentences in the test set,

respectively. This means that less than 13% of the total sentence pairs from the
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output translations have a BLEU sore difference larger than 0.1, which indicates

that the SAMT and CCG-augmented HPB systems achieve similar BLEU score for

most sentences in the test set. While Table 3.12 shows the percentage of different

cases found for sentences which have a higher BLEU score for the CCG-augmented

HPB system compared to their counterparts from the SAMT system, Table 3.13

shows the reverse case. The ‘equally right’ case means that both sentences are

correct despite the difference in their BLEU score. The ‘equally wrong’ case means

that both sentences are wrong despite the difference in their BLEU score. ‘Better

quality’ means that the sentence which has the lower BLEU score has a better

quality than the sentence with the higher BLEU score.

Source: ? AK
 @Yë Ém× ¼A
	
Jë Éë

Reference: is there a gift shop ?
SAMT: is there a gift ?
CCG: is there a gift shop ?

Figure 3.12: An example of a missing word in the output of the SAMT system,
which was captured by the CCG-augmented HPB system.

Table 3.12 shows that the main cases in which the CCG-augmented HPB system

produces better translation quality are when words/phrases are translated wrongly

by the SAMT system (29% of the total cases) in addition to capturing the translation

of words/phrases missed by the SAMT system (24% of the total cases). Figure 3.12

shows an example in which the CCG-augmented HPB system was able to capture

the translation of the Arabic word É m×, corresponding to the English word shop,

while the SAMT system missed it. Figures 3.13 and 3.14 show the derivation trees

of the translation produced by the SAMT and the CCG-augmented HPB systems for

the same sentence.11 Figure 3.13 shows that the SAMT system uses a glue grammar

rule to combine the phrases is there a and gift. The unaligned Arabic word É m×

11Q in the derivation trees replaces the S symbol in the original glue grammar rules (cf. glue
grammar rules (2.8) and (2.9) page 24) to avoid confusion with the S symbol used in syntactic
constituents.
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Q

Q
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is there a

Ém× ¼A
	
Jë Éë

NN

gift

AK
 @Yë

?

?

Figure 3.13: The derivation tree of the English translation produced by the SAMT
system for the Arabic sentence ? AK
 @Yë Ém× ¼A

	
Jë Éë.

Q

Q

S\NP

is there

¼A
	
Jë Éë

NP

< X Ém× , a N/N shop ? >

N/N

gift

AK
 @Yë

Figure 3.14: The derivation tree of the English translation produced by the CCG-
augmented HPB system for the Arabic sentence ? AK
 @Yë Ém× ¼A

	
Jë Éë.
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Source: ? Y
	
ªË@ ÈñÊm�'

. AêÒJ
Ê�
�
� ½

	
JºÖß
 Éë

Reference: can you deliver it by tomorrow ?
SAMT: could you hand it by tomorrow ?
CCG: could you delivered them by tomorrow ?

Figure 3.15: An example of a wrong translation of a word produced by the CCG-
augmented HPB system.

at the edge of the first phrase is what caused the omission of the word shop from

the output translation. The derivation tree in 3.14 shows that the CCG-augmented

HPB system was able to capture the word shop using the hierarchical rule NP →<

X Ém× , a N/N shop >.

Case Number Percentage
Missing verb 0 0 %
Missing translation of word/phrase 5 14%
Wrong reordering of adjective and noun 2 5%
Wrong translation of word/phrase 6 17%
Equally right 10 28%
Equally wrong 6 17%
Better quality 7 19%
Total 36

Table 3.13: Cases that result from manually comparing higher BLEU score sentences
from the output of the SAMT system to their counterparts from the output of the
CCG-augmented HPB system.

Table 3.13 shows that the main cases in which the SAMT system produces better

translation quality than the CCG-augmented HPB system are when capturing the

translation of words/phrases missed by the CCG-augmented HPB system (14% of

the total cases), and correctly translating a word/phrase wrongly translated by

the CCG-augmented HPB system (17% of the total cases). Figure 3.15 shows an

example in which the CCG-augmented HPB system uses the right verb but in the

wrong tense (delivered instead of deliver) in the output translation. The CCG-

augmented HPB system also wrongly translates the object pronoun to them instead

of it. The SAMT system produces a correct translation by using another verb hand

in the correct from, and correctly translating the object pronoun to it.

Comparing Table 3.12 with Table 3.13, we can see that the SAMT system misses
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the insertion of a verb in the output translation in 10% of the examined sentences,

while the CCG-augmented HPB system does not commit this error in any of the ex-

amined sentences. This could be one way of improvement that the CCG-augmented

HPB system achieved over the SAMT system. We have demonstrated that the

SAMT system produces sparser and less coverage syntactic labels than our CCG-

augmented HPB system (cf. Tables 3.7 and 3.8), which limits the coverage of the

syntactic constraints applied during decoding and leads to the production of un-

grammatical translations. Figure 3.16 shows an example of a missing verb is and its

subject there in the translation output of the SAMT system. For the same example,

the CCG-augmented HPB system produced the verb and its subject in a correct

translation, which perfectly matches the reference.

Source: ? QjJ. Ë @ P@ðYK. H. A�

@

	
à


@ ÈAÒ

�
JkAK. Y

�
®
�
Jª

�
K Éë

Reference: do you think there ’s a chance i ’ll get seasick ?
SAMT: do you think a chance i ’ll get seasick ?
CCG: do you think there ’s a chance i ’ll get seasick ?

Figure 3.16: An example of a missing verb in the output of the SAMT system. The
CCG-augmented system captures the verb translation.

Q

Q

Q

Q

X

do you think

Y
�
®

�
Jª

�
K Éë

DT
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X

chance i ’ll get

H. A�

@

	
à


@ ÈAÒ

�
JkAK.

J++.

seasick ?

? QjJ. Ë @ P@ðYK.

Figure 3.17: The derivation tree of the English translation produced by the SAMT
system for the Arabic sentence ? QjJ. Ë @ P@ðYK. H. A�


@

	
à


@ ÈAÒ

�
JkAK. Y

�
®
�
Jª

�
K Éë.

Figures 3.17 and 3.18 show the derivation trees of the translation produced by

each of the SAMT and the CCG-augmented HPB systems for the same sentence,
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�
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Figure 3.18: The derivation tree of the English translation produced by the CCG-
augmented HPB system for the Arabic sentence P@ðYK. H. A�


@

	
à


@ ÈAÒ
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JkAK. Y

�
®

�
Jª

�
K Éë

? QjJ. Ë @.

respectively. Figure 3.17 shows that the SAMT system was not able to assign syn-

tactic labels to the phrases do you think and chance i’ll get. Furthermore, the SAMT

system used glue grammar rules to assemble the phrases of the output translation.

Thus, the SAMT system did not use any syntactic constraint to build the trans-

lation in this example, which led to the production of ungrammatical translation.

By contrast, Figure 3.18 shows that the CCG-augmented HPB system uses CCG-

augmented hierarchical rules to build the two parts of the translation: the phrases

do you think and there’s a chance i’ll get seasick, which means that CCG-based

syntactic constraints are used to produce these phrases. Then, a glue grammar rule

is used to concatenate these two phrases. Thus, the CCG-augmented HPB system

was able to apply syntactic constraints more widely during translation, which helped

to produce a grammatical translation. It is worth noting here that CCG effect on

improving the grammaticality of the translation by helping to insert verbs missed by

other systems was also demonstrated by Hassan (2009). Hassan (2009) conducted a

manual analysis which demonstrated that one of the main reasons for which CCG

helped to improve the grammaticality of the translation produced by the PB SMT
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system was inserting verbs omitted by the PB SMT baseline system.

Source: ? AëPA
	

�k@ ½
	
JºÖß
 ú

�
æÓ

Reference: when can you bring it ?
SAMT: when can you bring it ?
CCG: what time will you bring it ?

Figure 3.19: An example of equally right translations produced by the SAMT and
CCG-augmented HPB systems. The SAMT system output has a higher BLEU score
than that of the CCG-augmented HPB system.

Interestingly, the sentence pairs which have equivalent translation quality accord-

ing to the manual analysis constitute 45% of the total sentence pairs which have a

higher BLEU score for the SAMT system compared with the CCG-augmented HPB

system (cf. Table 3.13). By contrast, 31% of the total sentence pairs which have a

higher BLEU score for the CCG-augmented HPB system compared with the SAMT

system have equivalent translation quality according to the manual analysis (cf. Ta-

ble 3.12). Figure 3.19 shows an example of equally right translations produced by

the CCG-augmented HPB and SAMT systems, although the SAMT output has a

higher BLEU score.

Source: .
�
éJ
kQå�Ó

�
èYëA

�
�Ó ú




	
¯ I.

	
«P


@

Reference: i ’d like to see a play .
SAMT: i ’d like to see a .
CCG: i ’d like to see a doctor .

Figure 3.20: An example of wrong translations produced by the SAMT and CCG-
augmented HPB systems. The SAMT system output has a higher BLEU score than
that of the CCG-augmented HPB system.

Figure 3.20 shows an example of equally wrong translations produced by the

CCG-augmented HPB and SAMT systems despite of the fact that the SAMT sys-

tem has a higher BLEU score. Furthermore, 19% of the total sentence pairs which

have a higher BLEU score for the SAMT system achieve better translation qual-

ity for the CCG-augmented HPB system according to the manual analysis. By

contrast, only 3% of the total sentence pairs which have a higher BLEU score for

the CCG-augmented HPB system achieve better translation quality for the SAMT
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Source: ? I.

KA

�
®k

�
éK. Q« úÎ« Èñ�mÌ'@ ú




�	
æºÖß
 	áK



@

Reference: where can i get a luggage cart ?
SAMT: where can i get a bags ?
CCG: where can i get my baggage cart ?

Figure 3.21: An example of a better translation produced by the CCG-augmented
HPB system compared to that of the SAMT system. The CCG-augmented HPB
system has a lower BLEU score.

system according to the manual analysis. This could indicate a margin of improve-

ment in the actual translation quality achieved by the CCG-augmented HPB sys-

tem over the SAMT system although they have almost an equal BLEU score on the

Arabic–English IWSLT test set (cf. Table 3.3). Moreover, this sheds light on the

insufficiency of the BLEU metric, which is one of the most widely used automatic

MT evaluation metrics, to evaluate the real translation quality of SMT systems.

Figure 3.21 shows an example in which the CCG-augmented HPB system produces

a better translation than the SAMT system despite having a lower BLEU score.

Source: ? ú


¾J
�ºÓ Ñª¢Ó H. Q

�
¯

@ ©

�
®K


	áK



@

Reference: where is the closest mexican restaurant ?
SAMT: where is the nearest restaurant mexican ?
CCG: where ’s the nearest mexican restaurant ?

Figure 3.22: An example of a wrong reordering of an adjective and a noun in the
output of the SAMT system. The CCG-augmented HPB system captures the right
order.

From Tables 3.12 and 3.13 we can also see that the SAMT and CCG-augmented

HPB systems err almost equally in reordering adjectives and nouns, which have op-

posing order between Arabic and English. Figure 3.22 shows an example of a wrong

reordering between an adjective and a noun in the output of the SAMT system. The

CCG-augmented HPB system produces the correct reordering. Figures 3.23 and 3.24

show the derivation trees produced by the SAMT and CCG-augmented HPB sys-

tems for the same example, respectively. We can see that the wrong reordering of

the adjective and noun in the output of the SAMT system is due to the use of a

glue grammar rule to concatenate the adjective mexican and the noun restaurant.
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As glue grammar rules do not perform any reordering, the order of the adjective and

noun is wrong in the SAMT output. By contrast, we can see from Figure 3.24 that

the use of the hierarchical rule N →< X Ñª¢Ó , N/N restaurant >, which swaps

the positions of the adjective and the noun, is what helped the CCG-augmented

HPB system to produce the right translation.

Q

Q

Q

Q

X

< H. Q
�
¯

@ X , WRB++VBZ the nearest >

WRB++VBZ

where is

©
�
®K


	áK



@

NN

restaurant

Ñª¢Ó

FW

mexican

ú


¾J
�ºÓ

.

?

?

Figure 3.23: The derivation tree of the English translation produced by the SAMT
system for the Arabic sentence ? ú
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The CCG-augmented HPB System vs the HPB Baseline System Ta-

bles 3.14 and 3.15 show the results of the manual analysis conducted on sentence

pairs from the output of the CCG-augmented HPB system and the HPB baseline

system which have a BLEU score difference larger than a threshold equal to 0.2. We

obtained 27 sentences for which the CCG-augmented HPB system outperformed

the HPB baseline system and 26 sentences in the reverse case, which totally consti-

tute 10.5% of the total sentences in the test set. Table 3.14 shows the percentage of

different cases found for sentence pairs which have a higher BLEU score for the CCG-

augmented HPB system compared with their counterparts from the HPB baseline
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Figure 3.24: The derivation tree of the English translation produced by the CCG-
augmented HPB system for the Arabic sentence ? ú
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system. Table 3.15 shows the reverse case.

From Table 3.14 we can see that missing translation of a word/phrase and

wrongly translating a word/phrase are the main faults committed by the HPB base-

line system compared to the CCG-augmented HPB system, constituting 26% and

19% of the total cases, respectively.

Case Number Percentage
Missing verb 0 0%
Missing translation of word/phrase 7 26%
Wrong reordering of adjective and noun 1 4%
Wrong translation of word/phrase 5 19 %
Equally right 4 15%
Equally wrong 7 26%
Better quality 3 10 %
Total 27

Table 3.14: Cases that result from manually comparing higher BLEU score sentences
from the output of the CCG-augmented HPB system to their counterparts from the
output of the HPB baseline system.

Table 3.15 shows that wrongly translating a word/phrase by the CCG-augmented

HPB system is the main reason why the HPB baseline system produces better

translation quality than the CCG-augmented HPB system, which constitutes 50%
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Case Number Percentage
Missing verb 0 0%
Missing translation of word/phrase 0 0%
Wrong reordering of adjective and noun 1 4%
Wrong translation of word/phrase 13 50 %
Equally right 4 15 %
Equally wrong 7 27 %
Better quality 1 4%
Total 26

Table 3.15: Cases that result from manually comparing higher BLEU score sentences
from the output of the HPB baseline system to their counterparts from the output
of the CCG-augmented HPB system.

of the total cases. Figure 3.25 shows an example of a wrong translation of a word

produced by the CCG-augmented HPB system. In this example, the Arabic verb

A
	
J K
Q

�
K was wrongly translated as get in the output of the CCG-augmented HPB

system, whereas it was correctly translated to show us in the output of the HPB

baseline system.

Source: ? A
	
KY«A

�
®Ó A

	
JK
Q

�
K Éë

Reference could you show us to our seats ?
CCG: do we get our seats ?
HPB: will you show us to our seats ?

Figure 3.25: An example of wrong translation of a word in the output of the CCG-
augmented HPB system. The HPB baseline system produces the right translation.

Comparing Tables 3.14 and 3.15, we can see that while the HPB baseline system

omits the translation of a word/phrase in 26% of the total cases compared to the

CCG-augmented HPB system, the CCG-augmented HPB system does not commit

this fault in any of the studied cases. This means that the CCG-augmented HPB

system was able to avoid this weakness of the HPB baseline system. Figure 3.26

shows an example of a missing word key in the output of the HPB baseline system.

The CCG-augmented HPB system succeeds in capturing this word in its translation

output. As we saw when comparing the CCG-augmented HPB system with the

SAMT system, unaligned words in addition to wrongly aligned words are the main

reasons which cause erroneous word deletions in the translation output. However,
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the syntactic constraints imposed by the CCG-augmented HPB systems help to

recover from some of these errors as missing the translation of a word is likely to

affect the grammaticality of the translation output. As it was found when manually

analysing sentence pairs from the outputs of the CCG-augmented HPB system and

the SAMT system, both the CCG-augmented HPB system and the HPB baseline

system mistake equally in reordering adjectives and nouns. This emphasises the

wrong reordering of adjectives and nouns between Arabic and English as a common

weakness of the three studied systems.

Source: . iJ
j�Ë@ hA
�
J
	
®ÖÏ @ ñë @

	
Yë ��
Ë

Reference: this is the wrong key .
HPB: this isn ’t the right .
CCG: this isn ’t the right key .

Figure 3.26: An example of a missing word in the output of the HPB baseline
system. The CCG-augmented HPB system captures the word translation.

3.6 Conclusions

In this chapter, we described our approach to augmenting the HPB model with syn-

tactic information extracted using CCG. We demonstrated the advantages of using

CCG categories to label nonterminals in hierarchical rules over CF-PSG-based la-

bels. CCG has a flexible structure that results from its ability to combine categories

using a set of simple combinatory rules. This flexibility enabled our CCG-based

labelling method to extract syntactic labels for many phrases which do not neces-

sarily correspond to grammatical constituents in traditional terms. Our experiments

demonstrated that our CCG-based labelling approach was able to provide a signifi-

cantly better coverage for phrases than the SAMT labelling method. Furthermore,

CCG-based labels were demonstrated to be less sparse than the SAMT labels, lead-

ing to a smaller translation model and more reliable rule probabilities. Most impor-

tantly, CCG category labels provide richer and more accurate syntactic information

than SAMT labels, because CCG labels precisely describe the dependents and lo-
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cal context of the words and phrases without being redundant. Our experiments

also showed that our CCG-augmented HPB system outperformed the SAMT sys-

tem in terms of BLEU score on all the Chinese-to-English and Arabic-to-English

experiments, except for the Arabic-to-English speech expressions translation where

the two systems performed similarly. However, our CCG-augmented HPB system

was not able to outperform the HPB baseline system on most of the conducted

Arabic-to-English and Chinese-to-English experiments. We believe this to be due to

the sparseness of the CCG-based nonterminal labels which restrict the search space

during translation, which in turn negatively affects the translation quality. We also

conducted experiments which compare the performance of the systems which use

CCG and CF-PSG labels extracted from the 1-best parse trees of the target side

of the training data. Our experimental results demonstrated that the 1-best CCG

system slightly outperformed the 1-best CF-PSG system for Arabic-to-English and

Chinese-to-English translation. We believe that this is due to fact that CCG cate-

gories represent richer syntactic information than CF-PSG constituent labels, which

helps to impose more discriminative syntactic constraints. However, the 1-best CCG

was not able to outperform our CCG-augmented HPB system which uses CCG la-

bels extracted from the parsing chart. This is because the 1-best CCG system does

not take advantage of the flexibility of CCG structures, which enables to extract

more annotated phrases and rules than the 1-best CCG system.

Our manual analysis gave insights into the strengths and weaknesses of our

CCG-augmented HPB system compared with the HPB baseline and SAMT systems

beyond what could be gleaned from automatic evaluation metrics. The manual

analysis demonstrated that our CCG-augmented HPB system was better at inserting

verbs in the output translation than the SAMT system. Furthermore, our CCG-

augmented HPB system succeeded in avoiding a major weakness of the HPB SMT

system, namely the failure to translate words/phrases. However, compared to the

HPB baseline system, the main weakness of our CCG-augmented HPB system was

its failure to translate some words/phrases correctly.
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The research conducted in this chapter addresses the first research question

(RQ1) by demonstrating that CCG is better than CF-PSG when these grammar

formalisms are used to extract labels for nonterminals in the HPB SMT model.

In the next chapter, we try to explore ways to enhance the performance of our

CCG-augmented HPB system by investigating different CCG-based nonterminal la-

belling approaches which try to tackle the label sparsity problem by extracting less

fine-grained CCG-based nonterminal labels.

92



Chapter 4

Simplifying CCG-based Nonterminal

Labels

In the previous chapter, we demonstrated that using CCG categories to label non-

terminals in the HPB SMT model helped to achieve better translation quality than

the SAMT system. We also demonstrated that the CCG-based labels used in our

CCG-augmented HPB system were less sparse, have better coverage and hold richer

syntactic information than the SAMT labels. However, our CCG-augmented HPB

system was not able to outperform the HPB baseline system in many of the ex-

periments. We believe that this might be due to the sparsity of our CCG-based

labels, which leads to rule probability fragmentation and imposes restrictions on the

decoding search space. In this chapter, we try to tackle the label sparsity problem

which affects the performance of our CCG-augmented HPB system. We present two

approaches to extracting less sparse but still rich CCG-based nonterminal labels.

Through the research conducted in this chapter we try to verify the effectiveness of

our approaches on improving the performance of our CCG-augmented HPB system,

which answers our second research question (RQ2).

Section 4.1 introduces our motivation to explore approaches towards the simpli-

fication of nonterminal labelling. Section 4.2 introduces related work. Section 4.3

presents our first label simplification approach which is based on extracting contex-
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tual information presented in CCG categories to label nonterminals in hierarchical

rules. In Section 4.4, we explain the second label simplification approach which

removes features held by some CCG categories from the nonterminal label repre-

sentation. We present our experiments in Section 4.5 which examine the effect on

performance of the two simplification approaches both individually and combined

under different factors: the language pair, the size of the training data, the size of

the language model and the domain of the data. Section 4.6 presents the conclusions

for this chapter.

4.1 Motivation

With the emergence of different approaches to incorporating syntax in hierarchical

SMT systems, not only different grammar formalisms have been explored in the

syntax augmentation process, but also different nonterminal labelling approaches

of different degrees of granularity. The use of a small set of different nonterminal

labels guarantees a manageable increase in the size of the translation model and

thus a faster decoding process than in the case of a larger set of nonterminal labels.

However, coarse nonterminal labels are not expressive enough to impose the syntactic

restrictions required to prevent the production of ungrammatical translations. On

the other hand, a large number of different nonterminal labels leads to the generation

of large translation models with sparse rule probabilities, which slows down the

decoding process and negatively affects translation quality. Furthermore, attaching

different labels to the same phrase leads to spurious ambiguity, which means that

different labellings of the same translation will compete with each other during

decoding, which also affects translation quality in a negative way.

In Chapter 3 we demonstrated that using CCG categories as nonterminal labels is

better than CF-PSG-based labels extracted in the SAMT system. We demonstrated

that CCG categories provide richer and more accurate syntactic descriptions, which

are able to annotate more phrases than the SAMT method while at the same time
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being less sparse. Our experiments showed that our CCG-augmented HPB system

was able to outperform the SAMT system in most of the experiments. However,

our experiments showed that our CCG-augmented HPB system was not able to

outperform the HPB baseline system. We believe that the richness of CCG-based

labels can negatively affect performance, which results from imposing strict syntac-

tic constraints on phrases replacing nonterminals during decoding. We propose a

solution to this problem based on simplifying CCG categories used to label non-

terminals in hierarchical rules by employing part of the information represented in

CCG categories. This makes the labels less fine-grained, and loosens the strong

syntactic constraints held by them. This softening method comes at the expense of

the accuracy of the syntactic labels. Nevertheless, we want to examine the effect of

the trade-off between the richness of the labels and the flexibility of the syntactic

constraints they impose, which provides an answer to our second research question

(RQ2).

We suggest two simplification schemes. The first scheme employs only the con-

textual information presented in a CCG category and ignores its resulting category

in the representation of the syntactic label (cf. Section 4.3). The second scheme

drops the features held by some of the CCG categories from the representation of the

syntactic label (cf. Section 4.4). We present experiments which examine the effect

of applying each of the two schemes both individually and combined under different

factors. We use data sets from different domains and sizes for Arabic-to-English,

Chinese-to-English and French-to-English translation. We also examine the effect

of the size of the language model on the performance of our systems.

4.2 Related Work

Wang et al. (2010) argue that nonterminal labels which correspond to the Penn

Treebank tag set are too coarse to represent accurate syntactic constraints imposed

on phrases replacing nonterminals during decoding, which leads to the production
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of ungrammatical translations. As a solution, they explore the effect of applying

two relabelling approaches borrowed from monolingual parsing to split the Penn

Treebank-based nonterminal labels into more fine-grained labels by representing

more contextual information in them. The first relabelling approach is linguistically

motivated (Johnson, 1998; Klein and Manning, 2003). It incorporates information

about the parent, head word and siblings tags into the nonterminal label. The second

relabelling approach is statistically motivated (Matsuzaki et al., 2005; Petrov et al.,

2006). It performs automatic category splitting which learns to subcategorize non-

terminals using Expectation Maximization. They demonstrate that both relabelling

approaches help to improve performance over the baseline systems. Hanneman and

Lavie (2011) propose an approach to extracting coarse-grained nonterminal labels.

Their approach merges nonterminal labels using information extracted from source-

and target-side parse trees. They use a metric to calculate the distance between two

syntactic labels in one language based on the difference in their alignment probabil-

ities with labels from the other language. They then apply a greedy label merging

algorithm which merges two labels with the closest distance calculated according

to the distance metric. Zollmann and Vogel (2011) label phrases and nonterminals

in the HPB SMT model with labels extracted from clustering phrases according

to their feature vectors. The feature vectors contain information about the lexical

descriptors of the words within the phrase in addition to the lexical descriptors of

the boundary words surrounding the phrase.

In contrast to the label splitting approach followed by Wang et al. (2010), we

try to extract less fine-grained CCG-based nonterminal labels in order to reduce

the sparsity of nonterminal labels based on CCG categories, which are much richer

than the Penn Treebank tag set. While the label coarsening approach followed by

Hanneman and Lavie (2011) depends on source- and target-side parse trees, we use

CCG categories extracted form target-side parse trees of the training data as a basis

to extract less sparse CCG-based labels. Zollmann and Vogel (2011) incorporate

contextual information based on POS tags and word-based classes extracted via
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unsupervised word clustering into nonterminal label extraction. In contrast, we use

contextual information already presented in CCG categories to extract CCG-based

nonterminal labels. CCG contextual categories present richer contextual information

than POS tags. Furthermore, CCG contextual labels are syntax-based in contrast

to the syntax-free word-based classes obtained via unsupervised learning.

4.3 CCG Contextual Labels

A CCG category describes rich syntactic information about the upper levels of the

syntactic structure in which the word/phrase participates. Furthermore, the same

word/phrase would have multiple CCG categories according to the different contexts

within which the word/phrase might appear. That is the reason for the proliferation

of different CCG categories. In our first label simplification approach, we try to

employ the information about the syntactic context of the word/phrase reflected by

its CCG category in a syntactic label, which we call the CCG contextual label, and

ignore other information in the CCG category. A CCG category takes the form of:

C = (R\Al)/Ar

where Al represents the left argument category, Ar represents the right argument

category, and R represents the resulting category. In the contextual label represen-

tation, we include the left and right argument categories Al and Ar of C and exclude

the resulting category R from the label representation. Thus, a syntactic label of the

form Al_Ar is extracted from the category C. If any of the left or right argument

categories in C does not exist, this argument is replaced with the X symbol in the

CCG contextual label. The labels that consist of only the left and right arguments of

CCG categories still express important syntactic information about words/phrases

but are simpler and thus less sparse than complete CCG categories.

To extract hierarchical rules annotated with CCG contextual labels, we first
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Figure 4.1: An Arabic source sentence and its aligned English translation along with
its CCG parse tree.

annotate the target side of the training corpus with CCG categories as described in

Seciton 3.3. Then, for each target-side phrase in the training corpus assigned C as

its CCG category, we extract the contextual label corresponding to C and assign

it to the phrase. Lastly, hierarchical rules annotated with CCG contextual labels

are extracted from the training corpus according to the same basic hierarchical rule

extraction algorithm (cf. Section 2.4.1 page 21). Figure 4.2 shows a set of phrases

extracted from the Arabic–English sentence pair illustrated in Figure 4.1 along with

the CCG category and CCG contextual labels assigned to them. For example, the

CCG category assigned to the phrase want to book is (S[dcl]\NP )/NP . This CCG

category has S[dcl] as a functor, NP as a right argument and NP as a left argument.

Therefore, we use NP_NP as the CCG contextual label assigned to this phrase.
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X_X

NP_NP

NP_X

NP_X

X_X

NP_S[b]\NP

X_ S[to]\NP

CCG Context Label

book a seat���� أ���S[b]\NP

βαCCG Category Label

I want�
S[dcl]/(S[to]\NP)أر

I want to book a seat���� أن أ��� �
S[dcl]أر

to book a seat���� أن أ���S[to]\NP

want to book أن أ��� �
(S[dcl]\NP)/NPأر

a seat����NP[nb]

want toأن �
(S[dcl]\NP)/(S[b]\NP)أر

Figure 4.2: A set of phrases extracted from the Arabic–English sentence pair in
Figure 4.1 along with the CCG category and CCG contextual labels assigned to
them.

4.4 Feature-stripped CCG Labels

Some CCG categories bear features which describe certain syntactic information

such as the type of the sentence and the verb phrase. For example the atomic

category S might have a feature attached to it (described between two brackets

after the category symbol) which distinguishes types of sentences such as declarative

S[dcl] or wh-question S[wq]. Verb phrases also might hold features such as to

infinitival S[to]\NP , bare infinitival S[b]\NP , and past participle S[pt]\NP . These

features attached to some CCG categories are similar to latent variables attached

to nonterminal symbols in the probabilistic CFG in what is called the probabilistic

CFG with latent annotation (Matsuzaki et al., 2005; Petrov et al., 2006).

We examine the effect on performance of removing these features from CCG

category and CCG contextual labels used to label nonterminals in the HPB model.

By removing these features, we intend to further reduce the total number of different

syntactic labels used in the CCG-augmented HPB systems, and accordingly the size

of the extracted grammar. Figure 4.3 shows the feature-stripped CCG category and

CCG contextual labels assigned to some phrase pairs extracted from the sentence
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Figure 4.3: A set of phrases extracted from the Arabic–English sentence pair in
Figure 4.1 along with the feature-stripped CCG category and CCG contextual labels
assigned to them.

pair in Figure 4.1. The next section presents the experiments which examine the

effect of applying this simplification method on each of CCG category and CCG

contextual labels.

4.5 Experiments

In this section, we present our experiments which compare the performance of our

CCG-augmented HPB systems which use different CCG-based labelling approaches

with PB and HPB baseline systems on Arabic-to-English, Chinese-to-English and

French-to-English translation. We examine the performance of the different labelling

approaches using small and large data sets. We also explore the effect of using

larger language models on the performance of the different systems. Furthermore,

we examine how the different systems perform on data from different domains.
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4.5.1 Data and Settings

For Arabic-to-English and Chinese-to-English small data set experiments, we use

the same data we used in our experiments in Section 3.5.1 (page 61). Additionally,

we examine the performance of the systems on a 60k sentence pair data set randomly

selected from the Arabic–English UN corpus (Eisele and Chen, 2010) as an additional

small training data set. For the Chinese-to-English large data set experiments, we

use a training data of 223k sentence pairs randomly selected from the FBIS corpus.

The development and test sets are of 1200 sentence pairs each. For Arabic-to-English

large data set experiments, we use 223k sentence pairs randomly selected from the

Arabic–English UN corpus to train our systems. The development and test sets are

of 1000 sentence pairs each. For the French-to-English small data set experiments,

we use 60k sentence pairs selected randomly from the Europarl corpus (Koehn,

2005). For the French-to-English large data set experiments, we use 223k sentence

pairs selected randomly from the same corpus. The French–English development

and test sets are of 1000 sentence pairs each. It is worth mentioning that the small

Arabic–English, Chinese–English and French–English data sets are parts of their

corresponding big data sets. Table 4.1 summarises data sets (apart from the sets

used in Section 3.5.1) used in our experiments.

Corpus Training set Development set Test set
AE small data 60k 1000 1000
AE large data 223k 1000 1000
CE small data 51k 1200 1200
CE large data 223k 1200 1200
FE small data 60k 1000 1000
FE large data 223k 1000 1000

Table 4.1: Data used in our experiments.

The experimental settings used in our experiments in this chapter are the same

settings used in our experiments in Section 3.5.1 (page 61).
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4.5.2 Baseline Systems

We build our HPB baseline using the Moses Chart Decoder1 (Hoang et al., 2009b)

with maximum phrase length and maximum rule span set to 12 words. Hierarchical

rules extracted contain up to 2 nonterminals. Maximum chart span is set to 20

words. The cube pruning pop-up limit is set to 1000. The PB baseline system is

built using the Moses Phrase-Based Decoder (Koehn et al., 2007) with maximum

phrase length set to 12 words.

4.5.3 CCG-Augmented Systems

We build the following CCG-augmented HPB systems in our experiments:

• CCG Context: uses CCG contextual labels as nonterminals labels in hier-

archical rules (cf. Section 4.3).

• CCG: uses CCG categories as nonterminals labels in hierarchical rules (cf.

Section 3.3).

• CCG Context (s): uses feature-stripped CCG contextual labels as nonter-

minal labels in hierarchical rules (cf. Section 4.4).

• CCG (s): uses feature-stripped CCG categories as nonterminal labels in hi-

erarchical rules (cf. Section 4.4).

We use the CCG parser from C&C tools2 (Clark and Curran, 2007) to parse

the English side of the training data from which we extract the CCG-augmented

HPB models. We use the Moses Chart Decoder to build our CCG-augmented HPB

systems with the same settings as the HPB baseline system.
1http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
2http://svn.ask.it.usyd.edu.au/trac/candc/
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System BLEU TER METEOR
CCG Context (s) 23.69 63.78 55.88
PB 23.13 64.00 57.11
CCG 22.97 64.12 56.15
CCG Context 22.68 64.59 56.62
HPB 22.60 64.32 56.21
CCG (s) 20.98 64.84 55.58

Table 4.2: Experimental results for our CCG-augmented HPB systems and baseline
systems on the Arabic–English small news data set. Systems are ordered according
to their descending BLEU score.

4.5.4 Small Data Set Experiments

This section presents Arabic-to-English, Chinese-to-English and French-to-English

small data set experiments. The Arabic-to-English and Chinese-to-English exper-

iments are conducted on the news and travel speech expressions domains. The

systems performance on the UN domain for Arabic-to-English translation is also

explored. The language models are trained on the target side of the training data.

Arabic-to-English Experimental Results

Tables 4.2, 4.3 and 4.4 show the BLEU, METEOR and TER scores for our CCG-

augmented HPB systems and the baseline systems on Arabic–English news, IWSLT

and small UN data sets, respectively. From Table 4.2 we can see that the best-

performing system in terms of BLEU and TER scores on the news data is the

feature-stripped CCG contextual label system, beating the PB baseline by 0.56 ab-

solute BLEU points, which corresponds to a 2.42% relative improvement. The result

of paired bootstrap resmpling test shows that the feature-stripped CCG contextual

label system is better than the PB system in 98% of the samples, which is statisti-

cally significant at p-level=0.05. However, the PB baseline system outperforms the

feature-stripped CCG contextual label system by 1.23 absolute METEOR points,

which corresponds to a 2.2% relative improvement. Using CCG contextual labels

does not improve performance over CCG category labels. The CCG contextual label

system is 0.29 BLEU points behind the CCG category system, which corresponds
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System BLEU TER METEOR
HPB 53.20 30.95 71.43
CCG Context(s) 53.14 31.04 71.50
CCG Context 52.86 31.13 71.33
CCG (s) 52.70 30.85 69.85
CCG 52.32 31.89 70.86
PB 52.31 32.42 70.80

Table 4.3: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Arabic–English IWSLT data.

to a 1.2% relative BLEU decrease. However, the CCG contextual label system

has a better METEOR score than the CCG category system. The experiments

demonstrate that removing features from CCG contextual labels improves the per-

formance of the CCG contextual label system by 1.01 absolute BLEU points, which

corresponds to a 4.85% relative improvement, whereas removing features from CCG

categories causes a decrease of 1.99 absolute BLEU points, which corresponds to a

9.48% relative performance decrease.

For Arabic-to-English experiments on the IWSLT data, Table 4.3 shows that the

HPB system has the best BLEU score with just a small improvement (0.06 absolute

BLEU points) over the second best-performing system, namely the feature-stripped

CCG contextual label system. We can also see that all CCG-based systems perform

better than the PB baseline. The experiments show that the CCG contextual label

system performs better than the CCG category system by 0.54 absolute BLEU

points, which corresponds to a 1.02% relative improvement. Removing features

from CCG contextual labels and CCG categories helps to improve performance by

0.28 and 0.38 absolute BLEU points, which corresponds to relative improvements of

0.58% and 0.72%, respectively. The paired bootstrap resampling test demonstrates

that non of these improvements are statistically significant at p-level=0.05.

Table 4.4 shows the BLEU, TER and METEOR scores for our CCG-augmented

HPB systems and the baseline systems on the Arabic–English small UN data set.

The table demonstrates that the CCG contextual label system is the best-performing

system in terms of BLEU score, outperforming the HPB baseline system, which is
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System BLEU TER METEOR
CCG Context 35.54 50.27 63.96
HPB 35.40 50.18 64.13
CCG Context (s) 35.16 50.48 63.77
PB 34.79 50.99 64.05
CCG (s) 34.49 50.92 63.34
CCG 32.98 52.93 62.17

Table 4.4: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Arabic–English small UN data set.

the best-performing system in terms of TER and METEOR scores, by 0.14 abso-

lute BLEU points, which corresponds to a 0.4% relative improvement. The paired

bootstrap resampling test shows that the CCG contextual label system outperforms

the HPB baseline system in 73% of the samples, which is not statistically significant

at p-level=0.05. The feature-stripped contextual labels system outperforms the PB

baseline system by 0.37 absolute BLEU points, which corresponds to a 1% rela-

tive improvement. The paired bootstrap resampling test shows the feature-stripped

CCG contextual label system outperforms the PB baseline system in 94% of the

samples at p-level=0.05, which is not statistically significant. Removing features

from the CCG contextual labels leads to performance degradation by 0.38 absolute

BLEU points, which corresponds to a 1% relative decrease. By contrast, removing

features from CCG categories improves performance by 0.51 absolute BLEU points,

which corresponds to a 1.5% relative improvement. The paired bootstrap resam-

pling test shows that the feature-stripped CCG category system outperforms the

CCG category system in 100% of the samples, which is statistically significant at

p-level=0.05.

In general, removing features from CCG contextual labels results in performance

gain for both news and IWLST data but leads to performance degradation for the

UN data. Removing features from CCG categories helps to improve performance

for both the IWSLT and UN data but not for the news data.
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System BLEU TER METEOR
HPB 22.26 68.31 51.22
CCG 21.74 68.92 51.02
CCG (s) 21.66 68.75 51.21
CCG Context 21.44 68.71 51.32
CCG Context (s) 21.21 69.94 49.61
PB 21.11 68.90 51.02

Table 4.5: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Chinese–English small news data set.

Chinese-to-English Experimental Results

Tables 4.5 and 4.6 show the BLEU, METEOR and TER scores for our CCG-

augmented HPB systems and the baseline systems on the Chinese–English news and

IWSLT data, respectively. For the news data, Table 4.5 shows that the HPB baseline

system is the best-performing systems in terms of BLEU and TER, outperforming

the CCG category system by 0.52 absolute BLEU points, which corresponds to a

0.24% relative improvement. Removing features from CCG category and CCG con-

textual labels decreases performance by 0.08 and 0.23 absolute BLEU points, which

corresponds to relative decreases of 0.37% and 1%, respectively. It is worth noting

that the CCG contextual label system achieves the best METEOR score among the

systems. Although the CCG contextual label system achieves a lower BLEU score

than the CCG category system, the CCG contextual label system outperforms the

CCG category system in both TER and METEOR scores by 0.21 absolute TER

points and 0.30 absolute METEOR points, which corresponds to 0.3% relative TER

improvement and 0.6% relative METEOR improvement.

For the IWSLT data, Table 4.6 shows that the CCG contextual label system is

the best-performing system in terms of BLEU and METEOR scores, beating the

HPB baseline system by 0.53 absolute BLEU points, which corresponds to a 1%

relative improvement. However, the paired bootstrap resampling test shows that

this improvement is not statistically significant at p-level=0.05. Using CCG contex-

tual labels improves performance over the CCG category system by 3.16 absolute

106



BLEU points, which corresponds to a 6.5% relative improvement. The paired boot-

strap resampling test shows that the CCG contextual label system outperforms the

CCG category system in 98% of the samples, which is statistically significant at

p-level=0.05. We can see also from Table 4.6 that removing features from CCG

contextual labels causes a performance decrease of 0.6 absolute BLEU points, which

corresponds to a 1.17% relative performance decrease. It is worth noting that re-

moving features from CCG contextual labels achieves a better TER score than the

CCG contextual label system by 0.45 absolute TER points, which corresponds to

a 1.63% relative improvement. In contrast, removing features from CCG categories

improves performance by 0.6 absolute BLEU points, which corresponds to a 1.24%

relative improvement. The paired bootstrap resampling test shows that the feature-

stripped CCG category system outperforms the CCG category system in 71% of the

samples, which is not statistically significant at p-level=0.05.

System BLEU TER METEOR
CCG Context 51.42 33.00 67.82
HPB 50.89 32.53 66.81
CCG Context (s) 50.82 32.55 67.59
CCG (s) 48.86 36.12 65.92
CCG 48.26 36.17 64.88
PB 47.69 34.20 65.35

Table 4.6: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Chinese–English IWSLT data.

In general, the Chinese-to-English experimental results for the IWSLT and small

news data sets show that removing features from CCG contextual labels damages

performance on both the news and IWSLT data, whereas removing features from

CCG categories does not show a consistent effect on the performance of the CCG

category system.

Compared to the Arabic-to-English IWSLT experimental results, the Chinese-

to-English IWSLT experiments show that the CCG contextual label system outper-

forms the HPB baseline while none of the Arabic-to-English CCG-based systems is

able to beat the HPB baseline on the IWSLT data. Bearing in mind that the size
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System BLEU TER METEOR
HPB 38.96 40.07 60.05
CCG Context 38.40 40.91 59.22
PB 38.37 39.92 59.48
CCG Context (s) 38.36 41.10 59.26
CCG (s) 38.12 40.36 59.38
CCG 36.12 42.17 57.98

Table 4.7: Experimental results for our CCG-augmented HPB systems and the
baseline systems on 20k of the Chinese–English IWSLT data.

of the Chinese–English IWSLT training data is about three times the size of the

Arabic–English IWSLT data, and in order to verify whether this result is related

to the source language or the data size, we reduced the size of the Chinese–English

IWSLT data to the size of the Arabic–English IWSLT training data and reran the

same systems. Table 4.7 presents the results of the Chinese-to-English systems on

the reduced data set. We see that the HPB baseline system has the best BLEU

score, while other CCG-based systems maintain the same order relative to each

other. Reducing data size results in an advantage for the HPB system over other

CCG-based systems. This indicates that the size of the training data is an important

factor affecting the performance of the CCG-based systems.

French-to-English Experimental Results

Table 4.8 shows the BLEU, METEOR and TER scores of our CCG-augmented HPB

systems and the baseline systems on the French–English small data set. The table

shows that the PB baseline system is the best-performing system in terms of BLEU

and METEOR scores, outperforming the second best-performing system, namely

the CCG category system, by 0.14 absolute BLEU points, which corresponds to a

0.5% relative improvement. The paired bootstrap resampling test shows that the

PB baseline system outperforms the CCG category system in 73% of the samples,

which is not statistically significant at p-level=0.05. The CCG category system out-

performs the HPB baseline system by a small margin of just 0.01 absolute BLEU

points. The table also shows that removing features from CCG categories decreases
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System BLEU TER METEOR
PB 27.84 56.47 58.98
CCG 27.70 56.56 58.84
HPB 27.69 56.60 58.65
CCG (s) 27.58 56.47 58.84
CCG Context (s) 27.57 56.41 58.87
CCG Context 27.44 56.59 58.84

Table 4.8: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the French–English small data set.

performance by 0.12 absolute BLEU points, which corresponds to a 0.43% relative

decrease. However, removing features from CCG contextual labels leads to an in-

crease of 0.13 absolute BLEU points, which corresponds to a 0.47% relative increase.

However, this improvement is not statistically significant at p-level=0.05 according

to the bootstrap resampling test. It is worth noting that the feature-stripped CCG

contextual label system is the best-performing system in terms of TER score. In

addition, we can see that the CCG category systems achieve better performance

than the CCG contextual label systems.

4.5.5 Large Data Set Experiments

In this section, we present experiments which examine the effect of adding more

training data on the performance of our CCG-augmented HPB systems. The Arabic–

English, Chinese–English and French–English training data consists of 223k sentence

pairs each, which is about four times the size of the training data used in the small

data set experiments (cf. Section 4.5.1). The language models used by the systems

in this section are built from the target side of the training data.

Arabic-to-English Experimental Results

Table 4.9 shows the experimental results of our CCG-augmented HPB systems and

the baseline systems on the Arabic–English large data set. We can see that the

HPB and PB baseline systems are the best-performing systems. The HPB base-

line system is the best-performing system in terms of BLEU score, whereas the
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System BLEU TER METEOR
HPB 43.35 43.94 69.58
PB 43.34 43.45 70.19
CCG Context 43.06 44.04 69.45
CCG Context (s) 42.94 44.07 69.69
CCG 42.13 45.05 68.75
CCG (s) 41.62 44.83 68.84

Table 4.9: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Arabic–English large data set.

PB baseline system is the best-performing system in terms of TER and METEOR

scores. We can also see that the CCG contextual label systems outperform the

CCG category systems for all metrics. The table also shows that removing features

from CCG contextual labels and from CCG categories demonstrably decreases the

performance of the corresponding systems by 0.12 and 0.51 absolute BLEU points,

which corresponds to relative decreases of 0.28% and 1.21%, respectively.

Chinese-to-English Experimental Results

Table 4.10 shows the experimental results of our CCG-augmented HPB systems and

the baseline systems on the Chinese–English large data set. The table demonstrates

that the feature-stripped CCG contextual label system is the best-performing system

in terms of BLEU score, outperforming the HPB baseline system by 0.17 absolute

BLEU points, which corresponds to a 0.68% relative improvement. The paired

bootstrap resampling test shows that the CCG contextual label system outperforms

the HPB baseline system in 83% of the samples, which is not statistically significant

at p-level=0.05. Using contextual labels causes a slight performance decrease of

0.03 absolute BLEU points compared with the CCG category system. We can see

that removing features from CCG contextual labels and CCG categories results

in increases of 0.8 and 0.47 absolute BLEU points, which corresponds to relative

improvements of 3.2% and 1.92%, respectively. The paired bootstrap resampling

test shows that these improvements are statistically significant at p-level=0.05.
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System BLEU TER METEOR
CCG Context (s) 25.24 64.76 54.11
HPB 25.07 64.45 54.21
CCG (s) 24.94 64.77 54.55
CCG 24.47 65.11 54.31
CCG Context 24.44 65.5 53.21
PB 24.39 65.56 54.10

Table 4.10: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Chinese–English large data set.

French-to-English Experimental Results

Table 4.11 shows experimental results for our CCG-augmented HPB systems and

the baseline systems on the French–English large data set. The table shows that

the feature-stripped CCG category system achieves the best performance among the

systems according to BLEU, TER and METEOR scores, outperforming the second

best-performing system, namely the CCG category system, by 0.27 absolute BLEU

points, which corresponds to a 1% relative improvement. The paired bootstrap

resampling test shows that the feature-stripped CCG category system outperforms

the CCG category system in 100% of the samples, which is statistically significant

at p-level=0.05. The table also shows that the CCG category system outperforms

the HPB baseline system by 0.08 absolute BLEU points, which corresponds to a

0.27% relative improvement. The paired bootstrap resampling test shows that the

CCG category system outperforms the HPB baseline system in 100% of the samples,

which is statistically significant at p-level=0.05. The CCG contextual label systems

perform similarly, with a small difference of 0.01 absolute BLEU points between the

two systems, and they both underperform compared to the CCG category system

and the HPB baseline system in terms of BLEU, TER and METEOR.

4.5.6 Large Language Model Experiments

In this section, we present experiments conducted on the Arabic–English, Chinese–

English and French–English small data sets using a large language model. The
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System BLEU TER METEOR
CCG (s) 29.93 54.43 60.93
CCG 29.76 54.68 60.89
HPB 29.68 54.69 60.84
CCG Context (s) 29.66 54.85 60.77
CCG Context 29.65 55.26 60.52
PB 29.31 55.13 60.45

Table 4.11: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the French–English large data set.

training data sets we use in these experiments are the same as those used in the

small data sets experiments (cf. Section 4.5.4) but the language models used by

the systems in this section are built from the target side of the large data sets (cf.

Section 4.5.1).

Arabic-to-English Experimental Results

Table 4.12 shows the experimental results for our CCG-augmented HPB systems and

the baseline systems on the Arabic–English small data set using a large language

model. The table shows that the HPB baseline system is the best-performing system

in terms of BLEU, TER and METEOR scores. We can also see that all the CCG-

augmented HPB systems underperformed compared to the PB and HPB baseline

systems in terms of BLEU score. The table also shows that the CCG contextual label

system outperforms the CCG category system by 1.17 absolute BLEU points, which

corresponds to a 3.12% relative improvement. The paired bootstrap resampling

test shows that this improvement is statistically significant at p-level=0.05. We can

also see that removing features from CCG contextual labels causes a performance

decrease of 1.59 absolute BLEU points, which corresponds to a 4% relative decrease.

By contrast, removing features from CCG categories leads to a slight increase of 0.09

absolute BLEU points, which corresponds to a 0.24% relative improvement. The

paired bootstrap resampling test shows that this improvement is not statistically

significant at p-level=0.05.
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System BLEU TER METEOR
HPB 39.36 47.92 66.40
PB 38.79 48.44 66.19
CCG Context 38.66 48.29 65.76
CCG (s) 37.58 49.69 64.78
CCG 37.49 49.42 64.97
CCG Context (s) 37.07 50.39 64.49

Table 4.12: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Arabic–English small data set using a large language model.

Chinese-to-English Experimental Results

Table 4.13 demonstrates the experimental results for our CCG-augmented HPB

systems and the baseline systems on the Chinese–English small data set using a large

language model. From the table we can see that the HPB baseline system is the best-

performing system in terms of BLEU, METEOR and TER scores, outperforming

the second best-performing system, namely the CCG contextual label system by

0.6 absolute BLEU points, which corresponds to a 2.6% relative improvement. The

paired bootstrap resampling test shows that the HPB baseline system outperforms

the CCG contextual label system in 100% of the samples, which is statistically

significant at p-level=0.05. We can also see that the CCG category system comes

behind all the other CCG-augmented HPB systems, whereas it outperforms the PB

baseline system by 0.29 absolute BLEU points, which corresponds to a 1.31% relative

improvement. The table demonstrates that removing features from CCG categories

improves performance by 0.39 absolute BLEU points, which corresponds to a 1.75%

relative improvement. The paired bootstrap resampling test shows that the feature-

stripped CCG category system outperforms the CCG contextual label system in

66% of the samples, which is not statistically significant at p-level=0.05. On the

other hand, removing features from CCG contextual labels decreases performance

by 1.01 absolute BLEU points, which corresponds to a 4.36% relative decrease.
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System BLEU TER METEOR
HPB 23.77 66.37 52.79
CCG Context 23.17 66.48 52.31
CCG (s) 22.70 66.84 52.28
CCG Context (s) 22.69 67.69 51.42
CCG 22.31 67.71 51.85
PB 22.02 68.57 51.17

Table 4.13: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the Chinese–English small data set using a large language model.

French-to-English Experimental Results

Table 4.14 demonstrates the experimental results for our CCG-augmented HPB sys-

tems and the baseline systems on the French–English small data set using a large

language model. The table shows that the feature-stripped CCG category system is

the best-performing system in terms of BLEU, METEOR and TER scores, outper-

forming the HPB baseline system by 0.26 absolute BLEU points, which corresponds

to a 0.92% relative improvement. The paired bootstrap resampling test shows that

the feature-stripped CCG category system outperforms the HPB baseline system in

87% of the samples, which is not statistically significant at p-level=0.05. We can also

see that the CCG contextual label system outperforms the CCG category system

by 0.57 absolute BLEU points, which corresponds to a 2% relative improvement.

The table demonstrates that the feature-stripped CCG contextual label system lies

behind the CCG contextual label system by 0.66 absolute BLEU points, which cor-

responds to a 2.4% relative decrease. In contrast, removing features from CCG

categories improves performance by 1.04 absolute BLUE points, which corresponds

to a 3.78% relative improvement.

4.5.7 Analysis

In this section, we provide an analysis of the experimental results obtained in Sec-

tions 4.5.4–4.5.6. We explore the sparsity of the simplified CCG labels. We also in-

vestigate the effect of the different factors on the performance of our CCG-augmented
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System BLEU TER METEOR
CCG (s) 28.52 55.35 59.49
HPB 28.26 55.66 59.35
PB 28.16 56.35 59.30
CCG Context 28.05 56.03 59.22
CCG 27.48 57.00 59.16
CCG Context (s) 27.39 57.02 58.95

Table 4.14: Experimental results for our CCG-augmented HPB systems and the
baseline systems on the French–English small data set using a large language model.

HPB systems, namely the domain of the data, the size of the training data and the

size of the language model.

System Number of Labels
CCG 547
CCG (s) 221
CCG Context 251
CCG Context (s) 116

Table 4.15: Number of different labels used by our CCG-augmented HPB systems
to annotate the target side of the Arabic–English small UN data set.

Label Sparsity

Without loss of generality, we study the sparsity of our simplified CCG labels on the

Arabic–English UN small data set only, as we always use CCG labels on the English

side, and due to the close similarities in the distribution of CCG category label

frequency counts between Arabic–English and Chinese–English data sets illustrated

in Figures 3.10 and 3.11 (pages 72 and 73 ). We first measure the number of different

syntactic labels used by each CCG-augmented system to annotate the target side of

the Arabic–English small UN data set as illustrated in Table 4.15. We can see that

the feature-stripped CCG category system and the CCG contextual label system

have similar number of labels, which constitutes less than a half of the number of

labels used by the CCG category system. The feature-stripped CCG contextual

label system has the least number of labels, which constitutes about 21% of the

labels used by the CCG category system.
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Figure 4.4: Label frequency counts for our CCG-augmented HPB systems built on
the Arabic–English small UN data set.
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Similar to our approach to illustrate label sparsity in Figures 3.10 and 3.11,

Figure 4.4 demonstrates the distribution of label frequency counts for labels used

by our CCG-augmented HPB systems to annotate the target side of the Arabic–

English small UN data set. We can see that the simplified CCG labels have in

general more label mass shifted towards higher frequencies compared with the CCG

category labels, which indicates reduced label sparsity. The feature-stripped CCG

contextual labels seem to have the least sparsity among other labels with no more

than 42% of the labels occur less than or equal to 100 times in the training data.

The feature-stripped CCG category labels are slightly less sparse (47% of the labels

with frequencies less than or equal to 100) compared with the CCG category labels

(48% of the labels with frequencies less than or equal to 100). The CCG contextual

labels lie in the middle with 44% of the labels occur less than or equal to 100 times.

Arabic-to-English Experiments

Figure 4.5 shows the BLEU scores of our CCG-augmented HPB systems and base-

line systems on each of the Arabic–English small UN data set, the large UN data

set and the small UN data set with a large language model. We can see that remov-

ing features from CCG categories improves the BLEU score under both the small

data set setting and the large language model setting. By contrast, removing fea-

tures from CCG categories decreases the BLEU score under the large data setting.

Furthermore, the figure demonstrates that the CCG contextual label system is the

best-performing CCG-augmented system under all settings, outperforming the PB

and HPB baseline systems on the small data set only. Simplifying CCG labels helps

to improve the performance over the HPB and PB baseline systems on the small

data set only, whereas it failed to improve performance over the baseline systems

when using a larger language model or on the large data set. This might be because

using a larger language model and larger data helps to improve the grammaticality

of the translation, which minimizes the role of the syntactic labels in improving

the grammaticality of the translation. The figure also shows that removing features
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from CCG contextual labels causes performance to degrade under all settings.
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Figure 4.5: BLEU scores of our CCG-augmented HPB systems and baseline systems
for Arabic-to-English translation on each of the small UN data set, the UN large
data set and the small UN data set with a large language model.

Figure 4.6 shows the BLEU scores of our CCG-augmented HPB systems and

the baseline systems on the small data sets from different domains: UN, news and

IWSLT. The figure demonstrates that the CCG-augmented HPB systems show sim-

ilar trends on the UN and IWSLT data. Removing features from CCG categories

improves the BLEU score for both data sets. In addition, using CCG contextual la-

bels achieves additional performance gains over the feature-stripped CCG categories

labels for both data sets. Removing features from CCG contextual labels improves

performance on the IWSLT data to the best BLEU score among the CCG-augmented

HPB systems, whereas it damages performance on the UN data. The figure also

demonstrates that the CCG-augmented HPB systems show different trends on the

news data from these found on the UN and IWSLT data. We can see that removing

features from CCG categories damages performance to a large extent on the news
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data. Furthermore, the CCG contextual label system is not able to outperform the

CCG category system on the news data. The figure also demonstrates that remov-

ing features from CCG contextual labels leads to the best performance among the

CCG-augmented HPB systems and the baseline systems on the news data.

In general CCG contextual label systems perform better than CCG category sys-

tems for Arabic-to-English translation. This might be explained by some consistency

exhibited when translating Arabic phrases into English phrases regarding the type of

the resulting category in the CCG category of the target English phrase. Therefore,

this consistency allows the resulting category to be removed from the CCG label

representation without much affecting the grammaticality of the translation output

while achieving a performance gain from using less sparse labels.
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Figure 4.6: BLEU scores of our CCG-augmented HPB systems and the baseline
systems for Arabic-to-English translation on the news, UN and IWSLT data sets.

Chinese-to-English Experiments

Figure 4.7 shows the performance of our CCG-augmented HPB systems and the

baseline systems measured in terms of BLEU score for Chinese-to-English translation
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Figure 4.7: BLEU scores of our CCG-augmented HPB systems and the baseline
systems for Chinese-to-English news translation on each of the small data set, the
large data set and the small data set with a large language model.

on each of the small data set, the large data set and the small data set with a

large language model in the news domain. We can see that the CCG-augmented

HPB systems show reverse trends between the small data set setting and the large

language model setting. Removing features from CCG categories leads performance

to degrade under the small data set setting, whereas it improves performance under

the large language model setting. Furthermore, the CCG contextual label system

achieves a further increase in BLEU score over the feature-stripped CCG category

system under the large language model setting. By contrast, the CCG contextual

label system has a lower BLEU score than the feature-stripped CCG category system

under the small data set setting. The figure also shows that for both the large

language model setting and the small data set setting, removing features from CCG

contextual labels decreases performance. Moreover, for both the large language

model setting and the small data set setting, none of the CCG-augmented HPB
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systems is able to outperform the HPB baseline system, whereas for the large data

set setting, the feature-stripped CCG contextual label system, which is the best-

performing system, outperforms the HPB baseline system. For the large data set

setting, we can see that the systems show a different trend compared with the small

data setting and the large language model setting. The figure shows that removing

features from CCG categories helps to improve performance on the large data set.

Furthermore, the CCG contextual label system has the worst BLEU score among the

CCG-augmented HPB systems. However, removing features from CCG contextual

labels helps to improve performance over the other CCG-augmented HPB systems

and the baseline systems.
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CCG 48.26 21.74
CCG (s) 48.86 21.66
CCG Context 51.42 21.44
CCG Context (s) 50.82 21.21
HPB 50.89 22.26
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Figure 4.8: BLEU scores of our CCG-augmented HPB systems and the baseline
systems for Chinese-to-English translation on the IWSLT data set and the news
small data set.

Figure 4.8 shows the BLEU scores of our CCG-augmented HPB systems and

the baseline systems for Chinese-to-English translation on data from two different

domains: IWSLT and news. We can see the reverse trend demonstrated by the

CCG-augmented HPB systems between the different domains. While performance

increases when moving from the CCG category system, passing through the feature-

stripped CCG category system to the CCG contextual label system on the IWSLT

data, performance shows a downward trend for the same systems on the news data.

The figure also shows that removing features from the CCG contextual label sys-

tem causes performance to degrade on both the IWSLT and news data sets. The
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CCG contextual label system achieves the best performance over the other CCG-

augmented HPB systems and the baseline systems on the IWSLT data. In contrast,

the CCG category system is the best-performing CCG-augmented HPB system on

the news data but it is not able to outperform the HPB baseline system.

French-to-English Experiments
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Figure 4.9: BLEU scores of our CCG-augmented HPB systems and the baseline
systems for French-to-English translation on each of the small data set, the large
data set and the small data set with a large language model.

Figure 4.9 shows the performance of our CCG-augmented HPB systems and

baseline systems measured in terms of BLEU score for French-to-English transla-

tion on each of the small data set, the large data set and the small data set with a

large language model. The figure demonstrates that removing features from CCG

categories improves performance under the large data set and the large language

model settings, whereas it decreases performance on the small data set. In addition,

we can see that removing features from CCG contextual labels improves performance
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on the small data set, whereas it causes performance to largely degrade under the

large language model setting, and it causes a marginal increase on the large data set.

The CCG contextual label system is able to outperform the CCG category system

under the large language model setting only. The figure also demonstrates that the

feature-stripped CCG category system is able to outperform the HPB and PB base-

line systems under the large data and the large language model settings, achieving

the best performance among all the systems under both settings. By contrast, the

HPB baseline system and the CCG category system perform almost similarly on

the small data set, outperforming the other CCG-augmented HPB systems. It is

worth noting that the CCG category system and the feature-stripped CCG contex-

tual label system achieve lower BLEU scores under the large language model setting

than the BLEU scores they achieve on the small data set, which might happen when

using a large out-of-domain language model because of the differences in the learnt

weights of the language model feature between different systems during tuning.

In general, the feature-stripped CCG label system performs better than other

CCG-augmented HPB systems for French-to-English translation. Similar to the

Arabic-to-English experimental analysis, we might explain this by consistencies ex-

hibited when translating French phrases into English in terms of the features held

by CCG categories of the English phrases. This helps to guarantee the use of the

English phrase with the correct CCG feature during translation without explicitly

representing this feature in the label of the English phrase. This provides the ability

to take advantage of using less sparse labels by stripping features from CCG cat-

egories while maintaining the same grammaticality level obtained using the more

fine-grained CCG category labels which bear these syntactic features.

Conclusion

The detailed analysis of the experimental results obtained under different factors

demonstrates that the performance of the different CCG-based labelling approaches

is affected by the language pair, the data size, the language model size and the
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System Data AE CE FE

CCG (s)

IWSLT + +
Small news –
Small data + – –
Large LM + + +*
Large data – + +*

CCG Context

IWSLT + +*
Small news –*
Small data +* – –
Large LM + + +
Large data + – –

CCG Context (s)

IWSLT + +
Small news +*
Small data + – –
Large LM – + –
Large data + +* –

Table 4.16: A summary of performance improvements (+) and degradations (–)
obtained using our label simplification approaches under different factors compared
with the CCG-augmented HPB system which uses CCG categories as nonterminal
labels. The * symbol indicates that the system outperforms the HPB baseline
system.

data domain. For Arabic-to-English translation on different domains, the feature-

stripped CCG contextual label system was demonstrated to achieve the best per-

formance among the other CCG-augmented HPB systems on the IWSLT and news

data, outperforming the baseline systems on the news data only. For Arabic-to-

English UN data translation under different settings, the CCG contextual label sys-

tem was the best-performing CCG-augmented HPB system under the small data,

the large data and the large language model settings, outperforming the baseline

systems on the small data set. In general, CCG contextual label systems outper-

formed the CCG category systems for Arabic-to-English translation under different

settings and in different domains. For Chinese-to-English news translation, the best-

performing CCG-augmented HPB system varied under different settings. For the

small news data set, no CCG label simplification approach helped to improve per-

formance over the CCG category system. For the large language model setting, the

CCG contextual label system was the best-performing CCG-augmented HPB sys-
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tem, but it could not outperform the HPB baseline system either. For the large data

set, the feature-stripped CCG contextual label system is the best-performing CCG-

augmented HPB system and it outperforms the baseline systems. For Chinese-to-

English translation on different domains, the CCG contextual label system achieved

the best performance among all the examined systems on the IWSLT data, whereas

the CCG category system was the best-performing CCG-augmented HPB system

for the news domain. Generally, for Chinese-to-English translation, there is no

clear trend whether the CCG contextual label systems perform better than CCG

category systems. For French-to-English translation under different settings, the

feature-stripped CCG category system was the best-performing system under the

large language model and the large data set settings, outperforming the HPB and

PB baseline systems under both settings, whereas no CCG label simplification ap-

proach helped to improve the performance over the CCG category system on the

small data set. For French-to-English translation under different settings, the CCG

category systems achieved better performance than the CCG contextual label sys-

tems in general. Figure 4.16 demonstrates a summary of performance gains and

losses achieved by our label simplification approaches under different factors com-

pared with the performance of the CCG-augmented HPB system which uses CCG

categories as nonterminal labels.

4.6 Conclusions

In Chapter 3, we demonstrated that the HPB system with nonterminals augmented

with CCG categories performed better than the SAMT system. However, it was

not able to outperform the HPB baseline system in many experiments. We believe

that this was due to the sparsity of CCG labels and the strict syntactic constraints

imposed by them. In this chapter we tried to solve this problem by extracting less

sparse CCG-based labels while at the same time maintaining rich syntactic informa-

tion in the labels. We introduced two approaches to simplifying CCG-based nonter-
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minal labels. The first approach uses contextual information extracted from CCG

categories to label nonterminals in hierarchical rules. The second approach simpli-

fies CCG categories by removing syntactic features held by some CCG categories.

We also examined a third simplification approach which combines the previous ap-

proaches together.

We presented experiments which examine the effectiveness of our CCG-based la-

bel simplification approaches under different factors: the language pair, the corpus

size, the language model size and the domain of the data. We conducted experi-

ments on Arabic-to-English, Chinese-to-English and French-to-English translation

using different training data and language model sizes and domains. Our exper-

imental results demonstrated that our CCG-based label simplification approaches

are promising. Our CCG-augmented HPB systems which use simplified CCG la-

bels were able to outperform the CCG-augmented HPB system which uses CCG

categories in most of the conducted experiments. Furthermore, CCG-based label

simplification helped to improve performance over the HPB and PB baseline sys-

tems in some of the experiments. Our experimental analysis demonstrated that the

performance of the different simplification approaches varied according to the lan-

guage pair, the corpus size, the size of the language model used and the domain of

the data.

To conclude, we demonstrated in this chapter that simplifying CCG category-

based nonterminal labels helped to improve the performance of our CCG-augmented

HPB system, which addresses our second research question (RQ2). In the next

chapter, we will try to further extend the CCG-augmentation for the HPB SMT

model by incorporating CCG combinatory rules in the HPB decoding process and

increasing the coverage of the CCG-based syntactic constraints.
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Chapter 5

Extending CCG-based Syntactic

Constraints in Hierarchical

Phrase-Based SMT

In the previous chapter, we tried to improve the performance of our CCG category

HPB system by extracting less sparse CCG-based labels. In this chapter, we ex-

plore the factors which limit the coverage of the syntactic constraints applied in our

CCG-augmented HPB system, which addresses our third research question (RQ3).

Furthermore, we propose two approaches to extend the coverage of the syntactic

constraints applied in our CCG-augmented HPB system and explore their effect

on performance, which addresses our fourth research question (RQ4). Our first ap-

proach to extending the coverage of the syntactic constraints in our CCG-augmented

HPB model tries to increase the coverage of CCG-based nonterminal labels. Our

second extension approach extends the CCG-based syntactic constraints to include

the whole HPB SMT grammar.

Section 5.1 discuses the limitations on the coverage of the syntactic constraints

applied in our CCG-augmented HPB system and presents our motivation to extend

these syntactic constraints. Section 5.2 reviews related work and provides an intro-

duction to the Preference Grammars paradigm to apply soft syntactic constraints
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in the HPB SMT model, according to which we apply soft syntactic constraints in

our models. Section 5.3 introduces our first approach to extending the syntactic

constraints in our CCG-augmented HPB system, namely the extended CCG labels.

Section 5.4 presents our second approach to extending the syntactic constraints in

our CCG-augmented HPB system, namely the CCG-augmented glue grammar. In

Section 5.5, we present our experiments which explore the effect on performance

of our extension approaches both individually and combined on data from different

domains and of different sentence lengths. Finally, we provide our conclusions in

Section 5.6.

5.1 Motivation

Providing SMT systems with target-side syntactic knowledge aims at guiding the

translation process towards producing more grammatical translations. Theoretically,

this should help to improve the performance of the syntax-augmented SMT systems

over their syntax-free counterparts. However, syntax augmentation for SMT faces

many hurdles which minimize the benefit gained from applying syntactic constraints

by SMT systems. One of the main problems facing syntax-augmented SMT systems

is the limited coverage of the syntactic constraints applied in them. This problem

emerges from the inability of different grammar theories to express the syntactic

constraints imposed on phrases and rules extracted by SMT systems via purely sta-

tistical methods without using any syntactic knowledge. Another problem affecting

the performance of syntax-augmented SMT systems is the strictness of the syntactic

constraints applied in them. Hard syntactic constraints restrict the decoding pro-

cess by excluding all the translations which violate them. Some of these excluded

translations are in fact grammatical translations, but they do not comply with the

learnt syntactic constraints either because of parsing errors committed during syn-

tactic annotation of the data, or because of the sparsity of the syntax-augmented

translation model.
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In order to examine the coverage of the syntactic constraints applied by our

CCG-augmented HPB SMT systems, we look back to Table 3.8 (page 74) which

shows the percentage of unlabelled phrases extracted by each of the SAMT and

CCG-augmented HPB systems built in Section 3.5 (page 60). The table shows that

the SAMT system fails to label 44% to 70% of the total phrase pairs whereas the

CCG-augmented HPB system fails to label 30% to 46% of the total phrase pairs

extracted from the Chinese–English and Arabic–English IWSLT and news training

corpora. This indicates that at least third of the extracted phrases in our CCG-

augmented HPB systems do not undergo any syntax control.

Another factor limiting the coverage of the syntactic constraints in syntax-

augmented HPB SMT systems is that only part of the grammar, namely hierar-

chical rules, is syntactically augmented. Previous syntax augmentation approaches

for HPB SMT (Zollmann and Venugopal, 2006; Venugopal et al., 2009; Chiang,

2010; Stein et al., 2010) ignore the other part of the grammar, namely glue gram-

mar (cf. Section 2.4.1 page 21). We examine the importance of glue grammar in

the HPB SMT model by measuring the percentage of glue grammar rules out of the

total rules which participated in the derivations produced by each of the SAMT and

CCG-augmented HPB systems on the Chinese–English and Arabic–English news

and IWSLT data (cf. Section 3.5 page 60). Table 5.1 shows that glue grammar

rules constitute about 30% to 57% of the total rules, which means that they play

an important role in the translation process. Bearing in mind that the application

of hierarchical rules has usually a limited span in order to reduce the complexity of

chart decoding, the application of the syntactic constraints imposed by them is also

limited for the same reason.

After identifying the factors which limit the coverage of the syntactic constraints

in our CCG-augmented HPB system, which addresses our third research question

(RQ3), we try to tackle these factors by expanding the scope of the CCG-based

syntactic constraints in our CCG-augmented HPB system. To achieve this we fol-

low a two-fold approach. First, we try to extend the notion of the syntactic label
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System CE news AE news CE IWSLT AE IWSLT
CCG 29.87% 35.63% 56.10% 56.90%
SAMT 30.47% 34.35% 53.47% 50.26%

Table 5.1: Percentage of glue grammar rules out of the total rules participating in the
derivations produced by each of the SAMT and CCG-augmented HPB systems built
on the Chinese–English and Arabic–English news and IWSLT data (cf. Section 3.5
page 60).

attached to nonterminals and phrases with the aim of increasing label coverage

(cf. Section 5.3). Secondly, we provide glue grammar with syntax by augment-

ing glue grammar rules with CCG combinatory rules (cf. Section 5.4). We also

examine the combination of these two approaches. In order to avoid losing the per-

formance gain that might be achieved by our enhancements because of the strictness

of the syntactic constraints, we try to apply these enhancements in a soft way under

the Preference Grammars paradigm for applying soft syntactic constraints in HPB

SMT (Venugopal et al., 2009) (cf. Section 5.2.1).

5.2 Related Work

Several approaches have been proposed to increase the coverage of the syntactic

constraints in syntax-augmented SMT systems. SAMT (Zollmann and Venugopal,

2006) increases the coverage of CF-PSG constituent labels using CCG-like slash

operators in addition to the concatenation “plus” operator to combine constituent

labels extracted from CF-PSG parse trees. Wang et al. (2010) try to solve the flat

structures problem of the Penn Treebank-style trees, which decreases the coverage

and reduces the generalization ability of the syntax-augmented translation rules.

They explore the effect of various tree restructuring approaches. They try simple

binarization approaches such as left, right and head binarization in addition to

learning restructuring preferences (left or right) for each node in the tree using

Expectation Maximization (Dempster et al., 1977).

In order to increase nonterminal label coverage but at the same time avoid the
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proliferation of syntactic labels when extending them with binary operators as in

SAMT, Stein et al. (2010) use only the Penn Treebank tag set to label nonterminals

and phrases in the HPB SMT model. Phrases which are not spanned by a single

node in the parse tree are labelled with the label of the closest node. The distance

to a certain node is measured by the words which have to be inserted or deleted

from the phrase in order to be exactly covered by the node. Zhang et al. (2008)

use tree sequences to annotate phrases in a tree-to-tree translation model. A tree

sequence is an ordered sequence of tree fragments covering a phrase, which helps to

provide coverage for phrases which do not correspond to a single constituent.

Hassan et al. (2009) present an approach which builds a full CCG-based parse

tree of the translation output during decoding. They propose a Dependency-based

Direct Translation Model which integrates an incremental CCG dependency-based

language model parser built on an incremental version of the CCGBank (Hock-

enmaier and Steedman, 2007) into the Direct Translation Model (Ittycheriah and

Roukos, 2007). The parser builds a fully connected dependency-based structure for

the translation output incrementally during decoding, which enabled to handle long

range dependencies and prune ungrammatical translations.

Recently, applying syntactic constraints in syntax-augmented HPB SMT systems

in a soft manner has been demonstrated to be more effective than hard syntactic

constraints (Venugopal et al., 2009; Chiang, 2010). Applying soft syntactic con-

straints means that the derivations which violate the syntactic constraints imposed

by the model are not prevented per se, but the system has the flexibility to decide

when to apply these syntactic constraints. Marton and Resnik (2008) incorporate

source-side soft constituency features into the HPB SMT model. The idea of a

soft constituency feature was originally proposed by Chiang (2005) to encourage

the HPB SMT system to favour phrases which correspond to syntactic constituents

during translation. The feature awards the usage of a rule when its source phrase is

covered by a source constituent. Marton and Resnik (2008) developed this feature

by penalizing the usage of a rule when its source phrase violates phrase boundaries.
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Furthermore, instead of using a single feature for all constituent types, they use finer

grained features which distinguish between source constituent types, enabling the

system to learn constituent-based preferences.

Zollmann and Vogel (2010) try to give the SAMT model the flexibility to vio-

late the syntactic constraints imposed by nonterminal labels by incorporating both

labelled and unlabelled rules in the translation model. A binary feature which dis-

tinguishes syntax-augmented rules from their unlabelled counterparts is added to

each rule and the feature weight is tuned using MERT. They also try to handle low-

probability syntax-augmented rules by incorporating probabilities calculated on the

unlabelled version of the rules as features into the syntax-augmented rules. Venu-

gopal et al. (2009) transform the syntactic constraints in the SAMT translation

model into a syntactic feature integrated into the log-linear model. They use an un-

labelled translation model during decoding. Another SAMT-based syntactic model,

which measures the probability of different labellings of each hierarchical rule, is

used to calculate the value of the syntactic feature at each nonterminal replacement

during decoding.

Chiang (2010) incorporates soft source- and target-based syntactic constraints

into a tree-to-tree translation model. Similar to the approach followed by Venugopal

et al. (2009), the model uses rules without syntactic annotation during decoding

while chart items bear the syntactic labels attached to partial translations. The

syntactic constraints in this model are applied through a set of syntactic features

in the log-linear model. These syntactic features are calculated for each unlabelled

rule application used in the translation based on a syntactically annotated instance

of the rule extracted from source- and target-side parse trees. In contrast to the

approach proposed by Venugopal et al. (2009), Chiang (2010) softens the matching

constraint performed during nonterminal replacement by allowing the model to learn

preferences toward considering groups of different syntactic categories to be com-

patible with each other. Thus the mismatch between any two syntactic categories

in the same compatibility group is not discouraged.
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Huang et al. (2010) use soft syntactic features in the HPB SMT model based

on latent syntactic category distributions learnt from source-side parse trees. These

latent categories are extracted according to the hierarchy and the syntax of the

phrases extracted from source-side parse trees. Then, real-valued feature vectors

based on latent category distribution are assigned to phrases and nonterminals.

These feature vectors help to convert the strict equality test between the categories

of the nonterminal and the categories of the replacing phrase performed during

translation into a similarity score calculated on the feature vectors of each of the

nonterminal and the phrase. Moreover, latent syntactic categories help to exploit

syntactic similarities between syntactic categories assigned to phrases extracted from

source-side parse trees. Stein et al. (2010) use soft dependency-based features in

String-to-Dependency HPB SMT model. The features, which are added to the log-

linear model, soften the strict well-formedness constraint applied in the previous

model of Shen et al. (2008) which allows only for well-formed dependency structures

to participate in translation.

5.2.1 Preference Grammars

Preference Grammars is an approach proposed by Venugopal et al. (2009) to soften

the syntactic constraints and reduce probability fragmentation in the original SAMT

model (Zollmann and Venugopal, 2006). They use a syntactic feature psyn in the

log-linear model to score unlabelled derivations according to the degree to which

they comply with the syntactic constraints learnt from the syntactically annotated

training data. The use of unlabelled derivations helps to reduce probability frag-

mentation among different labellings of the same derivation and prevent them from

competing with each other during translation. Furthermore, applying the syntac-

tic constraints in a soft way loosens the strict constraints imposed on the decoding

search space which limit the set of translations explored.

The Preference Grammars formalism uses an unlabelled translation model (the

same translation model extracted by the HPB SMT system) to perform translation.
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The formalism uses another syntactically annotated translation model (the same

translation model extracted by the SAMT system) to calculate the syntactic feature

psyn. This model specifies the probability distribution of different labellings of each

unlabelled rule r, which is called the preference distributions ppref . A rule labelling

is a vector
−→
h =< h0, h1, ..., hk > which specifies the syntactic labels attached to the

left-hand side (h0) and the nonterminals on the right-hand side of the rule (h1, ..., hk).

The syntactic feature psyn is calculated for each derivation d as in (5.1):

psyn(d) =

|d|∏

i=1

φi (5.1)

where φi is a factor calculated for each nonterminal ni replacement in the derivation

d, and i ∈ 1..|d| is the index of the nonterminal in the derivation. The calculation

of φi depends on the left-hand-side preference distribution ui. ui specifies the prob-

ability of each possible label assigned to the left-hand side of a subtranslation to

replace the nonterminal ni. Thus, u is added as an extra information to chart items.

During translation, when a rule r is applied on a chart item X, which has a

left-hand-side preference distribution u, the factor φ is calculated as in (5.2):

φ =
∑

h∈hargs(n)

u(h) (5.2)

where hargs(n) specifies the set of different possible labels for the nonterminal n

according to the rule r. The value of u(h) when the rule does not have any nonter-

minal on the right-hand side is set to ppref (h|r). Then, the left-hand-side preference

distribution v of the chart item, which results from applying the rule r on the chart

item X with left-hand-side preference distribution u, is calculated as in (5.3):

v(h) =
∑

−→
h′=<h,h′1,...,h

′
k>∈hargs(r)

ppref (
−→
h′ |r)

k∏

i=1

u(h′i) (5.3)

where hargs(r) is the set of all different labellings of the rule r. Finally, the left-

hand-side preference distribution v is renormalized as in (5.4):
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v′(h) =
v(h)∑
h′ v(h′)

(5.4)

5.3 Extended CCG-based Syntactic Labels

In Chapter 3, we extracted nonterminal labels which consist of a single CCG cate-

gory. We demonstrated that CCG flexible structures allow a better label coverage

than SAMT labels (cf. Section 3.5.5 page 68). However, Table 3.8 (page 74) showed

that single-category CCG labels do not cover about one third of the total extracted

phrases. In order to increase label coverage, we extend the definition of the nonter-

minal label to be composed of more than one CCG category. Therefore, if there is

no CCG category in the CCG parsing chart cell which covers a phrase, the highest-

scoring sequence of CCG categories with a minimum number of CCG categories is

extracted from the CCG parsing chart cells covering the phrase and used as the

phrase label. This is similar to the “plus” operator used to combine the constituent

labels in SAMT, with the difference is that we always keep the minimum number

of CCG categories per label using CCG combinatory rules, which helps to prevent

label redundancy by maintaining a minimum set of extended CCG labels and thus

avoid label proliferation.

Figure 5.2 shows a set of phrases along with their extended CCG labels extracted

from the sentence illustrated in Figure 5.1. Extended CCG labels are extracted from

the forest trees enclosed in the parsing chart built for the sentence. However, for the

sake of clarity, we only illustrated the best sequence of CCG supertags assigned to the

words of the sentence in Figure 5.1. In this example, the phrase contributes 600 has

an extended CCG label composed of two categories: (S[dcl]\)/NP and N/N , which

are the categories of the words contributes and 600, respectively. These categories

cannot be further combined with each other using any of the CCG combinatory rules,

that is why we formed a composed label combining the two categories. Another

example is the phrase Germany contributes 600 million to finance SFD, which is
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assigned S[dcl] + N/N as an extended CCG label. This label is composed of two

categories: S[dcl] which results from combining the categories of the words of the

phrase Germany contributes 600 million to finance, and N/N which is the category

of the word SFD. Thus, the extended CCG label S[dcl] + N/N is assigned to this

phrase, which is the shortest sequence of CCG categories with the highest score

covering the phrase.

Germany contributes 600 million to finance SFD projects
NP (S[dcl]\NP)/NP N/N N (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP N/N N

Figure 5.1: An English sentence along with the best sequence of CCG supertags
assigned to its words.

We define the degree of the extended label to be the number of CCG categories

in the label. In our previous example, the extended CCG label N of the phrase SFD

projects is of degree one, and the extended CCG label (S[b]\NP )/NP +N/N of the

phrase finance SFD is of degree two. The degree of the system which uses extended

CCG labels is defined to be the maximum degree of the labels used in the model.

Phrase Extended CCG label
Germany contributes S[dcl]/NP
contributes 600 (S[dcl]\NP)/NP+N/N
finance SFD (S[b]\NP)/NP+N/N
SFD projects N
contributes 600 million S[dcl]\NP
million to finance N+(S[to]\NP)/NP
contributes 600 million to finance SFD S[dcl]\NP+N/N
Germany contributes 600 million to finance SFD S[dcl]+N/N

Figure 5.2: A set of phrases extracted from the sentence illustrated in Figure 5.1
along with the corresponding extended CCG labels.

5.4 CCG-augmented Glue Grammar

Figure 5.3 shows the derivation tree of the English translation produced by our CCG-

augmented HPB system which uses the syntax-free glue grammar for the Arabic
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Figure 5.3: The derivation tree of the English translation produced by the CCG-
augmented HPB system which uses the syntax-free glue grammar for the Arabic
sentence �

éJ


K @

	
Y

	
ªË @

�
HA«A

	
J�Ë@ ú




	
¯ PAÒ

�
J
�
��B@

	
àñÊ

	
�

	
®K
 I.

	
KAg. B@.

sentence �
éJ



K @

	
Y

	
ªË @

�
HA«A

	
J�Ë@ ú




	
¯ PAÒ

�
J
�
��B@

	
àñÊ

	
�

	
®K
 I.

	
KAg. B@.1 A glue grammar rule

is used to concatenate the phrase foreigners prefer to with the phrase investment

in food industries, which apparently leads to a grammatically wrong translation. If

glue grammar rules perform grammatical checking on the phrases being concate-

nated, this translation would be prevented. Thus, the lack of syntax awareness

in glue grammar rules limits the scope of the syntactic constraints applied in the

CCG-augmented HPB system, which results in ungrammatical translations being

produced.

Instead of concatenating phrases during glue grammar rule application without

applying any syntactic constraint, we try to provide glue grammar rules with syntac-

tic knowledge by augmenting them with CCG combinatory rules. CCG combinatory

rules are binary rules, which makes them suitable to be applied on glue grammar

rules which are also binary rules. First, we change the definition of the glue grammar

rule in (2.8) (cf. Section 2.4.1 page 24) to the one in (5.5):

X →< X1 X2 , X1 X2 > (5.5)
1Q in the derivation trees replaces the S symbol in the original glue grammar rules (cf. glue

grammar rules (2.8) and (2.9) page 24) to avoid confusion with the S symbol used in syntactic
constituents.
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This removes the left-balance constraint from the construction of glue grammar rule

application, which allows more flexibility in applying glue grammar rules. Addition-

ally, this rule allows the application of glue grammar rules and hierarchical rules to

alternate, which gives further flexibility. Secondly, we build a metric which judges

the grammaticality of concatenating two phrases at each glue grammar rule appli-

cation based on their extended CCG labels. The calculation of this grammaticality

metric mCCGglue is based on an extended CCG label model. This model is extracted

using relative frequency counts from the target side of the training corpus which is

annotated with extended CCG labels for each subphrase in each sentence. Thus,

the probability of a label l of degree n is calculated according to the extended CCG

label model as in (5.6):

pextCCG(l) =
count(l)∑

li∈Ln
count(li)

(5.6)

where Ln is the set of extended CCG labels with degree n.

Whenever two phrases with left-hand-side preference distributions u1 and u2 are

concatenated using a glue grammar rule, the value of the syntactic feature psyn

is calculated according to the algorithm illustrated in Figure 5.4. The algorithm

also returns the left-hand-side preference distribution v′ of the resulting phrase.

The algorithm iterates in lines 4 to 13 on each label pair li and lj from u1 and

u2, respectively. Firstly, the function parse in line 5 applies all possible CCG

combinatory rules on the extended CCG label li + lj and returns the extended

CCG label lr with the minimum number of CCG categories. Then, the function

numOfCats in line 6 calculates the number of CCG categories in the resulting label

lr. If lr is composed of one CCG category, the two phrases are likely to constitute

a grammatical phrase and the grammaticality metric mCCGglue is set to 1 in line

7. Otherwise, the grammaticality metric mCCGglue is set to the probability of lr

according to the extended CCG label model pextCCG(lr) in line 9. The values of v and

psyn are updated in lines 11 and 12. After the iteration ends, v is renormalized in lines
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15-21. Finally the value of the syntactic feature psyn for the current glue grammar

rule application is returned along with the left-hand-side preference distribution v′

for the resulting phrase.

Algorithm 1 Calculate psyn for CCG-augmented Glue Grammar Rule Application
Input: u1, u2: the left-hand-side preference distributions for the first and second

phrase, respectively.
1: v  assign 0 to all units
2: psyn  0
3: mCCGglue  0
4: for all li in u1 and lj in u2 do
5: lr  parse(li + lj)
6: if numOfCats(lr) = 1 then
7: mCCGglue  1
8: else
9: mCCGglue  pextCCG(lr)

10: end if
11: v(lr) v(lr) +

�
u1(li) ⇤ u2(lj)

�

12: psyn  psyn +
�
u1(li) ⇤ u2(lj) ⇤mCCGglue

�

13: end for
14: sumv  0
15: for i = 1...|v| do
16: sumv  sumv + v[i]
17: end for
18: v0  assign 0 to all units
19: for i = 1...|v| do
20: v0[i] v[i]/sumv

21: end for
22: return psyn, v

0

1

Figure 5.4: The algorithm for calculating the syntactic feature psyn during glue
grammar rule application.

Augmenting glue grammar rules with CCG combinatory rules enables a full parse

tree of the translation output to be built, which helps to extend the scope of the

syntactic constraints to cover the whole translation output. The grammaticality

feature psyn calculated during glue grammar and hierarchical rule application helps

to guide the decoding process towards applying the CCG-based syntactic constraints

without restraining it with hard syntactic constraints.

Figure 5.5 shows the derivation tree of the English translation produced by the
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Figure 5.5: The derivation tree of the English translation produced by the CCG-
augmented HPB system for the Arabic sentence ú
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CCG-augmented HPB system using the CCG-augmented glue grammar for the same

Arabic sentence in Figure 5.3. We can see that in contrast to the ungrammatical

translation produced in the case of the non-syntactically aware glue grammar in

Figure 5.3, the CCG-augmented glue grammar enables our CCG-augmented HPB

system to produce a grammatical translation. Furthermore, we can see that the

derivation tree in Figure 5.5 represents a full parse tree covering the whole translation

output with the sentence category S[dcl] at the root of the translation. In this

example, when the phrases: foreigners prefer to and invest in food industries are

concatenated via a glue grammar rule, CCG combinatory rules are applied on the

categories of their extended CCG labels NP+(S[dcl]\NP)/(S[b]\NP and S[b]\NP,

which results in the sentence category S[dcl] at the root of the derivation tree. Thus,

applying CCG combinatory rules during glue grammar rule application helps to

enforce the grammaticality of the concatenation of two phrases by making sure that

the categories of the concatenated phrases are compatible with each other. Hence,

the phrase invest in food industries which starts with the infinitive verb invest and

bears the category S[b]\NP is chosen to come after the phrase prefer to which bears

the category (S[dcl]\NP)/(S[b]\NP) that apparently needs the category S[b]\NP

as an argument to its right. By contrast, in Figure 5.3, we can see that syntactic
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constraints are only applied during the application of the hierarchical rule which

produces the phrase investment in food industries. Glue grammar rule application

between the phrases foreigners prefer to and investment in food industries does not

impose any syntactic constraint, which causes a noun phrase after to erroneously

produce the phrase prefer to.

5.5 Experiments

In our experiments, we try to explore the effect of each approach to extending the

syntactic constraints in our CCG-augmented HPB SMT system presented in Sec-

tions 5.3 and 5.4. We examine the performance of our extended CCG labels from

different degrees under soft and hard syntactic constraints. We also conduct exper-

iments which examine the combination of the extended CCG labels from different

degrees with the CCG-augmented glue grammar. Thus, the CCG-augmented HPB

systems in our experiments are divided into three groups:

• CCG: the systems which use extended CCG labels of different degrees using

hard syntactic constraints with a syntax free glue grammar.

• CCGpref : the systems which use extended CCG labels of different degrees

using soft syntactic constraints with a syntax-free glue grammar.

• CCGglue: the systems which use extended CCG labels of different degrees

using soft syntactic constraints with the CCG-augmented glue grammar.

We also try to build systems which use extended CCG labels of different degrees

using hard syntactic constraints with the CCG-augmented glue grammar. However,

empty translations are produced for some sentences, because of the sparseness of

the syntax-augmented rules which are sometimes unable to build a full translation

for the input sentence under hard syntactic constraints. That is why we included

these systems in the coverage analysis only (cf. Tables 5.9 and 5.10).
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Furthermore, we try to test the performance of the different systems varying one

aspect of translation difficulty, namely the source sentence length. Shorter sentences

are generally easier to translate than longer sentences. Thus, for the Arabic-to-

English news data experiments, we built three versions of each system: the first

version is tuned and tested on short sentences of length ranging from one word to

eleven words. The second version is tuned and tested on long sentences of more than

eleven words of length. The third version is tuned and tested on a combination of

short and long sentences.

5.5.1 Data and Settings

We tested our approach on the IWSLT Chinese–English and Arabic–English data

sets described in Section 3.5.1 (page 61). In addition, we tested our approach on

a corpus comprised of 40k sentence pairs selected randomly from the Arabic News

corpus from LDC.2 The long and short development and test sets contain 500 and

452 sentence pairs, respectively. The combined development and test sets result

from combining the short and long development and test sets, respectively.

The experimental settings used in our experiments in this chapter are the same

settings used in our experiments in Section 3.5.1 (page 61).

We build our HPB baseline using the Moses Chart Decoder3 (Hoang et al.,

2009b) with maximum phrase length and maximum rule span set to 12 words.4

Hierarchical rules extracted contain up to 2 nonterminals. Maximum chart span is

set to 20 words. Cube pruning pop-up limit is set to 1000.

We use the CCG parser from C&C tools5 (Clark and Curran, 2007) to parse

the English side of the training data from which we extract the CCG-augmented

HPB models. The CCG-augmented HPB model which specifies different labellings of
2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004T17
3http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
4The version of the Moses Chart Decoder used to build the systems in this chapter is newer than

the one used in the previous chapters, that is why a difference in the scores of the CCG-augmented
HPB system and the HPB baseline system between this chapter and the previous chapters might
be noticed.

5http://svn.ask.it.usyd.edu.au/trac/candc/
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each unlabelled hierarchical rule is the same as the one built in Section 3.5 (page 60)

but excluding the rules which use the X label. We annotate the target side of the

training data with extended CCG labels extracted from the parsing chart built by

the C&C parser for target-side sentences in the training data. We modified the

parser code to add the functionality to find the highest-scoring minimum sequence

of CCG categories out of a sequence of CCG categories. We then extract the CCG-

augmented HPB models and the extended CCG labels model from the annotated

training data. We also use the C&C parser to perform category combination dur-

ing the CCG-augmented glue grammar rule application. We use the Moses Chart

Decoder to build our CCG-augmented HPB systems with the same settings as the

HPB baseline system.

For our CCG-augmented HPB systems which apply soft syntactic constraints ac-

cording to the Preference Grammars paradigm, we modified the code of the Moses

Chart Decoder to calculate the syntactic feature psyn as part of the log-linear model

and incorporate the preference grammar distribution into chart items. The number

of labels in the preference grammar distribution for each chart item is limited to the

five most probable labels. The number of different labellings extracted for each hier-

archical rule is limited to the five most probable labellings. For the CCG-augmented

HPB system which uses the CCG-augmented glue grammar, we modified the code

of the Moses Chart Decoder so that it interacts with the C&C parser to perform

category combination during glue grammar rule application.

5.5.2 Experimental Results on IWSLT Data

In this section we examine the effect of our approaches to extending the CCG-based

syntactic constraints on Arabic-to-English and Chinese-to-English translation in the

travel speech expressions domain using the IWSLT data. We try out extended labels

of degree ranging from one to five using hard and soft syntactic constraints. We also

examine the effect of using the CCG-augmented glue grammar with extended labels

from different degrees. Tables 5.2 and 5.3 show the BLEU, TER and METEOR
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scores of our CCG-augmented HPB systems and the HPB baseline system for Arabic-

to-English and Chinese-to-English translation on the IWSLT data, respectively.

System BLEU TER METEOR
HPB 52.90 31.06 71.51
CCG1 51.54 32.32 70.33
CCG2 51.63 32.27 71.21*
CCG3 52.32* 32.13 70.63
CCG4 51.11 33.20 70.87
CCG5 51.93 32.04* 70.01

CCGpref1 52.83 31.13 70.77
CCGpref2 53.38 30.92 70.60
CCGpref3 53.10 30.76* 70.77
CCGpref4 53.09 30.76* 70.62
CCGpref5 53.76* 30.76* 71.05*
CCGglue1 53.06 30.95 70.63
CCGglue2 52.84 30.97 70.54
CCGglue3 52.66 31.04 69.60
CCGglue4 53.17 30.90 70.88*
CCGglue5 53.51* 30.38* 70.81

Table 5.2: Experimental results for our CCG-augmented HPB systems which use
extended syntactic constraints and the HPB baseline system on the Arabic–English
IWSLT data. CCGpref refers to the CCG-augmented HPB systems which use soft
syntactic constraints. CCGglue refers to the systems which use the CCG-augmented
glue grammar. The subscripted number at the end of the name of each system
indicates its degree. The asterisk marks the best score achieved in each system
group.

Arabic-to-English Experimental Results

Table 5.2 demonstrates that for the hard syntactic constraints setting, the 3-category

CCG-augmented HPB SMT system is the best-performing system in terms of BLEU

score. The table also shows that none of the hard constraint CCG-augmented HPB

systems was able to outperform the HPB baseline system. Increasing the degree of

the extended CCG labels from one to three leads to increases of 0.09 and 0.69 abso-

lute BLEU points, which corresponds to relative improvements of 0.17% and 1.34%,

respectively. However, the BLEU score decreases when the degree of the extended

CCG labels increases from three to four by 1.21 absolute BLEU points, which cor-
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responds to a 2.31% relative decrease. Increasing the degree of the extended CCG

labels from four to five leads to an improvement of 0.82 absolute BLEU points,

which corresponds to a 1.6% relative improvement.

For the soft syntactic constraint setting, we can see that the 5-category CCG-

augmented HPB system is the best-performing system in terms of BLEU, TER and

METEOR scores, outperforming the HPB baseline system by 0.86 absolute BLEU

points, which corresponds to a 1.63% relative improvement. The result of the paired

bootstrap resampling test demonstrates that this improvement is statistically sig-

nificant at p-level=0.05. Table 5.2 also shows that using soft syntactic constraints

leads to significant improvements over the systems which use hard syntactic con-

straints. Moreover, the CCG-augmented HPB systems from different degrees which

use soft constraints outperform the HPB baseline system in terms of BLEU score ex-

cept for the 1-category CCG-augmented HPB system. The table also demonstrates

that increasing the degree of the extended CCG labels does not show a consistent

improvement for the systems in this group.

As for the CCG-augmented HPB systems which use the CCG-augmented glue

grammar, Table 5.2 demonstrates that the 5-category CCG-augmented HPB system

achieves the best BLEU and TER scores. Using the CCG-augmented glue grammar

helps to improve the BLEU score of each of the 1-category and 4-category CCG-

augmented HPB systems by 0.23 and 0.08 absolute BLEU points, which corresponds

to relative improvements of 0.43% and 0.15%, respectively. Although using the

CCG-augmented glue grammar does not help to improve the BLEU score of the

5-category CCG-augmented HPB system, it helps to improve its TER score, which

is the best TER score among all the examined systems.

In general, our Arabic-to-English experimental results on the IWSLT data demon-

strate that the CCG-augmented HPB systems which use soft syntactic constraints

achieve the best performance among other CCG-augmented HPB systems, signif-

icantly outperforming the HPB baseline system and the hard constraint CCG-

augmented HPB systems. Moreover, using the CCG-augmented glue grammar with
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System BLEU TER METEOR
HPB 48.29 35.28 65.85
CCG1 46.01 34.86* 63.01
CCG2 46.16 35.51 62.84
CCG3 44.15 37.14 62.30
CCG4 45.61 35.67 63.13
CCG5 46.28* 35.12 63.19*

CCGpref1 49.73 34.04 66.66*
CCGpref2 48.19 35.46 64.67
CCGpref3 49.94* 34.02* 66.29
CCGpref4 48.32 34.54 65.07
CCGpref5 49.44 34.10 65.76
CCGglue1 49.43 34.96 66.16
CCGglue2 49.26 34.44 65.49
CCGglue3 50.73* 33.50* 66.67*
CCGglue4 48.58 34.31 65.42
CCGglue5 49.00 34.28 65.61

Table 5.3: Experimental results for our CCG-augmented HPB systems which use
extended syntactic constraints and the HPB baseline system on the Chinese–English
IWSLT data.

extended CCG labels from different degrees does not always help to improve the

performance of the corresponding systems. We also notice that increasing the de-

gree of the extended CCG labels causes fluctuation in performance under both soft

and hard syntactic constraints and using the CCG-augmented glue grammar.

Chinese-to-English Experimental Results

Table 5.3 shows that using hard syntactic constraints, the CCG-augmented HPB

system which uses extended CCG labels of degree five is the best performing sys-

tem in terms of BLEU and METEOR scores. We can also see that none of the

CCG-augmented HPB systems in this group outperforms the HPB baseline system

except for the 1-category CCG-augmented HPB system which outperforms the HPB

baseline system by 0.42 absolute TER points, which corresponds to a 1.2% relative

improvement. Increasing the degree of the extended CCG labels for the systems in

this group does not demonstrate a consistent improvement.

For the soft syntactic constraints setting, Table 5.3 shows that the 3-category
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CCG-augmented HPB system is the best-performing system in terms of BLEU and

TER scores. Moreover, the 3-category CCG-augmented HPB system outperforms

the HPB baseline systems by 1.65 absolute BLEU points, which corresponds to a

3.4% relative improvement. The paired bootstrap resampling test demonstrates that

this improvement is statistically significant at p-level=0.05. Similar to our Arabic-

to-English experiments, using soft syntactic constraints helps to achieve significant

improvements over the hard constraint CCG-augmented HPB systems. Further-

more, using soft syntactic constraints helps to improve performance over the HPB

baseline system except for the 2-category CCG-augmented HPB system. Similar to

the hard syntactic constraints setting, increasing the degree of the extended CCG

labels for the soft constraint systems does not demonstrate a consistent improve-

ment.

Table 5.3 demonstrates that using the CCG-augmented glue grammar with ex-

tended CCG labels increases the performance of the systems of degrees from two to

four by 1.07, 0.79 and 0.26 absolute BLEU points, which corresponds to relative im-

provements of 2.22%, 1.58% and 0.54%, respectively. However, the paired bootstrap

resampling test shows that these improvements are not statistically significant at p-

level=0.05. We can see also that using the CCG-augmented glue grammar causes

the performance of the 1-category and 5-category CCG-augmented HPB systems to

degrade. It is worth noting that the 3-category CCG-augmented HPB system which

uses the CCG-augmented glue grammar achieves the best performance measured in

BLEU, TER and METEOR scores among all the examined systems.

In general, our Chinese-to-English experimental results on the IWSLT data show

that using soft syntactic constraints helps to significantly improve the performance

of the CCG-augmented HPB systems from different degrees over the HPB baseline

system and the hard constraint CCG-augmented HPB systems. Although using

the CCG-augmented glue grammar helps to achieve the best performance among

the examined systems, it does not always help to improve performance. Similar

to the Arabic-to-English IWSLT experimental results, increasing the degree of the
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extended CCG labels does not demonstrate a consistent improvement across the

examined systems.

System Labels Rule Table Size %X
CCG1 518 2895825 28.13%
CCG2 8063 3147353 6.34%
CCG3 18220 3175309 1.28%
CCG4 22582 3179796 0.26%
CCG5 23709 3180365 0.048%

Table 5.4: Number of different labels, rule table size and percentage of unlabelled
nonterminals in the rule table of the CCG-augmented HPB systems of degrees from
one to five built on the Arabic–English IWSLT data.

Label Coverage

We try to examine the effect of increasing the degree of the CCG-augmented HPB

systems on label coverage, the number of different labels and the size of the transla-

tion model for Arabic-to-English and Chinese-to-English translation on the IWSLT

data. Therefore, we measure label coverage in terms of the percentage of unlabelled

nonterminals in the rule tables of the CCG-augmented HPB systems of different de-

grees. We also measure the number of different labels used to annotate the training

data by these systems in addition to the size of their translation models in terms of

number of rules. Tables 5.4 and 5.5 show that increasing the degree of the extended

CCG labels from one to three significantly increases the number of different labels

and the rule table size, and significantly decreases the percentage of unlabelled non-

terminals. The tables also show that the pace of the growth in the rule table size

and labels number slows down when increasing the degree of the extended CCG

labels above three. In general, increasing the degree of the extended CCG labels

increases the number of different labels and the rule table size, and decreases the

number of unlabelled nonterminals. We can also see that the number of different

labels in the Arabic-to-English systems of degrees from two to five is significantly

smaller than their Chinese-to-English counterparts. Bearing in mind that the size

of the Chinese–English IWSLT data is about 3 times the size of the Arabic–English
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IWSLT data, this highlights the effect of the size of the training data on the number

of different labels.

System Labels Rule Table Size %X
CCG1 584 4983289 31%
CCG2 12040 5334511 7.6%
CCG3 30632 5379606 1.71%
CCG4 40493 5386289 0.38%
CCG5 43636 5387167 0.086%

Table 5.5: Number of different labels, rule table size and percentage of unlabelled
nonterminals in the rule table of the CCG-augmented HPB systems of degrees from
one to five built on the Chinese–English IWSLT data.

5.5.3 Experimental Results on News Data

In this section, we examine the performance of our approaches to extending the

syntactic constraints on the Arabic-to-English translation in the news domain. We

examine the performance of our CCG-augmented HPB systems which use extended

CCG labels of degrees from one to three under soft and hard syntactic constraints.

We also explore the effect of using the CCG-augmented glue grammar on the per-

formance of the different systems. Furthermore, we try to examine the effect of the

source sentence length on the performance of the different systems. We first exam-

ine the performance of our systems on short sentences (less than twelve words) and

then on long sentences (equal to or more than twelve words). Finally, we test our

systems on a combination of the short and long sentences.

Short Sentences Translation

Table 5.6 shows the experimental results for our CCG-augmented HPB systems

which use extended syntactic constraints and the HPB baseline system on Arabic–

English short sentences from the news data. For the CCG-augmented HPB systems

which use hard syntactic constraints, we can see that increasing the degree of the

extended CCG labels helps to improve performance in terms of BLEU, METEOR
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System BLEU TER METEOR
HPB 41.96 49.39 68.77
CCG1 41.05 48.97 69.09
CCG2 42.29 48.25* 69.59
CCG3 43.18* 48.25* 69.78*

CCGpref1 41.39 49.81 68.78
CCGpref2 41.05 50.47 67.30
CCGpref3 42.97* 47.56* 69.23*
CCGglue1 41.47 49.53 68.70
CCGglue2 43.17* 48.22* 69.48*
CCGglue3 42.97 48.58 69.41

Table 5.6: Experimental results for our CCG-augmented HPB systems which use
extended syntactic constraints and the HPB baseline system on Arabic–English short
sentences from the news data.

and TER scores. Increasing the degree of the extended CCG labels from one to two

helps to improve performance by 1.24 absolute BLEU points, which corresponds

to a 3% relative improvement. The paired bootstrap resampling test shows that

this improvement is statistically significant at p-level=0.05. Increasing the degree of

the extended CCG labels from two to three improves performance by 0.89 absolute

BLEU points, which corresponds to a 2.1% relative improvement. The paired boot-

strap resampling test demonstrates that this improvement is statistically significant

at p-level=0.05. Table 5.6 also shows that both the 2-category and 3-category CCG-

augmented HPB systems outperform the HPB baseline system by 0.33 and 1.22

absolute BLEU points, which corresponds to relative improvements of 0.79% and

2.9%, respectively. The improvement in the case of the 3-category CCG-augmented

HPB system is statistically significant whereas it is statistically insignificant in the

case of the 2-category CCG-augmented HPB system at p-level=0.05. These im-

provements in BLEU score achieved over the HPB baseline system are corroborated

by improvements with respect to TER and METEOR.

Table 5.6 also demonstrates that using soft syntactic constraints helps to im-

prove performance only in the case of the extended CCG labels of degree one by

0.34 absolute BLEU points, which corresponds to a 0.83% relative improvement.
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This improvement is demonstrated to be statistically insignificant by the paired

bootstrapping test at p-level=0.05. The best-performing system in this group is the

3-category CCG-augmented HPB system, which achieves the best TER score among

all the examined systems. We can also see that increasing the degree of the extended

CCG labels for the soft constraint systems does not show a consistent improvement.

Table 5.6 shows that using the CCG-augmented glue grammar helps to improve

the performance of the 1-category and 2-category CCG-augmented HPB systems by

0.08 and 2.12 absolute BLEU points, which corresponds to relative improvements of

0.19% and 5.16%, respectively. However, using the CCG-augmented glue grammar

does not affect the BLEU score of the 3-category CCG-augmented HPB system.

Table 5.6 also shows that increasing the degree of the extended CCG labels for the

systems which use the CCG-augmented glue grammar does not show a consistent

improvement.

In general, our Arabic-to-English experimental results on translation of short sen-

tences from the news domain demonstrate that the CCG-augmented glue grammar

helps to improve the performance over both the hard and soft syntactic constraint

systems except for the extended CCG labels of degree three. The 3-category CCG-

augmented HPB system which uses hard syntactic constraints is the best-performing

system in terms of BLEU and METEOR scores. Neither using the soft syntactic

constraints nor the CCG-augmented glue grammar is able to improve performance

over the 3-category CCG-augmented HPB system which uses the hard syntactic

constraints. In addition, increasing the degree of the extended CCG labels under

hard syntactic constraints setting helps to improve performance, whereas it does not

show a consistent improvement under the soft syntactic constraints setting or using

the CCG-augmented glue grammar.

Long Sentences Translation

Table 5.7 demonstrates the experimental results for our CCG-augmented HPB sys-

tems which use extended syntactic constraints and the HPB baseline system on
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System BLEU TER METEOR
HPB 36.04 54.82 63.27
CCG1 35.77 54.93 63.29
CCG2 36.94* 53.68* 63.92*
CCG3 36.08 55.17 62.92

CCGpref1 36.35 53.91 63.69
CCGpref2 37.05 53.33 63.95
CCGpref3 37.62* 52.87* 64.50*
CCGglue1 35.67 55.00 62.78
CCGglue2 36.18 54.91 62.74
CCGglue3 36.95* 53.87* 63.47*

Table 5.7: Experimental results for our CCG-augmented HPB systems which use
extended syntactic constraints and the HPB baseline system on Arabic–English long
sentences from the news data.

Arabic–English long sentences from the news data. Under the hard syntactic con-

straints setting, the table shows that increasing the degree of the extended CCG

labels from one to two increases performance in terms of all the metrics. The 2-

category CCG-augmented HPB system outperforms the 1-category system by 1.17

absolute BLEU points, which corresponds to a 3.27% relative improvement. The

paired bootstrap resampling test demonstrates that this improvement is statistically

significant at p-level=0.05. The 2-category CCG-augmented HPB system also out-

performs the HPB baseline system in terms of BLEU, METEOR and TER scores.

The 2-category CCG-augmented HPB system achieves a higher BLEU score than

the HPB baseline system by 0.9 absolute BLEU points, which corresponds to a 2.5%

relative improvement. This improvement is statistically significant at p-level=0.05

according to the paired bootstrap resampling test. Increasing the degree of the ex-

tended CCG labels from two to three decreases performance by 0.86 absolute BLEU

points, which corresponds to a 2.32% relative decrease.

For the systems which use soft syntactic constraints, Table 5.7 shows that us-

ing soft syntactic constraints helps to improve performance over the hard syntactic

constraint systems in terms of all the metrics. Using soft syntactic constraints with

the extended CCG labels of degrees one, two and three increases the BLEU score
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over the corresponding hard syntactic constraint systems by 0.58, 0.11 and 1.54

absolute BLEU points, which corresponds to relative improvements of 1.62%, 0.3%

and 4.27%, respectively. Among these improvements, the improvement achieved

over the hard constraint 3-category system is the only statistically significant im-

provement at p-level=0.05 according to the bootstrap resampling test. We can also

see that increasing the degree of the extended CCG labels under the soft syntac-

tic constraints setting helps to improve performance in terms BLEU, METEOR

and TER scores. Increasing the degree of the extended CCG labels from one to

two improves the BLEU score by 0.7 absolute BLEU points, which corresponds to

a 1.9% relative improvement. The paired bootstrap resampling test demonstrates

that this improvement is not statistically significant at p-level=0.05. Increasing the

degree of the extended CCG labels from two to three improves the BLEU score by

0.57 absolute BLEU points, which corresponds to a 1.54% relative improvement.

This improvement is demonstrated by the paired bootstrap resampling test to be

statistically insignificant at p-level=0.05.

Generally, our experimental results on Arabic-to-English translation of long sen-

tences from the news domain demonstrate that using the CCG-augmented glue

grammar does not achieve any improvement over the soft constraint systems. Fur-

thermore, soft constraint CCG-augmented HPB systems achieve better performance

than the hard constraint systems. The experimental results also show that increas-

ing the degree of the extended CCG labels under soft syntactic constraints improves

performance, which leads the 3-category CCG-augmented HPB system which uses

soft syntactic constraints to be the best-performing system among all the systems.

However, increasing the degree of the extended CCG labels under the hard syntactic

constraints does not show a consistent improvement.

Translation of a Combination of Long and Short Sentences

Table 5.8 demonstrates the experimental results for our CCG-augmented HPB sys-

tems which use extended syntactic constraints and the HPB baseline system on
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System BLEU TER METEOR
HPB 38.06 52.46 65.47
CCG1 37.96 52.39* 65.67*
CCG2 38.39* 52.43 65.00
CCG3 38.28 52.50 65.5

CCGpref1 37.19 53.46 64.41
CCGpref2 38.36 52.32* 65.05*
CCGpref3 38.39* 52.33 64.87
CCGglue1 37.93 52.88 64.98
CCGglue2 38.64* 52.44 64.65
CCGglue3 38.35 52.43* 65.44*

Table 5.8: Experimental results for our CCG-augmented HPB systems which use
extended syntactic constraints and the HPB baseline system on the Arabic–English
long and short sentences from the news data.

the Arabic–English long and short sentences from the news data. For the CCG-

augmented HPB systems which use hard syntactic constraints, increasing the degree

of the extended CCG labels from one to two improves performance by 0.43 absolute

BLEU points, which corresponds to a 1.13% relative improvement. The 2-category

CCG-augmented HPB system outperforms the HPB baseline system by 0.33 abso-

lute BLEU points, which corresponds to a 0.87% relative improvement. The paired

bootstrap resampling test demonstrates that this improvement is not statistically

significant at p-level=0.05. Increasing the degree of the extended CCG labels from

two to three causes a slight decrease of 0.11 absolute BLEU points.

Table 5.8 demonstrates that using soft syntactic constraints causes the perfor-

mance of the 1-category CCG-augmented HPB system to degrade by 0.77 abso-

lute BLEU points, which corresponds to a 2% relative decrease. The 2-category

CCG-augmented HPB system which uses soft syntactic constraints achieves almost

the same performance as the corresponding system which uses hard syntactic con-

straints with a slight difference of 0.03 absolute BLEU points. Using soft syntactic

constraints with the CCG-augmented HPB system of degree three improves perfor-

mance slightly by 0.11 absolute BLEU points, which corresponds to a 0.29% relative

improvement.
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Table 5.8 also shows that using the CCG-augmented glue grammar with extended

CCG labels of degrees one and two increases performance over the corresponding

soft constraint systems by 0.74 and 0.28 absolute BLEU points, which corresponds

to relative improvements of 2% and 0.73%, respectively. The paired bootstrap re-

sampling test demonstrates that these improvements are not statistically significant

at p-level=0.05. The table also shows that using the CCG-augmented glue gram-

mar with the extended CCG labels of degree three causes a slight decrease of 0.04

absolute BLEU points in comparison with the corresponding soft constraint system,

which corresponds to a 0.1% relative decrease.

In general, our experimental results for Arabic-to-English translation on a combi-

nation of the short and long sentences in the news domain demonstrate that neither

using soft syntactic constraints nor combining it with the CCG-augmented glue

grammar helps to improve performance over the hard constraint systems except

for the 2-category CCG-augmented HPB system which uses the CCG-augmented

glue grammar. The 2-category CCG-augmented HPB system which uses the CCG-

augmented glue grammar achieves the best performance among all the examined

systems, outperforming the HPB baseline system by 0.58 absolute BLEU points,

which corresponds to a 1.5% relative improvement. The paired bootstrap resam-

pling test demonstrates that this improvement is not statistically significant at p-

level=0.05. Moreover, the experimental results demonstrate that increasing the

degree of the extended CCG labels for the soft constraint systems demonstrates a

consistent improvement. However, increasing the degree of the extended CCG la-

bels for the strong constraint systems which use a syntax-free glue grammar and the

systems which use the CCG-augmented glue grammar does not show a consistent

improvement .

Coverage of Syntactic Constraints

We try to explore the effect of our extension approaches on the coverage the syntactic

constraints applied by our CCG-augmented HPB systems during translation. We
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Degree 1 Degree 2 Degree 3
CCG

Glue 116 227 140
Hier 179 18 0
Total 295 245 140

CCGpref

Glue 71 179 64
Hier 126 47 280
Total 197 226 344

CCGglue

Glue 2 54 53
Hier 266 52 136
Total 268 106 189

CCGglue(hard)

Glue 111 92 127
Hier 35 32 32
Total 146 124 159

Table 5.9: Number of incomplete trees in the translation output produced by our
CCG-augmented HPB systems which use extended syntactic constraints of different
degrees for the short sentence test set. Hier denotes the number of incomplete trees
because of a hierarchical rule whereas Glue denotes the number of incomplete trees
because of a glue grammar rule.

accomplish this by measuring the number of sentences in the translation output

which are produced by derivation trees that do not form complete syntactic trees.

We define the complete syntactic tree to be the derivation tree which has a single

CCG category at its root. In the case of the CCG-augmented HPB systems which use

soft syntactic constraints, the complete syntactic tree has at least one single-category

CCG label among the root labels. Tables 5.9 and 5.10 show the number of incomplete

trees produced by our CCG-augmented HPB systems from different degrees for the

short and long test sets, respectively. The tables illustrate the number of incomplete

trees in two categories according to the reason which prevented the building of a

complete tree. The first category contains the trees which are incomplete because of

a hierarchical rule which violated all the syntactic constraints imposed by the model.

This category also includes the trees which have at its root a hierarchical rule that

does not have any single-category CCG label on its left-hand side. The second

category contains the trees which are incomplete because of a glue grammar rule.
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For the CCG-augmented HPB systems which use a syntax-free glue grammar, this

category contains the trees which use at least a glue grammar rule to concatenate

two partial translations. In the case of the CCG-augmented HPB systems which use

the CCG-augmented glue grammar, the second category contains the trees which

are incomplete because of a glue grammar rule which has an empty left-hand side, or

because of a glue grammar rule at the root which does not have any single-category

CCG label on its left-hand side.

Table 5.9 shows that increasing the degree of the extended CCG labels used by

the CCG-augmented HPB systems which use hard syntactic constraints with the

syntax-free glue grammar helps to significantly decrease the number of incomplete

trees in the translation output. We can see that this decrease is mainly due to the

significant decrease in the number of incomplete trees because of a hierarchical rule.

Furthermore, the BLEU scores of the CCG-augmented HPB systems which use hard

syntactic constraints show improvements which correlate with this improvement in

the coverage of the syntactic constraints (cf. Table 5.6). For the CCG-augmented

HPB systems which use soft syntactic constraints, increasing the degree of the ex-

tended CCG labels does not help to decrease the number of incomplete trees. This

is because the coverage of the syntactic constraints in the soft constraint systems is

mainly affected by the learnt weight of the preference grammar feature psyn, which

controls how strict the syntactic constraints are applied. This also applies to the

CCG-augmented HPB systems which use the CCG-augmented glue grammar. It is

worth noting that the CCG-augmented HPB systems which use the CCG-augmented

glue grammar demonstrate improvements in BLEU score which correlate with im-

provements achieved in coverage (cf. Table 5.6). For the systems which use the

CCG-augmented glue grammar with the hard syntactic constraints CCGglue(hard),

the table shows that increasing the degree of the extended CCG labels from one to

two decreases the number of incomplete trees. However, increasing the degree of

the extended CCG labels from two to three has an opposite effect. In fact, all the

incomplete trees because of a hierarchical rule for these systems produce an empty

157



Degree 1 Degree 2 Degree 3
CCG

Glue 33 277 482
Hier 406 159 18
Total 439 436 500

CCGpref

Glue 453 463 481
Hier 5 30 0
Total 458 493 481

CCGglue

Glue 106 85 102
Hier 259 235 232
Total 365 320 334

CCGglue(hard)

Glue 89 83 82
Hier 276 227 248
Total 365 310 330

Table 5.10: Number of incomplete trees in the translation output produced by our
CCG-augmented HPB systems which use extended syntactic constraints of different
degrees for the long sentence test set.

translation (i.e. they do not cover all the source sentence). The table also shows that

using the CCG-augmented glue grammar under hard syntactic constraints produces

fewer incomplete trees than under the soft syntactic constraints except for extended

CCG labels of degree two.

Table 5.10 demonstrates that the coverage of the syntactic constraints for long

sentence translation is more limited than in the case of short sentence translation.

This is clearly because longer sentences are more difficult to translate than shorter

sentences, requiring more syntactic constraints to be satisfied. Furthermore, some

long sentences exceed the 20-word maximum application span we put for hierarchical

rules, above which it is necessary to use glue grammar rules to perform translation.

This is one of the reasons why the number of incomplete trees in the case of the

systems which use the syntax-free glue grammar is larger than in the case of the

systems which use the CCG-augmented glue grammar. Table 5.10 shows that in-

creasing the degree of the extended CCG labels helps to improve the coverage of

hierarchical rules for the systems which use hard syntactic constraints. However,
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Reference: he pointed out that this would help in raising voices in europe and asia
CCG3: he pointed out that such ever helping raising votes in europe , asia
CCGpref3: he pointed out that such had would help in raising votes in europe , asia
CCGglue3: he pointed out that this would help in raising votes in europe , asia

Figure 5.6: Translations produced by our 3-category CCG-augmented HPB systems
for the Arabic sentence AJ
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this does not help to achieve an overall better coverage. The CCG-augmented HPB

systems which use soft syntactic constraints does not show a better coverage either.

Using the CCG-augmented glue grammar helps to significantly decrease the number

of incomplete trees in comparison with the systems which use the syntax-free glue

grammar. However, this increase in coverage is not corroborated by an improve-

ment in BLEU score (cf. Table 5.7). The table also shows that similar to short

sentences, the systems which use the CCG-augmented glue grammar with the hard

syntactic constraints achieve the best coverage when using extended CCG labels

of degree two. Furthermore, all the incomplete trees because of a hierarchical rule

for these systems produce an empty translation. The table also demonstrates that

using the CCG-augmented glue grammar under hard syntactic constraints achieves

similar coverage in comparison with the systems which use the CCG-augmented glue

grammar with soft syntactic constraints.

Figure 5.6 demonstrates the translations produced by our 3-category CCG-

augmented HPB systems for the Arabic sentence ú
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P̄ . We can see that the translations produced by the

CCG-augmented HPB systems which use the syntax-free glue grammar under hard

and soft syntactic constraints are ungrammatical. Figures 5.7 and 5.8 demonstrate
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the derivation trees of the translations produced by the CCG-augmented HPB sys-

tems which use hard and soft syntactic constraints, respectively. We can see that

the use of non-syntactically aware glue grammar is the main reason for producing

ungrammatical translations. By contrast, the CCG-augmented HPB system which

uses the CCG-augmented glue grammar succeeds in building a full derivation tree

which produces a grammatically correct translation. It is worth noting that the

systems which use soft syntactic constraints produce a set of syntactic labels for

the left-hand side of each partial translation, but for the seek of clarity, we only

illustrate the labels which participate in building the most probable syntactic tree

interpreting the translation output.
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Figure 5.9 shows the derivation tree of the English translation produced by the

3-category CCG-augmented HPB system which uses the CCG-augmented glue gram-

mar for the same Arabic sentence. We can see how the CCG-augmented hierarchical

rules collaborate with the CCG-augmented glue grammar rules to build a complete

tree which produces a grammatical translation. It is worth noting that our ap-

proach to measuring the coverage of the syntactic constraints is not totally precise.

We can easily find many translations which are grammatically correct in spite of

being produced by the syntax-free glue grammar rules. Moreover, some derivation

trees, though complete, produce ungrammatical translations.

5.5.4 Analysis

Our experimental results demonstrated that using extended CCG-based syntactic

constraints helps to significantly improve the performance of our CCG-augmented

HPB systems over the HPB baseline system. However, the effect on performance

of the different extension approaches varied according to the domain of the data

between the IWSLT data and the news data. Moreover, the extension approaches

showed different performance trends on the translation of short sentences, long sen-

tences and the combination of long and short sentences.

For the IWSLT data, the CCG-augmented HPB systems which use extended

CCG labels with soft syntactic constraints significantly outperformed the CCG-

augmented HPB systems which use hard syntactic constraints on both Arabic-to-

English and Chinese-to-English translation. The CCG-augmented glue grammar

helped to improve the performance of most of the CCG-augmented HPB systems

from different degrees on the Chinese–English IWSLT data, leading to the best per-

formance among all the examined systems. However, for the Arabic–English IWSLT

data, the CCG-augmented glue grammar was not able to improve the performance

of most of the systems.

For the translation of short sentences from the news data, the use of extended

CCG labels with soft syntactic constraints did not in general improve performance
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over the systems which use hard syntactic constraints. Moreover, the CCG-augmented

glue grammar helped to improve performance over the CCG-augmented HPB sys-

tems which use soft syntactic constraints. For the translation of long sentences from

the news data, using extended CCG labels with soft syntactic constraints helped to

improve performance over the systems which use hard syntactic constraints. How-

ever, using the CCG-augmented glue grammar did not further improve the perfor-

mance of the CCG-augmented HPB systems which use soft syntactic constraints.

When combining the short and long sentences from the news data, neither using soft

syntactic constraints nor combining it with the CCG-augmented glue grammar im-

proved performance over the systems which use hard syntactic constraints, except

for the 2-category CCG-augmented HPB system which uses the CCG-augmented

glue grammar.

The experiments also demonstrated that increasing the degree of the extended

CCG labels helped to significantly increase label coverage (cf. Tables 5.4 and 5.5).

Moreover, increasing the degree of the extended CCG labels above one improved

performance on the Arabic-to-English news translation in general and helped to out-

perform the HPB baseline system (cf. Tables 5.6, 5.7 and 5.8). However, increasing

the degree of the extended CCG labels did not show a consistent improvement.

One factor which might cause inconsistencies in the improvements obtained us-

ing our extension approaches on different data sets, between soft and hard syntactic

constraints, using test sets of different sentence lengths, and using different degrees

for the extended CCG labels, is the instability of the optimizer, namely MERT (Och,

2003) in our experiments. MERT uses a stochastic approach to optimize model pa-

rameters, which makes it prone to noisy parameter estimates (Clark et al., 2011).

Clark et al. (2011) study the effect of optimizer instability on the experimental

results. They demonstrate that optimizer instability can significantly affect transla-

tion quality. They warn that if optimizer instability is not controlled, it might lead

to draw incorrect conclusions about the effectiveness of a specific MT approach.

While we did not do this in this thesis, it is clearly an avenue to investigate further
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in future work.

If we want to explain why the soft syntactic constraint systems achieved better

performance than the hard syntactic constraint systems for long sentences whereas

the opposite is true for short sentences, then we should bear in mind that long

sentences are in general harder to translate, requiring more syntactic constraints

to be satisfied than shorter sentences. This makes tree building for long sentences

more prone to errors than for short sentences. Hard syntactic constraints are not

fault-tolerant, which means that any violation of the syntactic constraints imposed

by the model will break the tree and necessitate the use of glue grammar rules

to join the partial translations. Hierarchical rules play a more essential role in

HPB SMT than glue grammar rules, because glue grammar rules do not perform

any reordering or impose any syntactic constraint. Thus using glue grammar rules

rather than hierarchical rules would negatively affect performance. By contrast,

soft syntactic constraints are more fault-tolerant, as they allow violations of the

syntactic constraints imposed by the model. Thus, the use of hierarchical rules

is continued even after such violations, what probably helped our soft constraint

systems to achieve better performance for long sentence translation.

Trying to understand why our CCG-augmented glue grammar did not help to

significantly improve the coverage of the syntactic constraints or performance over

the systems which use the syntax-free glue grammar, we must take into consid-

eration the following factors which cause errors or even failure in tree building.

Firstly, parsing errors committed during annotation of training data cause some

words/phrases to be wrongly tagged. Secondly, the training data does not contain

all the contexts within which the word/phrase occurs. This might lead to the wrong

CCG label of the word/phrase which does not match its appropriate context to

be used during translation. The two previous reasons might also prevent complete

trees from being built even for grammatical translations. Thirdly, tree building in

our CCG-augmented HPB systems which use the CCG-augmented glue grammar is

performed through a collaboration between the CCG-annotated hierarchical rules
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and CCG parsing performed by the CCG-augmented glue grammar. However, this

process of tree building lacks an important stage for CCG parsing, namely supertag-

ging. The accuracy of supertagging is essential for CCG parsing accuracy (Clark and

Curran, 2004). Accurately assigning supertags to the words of a sentence should take

into consideration the context within which the word occurs, such as the surround-

ing words and their POS tags (Clark, 2002b). Phrases and words in our approach

are assigned CCG-based labels along with their co-occurrence probabilities, which

are learnt from the annotated training data. Thus, the most frequent label for a

word/phrase is more likely to be used in the tree building process regardless of the

context within which it occurs, which might lead to errors in tree building during

translation. Finally, a problem which affects the accuracy of CCG parsing in general

and thus affects our CCG-based tree building is the over-generation problem. One

cause of over-generation in CCG parsing is the use of a set of rules called type-

changing rules. Type-changing rules are unary rules used to deal with the category

proliferation problem (Hockenmaier and Steedman, 2002). The use of these rules

when the training data is parsed prior to rule extraction in our CCG-augmented

HPB systems transmits the over-generation problem to our CCG-augmented chart

decoding, which might generate ungrammatical translations.

Figure 5.10 shows the derivation of the English translation produced by the 3-

category CCG-augmented HPB system which uses CCG-augmented glue grammar

for the Arabic sentence �
IÊ

	
gX Y

�
¯ð AîD
Ê« H. PAj.

�
JË @ Z @Qk. @ Õç

�
'

�
HA¢jÖÏ @ è

	
Yë

	
à


@ QK


	PñË@ ÈA
�
¯

. Éª
	
® ËA K. É J


	
ª

�
�

�
� Ë @. Although the tree is complete, having the S[dcl] category at

the root, the translation it produces is not grammatical. We can see that there is

a type-changing rule at the root of the partial translation conducting experiments

for it joined the operation, which changes the category at the root of the subtree
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covering this partial translation from S[dcl] to NP\NP. This enables this subtree to

join the subtree covering the previous partial translation the minister said that these

stations. Finally, the resulting subtree joins the phrase was re-conducted, to form

a complete tree. We can see from this example how type-changing rules led to the

production of an ungrammatical translation despite being produced by a complete

tree.
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5.6 Conclusions

In this chapter, we tried to answer our third research question (RQ3), by addressing

the factors which limit the coverage of the syntactic constraints applied in our CCG-

augmented HPB system, which are the syntactically unannotated phrases and the

syntax-free glue grammar. We argued that increasing the coverage of the syntac-

tic constraints in our CCG-augmented HPB system helps to improve performance.

Therefore, we tried to extend the coverage of the syntactic constraints in our CCG-

augmented HPB system following two approaches. The first approach provides

coverage for a larger proportion of the extracted phrases in the HPB SMT model.

This is accomplished by extending the definition of the nonterminal label to include

more than one CCG category. The second approach tries to provide a full syntax

augmentation for the HPB SMT grammar by augmenting glue grammar rules with

CCG combinatory rules.

We presented experiments examining the application of these two approaches

both individually and combined on Arabic-to-English and Chinese-to-English trans-

lation in the travel speech expressions domain, and on Arabic-to-English translation

in the news domain. We examined the performance of our extension approaches un-

der both hard and soft syntactic constraints and on short and long sentences. Our

experimental results showed that extending the syntactic constraints in our CCG-

augmented HPB system helped to significantly improve its performance over the

HPB baseline system, which answers our fourth research question (RQ4). Our dif-

ferent approaches to extending the CCG-based syntactic constraints demonstrated

different performance trends on different data sets, between soft and hard syntactic

constraints and between short and long sentences. We provided an in-depth analysis

of our experimental results, in which we tried to explain these different trends and

discuss problems facing our approaches.
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Chapter 6

Conclusions

In this thesis, we presented approaches to incorporating syntactic information ex-

tracted using CCG into the HPB SMT model. Motivated by the previous research

which shed light on the advantages which CCG provides for SMT over other gram-

mar formalisms (Hassan et al., 2007, 2009), we used CCG to apply rich, precise

and wide-coverage syntactic constraints in the HPB SMT model. We also tried

to solve common problems affecting the performance of previous syntax-augmented

HPB SMT systems, namely the strictness, sparsity and the limited coverage of the

syntactic constraints, taking advantage of the richness and flexibility of CCG struc-

tures.

Following previous research on incorporating syntax in the HPB SMT model

by annotating phrases and nonterminals with CF-PSG-based syntactic labels (Zoll-

mann and Venugopal, 2006), we used CCG categories to attach syntactic labels to

nonterminals and phrases in the HPB SMT model. We believe that CCG cate-

gories are richer, more accurate and more able to express the syntactic function of

non-standard constituents such as SMT phrases than CF-PSG-based labels. This

motivated us to argue that CCG is better than CF-PSG when they are used to label

nonterminals and phrases in the HPB SMT model, which was the subject of our

first research question:

RQ1: Is CCG better than CF-PSG when using it to annotate nonterminals and
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phrases in the HPB SMT model?

To verify our argument, we carried out experiments which compared the per-

formance of our CCG category HPB system with the SAMT system on Arabic-to-

English and Chinese-to-English translation on data from the news and speech ex-

pressions domains. Our experimental results demonstrated that our CCG category

HPB system outperformed the SAMT system in most of the conducted experiments.

We also conducted a comparison between our CCG category HPB system and the

SAMT system in terms of label coverage, translation model size, and the sparsity

of the labels. The results of the comparison demonstrated that the CCG category

labels have better coverage, are less sparse and lead to the production of smaller

translation models than the SAMT labels. We also conducted an in-depth man-

ual analysis comparing the translation output of our CCG-augmented HPB model

with the SAMT and HPB baseline systems. Our manual analysis demonstrated

that our CCG-augmented HPB system is better than the SAMT at inserting verbs.

The analysis also showed that our CCG-augmented HPB system is better than

both the SAMT and HPB system at capturing the translation of words/phrases

missed by other systems. However, our analysis demonstrated one major weakness

of our CCG-augmented HPB system, namely the failure to correctly translate some

words/phrases. Our experimental results in addition to our manual analysis clearly

demonstrated that CCG is better than CF-PSG when using it to annotate nontermi-

nals and phrases in the HPB SMT model, which answers our first research question

(RQ1).

Although our experimental results demonstrated that our CCG-augmented HPB

system was able to outperform the SAMT system, our CCG-augmented HPB system

underperformed compared to the HPB baseline system in most of the experiments.

We believe that the sparsity of our CCG category labels which restricted the de-

coding search space is what caused its performance to deteriorate in comparison

with the HPB baseline system. As a solution, we tried to see whether softening the

syntactic constraints imposed by CCG category labels by making them more coarse-
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grained would improve the performance of our CCG-augmented HPB system, which

led us to our second research question:

RQ2: Does softening the syntactic constraints imposed by CCG category non-

terminal labels by simplifying them help to improve performance?

We proposed two approaches to extract less-fine grained CCG-based labels from

CCG categories. The first approach extracts CCG contextual information from

CCG categories and employs them in the nonterminal label representation. The

second approach removes syntactic features held by some CCG categories from the

nonterminal label representation. Although these approaches reduce the richness

of CCG categories, the simplified CCG labels still reflect important syntactic infor-

mation about the syntactic function of the phrase and its context. We conducted

experiments which explore the trade-off between the richness of the syntactic con-

straints and their flexibility under different factors: the language pair, the size and

domain of the training data, and the size of the language model. Our experimental

results demonstrated that our label simplification approaches helped to significantly

improve performance over the CCG category HPB system. Furthermore, our ex-

periments emphasised the effects of the language pair, the domain and size of the

training data and the size of the language model on the performance of the different

label simplification approaches.

Although we demonstrated that CCG categories have better coverage than SAMT

labels, both our CCG-augmented HPB sysem and the SAMT system failed to label

at least 30% of the total extracted phrases in the HPB SMT model. We believe

that the limited coverage of the syntactic constraints in our CCG-augmented HPB

model is a reason for the production of ungrammatical translations. Therefore, we

wanted to explore the factors which limit the coverage of the syntactic constraints

in our CCG-augmented HPB model in order to tackle them. This gave rise to our

third research question:

RQ3: Why is the coverage of the syntactic constraints limited in our CCG-

augmented HPB system ?
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The fact that a large proportion of phrases and nonterminals in our CCG-

augmented HPB model is syntactically unannotated is one reason for the limited

coverage of the syntactic constraints in our CCG-augmented HPB system. Another

important reason which limits the coverage of the syntactic constraints applied dur-

ing translation is that part of the HPB SMT grammar, namely the glue grammar,

is non-syntactically aware. We demonstrated that glue grammar rules constitute

a large proportion of the derivations produced by our CCG-augmented HPB and

the SAMT systems. We believe that the syntax-free glue grammar is one impor-

tant reason why ungrammatical translations are produced. After identifying the

factors which limit the coverage of the syntactic constraints in our CCG-augmented

HPB model, we attempted to address these factors by extending the coverage of

the syntactic constraints applied in our CCG-augmented HPB system in the aim of

improving its performance. This led to our fourth research question:

RQ4: Does extending the syntactic constraints in our CCG-augmented HPB

system help to improve performance?

We presented two approaches to increase the coverage of the syntactic constraints

in our CCG-augmented HPB system. The first approach addresses the limited cov-

erage of the nonterminal labels by extending the notion of the nonterminal label

to include more than one CCG category. The second approach augments glue

grammar rules with CCG combinatory rules, which extends our CCG-based syn-

tax augmentation to include the whole HPB SMT grammar. We tried to apply our

extension approaches using soft syntactic constraints using the Preference Gram-

mars paradigm (Venugopal et al., 2009) so that performance is not hindered by the

strictness of syntactic constraints. We carried out experiments which examined the

effect on performance of applying these extension approaches both individually and

combined on Arabic-to-English and Chinese-to-English translation in the speech

expressions domain. We also conducted experiments which examine our extension

approaches on Arabic-to-English translation on data from the news domain with

different sentence lengths. Our experiments demonstrated that our extension ap-
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proaches helped to significantly increase the coverage of the syntactic constraints in

our CCG-augmented HPB system. Our experimental results also demonstrated that

our extension approaches enabled our CCG-augmented HPB system to significantly

outperform the HPB baseline system. Furthermore, our experiments showed that

our different extension approaches exhibited different performance trends under the

various factors examined, namely the strictness of the syntactic constraints, the sen-

tence length, and the domain of the data. We conducted a detailed analysis of our

experimental results, discussing the different performance trends of our extension

approaches and shedding light on the problems that affected the performance of our

CCG-augmented HPB systems which used extended syntactic constraints.

6.1 Future Work

The current CCG-augmented HPB SMT model can be improved in many ways,

which opens up many avenues for future work. In our current model, only a single

extended CCG category label is extracted from the categories of two extended CCG

labels combined during glue grammar rule application. In fact, a sequence of CCG

categories can be combined in many ways, resulting in a set of different CCG cate-

gories. Furthermore, models which score category combination similar to the ones

used in CCG parsing (Clark and Curran, 2007) can be incorporated into scoring

different extended CCG labels which result from combining CCG categories during

glue grammar rule application. This helps to model the possible syntactic functions

of a partial translation more accurately, which in turn helps to build more correct

derivation trees.

Throughout our research, we demonstrated the shortcomings of using BLEU to

evaluate the improvements on grammaticality of translation achieved by our CCG-

augmented HPB systems. Furthermore, the insufficient sensitivity of the BLEU

score to the grammaticality of the translation output might mislead feature weight

optimization (Och et al., 2004). Thus, we believe that using a CCG-based or
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a syntax-based evaluation metric (such as the one proposed by Owczarzak et al.

(2007)) instead of BLEU in tuning and testing our CCG-augmented HPB systems

would better estimate the grammaticality of the translation output and give insights

into the improvements achieved by our CCG-augmented HPB systems. A simple

CCG-based evaluation metric can be built on sequences of CCG supertags similar to

the language model. More complex CCG-based evaluation metrics which use CCG

dependencies can be also explored. Another interesting strand of research could also

explore the correlation between the BLEU score and good parse trees produced for

the translation output.

When measuring the coverage of the syntactic constraints in our CCG-augmented

HPB model which uses the CCG-augmented glue grammar, we used a simple metric

which counts the trees with a single CCG category at its root. A more comprehen-

sive metric which more precisely estimates the coverage of the syntactic constraints

beyond this simple metric can be investigated.

A problem we encountered when evaluating our CCG-augmented HPB systems

is the inconsistency of improvements obtained under the different factors examined.

We noted that this might be due to the instability of the optimizer. Thus, in

order to account for optimizer instability and draw more reliable conclusions about

the effectiveness of our different CCG-augmentation approaches for HPB SMT, the

optimization and test set evaluation should be replicated at least three times for

each system according to the recommendation of Clark et al. (2011).

Finally, the CCG-based syntactic information incorporated into the CCG-augmented

derivation trees produced by our CCG-augmented HPB system can be employed in

syntax-based postprocessing. The postprocessing stage can exploit the richness of

CCG categories, which reflect valency and directionality, to manipulate the deriva-

tion trees based on their CCG annotation in the aim of correcting grammatical

mistakes and improving translation quality.
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