4,212 research outputs found

    Soundings: the Newsletter of the Monterey Bay Chapter of the American Cetacean Society. 2013

    Get PDF
    Issues January - November/December 2013. (PDF contains 96 pages

    Towards an optimal design for ecosystem-level ocean observatories

    Get PDF
    Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage; 2) limited integration of multiple types of technologies; 3) limitations in the experimental design for in situ studies; and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure’s presence and functioning footprint. To address these limitations, we propose a novel concept of a standardized “ecosystem observatory module” structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimize overlap among multiple observation technologies each providing 360° coverage around the module, including permanent stereo-video cameras, acoustic imaging sonar cameras, horizontal multi-beam echosounders and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardized modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks, providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem level monitoring on multiple scales.Peer ReviewedPostprint (author's final draft

    Oceanus.

    Get PDF
    v. 45, no. 3 (2007

    Soundings: the Newsletter of the Monterey Bay Chapter of the American Cetacean Society. 1996

    Get PDF
    (PDF contains 96 pages.

    Chapter 2 Towards an Optimal Design for Ecosystem-Level Ocean Observatories

    Get PDF
    Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage; 2) limited integration of multiple types of technologies; 3) limitations in the experimental design for in situ studies; and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure’s presence and functioning footprint. To address these limitations, we propose a novel concept of a standardized “ecosystem observatory module” structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimize overlap among multiple observation technologies each providing 360° coverage of a cylindrical or hemi-spherical volume around the module, including permanent stereo-video cameras, acoustic imaging sonar cameras, horizontal multi-beam echosounders and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardized modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks, providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem level monitoring on multiple scales

    Oceanus.

    Get PDF
    v. 44, no. 2 (2005

    Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance

    No full text
    International audienceProviding a wide variety of the most up - to - date innovations in sensor technology and sensor networks, our current project should achieve two major goals. The first goal covers various issues related to the public maritime transport safety and security, such as the coastal and port surveillance systems. While the second one w ill improve the capacity of public authorities to develop and implement smart environment policies by monitoring the shallow coastal water ecosystems. At this stage of our project, a surveillance platform has been already installed near the "Molène Island" which is a small but the largest island of an archipelago of many islands located off the West coast of Brittany in North Western France. Our final objective is to add various sensors as well as to design, develop and implement new algorithms to extend th e capacity of the existing platform and reach the goals of our project. Finally, this manuscript introduces the identified approaches as well as t he second phase of the project which consists in analyzing living underwater micro - organisms (the population o f Marine Micro - Organisms, i.e. MMOs such as Phytoplankton and Zooplankton micro - zooplankton, but also heterotrophic bacterioplankton) in order to predict the health conditions of the macro - environment s . In addition, this communication discusses developed t echniques and concepts to deal with several practical problems related to our project. Some results are given and the whole system architecture is briefly described. This manuscript will also addresses the national benefit of such projects in the case of t hree different countries (Australia, France and KS

    Guidelines to address the issue of the impact of anthropogenic noise on marine mammals in the ACCOBAMS area.

    Get PDF
    This document has been requested by the ACCOBAMS Secretariat to provide a concise summary of guidelines for setting up a permit system to regulate acoustic pollution that could be a threat to marine mammals in the Agreement Area. It is a follow up of the Report SC3/Doc 20 presented at the 3rd Scientific Committee meeting
    corecore