238 research outputs found

    Modeling Acidification Recovery on Threatened Ecosystems: Application to the Evaluation of the Gothenburg Protocol in France

    Get PDF
    To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and [A1] [BC] ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds

    Sodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium

    Get PDF
    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium

    Storm disturbances in a Swedish forest-A case study comparing monitoring and modelling

    Get PDF
    A Norway spruce (Picea abies Karst) forest site in southwest Sweden was chosen to study the effects of storm disturbances over the period 1997-2009, during which two storms, 'Lothar' (December 1999) and 'Gudrun' (January 2005), affected the area. Monitored deposition data, soil water chemistry data and forest inventory data were compared with the predictions of an integrated ecosystem model, ForSAFE, in an effort to reveal and understand the effects of storms on acidification/recovery in forest soils. Both storms caused windthrow loss leading to increased nitrate and sulphate concentrations in soil water as a result of stimulated mineralization. Lothar led to increased concentrations of Na+, Mg2+, and Cl- in soil water due to sea-salt episode. No general sea-salt episode was seen following Gudrun, but small sea-salt episodes were observed in 2007 and 2008. Each sea-salt episode caused a temporary decrease of pH, and a subsequent recovery, but overall, the soil water pH decreased from 4.54 to 3.86 after Lothar. Modelling suggested that the site was recovering from acidification from 1990s, and would continue to recover in future. Both modelled and monitored data showed that storm caused disturbances in the recovery; monitored data even suggested that soil acidification happened due to storm disturbances. Sea-salt episode does not increase soil acidity in the long term, and will probably decrease the soil acidity by replenishing the base saturation. The modelled data also suggested that storms with only windthrow would not have effects on soil acidification recovery in the long term, but they may influence the soil fertility by losses of base cations. (C) 2015 Elsevier B.V. All rights reserved

    Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada

    Get PDF
    The response of twenty acid-sensitive headwater catchments in Nova Scotia to acidic deposition was investigated for the period 1850&ndash;2100 using a dynamic hydrochemical model (MAGIC: Model of Acidification of Groundwater in Catchments). To ensure robust model simulation, MAGIC was calibrated to the long-term chemical trend in annual lake observations (13&ndash;20 years). Model simulations indicated that the surface waters of all twenty catchments acidified to the 1970s but showed subsequent recovery (increases in acid neutralising capacity (ANC) and pH) as sulphate deposition decreased. However, under proposed future emissions reductions (approximately 50% of current deposition) simulated ANC and pH will not return to estimated pre-industrial levels by 2100. An ANC of 20 &mu;mol<sub>c</sub> L<sup>&minus;1</sup> and pH of 5.4 were defined as acceptable chemical thresholds (or critical chemical limits) for aquatic organisms in the current study. Under the proposed emissions reductions only one catchment is predicted to remain below the critical limit for ANC by 2100; three additional catchments are predicted to remain below the critical limit for pH. Dynamic models may be used to estimate target loads, i.e., the required deposition reductions to achieve recovery within a given time. Setting target loads at approximately 30% of current depositions would allow three of the four lakes to reach the chemical criteria by 2030. In contrast to the generally good prognosis for surface waters, soils lost an average of 32% of estimated initial base saturation and recovery is estimated to be very slow, averaging 23% lower than pre-acidification levels in 2100

    The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario

    No full text
    International audienceClimate-induced drought events have a significant influence on sulphate export from forested catchments in central Ontario, subsequently delaying the recovery of surface waters from acidification. In the current study, a model chain that employed a statistical downscaling model, a hydrological model and two hydrochemical models was used to forecast the chemical recovery of Plastic Lake sub-catchment 1 (PC1) from acidification under proposed deposition reductions and the A2 emission scenario of the Intergovernmental Panel on Climate Change. Any predicted recovery in stream acid neutralising capacity and pH owing to deposition reductions were clearly offset by large acid effluxes from climate-induced drought events. By 2100, ANC is predicted to show large variations ranging between 10 and ?30 ?molc L?1. Similarly, predicted pH in 2100 is lower (>0.05 of a pH unit) than the value simulated for 2000 (pH 4.35). Despite emission reductions, the future scenario paints a bleak picture of reacidification at PC1 to levels commensurate with those of the late 1970s. The principal process behind this reacidification is the oxidation of previously stored (reduced) sulphur compounds in wetlands during periods of low-flow (or drought), with subsequent efflux of sulphate upon re-wetting. Simulated catchment runoff under the A2 emissions scenario predictes increased intensity and frequency of low-flow events from approximately 2030 onwards. The Integrated Catchments model for Carbon indicated that stream DOC concentrations at PC1 will also increase under the future climate scenario, with temperature being the principal driver. Despite the predicted (significant) increase in DOC, pH is not predicted to further decline (beyond the climate-induced oxidation scenario), instead pH shows greater variability throughout the simulation. As echoed by many recent studies, hydrochemical models and model frameworks need to incorporate the drivers and mechanisms (at appropriate time-scales) that affect the key biogeochemical processes to reliably predict the impacts of climate change

    Contrasting Chemical Response to Experimental Acidification of Five Acid-sensitive Streams

    Get PDF
    To evaluate the role of stream water and substrates in response to acidification, we experimentally acidified five first-order streams in 2005: East Bear Brook, Hadlock Brook, and Mud Pond Inlet (Maine, USA); Fernow WS3 (West Virginia, USA); and Lesní Potok (Czech Republic). All have forested catchments and low alkalinity water. We evaluated water samples from a reference site above the point of hydrochloric acid addition and from two or three sites located 16 to 94 m downstream. Just before acid addition we collected streambed sediment samples for sequential extraction of metals. Several sediment-water and aqueous processes contributed to neutralization of acid in the streams. Protonation of bicarbonate contributed significantly to neutralization in the relatively high pH Hadlock Brook. Weak organic acids neutralized acid by protonation, most significantly in the streams with relatively high dissolved organic carbon, Mud Pond Inlet and Lesní Potok. Adsorption of sulfate contributed to neutralization in East Bear Brook, Fernow WS3, and Lesní Potok. Neutralization from ion exchange of base cations and aluminum (Al) for protons (H+) and possible dissolution of Al solid phases were the primary neutralization mechanisms in Fernow WS3, East Bear Brook, and Lesní Potok. In all streams, exchangeable calcium (Ca) and magnesium (Mg) were mobilized, with Ca\u3eMg, followed by mobilization of Al. In Mud Pond Inlet and Hadlock Brook, which had low Al and continued pH depression downstream, Al accumulated in the water column. At the other three streams, where Al was higher and pH increased more dramatically downstream, Al was lost from solution. However, Al was not saturated and did not precipitate, so the declines in Al concentration were likely caused by resorption to streambed sediments as pH increased. Hysteresis in the relative importance of different cations during neutralization and recovery was clear, particularly in East Bear Brook and Lesní Potok. During initial stages of acidification, Ca desorbed preferentially, whereas Al mobilization dominated during later stages. Early in the recovery, adsorption of Ca to the streambed sediments was kinetically favored over adsorption of Al. Trace elements were mobilized during acidification, likely by ion exchange. Trace elements may also be complexed with solid phases of Al, and then be liberated by dissolution, as in Hadlock Brook where dissolved Al and P correlated. P mobilization due to acidification was minimal, indicating that lake productivity is more influenced by influxes of particulate P during high discharge events than by geochemical mobilization. During experimental acidification, the Al:Ca ratio of a stream’s response may indicate the acidification status of the catchment. Accordingly, Fernow WS3 (low Al:Ca ratio) is in a relatively early stage of acidification, despite 17 years of experimental catchment acidification. East Bear Brook, Hadlock Brook, and Lesní Potok catchments are at early to intermediate stages of acidification. The Mud Pond Inlet catchment (high Al:Ca ratio) is in a later stage of acidification. Short-term stream acidification experiments illuminate processes characteristic of episodic stream acidification and of long-term catchment acidification

    Evidence of Springwater Acidification in the Vosges Mountains (North-East of France): Influence of Bedrock Buffering Capacity

    Get PDF
    Investigations on springwater acidity were carried out in the Vosges mountains (north-eastern France). Acid or poorly buffered spring and streamwaters were detected in the same area. The proportion of acid springwaters (pH < 5.6) is about 20% among 220 springs. The springwater pH on granite are equally spread between 5.0 and 6.8 whereas on sandstone a majority of springs is in the range 5.6 to 6.2. As a whole, but mainly on sandstone, from the 1960's to 1990's, the shape of the pH distributions shifts toward greater acidity. In the sandstone area, trends in pH, alkalinity, total hardness (corresponding to divalent cations), sulfate and nitrate were considered over the 30 yr period (1963-1996) in relation to the bedrock chemical composition. Kendall seasonal tau coefficients indicate that decreasing trends were significant for the first three parameters. Linear regression on the smoothed mean value revealed 18 and 90% decrease for pH and alkalinity respectively, for springwaters draining poor-base cation sandstone whereas only 8 and 30% decrease respectively, was observed on clay-enriched sandstone. On silica-enriched sandstone, alkalinity began to decrease in the early 70's as well as pH. Loss of alkalinity only occurred in the early 80's for springs draining clay enriched sandstone. This can be interpreted as a titration process by acid atmospheric inputs of the buffering capacity of weathering and exchange processes in the soils and the catchment bedrock. The nitrate presents an increasing step in the early seventies but possibly as a result of change in analytical technics and/or increase in atmospheric inputs mainly resulting from increase in fertiliser inputs in agricultural areas or in car traffic. Surprisingly no change in sulfate was noticed in any groups of springs probably as a result of the adsorption/mobilisation in the soils. These long-term trends in spring waters (1963-1996) confirmed the soil and streamwater acidification trends already mentioned in this region, in relation to acid atmospheric inputs since no climate nor forestry practice changes have been detected over the period. Moreover, in spite of acid atmospheric input reductions, no recovery can presently be detected

    Long-Term Changes in Aluminum Fractions of Drainage Waters in Two Forest Catchments with Contrasting Lithology

    Get PDF
    Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 μmol L−1) and inorganic monomeric Al (Ali) concentrations (27 μmol L−1) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 μmol L−1 (Alt) and 13 μmol L−1 (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al

    Influence of Climate on Long-Term Recovery of Adirondack Mountain Lakewater Chemistry from Atmospheric Deposition of Sulfur and Nitrogen

    Get PDF
    In this study, we assessed temporal patterns and long-term trends in nitrate (NO3-), two forms of aluminum (inorganic, Ali, and organic, Alo), and dissolved organic carbon (DOC) concentrations in the water of 29 Adirondack Mountain, New York lakes, and the potential effects of ambient weather conditions (i.e., climatic variation) on these patterns and trends

    Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems

    Get PDF
    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities
    corecore