2,586 research outputs found

    Intelligent automatic operational modal analysis

    Get PDF
    Operational modal analysis methods have been proven especially useful to identify existing structures and infrastructures under serviceability conditions. However, the installation of sensing systems for monitoring continuously an ever larger number of existing constructions has motivated significant efforts towards the automation of the available methods. Within this framework, the present paper introduces a new paradigm for the automatic output-only modal identification of linear structures under ambient vibrations, namely the intelligent automatic operational modal analysis (i-AOMA). It exploits the covariance-based stochastic subspace (SSI-cov) algorithm for the output-only identification of the modal parameters and its workflow consists of two main phases. Initially, quasi-random samples of the control parameters for the SSI-cov algorithm are generated. Once the SSI-cov algorithm is performed for each sample, the corresponding stabilization diagrams are processed in order to prepare a database for training the intelligent core of the i-AOMA method. This is a machine learning technique (namely a random forest algorithm) that predicts which combination of the control parameters for the SSI-cov algorithm is able to provide good modal estimates. Afterward, new quasi-random samples of the control parameters for the SSI-cov algorithm are generated repeatedly until a statistical convergence criterion is achieved. If the generic sample is classified as feasible by the intelligent core of the i-AOMA method, then the SSI-cov algorithm is performed. Finally, stable modal results are distilled from the stabilization diagrams and relevant statistics are computed to evaluate the uncertainty level due to the variability of the control parameters. The proposed i-AOMA method has been applied to identify the modal features of the Al-Hamra Firduos Tower, an iconic 412.6 m tall building located in Kuwait City (Kuwait). The final results well agree with a previous experimental study, and it was also possible to identify two new vibration modes of the structure. The implemented open-source Python code is made freely available

    Unsupervised Learning from Shollow to Deep

    Get PDF
    Machine learning plays a pivotal role in most state-of-the-art systems in many application research domains. With the rising of deep learning, massive labeled data become the solution of feature learning, which enables the model to learn automatically. Unfortunately, the trained deep learning model is hard to adapt to other datasets without fine-tuning, and the applicability of machine learning methods is limited by the amount of available labeled data. Therefore, the aim of this thesis is to alleviate the limitations of supervised learning by exploring algorithms to learn good internal representations, and invariant feature hierarchies from unlabelled data. Firstly, we extend the traditional dictionary learning and sparse coding algorithms onto hierarchical image representations in a principled way. To achieve dictionary atoms capture additional information from extended receptive fields and attain improved descriptive capacity, we present a two-pass multi-resolution cascade framework for dictionary learning and sparse coding. This cascade method allows collaborative reconstructions at different resolutions using only the same dimensional dictionary atoms. The jointly learned dictionary comprises atoms that adapt to the information available at the coarsest layer, where the support of atoms reaches a maximum range, and the residual images, where the supplementary details refine progressively a reconstruction objective. Our method generates flexible and accurate representations using only a small number of coefficients, and is efficient in computation. In the following work, we propose to incorporate the traditional self-expressiveness property into deep learning to explore better representation for subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the ``self-expressiveness'' property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. However, Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. We propose two methods to tackle this problem. One method is based on kk-Subspace Clustering, where we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. This in turn frees us from the need of having an affinity matrix to perform clustering. The other way starts from using a feed forward network to replace the spectral clustering and learn the affinities of each data from "self-expressive" layer. We introduce the Neural Collaborative Subspace Clustering, where it benefits from a classifier which determines whether a pair of points lies on the same subspace under supervision of "self-expressive" layer. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. In summary, we make constributions on how to perform the unsupervised learning in several tasks in this thesis. It starts from traditional sparse coding and dictionary learning perspective in low-level vision. Then, we exploit how to incorporate unsupervised learning in convolutional neural networks without label information and make subspace clustering to large scale dataset. Furthermore, we also extend the clustering on dense prediction task (saliency detection)

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces

    Non-parametric Methods for Correlation Analysis in Multivariate Data with Applications in Data Mining

    Get PDF
    In this thesis, we develop novel methods for correlation analysis in multivariate data, with a special focus on mining correlated subspaces. Our methods handle major open challenges arisen when combining correlation analysis with subspace mining. Besides traditional correlation analysis, we explore interaction-preserving discretization of multivariate data and causality analysis. We conduct experiments on a variety of real-world data sets. The results validate the benefits of our methods

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    Unsupervised Anomaly Detection of High Dimensional Data with Low Dimensional Embedded Manifold

    Get PDF
    Anomaly detection techniques are supposed to identify anomalies from loads of seemingly homogeneous data and being able to do so can lead us to timely, pivotal and actionable decisions, saving us from potential human, financial and informational loss. In anomaly detection, an often encountered situation is the absence of prior knowledge about the nature of anomalies. Such circumstances advocate for ‘unsupervised’ learning-based anomaly detection techniques. Compared to its ‘supervised’ counterpart, which possesses the luxury to utilize a labeled training dataset containing both normal and anomalous samples, unsupervised problems are far more difficult. Moreover, high dimensional streaming data from tons of interconnected sensors present in modern day industries makes the task more challenging. To carry out an investigative effort to address these challenges is the overarching theme of this dissertation. In this dissertation, the fundamental issue of similarity measure among observations, which is a central piece in any anomaly detection techniques, is reassessed. Manifold hypotheses suggests the possibility of low dimensional manifold structure embedded in high dimensional data. In the presence of such structured space, traditional similarity measures fail to measure the true intrinsic similarity. In light of this revelation, reevaluating the notion of similarity measure seems more pressing rather than providing incremental improvements over any of the existing techniques. A graph theoretic similarity measure is proposed to differentiate and thus identify the anomalies from normal observations. Specifically, the minimum spanning tree (MST), a graph-based approach is proposed to approximate the similarities among data points in the presence of high dimensional structured space. It can track the structure of the embedded manifold better than the existing measures and help to distinguish the anomalies from normal observations. This dissertation investigates further three different aspects of the anomaly detection problem and develops three sets of solution approaches with all of them revolving around the newly proposed MST based similarity measure. In the first part of the dissertation, a local MST (LoMST) based anomaly detection approach is proposed to detect anomalies using the data in the original space. A two-step procedure is developed to detect both cluster and point anomalies. The next two sets of methods are proposed in the subsequent two parts of the dissertation, for anomaly detection in reduced data space. In the second part of the dissertation, a neighborhood structure assisted version of the nonnegative matrix factorization approach (NS-NMF) is proposed. To detect anomalies, it uses the neighborhood information captured by a sparse MST similarity matrix along with the original attribute information. To meet the industry demands, the online version of both LoMST and NS-NMF is also developed for real-time anomaly detection. In the last part of the dissertation, a graph regularized autoencoder is proposed which uses an MST regularizer in addition to the original loss function and is thus capable of maintaining the local invariance property. All of the approaches proposed in the dissertation are tested on 20 benchmark datasets and one real-life hydropower dataset. When compared with the state of art approaches, all three approaches produce statistically significant better outcomes. “Industry 4.0” is a reality now and it calls for anomaly detection techniques capable of processing a large amount of high dimensional data generated in real-time. The proposed MST based similarity measure followed by the individual techniques developed in this dissertation are equipped to tackle each of these issues and provide an effective and reliable real-time anomaly identification platform
    • 

    corecore