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Query-Driven Learning for Predictive Analytics of Data Sub-Space
Cardinality

CHRISTOS ANAGNOSTOPOULOQOS, University of Glasgow
PETER TRIANTAFILLOU, University of Glasgow

Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of vectors)
of multidimensional data subspaces, defined by query selections over datasets. This is crucial for data an-
alysts dealing with e.g., interactive data subspace explorations, data subspace visualizations, and in query
processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly
money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics
are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-
driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation
model is highly accurate in terms of prediction and accommodating the well known selection queries: multi-
dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quan-
tizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates
query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and
employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv)
identifies and adapts to possible changes of the query sub-spaces based on the theory of optimal stopping.
The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The
research significance of the model lies in that (i) it is an attractive solution when data-driven statistical
techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is
applicable to different selection query types, and (iv) it offers a performance that is superior to that of certain
data-driven approaches.

CCS Concepts:*Information systems — Data management systems;* Computing methodologies —
Supervised learning; Unsupervised learning; *Mathematics of computing — Mathematical opti-
mization;

Additional Key Words and Phrases: Predictive analytics, predictive learning, data subspace cardinality,
analytics selection queries, vector regression quantization, optimal stopping theory.

1. INTRODUCTION

Recent R&D efforts have been dominated by efforts to accommodate large datasets
with frameworks that enable highly scalable distributed data exploration and predic-
tive analytics. Platforms such as Hadoop/MapReduce [White 2009], Yarn [Vavilapalli
et al. 2013], Spark [Zaharia et al. 2012], Stratosphere [Alexandrov et al. 2014], and
AsterixDB [Alsubaiee et al. 2014] are nowadays the infrastructures of choice, where
large datasets are partitioned across large numbers of data nodes, each working in
parallel. In predictive analytics [Lin et al. 2014], data exploration is commonly based
on aggregation operators (e.g., count, average, median) over the results of analytics
queries. Such queries typically involve datasets (which may themselves be the result
of linking of other different datasets) and a number of selection predicates (e.g., range
predicates over multi-dimensional vectors), which are important for predictive analyt-
ics and exploratory analysis [Atanasov et al. 2012], [Balac et al. 2013]. As (i) query-
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driven data exploration is becoming increasingly important in the presence of large-
scale data [Gosink et al. 2011], and (ii) answering (aggregations over) analytics queries
is a fundamental exploration task [Chaudhuri et al. 2014], it is important to study how
to process them in modern scale-out data systems. In this context, it is important to
consider both query types used by analysts: multi-dimensional range queries and dis-
tance nearest neighbors (radius) queries. In these analytics queries, the analyst defines
a data subspace of interest with very specific boundaries, e.g., hyper-rectangles in the
case of range queries and hyper-spheres in the case of radius queries.

The current data-driven approaches for this problem are undesirable in several
emerging environments: In cloud deployments, continuous data access to derive and
maintain accurate statistics and related structures may be too costly in terms of finan-
cial costs. Furthermore, in several modern computational environments accurate data
statistics over distributed datasets are impossible to obtain/maintain, since the query
processing system does not ‘own’ the data. This applies, for instance, in the SQL(-like)
query engines built on top of Spark or Hadoop, such as Cloudera’s Impala, IBM’s Big
SQL, Teradata’s Hadapt, SparkSQL, etc. Finally, raw data accesses may be completely
infeasible, e.g., in environments of data federations with sensitive data and with mul-
tiple data owners who refuse access to raw data and only agree to provide analytics
and/or aggregated answers. As a case in point, the National Institute of Statistical
Sciences (NISS) has developed a methodology to perform statistical analyses that, in
effect, integrate data in multiple distributed databases, but without literally bringing
the data together in one place, especially for data confidentiality and access restric-
tion reasons [Karr 2010]. This of course includes inability to perform globally (across
all data) exploratory analyses and visualizations. Many government, industrial, and
academic investigations require exploratory analyses based on multiple distributed
databases, often each with a different owner. But, confidentiality, data transfer cost,
and data heterogeneity barriers to the actual data integration and exploratory analyt-
ics are numerous. Therefore, predictive aggregate-based analytics solutions, which are
widely applicable in all environments are highly desirable.

1.1. Definitions
Consider a d-dimensional data space R? and a dataset 3 of data points (vectors) x € R?.

Definition 1.1 (L, Norm). Given two d-dimensional row vectors x, x' € R, the p-
norm (L,) distance is: ||x — x'||, = (Zle |x; — x;|p)% for 1 <p < oo, and ||x — x| =
a{|x; — x}|} for p = co. For p = 2, L is the Euclidean distance.

,,,,,

Definition 1.2 (Range Data Subspace). A range data subspace D(a,b) C R? is de-
fined by an inclusive subset of the dataset 5 such that: D(a,b) = {x € B: a; < z; < b;}
with two row boundary vectors a = [a1,...,aq] and b = [by,...,b4] with a; < b,
a;,b; € R.

The geometric representation of the D(a, b) is a hyper-rectangle defined by the a and
b vectors with phases parallel to the axes, as shown in Figure 1 (left).

Definition 1.3 (Range Query).

A range query q € R?? over a dataset B is defined by the 2d-dimensional row vector
q=[a,b] =Ja1,...,aq4,b1,...,bq] where a; and b; is the lower and higher value, respec-
tively, for attribute i. The range query retrieves the subset of the range data subspace
D(a, b). We notate by Q C R??

the range query vectorial space.

Definition 1.4 (Range Query Overlap). The range queries q, q' € R??, which define
the range data subspaces D(a,b) and D(a’, b’), respectively, overlap if for the boolean
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indicator A(q,q’) € {TRUE, FALSE} it holds true that the logical operation: A(q,q’) =
A ((a; <) A (b; > al)) = TRUE.
1<i<d

Definition 1.5 (Radius Data Subspace). A radius data subspace D(x, ) C R9 is de-
fined by an inclusive subset of the dataset 5 such that D(x,§) = {x’ € B: [|x—x'||, < 6}
under L,.

The geometrical representation of a radius data subspace D(x, 6) is a hyper-sphere
in the d-dimensional space defined by a center row vector x € R? and radius 6 € R,
6 > 0, as shown in Figure 1 (right).

Definition 1.6 (Radius Query).

A radius query q € R9*t! over dataset B is represented by the (d + 1)-dimensional
row vector q = [x, 6], which retrieves the subset of the radius data subspace D(x,6)
under L.

We notate by Q C R+!

the radius query vectorial space.

If p = 00, a radius query q = [x, 0] is represented by a hyper-rectangle centered at x
with extent 26 on each dimension. If p = 2, the radius query region is represented by a
hypersphere centered at x with radius 6.

Definition 1.7 (Radius Query Overlap). The radius queries q, ' € R?*!, which de-
fine the radius data subspaces D(x,6) and D(x’,6’), respectively, overlap if for the
boolean indicator A(q,q’) € {TRUE, FALSE} it holds true that the logical operation:
A(q,q') = (lx = x[|, <6+ 6') = TRUE.

Definition 1.8 (Query Ly Distance). The L3 distance/dis-similarity between range

queries q and ¢’ is defined as ||q — ¢/[|3 = 2., (a;i — a})® + (b; — b})*. The L2 distance

between between radius queries q and ¢’ is defined as ||q — ¢'[|3 = Zle (z; — ) +

0—0)>%

Given a range query q = [a,b] and a radius query q = [x, 6] over dataset 5, the
cardinality y € Nis: y = [{x : x € D(a,b)}| and y = [{x’ : X' € D(x,0}|, respectively.
Note that |B| denotes the cardinality of the set 5.

The reader could refer to Table III in Appendix G for nomenclature. Figure 1 illus-
trates three range and radius queries in a d = 3 dimensional space over a dataset
B.

1.2. Motivation

We focus on the cardinality prediction of an analyst-defined data subspace through
range / radius queries. This is a fundamental task in data management and predictive
analytics, e.g., for data mining, query-driven data exploration, time series analysis,
and visualization tasks. In this context, analysts define specific data regions of a large
dataset that are worth exploring by issuing (range / radius) queries and derive sig-
nificant statistics metrics on the populations of these regions like the cardinality of
these populations. In addition to being an important aggregation operator, in database
systems, cardinality estimation can empower query optimizers to choose, for instance,
the access plan which produces the smaller intermediate-query results (which have
to be retrieved from disks and communicated over the network) saving time, resource
waste, and money (e.g., in clouds).

Cardinality prediction is of high importance for resource utilization under budget
constraints in distributed data systems. Consider K data servers, Sy, each one storing
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Fig. 1. (Left) A dataset B in a 3-dimensional space with three 6-dimensional range queries q € R® defining
the subsets D(a, b) and a, b € R3 (represented as 3D rectangles). The data points in white dots correspond
to the data points returned by the range queries; (right) A dataset B in a 3-dimensional space with three
4-dimensional radius queries q € R* defining the subsets D(x, §) and x € R? (represented as spheres). The
data points in white dots correspond to the data points returned by the radius queries.

a big (partition of a) dataset B,k = 1,..., K, or in more compact notation k € [K].
Assume also that the cost for communicating (e.g., to access and transfer data) with
each data node is known, say c;, expressed as monetary units per amount of data in a
cloud setting. Given a budget of at most C monetary units per query we wish to obtain
the largest possible subset of the query’s answer from the Sy nodes without exceeding
our budget C. That is, we have to identify which data nodes to engage in executing the

incoming analytics query given C. Hence, we desire to maximize ), y,o0r subject to

Zle cror, < C and o; € {0,1} represents the engagement of node S, to execute the
query and return its data that satisfy the query. This problem (a.k.a. the 0-1 knapsack
problem) can be solved (in O(KC) time using dynamic programming) once we have
predicted the cardinality y; for each data node given a analytics query. Then, we are
able to determine which data nodes to engage.

Well-established and widely adopted techniques for Approximate aggregation-Query
Processing (AQP) based on sampling, histograms, self-tuning histograms, wavelets,
and sketches [Cormode et al. 2012] have been proposed and can be used for cardi-
nality prediction. Their fundamental and naturally acceptable assumption is that the
underlying data are always accessible, available, and, thus, it is feasible to create and
maintain their statistical structures. For instance, histograms [Gunopulos et al. 2005]
require scanning of all data to be constructed and be kept up-to-date. The self-tuning
histograms [Srivastava et al. 2006] require additionally the execution of queries to
fine tune their statistical structures. The sampling methods [Olken and Rotem 1990]
execute the queries over the sample to extrapolate the cardinality prediction result.
But as aforementioned, such data-driven approaches are undesirable or infeasible in
several environments. There are cases where data access to these nodes’ data are re-
stricted, e.g., distributed government medical and DNA databases and demographic
and neighborhood statistic datasets. Another case is when it is not possible to provide
exact answers because only summarized data is available for reasons of privacy and
confidentiality, e.g., patient record, customer profile and pattern. Furthermore, many
real-world distributed data systems may limit the number of queries that can be is-
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sued and/or charge for excessive data accesses. For example, there may exist per-IP
limits (for web interface queries) or per developer key limits (for API based queries).
Even when the (daily) limit is high, repeated executions incur a high monetary cost
(e.g., in cloud deployments) and waste computational and communication resources.
The accessed data nodes can either fully execute the queries (to produce exact results)
or locally deploy an AQP technique to produce estimates. In the latter case, we must
rely upon the cardinality prediction accuracy provided by the applied AQP technique.

1.3. Rationale & Challenges

The above motivation discussion raises the following desiderata: Develop AQP tech-
niques that:

— (D1) are applicable to all data-environment scenarios (restricted-access or not),

— (D2) are inexpensive (i.e., avoid relying on excessive querying of and communication
with the data nodes), while

— (D3) offering high prediction accuracy, and

— (D4) being prudent in terms of compute-network-store resource utilization.

Let us consider an indicative baseline solution for AQP in our environment. One
approach is to store, e.g., locally to a central node, all the AQP structures (e.g., his-
tograms, samples, and sketches) from each data node. Hence, we can simply locally
access this node for cardinality prediction. Firstly, this violates our desideratum D1, as
privacy issues emerge. Obviously, retaining all AQP structures, provides one with the
whole information about the underlying data distribution. For instance, in the case of
histograms, we obtain the underlying probability data distribution, while in sampling
methods we retain actual samples from the remote datasets. Even in cases where the
local accesses to AQP structures was secured (which is again subject to major secu-
rity concerns), we would have to cope with the problem of AQP structure updates. The
maintenance of those structures in the face of updates demands high network band-
width overhead and latency for communicating with all nodes during updates of the
underlying datasets at these nodes, and scalability and performance bottleneck prob-
lems arise at the central node. Therefore, this approach does not scale well and can be
expensive, violating our D2 and D3 criteria above.

An alternative baseline solution would be to do away with the central node and send
the analytics query to all data nodes, each of which maintains traditional AQP statis-
tical structures and sends back its results to the querying node which then aggregates
the per-node results. As before, this violates many of our desiderata. It is not applica-
ble to restricted-access scenarios (violating D1) and involves heavy querying of data
nodes (violating D2 and D4).

These facts help expose the formidable challenges to the problem at hand. In this
work we study cardinality prediction in distributed systems taking into consideration
the above-mentioned desiderata. Although significant data-centric AQP approaches
(like multidimensional histograms, self-tuning histograms, sampling methods; please
refer to Section 2.2) for cardinality prediction have been proposed for centralized and
unrestricted systems, a solution for our environment is currently not available.

There are three fundamental pressures at play here. The first pertains to the de-
velopment of a solution for cardinality prediction that is efficient and scalable, espe-
cially for distributed scale-out environments, where the datasets and computation are
distributed. The second pertains to the prediction accuracy, where as we shall see tra-
ditional solutions fall short. The third concerns the wide applicability of a proposed
method, taking into account environments where data accesses may be restricted.

We propose a solution that addresses these tensions. Conceptually, its fundamental
difference from related work is that it is query-driven, based on a novel function esti-
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mation model, trained by a small number of queries and later used to predict answers
to unseen analytics queries. The challenging aim of our approach is to swiftly provide
cardinality prediction of ad-hoc, unseen queries while avoiding executing them over
data nodes, saving communication and computational resources and money.

Example: Let us provide an example on the cardinality prediction problem over a
specific dataset B illustrated in Figure 2. Liaise with the 3-dimensional data space in
Figure 1 (left), where there are four 6-dimensional range queries qi, q2, q3 and q4 rep-
resented as 3-dimensional rectangles over the data space. The data set B contains 28
data points (black and white dots) and the points that are contained in every query
are illustrated with white dots. Each query q; is associated with the cardinality y; of
the corresponding subset, which contains the white dots. Figure 2 shows the cardinal-
ities y1,...,ys of each query, such that y; € {0, |5B|. The overall idea for predicting the
cardinality y of an unseen query q defined over the data set 55 is to make use of the
actual mappings (query,cardinality), thus, extrapolating this knowledge to provide an
estimate ¢ without executing the query q, i.e., without accessing and scanning the data
points in B. The exploitation of these mappings is achieved by locating the most simi-
lar queries q; with the unseen one q and then, based on this similarity, to reason about
an estimate § of the actual cardinality y. In our example, the unseen query q, which is
illustrated as a dotted 3-dimensional rectangle, overlaps with the two 3-dimensional
rectangles that correspond to the queries q; and q4. Based on this overlapping, we can
infer that the actual cardinality y of the query q can be estimated based on the known
cardinalities y3 and y4 to a certain extent driven by the similarity and overlapping of
q with the queries q3 and q4, respectively. In this work, we provide specific statistical
learning algorithms for extracting knowledge from the mapping q — y and how to use
the similarity and overlapping context between queries to proceed with estimating the
cardinality of unseen queries. Similar reasoning holds for radius queries.

X3

. .
@ /mﬁ\
¢ Cardinality

| 3| =28

dz
s o
° ° 0 (\3
G4 Xy
X Dataset 3
Fig. 2. A dataset B of 28 3-dimensional points with four 6-dimensional range queries qi, . . ., q4 represented

as 3D rectangles. The data points in white dots correspond to the data points returned by the range queries.
Each query q; is mapped to a cardinality value y;. The cardinality prediction for the query q is achieved by
analyzing the similarity and the overlapping of query q with the four range queries.
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2. RELATED WORK

We report on data-centric and query-driven approaches for cardinality prediction for
range and radius queries given a data space of R%. Although data-centric approaches
fail our desiderata, we discuss them here for reasons of comprehensiveness.

2.1. Data-centric approaches

Most approaches for cardinality prediction use some form of multidimensional his-
tograms. Histograms partition the data space into buckets by inspecting the (possibly
huge) underlying set 5 and then estimate the probability density function (pdf) p(x).
In histograms, the estimation of p(x) is highly exploited especially for cardinality pre-
diction of range queries like in [Gunopulos et al. 2005]. In the case of a radius query q,
a histogram achieves cardinality prediction by firstly computing for each bucket b the
intersecting area D,(q) C R? with the query as shown in Figure 3, where the query
intersects with (left) five buckets/rectangles; (right) with one bucket/cube. Assuming
that p(x) is uniform in each bucket b (local uniformity assumption), the number of

points that satisfy the query q is estimated by the number of points in bucket b multi-

plied by the d-dimensional volume fraction D’ﬁ)(bq) , where D, C R¢ is the area of bucket b.

The answer set cardinality y is obtained by summing the local cardinalities from each
intersecting bucket.

However, histograms do not scale well with big datasets. Histograms need be period-
ically rebuilt to incorporate updates (i.e., p(x) is updated), increasing the overhead of
this approach. Further, the local uniformity assumption rarely holds in real datasets.
Moreover, cardinality prediction dealing with radius queries costs dearly as it requires
the expensive computation of D,(q). For instance, the intersection of a radius query
under L, with a bucket b (rectangle in a 2-dimensional histogram) results in an irreg-
ular shape whose D,(q) area is difficult to compute; see Figure 3(left). Central to our
thinking is that histograms are constructed solely from data, thus, obviously being not
applicable to our problem for the above-mentioned reasons, e.g., access restricted data.

«‘3
Intersecting area D,(q)

Intersecting area D,(q)

bucket 1 bucket 2
v D@
Ds(q) [ o I
\ / Dy(q)
wy
% —— bucket 3
5 bucket 4 bucket 1

Dy(q) N

Fig. 3. (Left) Five intersecting areas D(q) of 2-dimensional bucket b with radius query q = (x, 6) under
Lo; (right) intersecting area of 3-dimensional bucket and radius query under Lo.

Although methods for calculating D;(q), like [Berchtold et al. 1997] by adopting the
Monte-carlo method, cope with this problem, especially for the radius queries, they (i)
require a large number of random points for accurate estimation (especially in high di-
mensional data), (ii) assume uniformity in each bucket (p(x) is constant within D, (q)),
and (iii) repeat this process for every partially intersecting bucket, leading to signifi-
cant overhead.
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Self-tuning histograms (STHs) [Srivastava et al. 2006] were introduced to alleviate
some of the problems with histograms. STHs estimate p(x) from scratch; starting with
no buckets and relying only on the cardinality provided by the execution of queries,
referred to as Query Feedback Records (QFR): given a range query q with cardinality
y, STHs learn the conditional probability density p(x|y, q). Unfortunately, guarantees
on cardinality prediction accuracy are hard to obtain and most methods for STHs lack
relevant theoretical analyses. Fundamentally, the limitations in STHs in our problem
stem from the fact that they estimate p(x|y,q), thus having to access data (in mul-
tidimensional STHs at least one scan of the set B is required), deals with the data
distribution and make assumptions of statistical dependencies in data.

Other histogram-based cardinality prediction methods adopt wavelets [Chakrabarti
et al. 2000] and entropy [To et al. 2013]. Briefly, the idea is to apply wavelet decomposi-
tion to the dataset to obtain a compact data synopsis based on the wavelet coefficients.
By nature, wavelets-based AQP relies on the synopsis construction over data, thus,
could not be applied to our problem. Overall, STHs and the other advanced histogram-
based approaches are associated with data access for estimating p(x) or any other
p(x|q, . ..) thus not applicable in our problem.

There are also methods for predicting the cardinality over data subspaces defined by
radius queries under any L,,. In [Tao et al. 2003] methods use the B set’s fractal dimen-
sions. They rely on certain assumptions on the density of data points in B and require
data access to construct their structures. Sampling methods e.g., [Olken and Rotem
1990] have been also proposed. They share the common idea to evaluate the query
over a small subset of B and extrapolate the observed cardinality. Finally, another ap-
proach for AQP answering to cardinality estimation is data sketching; we refer the
reader to [Cormode et al. 2012] for a survey of sketching techniques. Sketching algo-
rithms construct estimators from the raw data and yield a function of these estimators
as the answer to the query.

2.2. Query-driven approaches

The idea of predictive analytics based only on the knowledge from previously issued
queries and their results is only now emerging, based on our previous work on query-
driven learning for centralized cardinality prediction of range queries in [Anagnos-
topoulos and Triantafillou 2015b] and for radius queries in [Anagnostopoulos and Tri-
antafillou 2015a]. The model proposed in this paper is fundamentally different from
previous approaches in the following ways: (i) We deal with both types of (range and
radius) queries. This is achieved by introducing the idea of unsupervised function es-
timation/regression for cardinality, which is based on a probabilistic framework over
query distances, thus, being independent on the types of queries. (ii) Based on that
framework, the proposed model can detect changes in query patterns (distributions),
which is a fundamental requirement for query-driven approaches. (iii) Then, the model
is capable of being incrementally updated, by adjusting its structures to reflect the
changes in query pattern distributions. (iv) Moreover, the model is decentralized and
can be applied in modern scale-out data systems over distributed data stores. This
also provides for elasticity (adding/removing data nodes) in distributed environments
since the model training phase (as will be shown) is purely decentralized (local) and
thus independent among data nodes. (v) Finally, our function estimation model for car-
dinality prediction is significantly different than the models in [Anagnostopoulos and
Triantafillou 2015a,b].

The fundamental idea of previous methods [Anagnostopoulos and Triantafillou
2015a,b] and our approach is to partition (cluster) the query patterns, identify query
prototypes, and then associate with each query prototype a cardinality prototype.
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Learning and adapting the mapping between the query space and cardinality domain
is most significant in cluster-based prediction [Kohonen 1989].

Both previous approaches [Anagnostopoulos and Triantafillou 2015a,b] focus only on
utilizing the prediction error! as feedback to adapt the cardinality prototypes only —
degrading query space partitioning to a mere clustering. Instead, we further propagate
this feedback to inform/supervise query clustering as well (Section 4.1). This leads to
a more powerful function estimation model, which performs joint minimization (in the
query space and cardinality domain) of the prediction error. In addition and more in-
terestingly, the change detection of the query space, reflecting the way analysts change
their interests in exploring and analyze data subspaces, is provided in our model and
treated as an optimal stopping time problem. Through this time-optimized stochastic
framework, we are able to securely decide when a query subspace is novel reflecting
the analysts’ interest in this query subspace with the ultimate purpose to minimize the
risk of low prediction accuracy. In this context, we also propose an adaptation mecha-
nism to continuously follow the trend of the analytics queries issued by the analysts to
novelty query subspaces.

3. FUNDAMENTALS & PROBLEM FORMULATION

Consider a user-defined data subspace D, which is either a range data subspace D(a, b)
or a radius data subspace D(x, ), from range q = [a,b] or radius q = [x, 6] query,
respectively, over a dataset B. Let also y € N denote the actual cardinality for the data
subspace D.

We seek to estimate the unknown function f : D — {0,...,|B|} C N for each query
type, i.e., the mapping q — y which predicts the cardinality ¢ of the data subspace D
of a query q. We notate y = f(a,b) and y = f(x,0) for the range and radius queries,
respectively, or to simplify the notation, y = f(q).

The prediction error for estimating ¢ is defined as the absolute-deviation loss |y —
7]. Note that other prediction errors can be also adopted, e.g., the A-insensitive loss
max{|y—g¢|—A\,0}, A > 0 or the 0-1loss I(y # 4) € {0, 1} with I be the indicator function.
We focus on the absolute-deviation loss, because (i) it is widely used for evaluating the
cardinality prediction error as in [Gunopulos et al. 2005] and [Srivastava et al. 2006]
and (ii) it provides us the (robust statistic) median of the data subspaces cardinalities,
which is used to accurately approximate the actual cardinalities, as elaborated later.

In statistical learning theory, the function f estimation is achieved by a regression
function f (q; ) with parameter a € A, where A is a parameter space defined later.
In this context, the problem is reduced to choosing from a set of regression functions
F = {f(q;a)|a € A} the regression function f(q;*), which minimizes the Expected
Prediction Error (EPE) with respect to the absolute-deviation loss |y — 3|, i.e.,

flaia®) = argminE|Jy - f(a:a)]- (1)
feF
Consider now K distributed data nodes Si,..., Sk, each one storing a dataset 5y,
k € [K], consisting of d-dimensional vectors x = [z1,...,z4] € RY. We again stress that

we wish to reduce base data access during query processing the datasets B, Vk. We
only have access to query-cardinality responses, that is the cardinality y; of the data
subspace defined by a random query q executed on node S;. Assume also a Central
Node (CN), which can communicate with all data nodes. The aim of the CN is, given
an incoming query q, to predict the cardinality ¢, for each node S, without accessing
the nodes.

1Kernel regression error in [Anagnostopoulos and Triantafillou 2015b], linear regression error in [Anagnos-
topoulos and Triantafillou 2015a]
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In the remainder, when we refer to a query q we imply both a range and a radius
query, unless otherwise stated. Let us focus on the set 7 = {(q;, y;) }_, of training pairs
of (query, cardinality) corresponding to a node Si. The CN receives a new (unseen)
analytics query q and predicts the cardinality ¢ of the corresponding data subspace
using only the set 7 without actually executing q at Si. In this context, we discuss
some ideas on how to exploit the set 7 to estimate the regression function f, which
minimizes the EPE as defined in (1).

Idea 1: An idea is for the CN to keep all pairs (q;, y;) and, given an unseen query q,
it finds the most similar query q; under L,. In this case, CN predicts the corresponding
cardinality of the data subspace as:

g = fla) =y, =qj=arg}g[i£1]||q—qi\\zv(qjyyj) eT. (2)

The CN can also involve the « closest (most similar) queries to q under L, and aver-
age their cardinalities, i.e., perform a x-nearest neighbors regression, i.e.,

A 1
9= flair) =~ > yii(ay) €T, (3)

q; EN(q;k)

where N(q; k) is the L, neighborhood of q defined by the « closest queries q; in 7.

The major problems here are: (i) we must store and search all previous pairs for each
unseen query q; 7 can be huge and we have to search the 7 sets for all K data nodes.
Deciding which pairs to discard is not a trivial task (a new pair might convey useful
information while another new one might be a redundant / repeated query); (ii) with
data updates at node Sy, which impact the cardinality of query results, it is not trivial
to determine which pairs from 7 and how many of them to update. Specifically, in the
k-nearest neighbors regression: (1) the CN can only add actual pairs of (q,y) to sup-
port regression, which obviously does not scale with the number of stored pairs in T;
(2) since there is no other information stored for pinpointing the impact of the regres-
sion accuracy of any arbitrary neighborhood of the closest s queries, then any update
policy for discarding or updating some of the « closest actual pairs (q,y) € T cannot
guarantee that this will minimize the prediction error for future queries. This is the
major disadvantage of the non-parametric regression predictive modeling, where there
is no support for scaling with the number of the training pairs 7 and no parametric
information is coded to represent the very specific neighborhood of an input query q for
updating any internal structure in light of minimizing the prediction error. (iii) Even
worse, all pairs may need updating in order to decrease the current prediction error,
which evidently does not scale, due to the fact that when query patterns change (new
analysts’ interests), then there may be many pairs in 7 that will not contribute to the
prediction result (the new queries are actually distant to the previous ones) or even
negatively impact the final result. To avoid such problems we should extract knowl-
edge from each, per node, 7 as to how query and data subspace cardinality depend on
each other.

Idea 2: Moving forward, focusing again on the set 7 of a data node, we could cluster
similar queries under L, thus, forming a much smaller set W of representative (pro-
totype) queries w with |W| <« |T|. For instance, w € W can be the centroid of those
queries from 7y, C 7 with L, distances from w being the smallest among all other can-
didate centroids. This may ameliorate the above problems. However, we are not just
interested in clustering T. We cluster T, i.e., performing unsupervised learning, with
the aim at cardinality prediction, i.e., performing regression (supervised learning) of
cardinality against query prototypes. We, thus, pursue a clustering and regression
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model, which exploits (i) the statistical structure emerging from query clustering by
generating query prototypes and (ii) the prediction error to guide both the regression
and clustering processes. This leads us on the idea of unsupervised regression, which
interprets that we associate each w; € W with a ‘representative’ cardinality of the cor-
responding data subspace defined by w;. This representative cardinality should refer
to a statistic, e.g., the average cardinality of those queries that belong to 7, or, to a
robust statistic like the median cardinality of the queries belonging to 7s,,.

The mapping f from representative queries to representative cardinalities of the un-
derlying data subspaces defined by analysts’ queries approximates the f(q) regression
function:

fla) = f(w),qa€Tw,weW. 4)

Once this approximation is achieved, the CN only keeps W and discards 7. Nonethe-

less, we want to move beyond ‘off-line’ processing of the WV sets of nodes for each query,

as this would require high memory resources. Hence, we need incremental clustering

of the query space and incremental regression each time a new query arrives at the

CN. In other words, we require an adaptive, joint clustering and regression algorithm
that incrementally quantizes 7 by minimizing the EPE.

3.1. Problem Formulation

The adoption of any known algorithm for on-line clustering (e.g., on-line xk-means), is
not directly applicable, as we explicitly focus on the quantization of the query space
for the purpose of regression and prediction. Also, on-line regression methods, such as
incremental regression trees [[konomovska et al. 2010], on-line support vector regres-
sion [Ma et al. 2003], could not solve the problem at hand: We need to deal with the fact
that queries are continuously observed, conveying analysts’ (changing) interests dur-
ing data exploration and predictive analytics tasks. Query distributions in many ap-
plication domains are known to be non-uniform —actually, considerably skewed— with
specific portions of the data subspaces being more popular, e.g., an instance of the Aub-
ness phenomenon [Radovanovic et al. 2010]. Furthermore, query patterns change with
time, reflecting changes of analysts’ interests to exploring different data subspaces. A
model’s capability to detect and adapt to such changes requires explicit information
on very specific subspaces of the query space. This is neither easily provided nor sup-
ported by incremental quantization and regression methods. Moreover, the problem
here is not only to detect changes on the query spaces, but determine which query rep-
resentative(s) of the query subspaces and which cardinality representatives to update
and how, upon query updates.
The fundamental problems are:

PROBLEM 1. Given a data node Sy, that locally stores a dataset By, incrementally

estimate f(q) by a function estimation model fi(q; o) with parameter oy, which mini-
mizes the EPE in (1).

Moreover, the function estimation model f; should be up-to-date as query patterns
are subject to change. This is because of the fact the analysts change their interest
in or generate new interests in other unexplored data subspaces. In this context, the
estimation model should first detect changes in query patterns and then proceed with
adaptation keeping itself up-to-date.

PROBLEM 2. Given a function estimation model f, for a data node S), and changes
in the query patterns over a dataset By, incrementally detect such changes and adapt
model’s parameter «;, such that the updated model minimizes the EPE in (1).
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3.2. Our Approach & Contribution

We address Problems 1 and 2 bearing in mind the requirements of (i) incremental
quantization of the query space, corresponding to analyst-defined data subspaces of
interest, (i) incremental regression of cardinality on query prototypes, and (iii) on-line
detection of novel data subspaces of interest accompanied with incremental adapta-
tion of the current function estimation model. To this end, we combine adaptive vector
quantization of the query space by taking into account the objective to minimize the
EPE. We propose an incremental unsupervised regression vector quantization model to
approximate f. Fundamentally, we rest on the fact that similar queries under L, cor-
respond to close medians of the cardinalities of the corresponding data subspaces, as it
will be proved later. Based on that, the query prototypes are quantized with respect to

the EPE in (1). Then, we interpolate f over a weighted average of the cardinality medi-

ans of those data subspaces that overlap with the data subspace defined by an unseen

query. This median-based interpolation is a robust measure of the central tendency of
the cardinalities that fall within those overlapping data subspaces.

Once we have approximated f by training a f, on each data node S, we predict
the cardinality y, over a random analyst-defined data subspace for each Sy without
executing the query over S;. Our model also swiftly detects and adapts to changes in
query patterns. The major technical contributions are:

— an unsupervised regression function estimation model of the cardinality of a data
subspace defined by radius and range queries, with its convergence analysis;

— a stochastic time-optimized method for detecting query patterns changes based on
Optimal Stopping Theory and Adaptive Resonance Theory;

— comprehensive experimental results analyzing the performance of our model and
showcasing its benefits vis-a-vis data-centric sampling [Vitter 1985], histograms
[Gunopulos et al. 2005] and STHs [Srivastava et al. 2006], [Viswanathan et al.
2011].

4. FUNCTION ESTIMATION MODEL

As we are after decentralized function estimation, each approximation model f; corre-
sponds to a data node Si. Due to the assumed undesirable access to By, the regression
function f; can only approximate the unknown function f based only the available
training pairs (q,y) for data node Si. As highlighted above, we perform two major
training tasks: The first task (T1) is adaptive vector quantization of the query space Q
by incrementally updating a set of query prototypes. The second task (T2) is an adap-
tive (probabilistic) regression of associated cardinality prototypes on query prototypes.

4.1. Unsupervised Regression Function Estimation

4.1.1. Query Prototypes. A key task for T1 is to represent random queries q € Q by a
set of M prototypes W = {w, € Q,j € [M]}. A query q is represented by its winner
(closest under L) prototype:

w = argjrél[lﬁ]ﬂq will2. (5)

Range Query Prototype: In the case of a range query q = [a, b], its representative
query refers to the prototype w* = [a*, b*] € W, where the sum of the L, distances of
the lower bound vectors ||a—a*||; and the upper bound vectors ||b—b*||2 is the smallest
compared to the sum of the corresponding L. distances from all w € W. The similarity
of a range prototype w* and a range query q refers to the similarity of their corre-
sponding hyper-rectangles, i.e., the closeness of their lower and upper bound vectors
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under L,. Statistically, the range data subspace D(a*, b*) defined by the query proto-
type w* is a representative range data subspace of all analyst-defined data subspaces
D(a, b) defined by past issued range queries over the dataset 5. The physical interpre-
tation of the representative query, as it will be proved later in Theorem 4.6, is that:
the lower bound vector a* and upper bound vector b* of the prototype w* refer to the
mean vectors of all lower bound vectors a and upper bound vectors b of those issued
range queries q = [a, b], which were closest to q*. Figure 4 (left) shows the four pro-
totype range queries w as average red rectangles projected onto a 2-dimensional data
space (z1,x2) representing one hundred range queries issued over four data subspaces
of interest.

Radius Query Prototype: In the case of a radius query q = [x, 6], two radius queries
are similar when their corresponding centers and their radii are similar, too. The rep-
resentative radius query w* = [x*,6*] € W is the closest to a radius query q = [x, 6],
when the sum of the distances of their centers and radii ||x — x*||3 + (§ — 0*)? is the
smallest among all corresponding distances from all w € W. The prototype radius data
subspace D(x*,0*) is represented as the average hyper-sphere from all past analyst-
defined radius data subspaces D(x, §), where center x* and 6* is the mean vector of all
centers and the average radius of all radii, respectively, of past issued radius queries
with closest prototype w*; see Theorem 4.7. Figure 4 (right) shows the four proto-
type radius queries w as average red circles projected onto a 2-dimensional data space
(z1,22) representing one hundred radius queries issued over four data subspaces of
interest.

The Expected Quantization Error (EQE) under L2 incurred by this representation,
i.e., by projecting a random query q to its closest prototype w € W, is given by:

Er(wy,...,wy) =E Lrél[il\r/}]ﬂq— ng} . (6)

The task T1 incrementally minimizes (6) with the presence of random queries one
at a time by updating their winner prototypes.

The task T2 incrementally estimates the unknown conditional probability density of
cardinality y given a query q, p(y|q), with the presence of a random pair (q, y) provided
once by node S;. While task T1 progressively optimizes the EQE &, at the same time
tasks T2 trains a probabilistic regression model, which importantly affects/feedbacks
also the quantization of Q as will be discussed later.

To introduce the idea of quantization of Q driven by the current EPE, thus, obtaining
the insights of the mapping q — y association, we rest on the assignment conditional
probability density of w; given a random query q, p(w;|q). This is the probability of
assigning a random query q to a prototype w,; € WW. We require this probability to be
dependent only on the L, distance between a prototype w; and a random query q, thus,
applicable to both types of radius and range queries. Define also (i) p(w;) as the prior
probability that w; is assigned to a query and (ii) p(q|w;) as the probability density of
generating a query q in a query subspace of Q around the prototype w;. In that case,
the probability density p(q) is expressed by a mixture model over all prototypes of W:

pla) = > plalw;)p(w;). (7

jE[M]

4.1.2. Cardinality Prototypes. The key task T2 estimates the cardinality prototypes in
U = {u; € R,j € [M]} where each one is associated with a query prototype w;, j €
[M]. The cardinality prototypes u; of the (range / radius) data subspaces of the query
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Fig. 4. (Left) Example of four prototype range queries w (red rectangles) projected onto a 2-dimensional
data space (z1,z2) representing one hundred range queries issued over four data subspaces of interest;
(right) example of four prototype radius queries w (red circles) projected onto a 2-dimensional data space
(z1, z2) representing one hundred radius queries issued over four data subspaces of interest.

prototypes w; comprise the fundamental model parameters used for minimizing the
EPE in (1) in terms of function estimation and for regression in terms of prediction.

Consider the case of a range query. Given a range query q = [a, b], let y = |D(a, b)| be
the cardinality of the corresponding range data subspace D(a,b), and w* = [a*,b*] €
W be its closest prototype given (5). As it will be proved in Theorem 4.7, the cardinality
prototype u*, which corresponds to the cardinality of the average range data subspace
D(a*, b*), refers to the median of all cardinalities y of all those past range queries with
closest prototype w*. The same holds true for the cardinality prototypes associated
with radius queries, i.e., for range queries:

u* = [D(a*,b*)| = median{y} : w* = arg m[lﬁ]”q —w,|l2 and y = |D(a, b)|
J€

and for radius queries:

u” = D", 67)] = median{y} : w* = arg min |~ w; | and y = [D(x, )]
je

The cardinality prototype v*, as a median, refers to a robust statistic over the cardi-
nalities of those data subspaces from queries similar to w*. The cardinality prototype
u* is the most resistant statistic, having a breakdown point of 50%, i.e., robust in the
presence of outlier values, is independent of any distance metric, and provides us a
measure of location when the distribution of the cardinality values of |D(a, b)| (range
query) or |D(x,0)| (radius query) is skewed. These cardinality prototypes, are used for
instantaneous predictions that are given as feedback to the entire training process for
minimizing the EPE, as discussed later.

The major problem for the task T2 is to approximate the conditional density p(y|q)
through the prototype pairs (w;, u;). Specifically, we use those cardinality prototypes
in U by interpolation to predict the cardinality of an analyst-defined data subspace
given an unseen query q. Based on the approximation of p(y|q) through the proto-
type pairs (w;,u;), task T2 progressively uses the current, instantaneous prediction
error derived from the cardinality prototypes u; as feedback in quantizing Q. During

training of the f;, given an unseen query q, we first find its winner (closest) query pro-
totype w;. This winner prototype, representing a subspace of Q, is associated with a
cardinality prototype u;. Then, the instantaneous predicted cardinality § for query q is
obtained by the cardinality prototype, i.e., § = u;, and the induced current prediction
error is |y — u;|.
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To overall minimize the EPE in (1), we require T2 to minimize the expected proba-
bilistic cost based on cardinality prototypes u; weighted by the probability assignment
p(w;|q) of their query prototypes. That is, task T2, given the set of query prototypes
W, attempts to incrementally minimize the Expected Conditional Cost (ECC):

Ex(ur, - unlV) = E[ Y plwla)ly — (®)

JE[M]

Remark 4.1. The function &, is a cost function by definition of p(w;|q) and is suit-
able for unsupervised regression. That is because, when p(w;|q) = 1 for the nearest
prototype given a fixed set of prototypes W, the assignment probabilities for other pro-
totypes are zero®. In that case, the ECC & in (8) reduces to the EPE in (1), which is
our main purpose to minimize it, thus, having approximated function f by a regression
function f.

Remark 4.2. The objective optimization function in (8) is based on a mixture of ex-
perts where the output u; is associated with the quantization of the input vector space,
which is achieved by the query prototypes w;, i.e., the j-th expert is represented by
the pair (w;, u;). The proposed cost function attempts to minimize the weighted pre-
diction error by estimating the optimal position of the cardinality prototypes u; in the
output space associated with the optimal position of the query prototypes w; in the
input space. The cardinality prototypes are real numbers in [0, |B|] that will be closed
to optimal positions for minimizing the prediction error with the actual cardinality y.
Note also that the actual cardinality y refers to a non-negative integer, by dentition
of the cardinality, y € {0,1,2,...,|B|}. Our idea is to combine both: supervised learn-
ing for estimating the best positions of the cardinality prototypes u; and unsupervised
learning for estimating the best positions of the query prototypes w;. The concept of
supervision is based on providing feedback to both classes of prototypes to move around
the input-output space. This derives from the mixtures of experts’ methodology used
for (i) prediction, i.e., regress y on the quantized input vectorial space by w;, and (ii)
for query space quantization (unsupervised learning). As it will be shown in Theo-
rem 4.4, the movement of the query prototypes w; are based on both: the query input
q, which attempts to quantize the input space in an unsupervised manner, and the
output y predicted by the network of the experts u;, which attempts to minimize the
absolute difference |y — u;|. Both methodologies are combined to provide the concept of
unsupervised regression analyzed in Section 4.2.

Evidently, we do not have any prior knowledge about p(w;|q) in order to proceed
with the incremental minimization of (8), which corresponds to the minimization of
the EPE. Hence, we apply the principle of maximum entropy: among all possible prob-
ability distributions that yield a given expected probabilistic cost, we choose the one
that maximizes the entropy [Rogers and McClelland 2014]. A key factor to ensure con-
vergence of the T2 minimization of (8) (and thus of the EPE in (1)) and obtain the global
minimum is that density p(w,|q) conforms to the Gibbs distribution and expressed via
the query prototypes in W, i.e.,

p(a|w;) o exp(—Bllq — w;l|3), )

2The reason why p(w;|q) is, at the beginning, non unity has to do with the training procedure, as will be
described.
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where the parameter 5 > 0 will be explained later. If we assume that each prototype
w; has the same prior p(w;) = ﬁ then through the Bayes’ rule p(w;|q) = %,
we obtain that:

exp(—Blla — w;,l3)
. . (10)
p(w;la) le\il eXp(_ﬁHq—WiH%)

Remark 4.3. Note that p(w,|q) explicitly depends on the L2 distance of queries with
the query prototypes. Hence, this renders our model applicable to both range and ra-
dius query types.

Based on (10), the task T2 converges to the global minimum of &; if parameter 3
is increased sufficiently slower at each update step in the presence of a pattern pair
[Rogers and McClelland 2014]. By varying the parameter (3, the probability assign-
ment p(w;|q) can be completely fuzzy (8 = 0, each random query belongs equally to
all prototypes) and crisp (5 — oo, each random query belongs to only one prototype,
or more precisely uniformly distributed over the set of equidistant closest prototypes).
As 8 — oo this probability becomes a delta function around the winner, i.e., the proto-
type closer to q. In this case, the expected cost function in (8) is strictly decreasing. As
B < oo at each step all prototypes are simultaneously updated towards the pair (q, y),
but for each of them the step size is scaled by the assignment probability in (10). That
is, the j-th query prototype and its corresponding cardinality prototype are shifted a
fraction of p(w,|q) at each step.

4.2. Unsupervised Regression Optimization

4.2.1. Update Rules. Our problem is to approximate the optimal query prototypes W
and cardinality prototypes U that minimize the EQE in (6) and the ECC in (8), respec-
tively. Once those prototypes have approximated for a data node S then fk(q; ayi) with
parameter o = WUU approximates f(q) with respect to the EPE . In our case, we deal
with (simultaneous) incremental estimation of tasks T1 and T2 upon the presence of a
random pair (q,y) at node Si. These tasks jointly minimize the objective optimization
function:

Eo(W,U) :El(W) +52(U‘W), 11)
with W = {wj}j]‘/il,u = {u; }Jle The query space Q quantization is driven by the
instantaneous prediction error generated by the current prototypes in /.

In the parameter oy = {w;}}L, U{u;}}L,, all query and cardinality prototypes rep-
resent the associations w; — u;. These prototypes are incrementally updated through
Stochastic Gradient Descent (SGD). The rationale of the adoption of SGD is that it ap-
proaches the optimal aj parameter by following the negative gradient of the objective
optimization function &, after seeing only a single pair (q, ). SGD computes the gradi-
ent V&) (ay) with respect to oy, at each step, thus, updating ay by Aay < —nVEy(ax). In
SGD the learning rate n € (0, 1) is a relatively small scalar that drives the movement
of the o, parameter towards the optimal solution based on the current pair. Choosing
the proper learning rate and schedule, i.e., changing the value of the learning rate
as training progresses, is fairly difficult (this primarily depends on the convexity and
smoothness of the objective optimization function). To ensure convergence of the pa-
rameter to the optimal solution, scalar 7, (t) at each step ¢ must satisfy: .~ 7,(t) = oo

and ) .0, nf—(t) < oo [Bousquet and Bottou 2008]. In practice, a standard strategy is to
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use a small enough learning rate that gives stable convergence through a hyperbolic-
based function, i.e., n(t) & 7.

Based on SGD, the approximation of oy, to its optimum w.r.t. (11) is provided by a set
of update rules for each component of the a;, parameter, as stated Theorem 4.4.

THEOREM 4.4. Given a pair (q,y), the estimation model’s parameter oy, of data node
S); converges if query prototypes w; and cardinality prototypes u; are updated as:

aw; = =y ((ly—wl= Y plwila)ly—wl) -p(w;la) + ¥;)(@—w,) (2

i€[M]
Auj = nip(w;lq)sgn(y — u;) (13)
where sgn(-) is the signum function, Y; is the winner indicator: Y; = 1 if w; =

arg min;e(as|lq — will2; 0, otherwise, and n; € (0,1) is a learning rate of the current
update step.

PROOF. See Appendix A. O

Remark 4.5. The update rule of a prototype Aw; in a component-wise format for a
range query prototype and a radius query prototype is: Aw; = [Aa;, Ab;] and Aw; =
[Ax;, Ab,], respectively. Hence, based on (12) and upon the presence of a range query
q = [a, b] and of a radius query q = [x, 6], we obtain, respectively:

AWj X [Aaj, Abj] = [a — ay, b — b7]
Aw; o [Ax;, A0;] = [x —x;,0 — 0;].

4.2.2. Learning Rate. All prototypes are updated at each stept = 0, 1, ... upon presence
of a pair (q,y). Let n; be the counter indicating the number of times the query proto-
type w; is assigned a query q as a winner. Furthermore, a closer look at & refers to
the M-means quantization algorithm over the query space achieved by SGD as ana-
lyzed in [Bottou and Bengio 1994]. In that case, the learning rate 7,(¢) at each time
step t should follow the hyperbolic schedule of 7,(t) ﬁ, which is proved to con-
verge [MacQueen 1967], and, interestingly, it refers to the optimal learning schedule.
However, since we are further interested in quantizing the query space in light of pre-
diction (i.e., minimizing also the ECC &;), we also update the query prototypes that
are not winners of incoming pairs. This weighted update of all prototypes driven by
the current prediction error (discussed later) results in the update of all counters n;(¢)
of the M prototypes at step ¢ based on their probability of assignment. In that case, we
obtain that:

n;j(t) < n;(t — 1)+ p(w;la),j € [M]. (14)

It is worth noting here that the update rule in (14) is close to the Kohonen Learning
Algorithm (KLA) [Kohonen 2013], which reflects the importance of each prototype in
the learning process with respect to its probability assignment p(w;|q). The hyperbolic
schedule of the learning rates 7(t), t = 0,1,..., for the prototypes in (13) and (14) are
then updated by:

b
n;(t)’
which reflects the weight of the probability assignment p(w;|q).

n;i(t) = (15)
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4.2.3. Convergence of Assignment Probability. During the optimization process, the prob-
ability assignment p(w;|q) in (10) starts with a low value of 3, (e.g., 5(0) = 0.01) for
which p(w;|q) is approximately uniform. That is, for low values of 3, the query pro-
totypes are not yet attracted to a certain partition, and they all migrate towards the
pairs presented. As time progresses, 8 gradually increases and the query prototypes
are separated from each other since p(w;|q) begins peaking around the winner. In
time, the query prototypes closer to pairs will take relatively larger steps, while the
query prototypes which are far away will be increasingly less affected. In the limit as
t — oo we obtain that:

1, if || — wi|l2<||la — Wsl|2, Vi # 4,
p(wila) = {0, 0‘51”121"Wisé.“2 la Shihe (16)

The fact that the prototypes in W and U being updated are not the only winners
is the key capability of the proposed optimization process to avoid local minima, thus
requiring lim; ,, 8(t) = oo [Rose et al. 1992]. As in simulated annealing [Lee et al.
2013], we adopt 3(t) = SoIn(t + 1) to achieve global minimum for (11) with 0.1 < 8y <

0.4. It is worth noting that, gradually as § increases then p(w,|q) — 1, thus, the fr
with the query and cardinality prototypes from optimal o approximates the function
fwrt. (1):

fla) ~ fi(a;a}) (17)

4.3. Instantaneous Prediction Feedback

In this section we discuss how the update rule in (12), which corresponds to the quan-
tization of the query space depends on the instantaneous prediction error (feedback) in
cardinality. (This reflects our principle in clustering the queries patterns in light of car-
dinality prediction and function estimation.) The update rule in (12) makes the amount
of update of the query prototype w; dependent on the absolute difference |y — u;| be-
tween the actual cardinality y of a data subspace defined by a query q and the asso-
ciated cardinality u; of the the prototype w;. In this context, prototype w; can either
move toward query q or move away from it based on the instantaneous prediction u;.

To further demonstrate the behavior of (12), consider the case where only the two
closest prototypes to q are used for instantaneous prediction, say w; being the closest
and w; being the second closest, and neglect the remaining prototypes. In this case,
our (generic) model coarsely would reduce to the regression LVQ [Grbovic and Vucetic
2009], where parameter S does not follow the rules of simulated annealing and the
minimization of £; is not pursued. If both prototypes are in similar proximity to q, their
assignment probabilities will be approximately the same, p(w;|q) = p(w;|q) = 0.5. We
obtain then the update rules for those prototypes and the corresponding cases:

Aw; oc —(|y — u;| — |y — w))
18
{Awi o +(ly — | — [y — wil) (18)

— If instantaneous prediction errors e; = |y — u;| and e; = |y — u;| of those prototypes
are similar, then the second closest prototype w; will not be updated, i.e., it will
not follow the pattern of the query q. On the other hand, in this case, the winner
(closest) prototype w; will follow the pattern of the query q only through the rule
Aw; x —(q—w;) (since in this case Y; = 1), which reduces to the ‘standard’ adaptive
vector quantization rule in [Rose et al. 1992] minimizing the &;.
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— If the instantaneous prediction error of w; is larger than that of w;, it moves away
from the query pattern q and, on the other hand, the prototype w; moves towards
the query pattern q. This is somewhat similar to the intuition adopted in LVQ2.1
[Kohonen 2013] (but dealing with binary classification).

— In the case the instantaneous prediction error of w; is smaller than that of w;, the
former moves towards the pattern query q to follow the trend in the query space in
a competitive manner (as a reward of a ‘good’ instantaneous prediction plus a unity
factor Y; since w; minimizes also £;) while the latter moves away from the query
pattern q.

The update rule for the cardinality prototypes in (13) forces always u; to follow the
actual cardinality y scaled by an amount of how close winner w; is to query q.

Figure 5 shows how the query prototypes are updated based on the feedback from
the instantaneous cardinality prediction and the competitive-learning quantization of
the query space.

Fig. 5. Movements (towards/away from a query q) due to feedback of the closest w; and the second closest
w; query prototypes when instantaneous prediction errors (a) e; = e;, (b) e; < e;, and (c) e; > e;.

4.4. Convergence Analysis

In this section we discuss the fundamental features of the proposed function estima-
tion model in term of convergence of both types of prototypes: query and cardinal-
ity prototypes. As briefly reported in Sections 4.1.1 and 4.1.2, the query prototypes
are converged to the mean (centroid) query representative of the analyst-defined data
subspaces. Meanwhile, the corresponding cardinality prototypes are converged to the
median of the cardinality values of those data subspaces.

The competing prototypes w; and their associated u; converge to the centroids and
medians corresponding to local maxima of the sampled but unknown probability den-
sity p(q,y). When there are more prototypes than probability maxima, the query pro-
totypes cluster about local probability maxima. We prove this equilibrium theorem of
centroid and median convergence of our model.

THEOREM 4.6. (Centroid Convergence Theorem) If vector q; is the centroid of the

query subspace of the winner w; = [a;,b;] and w; = [x;,0;] corresponding to the data
subspace D(a;,b;) and D(x;,0;), respectively, then P(w; = q,) = 1 at equilibrium.

PROOF. See Appendix B. O

Theorem 4.6 states that w; is the mean vector of those query vectors q that were
classified as w; while partitioning the query space into M query prototypes. More
ar.lalytically, for w; = [a;, b;], we obtain that: a; = + > ne[n] an ar'ld bJ =% > ey bns
with q,, = [a,,b,] @ [[a, — Wjll2 < |ldn — W;i]l2 and ¢ # j. In a similar way, for w; =
[x7,0,], we obtain that: x; = § 3, c(nXn and 05 = § 30, cn) Ons With @, = [x,,0,]
lan — wjllz < |ldn — w;l|2 and ¢ # j. The query space partitioning is also driven by
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the instantaneous prediction error, since we are about to estimate the function f and
not just partitioning the query space. Through that prediction-driven quantization, the
cardinality prototypes converge to the robust statistic of median.

THEOREM 4.7. (Associated Median Convergence Theorem) If §j; is the median of the
cardinality values of the analyst-defined data subspaces D(a;,b;) and D(x;,6;) with
associated winner query prototypes w; = [a;,b,] and w; = [x;,6,], respectively, then
P(u; = ;) = 1 at equilibrium.

PROOF. See Appendix C. O

5. TRAINING & PREDICTION ALGORITHM
5.1. Training Algorithm

In this section we provide a training algorithm for estimating the query and cardinality
prototypes that gradually minimize the joint optimization function in (11). We are
about to train K function estimation ondels fi for the K distributed data nodes 5.

The training algorithm for a given f} is provided in Algorithm 1, and the training
process in illustrated in Figure 6 (left). This algorithm is the same for both query types.
Initially, all prototypes (vectors and scalars) in o, are randomly initiated. Then, upon
arrival of a random query q to the CN, the CN forwards that query q to each data node
Sk, k € [K], in parallel as shown in Figure 6 (left). Then, the S; node either executes
the query and generates the cardinality of the answer set y or activates some well
known statistical structure, e.g., histograms, wavelet-based structures, to generate the
aggregate answer y. (In the latter case, it is assumed that S, node owns the data B;.)
In any case, the training pair (q,y) is locally formed on each data node. This training
pair is directed to incrementally update the local parameter oy, through instantaneous
prediction feedback adopted by the local update rules provided by (12) and (13).

The training algorithm on each node Sj processes successive random training pairs
until a termination criterion ©; holds true. This criterion, which is compared to an
accuracy threshold € > 0, refers to the L; distance between successive estimates of the
prototypes:

0= (Iw;(t) — wi(t — D)l + Juy(t) —u;(t — 1)), (19)

JeM)
with [[w;ll1= >4 lwyil-

Remark 5.1. The termination criterion O, is adopted to represent the discretized
step-difference of the gradient of &, consisting of the step difference of the scalar cardi-
nality prototypes Au; and the query prototypes Aw; = [Awjq,...,Aw;q] derived from
Theorem 4.4. The training algorithm terminates when the average step difference, i.e.,
absolute difference of successive values, for each dimension Awj; and Aw; is less than
pre-defined scalars, which sum up to ©,. We consider equal importance of the con-
vergence of all dimensions in the query and cardinality prototypes, thus, ©; is repre-
sented through the sum of the L; norms of the expanded difference vectors [Aw;, Au;],
j=1€e[M].

Remark 5.2. During the training phase, data node Sy does not send back the pair

(q,y) to the CN. The data node locally updates its parameter a;. Once the model fr
is locally trained, data node Sy sends the model parameter o, to the CN, as shown in
Figure 6 (right) for proceeding with prediction.
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The number of prototypes M is not necessarily the same for all estimation models
fx. The models might have different number of prototypes. This flexibility allows each
model to independently determine the quality (resolution) of quantization. Moreover,
all models f, are different since they refer to different datasets Bj. The query and
cardinality prototypes of each oy, reflect the probability distributions px(q) and pi(q, y),
which are estimated given the executed queries and results over ;.

Once the training algorithm for a model f, has converged with respect to conver-
gence threshold ¢, then the prototypes of parameter «; estimate the actual function
/ in both: query space (input of f) and cardinality domain (output of f). Figure 7
shows the positions of M = 50 radius query prototypes along with their corresponding
cardinality prototypes in the three dimensional query-cardinality space. Specifically,
one can observe the median value u; corresponding to a query prototype w; = [z;, ;]
projected onto a two dimensional query space of (z,0), i.e., for radius queries over
one-dimensional data. Evidently, the actual function f(x, ) (notated by green dots) is
estimated through diverse horizontal planes/surfaces (notated by black dots) over the
query subspaces through the trained representatives w; (notated by black stars) and
their trained corresponding cardinality value u; on the cardinality y axis.

Now, given this function estimation, the idea of predicting the cardinality of an in-
coming unknown query is to interpolate among those planes whose corresponding pro-
totypes are close to the query along with the degree of overlapping of the query-defined
data subspace with neighboring data subspaces. This will be elaborated in the follow-
ing section.

ALGORITHM 1: Training Algorithm for Function Estimation fy.

Input: number of prototypes M, accuracy threshold ¢, initial parameter 3o
Output: Parameter oy, = {w; }}2, U {u; }}L1,
Random initialization: w;(0), u;(0),j € [M];
n;(0) <= 0.5,5 € [M];
t+1;
repeat
Central Node receives and forwards random query q(t) to node Si;
Data node Si executes q(t) over By;
Formation of the training pair (q(t), y(t));
for j € [M] do
Calculate instantaneous prediction error |y — u;|;
Update prototypes (w;(t),u;(t)), j € [M] using (12) and (13);
Update learning rate 7, (t) using (14) and (15);
end
Update parameter 3(t) < Boln(t + 1);
Calculate termination criterion ©; using (19);
t—t+1;
until ©; <¢;

5.2. Prediction Algorithm

After the local training of a function estimation model fx, no other queries are directed
from the CN to the data node S} to be executed. Hence, no other updates occur to both
types of prototypes in the «; parameter.

Now, we have obtained all the available information to proceed with cardinality pre-
diction given an unseen query q by approximation. This approximation is achieved by
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Fig. 6. Decentralized training of the function estimation models and prediction over K distributed data
nodes.

Fig. 7. Function estimation of the actual function y = f(z,0) (green dots) through the f(z,6) (black dots)
over the radius query-cardinality space. The 2-dimensional query prototypes w; = [z, §;] (black stars) have
quantized the query space (z,6). Each query prototype is associated with a cardinality prototype u;, which
is represented by a bounded plane (cell) in the 3-dimensional space over the quantized cell represented by
the prototype w;.

two principles: (i) exploitation of the degree of overlapping between the unseen analyst-
defined data subspace and a data subspace defined by a query prototype, and (ii) ex-
ploitation of the similarity/distance function between the unseen query and a query
prototype. The former principle refers to the interpolation of the diverse overlapping
identified data subspaces corresponding to query prototypes of past issues analysts’
queries with the unseen one. In this context, we inspect the overlapping over the data
space. The latter principle deals with the degree of similarity of the unseen query with
those query prototypes, whose corresponding data subspaces are overlapped with the
unseen analyst-defined data subspace. In this context, we rest on the fundamental
assumption in function estimation that similar inputs correspond to similar outputs.
Hence, cardinality prediction fuses those principles over both: data space and query
space in order to approximate ¢ given an unseen query q with actual cardinality .

5.2.1. Degree of Data Subspace Overlapping. Let us consider the range queries first. By
Definition 1.4, two range queries q and q’ overlap if A(q,q’) = TRUE. In this case, for
each dimension i € [d] there are intervals defined by [a;, ;] and [a}, b]], respectively,

that overlap. If we consider the fraction of the common area of these two intervals out
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of the maximum covered area of these intervals for a dimension 7, then we define as
degree of overlapping for range queries the normalized ratio 6(q,q’) € [0, 1]:

1 d min(|b,’i—ai\,|bzx—a;|) : "y —
5(q7 q/) _ 3 Zizl max(|b;*ai‘,‘bi*a§|)’ if A(q7 q ) == TRUEa (20)
0, if A(q, q') = FALSE.

The two range data subspaces D(a, b) and D(a;, b;) defined by the range query q and
a range query prototype w;, respectively, correspond to the highest degree of overlap
when 6(q, w;) = 1.

In the case of the radius queries, by Definition of 1.7, two radius queries q and ¢’
overlap if A(q,q’) = TRUE. In order to quantify a degree of overlapping between hyper-
spheres, we require that the two balls are partially intersected. Let us define the ratio
between the L, distance of the centers of the corresponding radius data subspaces out

of the distance of their corresponding radii, i.e., “"91’;,,“2 . This ratio takes values in [0, 1]
in the case of overlapping, with a value of unity when both spheres just meet each
other. In the concentric case, the degree of overlapping should also take into consid-
eration the remaining area from this perfect inclusion. Hence, we define as degree of

overlapping for radius queries the normalized ratio §(q,q’) € [0, 1]:

. max(||x—x"]|2,/0—6’]) fA ")y = TRUE
Sla.q) = 41 7o , if Ag, q') ’ 21
(a,9) {0, if A(q,q') = FALSE. o

The two radius data subspaces D(x,§) and D(x;,6;) defined by the radius query
q and a radius query prototype w;, respectively, correspond to the highest degree of
overlap when 6(q, w;) = 1.

5.2.2. Prediction via Approximation. Given an unseen query q, the degree of overlapping
with a query prototype is to calculate an affinity measure with respect to the analyst-
defined data subspace. Moreover, since we have partitioned the query space into cer-
tain regions to further capture the behavior of the actual function f over those regions,
we have to guide our prediction over the quantized values of f within those regions. In
our case, these quantized values refer to the medians ;. Hence, the prediction via ap-
proximation is achieved by a weighted-nearest-neighbors regression, where the notion
of neighborhood is guided by (W1) the subset of query prototypes whose data subspaces
overlap with that of the unseen query (data space) and (W2) the closeness of the query
prototypes with the unseen query (query space).

For the weight W1 case, we defined the set O(q) of overlapping data subspaces de-
fined by the query prototypes in W with that defined by the query q to assign an
affinity weight with respect to the degree of overlapping 9, i.e.,

O(q) ={w e W:d(q,w) > 0}. (22)

Now, for the weight W2 case, we exploit the probability assignment p(w|q) in (10) for
those query prototypes w € O to assign a distance/similarity weight. Note, here that
the 8 parameter in the probability assignment p(w|q) is set to the last 3(7) value right
after the end of the training process of the Algorithm 1, i.e., 8(7) with 7 = min{¢t > 1:
@t S E}.

Our prediction relies on the weighted-nearest-neighbors regression utilizing the car-
dinalities prototypes and the query prototypes by:

— (W1) taking into account the normalized degree of overlapping d(w,q) of unseen
query q with those prototypes w € O and

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 C. Anagnostopoulos & P. Triantafillou

— (W2) the probability assignment p(w|q) in (10) for w € O with §(7).

We define the fused weight W (w;,q) € [0,1], with w; € O, which equally balances
between weights W1 and W2:

Wiwsoa) = 5 (i

3 (—Zw o 5(Wird) +p(wj|q)). (23)

In this context, for a function estimation fj, given an unseen query q, the prediction
Jx of the corresponding data subspace cardinality is:

O = frla;an) = Z W(w;, q)u;. (24)

w; €0

Note that, the overlapping set O is not the same for each prediction. Evidently, it
depends on the possible overlapping data subspaces with the queried one. In the case
where the overlapping set O is empty for a given unseen query q, then the best pos-
sible solution that our function estimation model f; can provide is predicting 4, with
the cardinality u; of the closest (under L) query prototype w; € W. That is in this
particular case:

gk = felasan) =u;:w; = arg ,m[g}]qu Wil|2. (25)

For a data node Sy, the prediction error (absolute difference) is then g, — y|. The
cardinality prediction ¢, which corresponds to data node S for a given query q is
achieved only by the CN and no communication with the node is performed. Specif-
ically, the CN, which has stored the estimated parameters oy, Vk, given a query q,
calculates the overlapping sets O, and proceeds with the (local) predictions of each
Ui using either (24) or (25); see Figure 6 (right). Then, the CN provides the predicted
cardinality vector:

and the global L, prediction error is

K
ly =¥l ZZ\yk—Z)k|~ 27
k=1
The cardinality prediction algorithm on the CN is provided in Algorithm 2.
Remark 5.3. Not having a CN for temporarily storing all parameters during the
training phase yields higher reliability and less interruption during failures. During
the prediction phase, the CN does not communicate with those nodes that have al-

ready sent their parameter ay. Section 7 discusses certain decentralized training and
prediction issues along with fault tolerance.

6. CHANGE DETECTION & ADAPTATION

We introduce both detection and adaptation mechanisms for each function estimation
model f;. These mechanisms will give the opportunity for f; to stay up-to-date, i.e.,
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ALGORITHM 2: Cardinality Prediction Algorithm based on Estimation f; on Central Node.

Input: Query and cardinality prototypes of parameter oy, an unseen (range or radius) query q
Output: Prediction of the data subspace cardinality 7, defined by query q
Calculation of the overlapping set O(q) in (22);
if O(q) = 0 then
Find the closest query prototype w; € W to query q;
‘ Predict i using (25);
end
else
Calculate the fused weight W (w, q) for each w; € O(q);
‘ Predict i using (24);
end

(i) detect new popular data subspaces that are of interest to the analysts, and (ii) au-
tonomously adapt the trained parameter «;, through following the trend of the analysts
to explore unseen data subspaces. A change detection in query patterns is carried out
at the CN only. Meanwhile, the adaptation to f, due to detected changes in the query
patterns is achieved using adaptation pairs (q,y) that guide the adaptation of «y. The
adaptation should be driven by the fact that the updated function estimation f; should
continue to minimize the EPE in (1). This naturally requires communication between
the CN and S;..

6.1. Changes in Query Subspaces

In this section we discuss how, through our model, we are able to recognize that an
unexplored data subspace is gradually considered to be of interest to an analyst by
issuing therein range and/or radius queries. Let us illustrate how the CN detects a
change in the query patterns corresponding to a data node Sy based only on the avail-
able information reflected by the parameter «y.

Consider an incoming query q to the CN and focus on a trained fj, i.e., operating in
prediction mode. The essence of the proposed query subspace detection approach lies
in two components:

— First, to decide on whether q is a candidate novel query with respect to the current
model f%.

— Second, to track over time the number of such novel queries and decide that some
query subspaces corresponding to data subspaces defined by those novel queries
have been posed by the analysts.

Consider the probability assignment of query q to a winner query prototype w* un-
der L, after the f, training. This assignment is provided with probability p(w*|q)
in (10). However, such an assignment is reconsidered if q is distant from its winner.
Evidently, after training (i.e., convergence of p(w*|q) to (16) as discussed in Section
4.2.3), this consideration yields useful information on how close query q is to proto-
type w*. The distance || — w*||> quantifies the likelihood that query q is expected
to be drawn from p(q|w*) given that q is assigned to w*. To decide whether query q
can be properly represented by prototype w*, we rely on the idea of Adaptive Reso-
nance Theory [Carpenter and Grossberg 1988] for reasoning about novelty. We asso-
ciate the winner w* with a dynamic vigilance variable p* > 0, which depends on the
distance of the assigned query q to w*. The vigilance variable is a normalized L3 cen-
troid squared distance ratio of || — w*||3 out of the average squared distances of all n
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queries q¢, ¢ = 1,...,n, that were assigned (classified) to prototype w* after its centroid
convergence, i.e., the variance of those L, distances. In this context, we obtain that:

& i llae — w3

Based on this variance ratio, if p* is less than a threshold p > 0, the query q is
properly represented by its winner. Otherwise, the query q is currently deemed as
novel. A p value normally ranges between 2.5 and 5 [Newton et al. 1992].

Let us now move to keeping track of query novelty candidates over time focusing on
a winner prototype w*. For the ¢-th incoming query q, which is assigned to winner w*,
we define as novelty indicator of q with respect to w* the random variable:

0 (28)

_ 1 if la—wrl5 > o 30 llae — w3
L= {0, otherwise (29)

A cumulative sum of I;’s with a high portion of 1’s causes the CN to consider that the
conditional probability p(q|w™*) within the query subspace represented by the winner

w* for model f; might have changed. More specifically, upon reception of a query q,

the CN observes for a winner query prototype w* the random variables {I,...,I;} in
each ay. In this context, the CN detects a change in the p(q) within the query subspace
Q* of each model f;, based on the cumulative sum S; of the variables I, I, ..., I; up to

t-th assigned query, i.e.,

S = Z I,. (30)

A change in p(q) for model fx is independent of a change in p(q) for another model
fim, since both query distributions are reflected by different query prototypes; recall,
the query space quantization is driven by the prediction error, which results to differ-
ent parameters «; and «.,, respectively.

The I, indicator for a model fj, is a discrete random process with independent and
identically distributed (i.i.d.) samples; queries independently arrive at the CN. Each
variable I; follows an unknown probability distribution depending on the distance of
the query q to is winner w*. The I; random variable has finite mean E[[;] < oo, t =
1,..., which depends on the squared L, norm |q; — w*||3. Specifically, the expectation
of the novelty indicator is

E[1] = 0- P({I = 0}) +1- P({I = 1}) = P({I = 1}),

where {I = 1} denotes that an assigned query to a winner prototype is classified as nov-
elty. Our knowledge on that distribution, which is not trivial to estimate, will provide
us certain insight to judge whether the conditional distribution p(q|w;) has changed
in the subspace determined by query prototype w;, Vj. In this case, we should ‘follow’
the trend of that change by updating the winner prototype w* only of a subspace, in
order for that prototype to continue represent its query subspace.

By observing the random variables I; and deriving the sum S; up to ¢ defined in
(30), the challenge here is to decide how large the sum should get before deciding
that p(q) has changed for those g € Q*. Should we decide at an early stage that p(q)
has changed, this might correspond to ‘premature’ decision on the fact that p(q) has
changed. A relatively small number of novelties might not correspond to change in p(q)
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over a query subspace. On the other hand, should we ‘delay’ our decision on a possible
change of p(q) in Q., then we might get high prediction errors, since we avoid adapting
w* to ‘follow’ the trend of the query subspace change.

Our idea for dealing with this time-driven decision making problem has as follows:
To decide when the p(q|w*) has changed over the monitored query subspace Q*, we
could wait for an unknown finite horizon ¢* in order to be more confident on a p(q)
change. During the t* period, we only observe the cumulative sums S;,Ss,...,S;-. In
this context, we study a stochastic optimization model that that postpones a query
distribution change decision (reflecting possible novelties) through additional obser-
vations of the I variables. At time t*, a decision on a possible p(q) change has to be
taken. The problem is to find that optimal decision time ¢, hereinafter referred to as
optimal stopping time, in order to ensure that p(q) has changed from those incoming
queries q; assigned to w* at ¢ > t*.

Let us define our confidence Y; of a decision on a change of the p(q) within Q*, based
on the cumulative sum S;. The Y; confidence could be directly connected to the pre-
diction accuracy performance improvements that a timely decision yields. Obviously,
Y; is a random variable generated by the sum of the random variables I. up to ¢,
S = Y!_, I, discounted by a risk factor v € (0,1):

Y, =4S, t > 1. (31)

Our detection model has to find an optimal stopping time ¢* in order to start adapting
the winner prototype w* after considering that p(q) has changed within the query
subspace Q*. If we never start/initiate this adaptation, then our confidence that we
follow the new trend (query patterns) is zero, Y, = 0. This indicates that we do not
‘follow’ the trend of a possible change over the Q* subspace. Furthermore, we will never
start/initiate adapting prototype w* at some t with S; = 0, since, obviously, there is no
piece of evidence of any novelty up to ¢t. As the indicator I; assumes unity values for
certain time instances, then S; increases at a high rate, thus, indicating a possible
change due to a significant number of novelties. Our problem is, then, to decide how
large the S; should get before we start/initiate adapting w*. That is, we have to find
a time ¢ > 0 that maximizes our confidence, i.e., to find the optimal stopping time ¢*
which maximizes the essential supremum in (32):

t* = argess sup E[Y;]. (32)
teXo

where X, is the set of almost surely finite stopping times which are greater than 0,
which itself may be a stopping time. The semantics of the risk factor v in (31), also
involved in (32) are as follows: A high risk factor value indicates a conservative time-
optimized decision model. This means that the model requires additional observations
for concluding on a p(q) change decision. This, however, comes at the expense of pos-
sible prediction inaccuracies during this period, since the w* might not be a represen-
tative of its corresponding assigned queries. A low ~ value denotes a rather optimistic
model, which reaches premature decisions on a p(q) change. This means that, once we
concluded on a change, we have to adapt the winner w* by actually executing every
incoming query assigned to w* and getting the corresponding actual cardinality. This
continues until the updated w* converges (discussed later). In the following section
we attempt to approach an optimal stopping time that maximizes (32) for a fixed risk
factor v € (0,1).
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6.2. Optimally Scheduled Query Subspace Change Detection

We propose an optimally scheduled query subspace change detection model that solves
the problem in (32). Such problem is treated as an infinite horizon Optimal Stopping
Time (OST) problem with discounted future reward [Peskir and Shiryaev 2006]. Ini-
tially, we briefly discuss OST. Then, we prove the existence of the optimal stopping
time ¢, in our problem, report on the corresponding optimal stopping rule, elaborate
on the optimality of the proposed scheme, and provide the corresponding algorithm for
the CN.

6.2.1. Optimal Stopping Theory. The OST deals with the problem of choosing the best
time instance to take the decision of performing a certain action. This decision is based
on sequentially observed random variables in order to maximize the expected reward
[Peskir and Shiryaev 2006]. For given random variables X;, X5,... and measurable
functions YV; = (X1, Xo, ..., Xy), t = 1,2,... and Yo, = poo (X3, Xo, .. .), the problem is
to find a stopping time 7 to maximize E[Y;]. The 7 is a random variable with values in
{1,2,...} such that the event {7 = t} is in the Borel field (filtration) F, generated by
Xi,..., X, 1.e., the only available information we have obtained up to ¢:

F, = B(X,,...,X}) (33)

Hence, the decision to stop at ¢ is a function of X;,..., X; and does not depend on
future observables X;.1,.... The theorem in [Chow et al. 1971a] refers to the existence
of the optimal stopping time.

THEOREM 6.1. Existence of Optimal Stopping Time If E[sup,Y;] < oo and
lim; oo sup, Y; < Yo almost surely (abbreviated as a.s.) then the stopping time t* =
inf{t > 1|Y; = esssup,~, E[Y,|F;]} is optimal.

PROOF. See [Chow et al. 1971a]. O

The (essential) supremum ess sup, -, E[Y;|F;] is taken over all stopping times 7 such

that 7 > t a.s. The optimal stopping time ¢* is obtained through the ‘principle of opti-
mality’ [Bertsekas 2005].

6.2.2. An Optimal Stopping Time for Query Subspace Change Detection. The proposed de-
tection model concludes on a change of p(q|w*) based on sequential observations of
I, values. Persisting unity values of I; make ourselves confident on a change. On the
other hand, as we delay our decision on a change, the observation process progresses
further, thus yielding possible low prediction accuracy. A decision taken at time ¢ is:

— either to assert that a change on p(q|w*) holds true and, then, start the adaptation
of the winner prototype w*,
— or continue the observation process at time ¢ + 1 and, then, proceed with a decision.

We will show that our model based on the cumulative sums S; = Zizl I, can deter-
mine an optimal stopping time that maximizes (32).

THEOREM 6.2. An optimal stopping time for the query subspace change / novelty de-
tection problem in (32) exists.

PROOF. See Appendix D. O

In our case, I; are non-negative, thus, the problem is monotone [Chow et al. 1971b].
In such case the optimal stopping time t*, since it exists by Theorem 6.2, is obtained
by the 1-stage look-ahead optimal rule (1-sla) [Li and Zhang 2005]. That is, we should
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start adapting the winner prototype w* at the first stopping time ¢ at which Y; >
]E[}/t—‘rlm?t]’ i.e.,

t* = inf{t > 11Y; > E[Y;11]|F:]} (34)

In our context, for a monotone stopping problem with observations Iy, I5,... and

rewards Y1,Ys, ..., Y, the 1-sla is optimal since sup, Y; has finite expectation, which
is E[I] ﬁ, and lim;_, sup, ¥; = Yo = 0 a.s.; please refer to proof of Theorem 6.2.

THEOREM 6.3. The optimal stopping time t* for the query subspace change [ novelty
detection problem in (32) is:

# = inf{t > 1|8, > %Em}. (35)
-7

PROOF. See Appendix E. O

Since our optimal stopping time problem exists and is monotone according to Theo-
rems 6.2 and 6.1, the provided optimal stopping time in 6.3 is unique.

LEMMA 6.4. The solution of the optimal stopping time t* provided in Theorem 6.3
is unique.

PROOF. See [Darling et al. 1972]. O

In order to derive the optimal stopping time and rule in Theorem 6.3, we have to
estimate the expectation of the novelty indicator E[I] = P({I = 1}). Empirically, the
probability of the event P({I = 1}) can be experimentally calculated by those assigned
queries whose ratio of the squared distances from their winner prototypes out of the
total variance of the distances is at least p; please refer to (29).

We now further provide an estimate for P({I = 1}) based on the fundamental charac-
teristics of our query quantization model. The probability of a query q being assigned to
a winner prototype w* is p(w*|q) provided in (10). The probability of the event {1, = 1}
actually refers to the conditional probability of an incoming query q: be a novelty given
that it is assigned to w* with p(w*|q;). In that case, the probability P({I, = 1}) is,
therefore, associated with the probability that the L2 norm distance |q; — w*||3 > 6,
with scalar 6 = pL > [, — w*|3. If we define the random vector z;, = q; — w*
then we seek the probability density distribution of its squared L3 norm ||z;||3. There-
fore, based on the centroid convergence Theorem 4.6, the prototype w* refers to the
centroid (mean) vector of those q € Q*, i.e., w* = E[q;q € Q*]. In this context, the
squared L3 norm of the multivariate z = [z1,...,24] = [(1 — w},...,q4 — w};] vector un-
der the assumption of normally distributed random components follows a non-central
squared chi distribution y?(d,¢) with d degrees of freedom and non-centrality param-

eter ( = Zle (w})?. We can then approximate the probability of a novelty as:

P({1=1}) = P(|lz[3> ) =1 - P(|lz]3< 0), (36)

with P(||z]|3< 6) being the the cumulative distribution function CDF,24 () =
P(|2]3< 0) of 2(d C). | o

Let now @, (k2, k3) be the monotonic, log-concave Marcum Q-function, with param-
eters k1, k2, and k3. Then, we obtain that CDF,2(q.¢)(0) = P(||2[3< 0) =1 — Q.. (k2, K3)
and, therefore, the probability of novelty is:
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P{I=1}) =1 CDFoe(0 (\/ f) (37)

by substitution in the @ function: x; = %, ko = /¢, and k3 = V6. For an analytical
expression of (37), please refer to Appendix F.

The novelty probability in (37) depends on the 6 quantity which quantifies the aver-
age variance of all queries assigned to w* and the squared norm of w*. Once we have
estimated that probability P({I = 1}), then the optimal stopping rule is obtained in
Theorem 6.3 by E[I] = P({I = 1}) from (37) and (35).

6.3. Query Subspace Subspace Change & Adaptation Algorithm

The CN detects a change in the query subspace related to a function estimation model
fr by evaluating the optimal stopping rule provided in (35). This is achieved locally
on the CN and no communication with the corresponding data node S is required.
Once the CN has detected a change in the query subspace then it initiates a process
that adapts the model f, by modifying the query prototype w* of the parameter o, as
follows.

A change in the query subspace indicates that new query patterns can be formed
or existing patterns change reflected by changes in p(q|w*). Moreover, we have to as-
sociate the cardinalities of these queries to the cardinality prototypes. This requires
modifications to to the cardinality prototypes corresponding to updated w*. For adap-
tation purposes, the CN communicates with the data node S;.C, for which a change has
been detected, for executing every incoming query q appearing at ¢ > t*. After each
query execution, the CN obtains the adaptation pair (q, ) to update only the winner
prototype w* and the associated cardinality prototype u* of «j to follow the actual
cardinality y of q. This is achieved by applying the update rules (12) and (13) on the
winner prototype pair (w*,u*). This adaptation continues until f; converges with re-
spect to the winner prototype only, i.e., when the L;-norm successive estimates of the
winner w* and cardinality u* prototypes, i.e.,

07 = [w*(t) =w(t = Dlx + |[u*(t) =" (¢ = 1)[,t > 7, (38)

do not exceed the accuracy threshold e.

Figure 8 illustrates the detection and adaptation processes for a specific function
estimation model f;, for data node Sj,. The corresponding time-optimized query change
detection and adaptation algorithm is provided in Algorithm 3 for the model f;.

detect change /,

1= forward q )
& : « " I& ‘g execute
~ (a.5) L (@)
update g
Central Node Data Node S

Query patterns detection & update

Fig. 8. The query patterns detection running on the CN and adaptation communicating with the data node
Sk.
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ALGORITHM 3: Query change detection / adaptation algorithm for model .

Input: Risk factor v € (0, 1), accuracy threshold e
Output: Updated parameter ax
0« pr >p—sllac — w13 from (29);
Calculate E[I] using (37) or, empirically;
t+ 0;
So — 0;
/*Novelty detection™/;
repeat
Central Node receives a query q(¢);
Assign the query q(t) to its winner prototype w™ of ay;
Calculate the novelty indicator I; using (29);
Sz < Sz =+ It,
t—t+1;
until S; > - E[I];
/*Novelty detected; starting adaptation®/;
t+ 0;
repeat
Central Node receives a query q(¢);
Central Node forwards query q(t) to data node S;
Data node Si executes the query q(t) over Bi, and generate the adaptation pair (q(t), y(t));
Central Node updates the prototypes pair (w*(¢), v*(¢)) using (12) and (13);
Calculate termination criterion ©5;
t—1t+1;
until ©; <g¢;

7. DISTRIBUTED PLATFORM ISSUES

A key feature of our approach so far is its design to derive independent local models
fk at each data node Sy with parameters «;, which then inform the CN which uses
them to perform cardinality prediction. Such a distributed framework entails issues
arising from the independent operation (during the training and prediction phases) of
a number of independent nodes. Notably, these involve operation in the face of (i) data
node failures and (ii) desynchronized model convergence among nodes.

7.1. Training & Prediction Phases for Desynchronized Convergence

The entire system runs in two phases: In the training phase, data nodes learn their
local models f;, (i.e., their parameters a;) as queries arrive from the CN. In the predic-
tion phase the CN performs cardinality prediction upon a new query q, thus, returning
the prediction vector ¥ = [1,...,9x]|" in (26).

Given that the model operates on a distributed environment, we account for the pos-
sibility that not all local models f;, will converge at the same time (i.e., after processing
the same number of training pairs). This can be due to different number of prototypes
for each f;, different accuracy thresholds e;, networking connectivity resources (e.g.,
bandwidth) to the remote data nodes, computational resources (e.g., query execution
engines), and/or different underlying data distributions p(8;). This desynchronized
per-node model convergence affects the convergence rate and the expected optimiza-
tion error bounds of the training phase of each function estimation model. Therefore,
we distinguish between the individual and combined operating modes for training and
prediction phases.

7.1.1. Individual Operational Mode. In individual mode, the CN ‘waits’ for all per-node
models to converge, i.e., to reach the number of training pairs 7} required for opti-
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mization accuracy ¢;. Under SGD over the objective minimization function &, in (11)

with the hyperbolic learning schedule in (15), a model f; requires O(1/ex) [Bousquet
and Bottou 2008] number of training pairs T} to reach accuracy ¢;. This means that
the residual error/difference between £]* after Ty pairs and the optimal &; (i.e., with
the optimal parameter «;}) asymptotically decreases exponentially (also known as lin-
ear convergence [Jr. and Schnabel 1983]). Hence, the CN will be in its training phase
with a duration of O(maxjc(x)(1/€x)). Once all models have converged and sent their
parameters «;, to the CN, the latter moves to its prediction phase. Thus, in individual
mode, there is a clear separation between the training and prediction phases. In this
mode also, the CN is capable of returning the prediction y to an incoming query q.
Moreover, the upper bound of the expected excess error E[£ — &;] for each function

estimation model, after ' = max(71,...,Tk) training pairs, is O(4/ M%T) [Vapnik and
Chervonenkis 1971], given a hyperbolic learning schedule. Nonetheless, the CN will

move into prediction phase only when all models have converged, which might not be
desirable.

7.1.2. Combined Operational Model. To avoid high delays in the training phase, we also
allow the combined mode of operation, whereby the training and prediction phases
overlap. The idea is to enable CN to proceed with partial cardinality prediction even
when not all local function estimation models have converged. In the combined mode,
the CN runs its training algorithm, and when, say ¢,1 < £ < K, local models have con-
verged, then it moves to a mode of operation where cardinality prediction is executed
by returning only the prediction y' = [§)i,..., 9" of those ¢ models upon a query q. In
addition, the CN still forwards that query to those K — ¢ nodes, whose models have not
yet converged, allowing thus their continued training.

Since y’ does not contain the predictions of all models, the CN uses the param-
eters of the K — ¢ models that have not yet converged as approximate prediction
V" = [Jes1,---,9K]". Let T" = max(Ty,...,Ty) be the number of training pairs re-
quired for all / < K models to converge and 7' = max(71,...,Tx) be the total number
of training pairs for all models to converge as discussed in the individual mode, i.e.,
T’ < T. Then, under a hyperbolic learning schedule in (15), the expected excess error

upper bound for the K — ¢ models that have not yet converged is given by O(,/ loi#)

[Vapnik and Chervonenkis 1971] with A = TT/ This information is useful for judging
the quality of the approximate prediction y” = [§y]fi_,, | W.r.t. accuracy threshold e .
The CN continues to run on individual mode and will eventually move to being only
in its prediction phase, i.e., { = K. Note that T is often not known in advance and is
determined empirically (e.g., till satisfactory performance is obtained).

7.2. Failures and Fault Tolerance

First, note that the existence of a CN is in line with the architectural paradigms of
most popular Big Data platforms: Hadoop [White 2009; Dean and Ghemawat 2008],
Yarn [Vavilapalli et al. 2013], Spark [Zaharia et al. 2012], Stratosphere [Alexandrov
et al. 2014], AsterixDB [Alsubaiee et al. 2014], which have a master/coordinator and
a set of workers. Second, note that failures, by design, impose little disruption to our
prediction task. Specifically, the failure of any data node Sy (or equivalently, a par-
tition failure preventing S, and CN from communicating), once Si’s model has been
produced, leaves the CN’s prediction task unaffected. The CN continues predicting
Si’s response based on o sent to the CN prior to the failure. In most cases, Sj’s will
be swift. When recovering from a crash, the S; can then simply notify the CN that it is
now available. In cases where S; remains unavailable for extended periods of time, the
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CN can switch to a combined operation mode, whereby S}, is treated as if it had not yet
converged, as discussed above. Note that this is required as CN cannot differentiate
between a partition failure and a crash failure and must assume the worst (i.e., that
Sy, is live, possibly accepting data updates which may have changed its model signif-
icantly since it was communicated to CN). When recovering from a partition failure,
the Sj; will need to have kept track of any local updates to its model’s parameters «y
and send the new «;, to CN.

CN failures introduce minimal service disruptions. Akin to most Big Data platforms,
this can be detected and a new CN is elected. Upon election, the new CN needs com-
municate with data nodes Sy and receive their models’ parameters ay. From this point
onward, the CN can start performing cardinality prediction and change detection.

8. PERFORMANCE ANALYSIS

The function estimation model’s training phase requires O(dM) space and O(1/e)
[Bousquet and Bottou 2008] iterations to get ©; < € (convergence). The CN prediction
per range and radius query is performed in O(dM) time for evaluating the overlapping
set O. Detection and adaptation, on the other hand, requires O(dlog M) time to search
for the winner prototype using a 1-nearest neighbor search for the winner by adopt-
ing a 2d-dimensional and (d + 1)-dimensional tree structure over the range and radius
query prototypes, respectively.

We will next show that by extracting knowledge from the pairs (q,y) without ac-
cessing the underlying data, our approach achieves similar or even better prediction
accuracy, while adapting to query patterns changes. We first turn to study the model’s
performance sensitivity on (i) cardinality prediction accuracy, (ii) adaptation capability
to query patterns changes, (iii) required storage, (iv) number of training pairs, and (v)
training and prediction time, when training/predicting with real-world datasets.

We subsequently provide a comparative assessment of our approach versus
data-centric approaches (despite their aforementioned lack of applicability to re-
duced/restricted data access environments). We consider range queries for (i) GenHist
histogram [Gunopulos et al. 2005], (ii) learning frameworks for STHs [Viswanathan
et al. 2011], (iii)) ISOMER STH [Srivastava et al. 2006], and radius queries for (iv)
sampling using the reservoir sampling [Vitter 1985].

The relative absolute prediction error e, for a model fj, is defined as the ratio of the
absolute-deviation loss |y; — ¢| out of the actual cardinality y; corresponding to the
dataset B, of data node Sy:

_ vk — Gl
Yk

We adopt this metric to evaluate the prediction efficiency of our model as introduced
in [Gunopulos et al. 2005] and [Viswanathan et al. 2011] for cardinality prediction to
enable direct comparisons against those works. The total relative absolute prediction

. 1 K
error for all K modelsise = %>, e.

ek (Yi, k)

8.1. Datasets & Workloads
The RS1 dataset from the UCI Repository (MLR)? contains multivariate data with
dimension d € {1,...,8} and is used for performance analysis of our method and for

comparison against the sampling method. The RS2 real dataset from UCI MLR? is
used for comparison with GenHist (d € {5,10}). All points in RS2 are normalized in

3http://archive.ics.uci.edu/ml/machine-learning-databases/00235/
4kdd.ics.uci.edu/summary.data.type.html
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[0,1] as in the GenHist paper [Gunopulos et al. 2005]. The RS3 real dataset [Lichman
2013] from the UCI MLR consists of 3-dimensional points scaled in [0, 1] and adopted
for comparison with [Viswanathan et al. 2011] and ISOMER.

We generate the training set 7 and a different evaluation set £. The size of 7, |7,
ranges between 0.25%|€| and 4%|€|, with |£| = 2 10° for each workload (default value)
.5 In order to demonstrate the capability of the proposed model to learn, adapt, and pre-
dict, we evaluate its performance using uniform, skewed and multi-modal multivariate
query distributions. Obviously, when the model has to estimate a cardinality function
f(q), where the queries q derive from a query distribution p(q) with, say, zero degree of
skewness (e.g., uniform distribution), then the corresponding query prototypes can sat-
isfyingly approximate p(q) by evenly distributing the prototypes. The query training
phase becomes demanding in terms of (a) minimizing the objective & and (b) iden-
tification of the query prototypes when p(q) involves multi-modal distributions; i.e.,
consisting of query subspaces that generate queries with higher popularity than other
subspaces. In such cases, the model has to learn those subspaces and intelligently
allocate prototypes to better capture not only the statistical characteristics of those
regions but also to associate query prototypes to cardinality representatives in light
of cardinality prediction. We generate queries from a variable mixture of query distri-
butions. In addition, in the comparative assessment against the data-centric methods,
for objective comparison, we generate queries from distributions involving uniformity
(as dictated by those papers). With this methodology, we extensively evaluate the ca-
pability of our model for cardinality prediction by learning the query to cardinality
association.

The set 7 contains random queries drawn from a number of N query subspaces
Qn C Q,n € [N]. For range queries, each Q,, is characterized by a generator (c,, vy, ¢5).
The query center is sampled from a Gaussian N (c,;, vy;) with mean c,;, variance vy,
and radius ¢,;, i € [d], i.e., lower bound a,,; = z,; — {,; and upper bound b,; = x; + lni,
where center x,; ~ N(cni,vn;). The query volume 2/,,; is drawn uniformly at random
from 1% to 20% of the range of dimension i. To generate a range query, a Q,, is selected
with probability +; where we obtain the lower, upper and volume.

For radius queries, each query subspace Q, is characterized by a generator
(Cny Vi, o, , 09, ). For a radius query q € Q,, each dimension z; ~ MN,; is sampled
from Gaussian N,,; = N (cyi, vn;) With mean c,; and variance v,;. The corresponding
radius 6 is sampled from Gaussian Ny = N (ug,, 03 ). To generate a radius query, a Q,

is selected with probability % and from the n-th generator we obtain z; ~ N,,;, Vi, and
0 ~ Np.

The (range query) workload WL1 for ISOMER, EquiHist and SpHist [Viswanathan
et al. 2011] is generated with the exact same way as in [Viswanathan et al. 2011].
In WL1, the center ¢; = % is selected uniformly at random from [0,1], i € [d]; a
query is a d-dimensional hyper-rectangle centered around ¢; with volume b, — a; at
most 20% of [0,1]. The (range query) workload WL2 for GenHist is generated with the
exact same way as in [Gunopulos et al. 2005]. WL2 contains queries whose points are
chosen uniformly at random in the data domain. The (radius query) workload WL3 for
the sampling method contains radius queries from N = 1000 subspaces.

The number of data nodes K ranges from 1 to 100. Each real dataset B is split into
K disjoint subsets By, (i.e., without replicates) distributed to the K data nodes, such
that UX_ B, = B and NX_, B, = (. We assume that each function estimation model f;,
has the same number of prototypes M, which ranges from 500 to 2000. The vigilance
threshold for novelty detection p = 3 as proposed in [Newton et al. 1992]. The risk

5NB: that | 7| is only a very small percentage of |£|.
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Table I. Parameters
Parameter Default Values
Data dimension d {2,3,4,5,8,10}

Dataset size |B|

2.075.259 (RS1), 545.424 (RS2), 210.138 (RS3)

Evaluation set size & Training set size

|T]=10.25,4]%|&], |E] = 2 - 10°

Query subspaces N

100, 500, 1000, 5000}

A:35

Prototypes M 500, 1000, 2000}

Data nodes K 1,...,100}
Accuracy threshold e=10"3
Vigilance threshold p=3

Risk factor v 0.9

Scalar 0 ~ N (ug,03) pg =0.3,0; =0.1

Table Il. Statistics for the RS1, RS2, and RS3 Datasets
Statistic per dimension

Values

RS1: Mean (d = 6) [1.3399 0.1114 3.6737 5.6449 7.6751 8.7356]

RS1: Std. deviation (d = 6) [1.7440 0.1188 241.0857 7.3765 2.0798 8.2428]

RS1: Coeff. of variation (d = 6) [0.7683 0.9381 0.0152 0.7652 3.6903 1.0598]

RS2: Mean (d = 8) [2.9594 0.1557 0.0141 0.2694 0.0464 2.3501 0.2121 0.2233]
RS2: Std. deviation (d = 8) [0.2800 0.1119 0.0075 0.2125 0.0583 1.5593 0.0268 0.0198]
RS2: Coeff. of variation (d = 8) [0.0946 0.7190 0.5309 0.7889 1.2559 0.6635 0.1262 0.0885]
RS3: Mean, std., coeff. of variation z; | (38.5816, 13.64, 0.3535)

RS3: # discrete textual values =2, =3 (16, 8)

factor v = 0.9 denotes a detection model, which prefers to ‘delay’ its optimal decision
in light of observing more pieces of evidence for novelty in query subspaces. The 1 — ~
value reflects the probability of an analyst to start exploring new data subspaces, thus,
issuing analytics queries over those regions of data. The interested reader could also
refer to [Lester E. Dubins 1967] for an interpretation of a probabilistic modeling of
observing novel pieces of evidence in the theory of optimal stopping. Table I shows the
parameters for our experimentation.

8.2. Statistics of the Datasets

This section presents the basic statistics of the datasets RS1, RS2, and RS3 used in
our experiments. For each dataset we report on the dimensionality of the data space,
the mean and standard deviation of each dimension and the corresponding coefficient
of variation in Table II. The coefficient of variation is a standardized measure of dis-
persion of a probability distribution. It is expressed as the ratio of the standard de-
viation out of the mean value. A distribution with coefficient of variation less than 1
is considered low-variance, while with coefficient of variation grater than 1 refers to a
high-variance distribution. Moreover, for each dimensions we illustrate the probability
density and mass function for scalar and discrete dimensions in Figure 9, Figure 10,
and Figure 11, for RS1, RS2, and RS3, respectively.

8.3. Accuracy of Data subspace Cardinality Prediction

Figure 12 (a)-(c) shows the impact of the number of prototypes M on error e with
different number N of radius query subspaces for d € {2, 3,4} over RS1, with K = 50
nodes and |7| = 0.1%|B|. Each model achieves very low error as M increases. We
observe an error lower than 5% for d = 4 and the model’s robustness in terms of V.
For N = 5000, the error increases, thus, the models have to increase the number of
prototypes M to capture all radius query subspaces. For N < 5000 an increase in
M is not mandatory to achieve lower error. Figure 12 (d) shows the impact of the
number of training pairs |7 | with |7 € [0.025%, 0.4%]|B| on the average error for K =
50 nodes, N = 5000, and d € {2, 3,4}. The more training pairs used, the more statistical
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Fig. 9. The probability density function (PDF) for each dimension of the RS1 dataset.
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Fig. 10. The probability density function (PDF) for each dimension of the RS2 dataset.

information of the query subspaces can be captured by the prototypes. However, for
M = 1000 there is no need to increase the training set size, since the models have
captured the statistical properties of the actual query-cardinality function.

The prediction error depends on the resolution of quantization (1) and the train-
ing set size |T|. Figure 13 shows the scalability of our method over radius and range
queries with a varying number of nodes K for different N (Figure 13(a)-(b)) and differ-
ent |7T| (Figure 13(c)-(d)). The error e remains constant with the number of data nodes
K, which denotes that any scale-out partition of a huge dataset into K disjoint sub-
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Fig. 11. The probability density function (PDF) for the 1st dimension and the probability mass function
(PMF) for the 2nd and the 3rd dimensions of the RS3 dataset.

sets results to robust models. Each data node creates its own local function estimation
model and all nodes, as a whole, achieve the similar cardinality prediction error as if
it were a single node with one global function estimation model.

In term of the curse of dimensionality, Figure 15 (a) shows the accuracy of our model
as the dimension increases over radius queries (RS1/WL3). With a high M, the model
captures the diversity on the underlying mapping q — y, thus, achieving small cardi-
nality prediction error in high dimensions.

8.4. Training Time

The learning time (in sec) is measured over RS1 on a PC Intel Core i5 CPU at 3.40GHz,
16 GB RAM. For number of prototypes M = 1000 and |7| = 3000 training pairs until
convergence, the model takes (1.4s,3.8s) in d = 2, and (2.8s,6.7s) in d = 4 to be trained
given N = (100, 1000) query subspaces, respectively. The learning time depends on N
(variability of patterns): as N increases, the model must learn a ‘richer’ query space,
thus, more training pairs are needed to converge. The cardinality prediction time for a
(radius/range) query on average ranges in [0.16s, 1.14s]; 100 < M < 1000.

8.5. Query Subspace Detection Change & Adaptation Capability

In order to experiment with the behavior of the proposed time-optimized change de-
tection and adaptation algorithm we proceed with the following. Consider the scenario
shown in Figure 14 repeated 450 times. Focus on a model f trained with M = 1000
prototypes, | 7| = 2000 radius queries and N = 1000 over RS1 and dimension d = 4.
After training of the estimation model f, the CN receives radius queries one at a time
generated by a workload where we alter all parameters of the query subspaces Q,, Vn,
thus, queries are drawn from different distributions. After the first 100 queries, we
alter all Q,,. The model detects the changes after (on average) 30 novel queries, and
then it starts to adapt to this change using up to 56 queries (on average). At the 300th
query we alter again all Q,, and observe that the model detects the changes and is
adjusted again, by proceeding with prediction errors equivalent with those before any
query subspace change.
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Fig. 12. (a)-(c) Error e vs. number of prototypes M (RS1, K = 50), (d) Impact of |7| on error e (d € {2, 3,4},
N = 5000.) for radius queries.

8.6. Models Comparison

We provide a comparative assessment against data-centric approaches. Despite their

applicability shortfalls explained earlier, we aim to demonstrate our method’s advan-
tages.

8.6.1. Sampling and Histogram-based Models. A sampling technique draws points from B
randomly and uniformly without replacement and obtains a sample 5’. The cardinal-
ities of B’ are used as estimates for cardinality prediction over 5. We obtain 5’ using
reservoir sampling [Vitter 1985]. The ISOMER [Srivastava et al. 2006], is a QFR STH,
using the principle of maximum entropy to approximate the underlying probability
density p(x). The STHs framework in [Viswanathan et al. 2011] uses QFRs for (i) the
EquiHist algorithm, which learns a fixed size-bucket equi-width histogram and (ii)
the SpHist algorithm, which uses Haar wavelets to construct a histogram. The Gen-
Hist histogram in [Gunopulos et al. 2005] estimates the p(x) by allowing the buckets
to overlap. As most of the data-centric approaches have been proposed only for cen-
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(¢)-(d) Number of nodes K vs. error e; M = 500, N = 1000, d € {2,4}, RS1, for radius and range queries.

tralized systems, we compare our model with these data-centric centralized models by
setting K = 1.

8.6.2. Comparative Assessment. The cardinality prediction error of the sampling
method in Figure 15 (a), is very high compared to our model for different dimensions
of RS1 using WL3 given exactly the same number of stored points for radius queries
(we observe similar results using range queries). The training set is |7| = 1%|€|, with
|€] = 2-10°. The sample size is [B'| = M(1 + %) since our model stores M vectors of
d+ 1 dimension (radius query prototypes and cardinality prototypes) and, in sampling,
we store data points of d dimensions. Sampling-based cardinality prediction apart from
being inappropriate in data-restricted scenarios, it is not adaptable to updates in query
patterns. The average cardinality prediction time per query for sampling is 38s, com-
pared to 1.07s in our model.

We compare our model with EquiHist, SpHist, and ISOMER using the same RS3 as
in [Viswanathan et al. 2011] over range queries, with |7| = 0.2%|B| and |£| = 3%|B|
over WL1. Figure 15 (b) shows the impact of stored values on error for SpHist, Equi-
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Fig. 15. (a) Error e vs. dimension d over (RS1/WL3) for model (K = 1) and sampling (N = 1000); (b) Error
e vs. stored values for model (K = 1), SpHist, EquiHist, and ISOMER; (RS3/WL1).

Hist, ISOMER, and our model (storing M (2d + 1) range query prototypes and cardi-
nality prototypes). The histogram-based approaches use B = 64 buckets, where each
bucket, in each dimension, consists of two boundary values and one value for the fre-
quency. Hence, each histogram stores B(2d + 1) values. The more information is stored
by SpHist and ISOMER the less error they achieve. Our model achieves significantly
lower error than the data-centric approaches for different numbers of stored values.
SpHist, EquiHist, and ISOMER attempt to tune a histogram while our model learns
from WL1.

Moreover, we compare our model with GenHist over RS2 (as used in [Gunopulos
et al. 2005]; normalized in [0,1]) using range queries from WL2. Figure 16 shows the
error against stored values over d € {5,8} data with |7| = 2000 corresponding to
0.3%|B| and |€| = 25|T|. The GenHist stores B(2d + 1) values referred to B buckets,
while our model stores M (2d + 1) values corresponding to M ranging in [46, 300] and
[86,262] for d = 5 and d = 8, respectively. Our model outperforms GenHist by achieving
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de {58}

at most (81, 66)% lower error for d = (5,8) given the same memory size. An increase in
M > 200 (d € {5,8}) does not contribute to better accuracy, thus, we could use fewer
prototypes to learn WL2.

9. CONCLUSIONS & FUTURE PLANS

With this work we focused on cardinality prediction over data subspaces defined by
analysts’ range and radius queries. This predictive learning process is central to pre-
dictive analytics, yet computing exact answers of these queries is very expensive and
can cause scalability problems.

We have begun a novel investigation route, whereby results from previously ex-
ecuted analytics queries are exploited in order to predict future query results. Our
method is query-driven involving training, making it applicable to emerging data en-
vironments where data accesses are undesirable or infeasible. The proposed method
contributes to a function estimation model based on unsupervised regression inte-
grated with supervised vector quantization. Such model (being decentralized) relies
on independently operating data nodes’ local models, which are subsequently submit-
ted to a central node, based on which we perform the prediction task. The prediction
task is achieved via approximation and weighted interpolation among the cardinality
prototypes corresponding to the most popular data subspaces from the analysts’ per-
spective. Our contribution also shows how to efficiently detect and adapt to updates in
query-patterns, treating them as novelty under the principles of the theory of optimal
stopping.

Comprehensive experiments showcase the model’s robustness where it is shown to
achieve small error rates with small memory footprints —even outperforming the data-
centric state-of-the-art (despite their lack of applicability in the targeted data environ-
ments). Therefore, our model represents a solution that is applicable to data environ-
ments with undesirable/infeasible data accesses or not.

Our plans for future work focus on: (i) developing a framework that can dynamically
and optimally switch between the training and query execution phases as analysts’
interests shift between data subspaces, (i) autonomously determining the resolution
of the query space quantization based on the analysts’ interest over data subspaces,
(iii) evolving and expanding the fundamental representatives of both: data and query
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subspaces for supporting robust query subspace adaptation, and (iv) dealing with data
spaces with on-line data mutations (insertions, deletions, and updates).
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A. PROOF OF THEOREM 4.4

We adopt the Robbins-Monro stochastic approximation for minimizing &, using SGD
over & and &. Given the ¢-th training pair (q(t),y(t)), the stochastic samples F;(t)
and FE5(t) of the corresponding &; and &, are:

Ey(t) = lla(t) —w* (t)]3
and
Ey(t) = Y p(w;(t)lat)ly(t) —u;(t),
JE[M]

respectively. F (t) and E»(t) have to decrease at each new pair at ¢ by descending in the
direction of their negative gradient with respect to w;(¢) and u;(t). Hence, the update
rules for prototypes w; and u; are:

and

Y;(t) = 1if w;(¢) is the winner of q(¢); 0, otherwise (since F (¢) involves only the winner
prototype). Scalar ;(t) satisfies > ;% 7;(t) = co and Y 2 77 (t) < co. From the partial
derivatives of F1 (t) and Fy(t) we obtain (12) and (13). By starting with arbitrary initial
training pair (q(0), y(0)), the sequence {(w;(t),u;(t))} converges to optimal w; and u;
parameters, j € [M].

B. PROOF OF THEOREM 4.6

Let the j-th winner prototype w; reach equilibrium, i.e., Aw; = 0, which, in this case
this holds with probability 1. Then, from (16) we obtain that the assignment probabil-
ity p(w;|q) = 1, while this probability is zero Vi # j. Based on the update rule in (12),
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this yields that Aw; o« (q — w;). By taking the expectation of both sides of Aw; = 0 at
equilibrium, we have that:

E[Aw;] = / (a—w;)p(q)dg = s qp(q)dq — w; /@ p(a)dq.
By solving E[Aw,] = 0, the w; equals the centroid (mean) vector of all query vectors
of the subspace Q;.

C. PROOF OF THEOREM 4.7

Let Y, be the image of query subspace Q; via the function y = f(q). The median g; of
the domain Y, satisfies P(y > ¢;) = P(y < g;) = Suppose the j-th winner w; and
its associated cardlnahty u; have reached equlhbnum i.e.,, Aw; = 0 and Au; = 0 hold
with probability 1. In this case, the assignment probablhty p(w, |q) =landY; =1and
zero for i # j. By taking the expectations of both sides and replacing Aw; and Au;
with the update rules from Theorem 4.4:

E[Auj] = / sgn(y — u;)p(y)dy = P(y > u;) /

p(y)dy — P(y < uj) / p(y)dy = 2P(y > uy) — 1.
Y; Y;

Y

Since Au; = 0 thus u; is constant, then P(y > u;) = 3, which denotes that u;

converges to the median of Y.

D. PROOF OF THEOREM 6.2
Based on the theorem in [Chow et al. 1971a], we have to prove that the optimal stop-
ping time t* exists and is derived from the principle of optimality. Specifically, we have
to prove that (i) lim;_, . sup, ¥; < Y, a.s. and (ii) E[sup, ;] < oc.

Note that I; are non-negative and from the strong law of numbers (1) ST —
E[I] = P({I = 1}) a.s., so that

t
Yy =ty'(Se/t) <ty (1/1) Y I ~ t4'E[I] “25 0
T=1

with lim;_, . sup, Y; = Yoo = 0.

In addition, sup, Y; = sup,7'S; < sup, 7' >0 I < sup, St 7L < X 471,
Hence,

o0
bqu} SZ ﬁ<oo.

E. PROOF OF THEOREM 6.3

Let us first study the characteristics of the confidence values Y; under the filtration
F; = B(Iy,...,I;) referring to the Lemmas 2—4 and Theorem 1 in [Lester E. Dubins
1967]. We then provide the optimal stopping criterion in our case. Let S; = I +---+ I,
and +' = H’;:l ~, with the conventions that Sy = 0 and 4° = 1. In our case, I; are
non-negative and v, = v € (0, 1) constant. We assume that at ¢ = 0 our detection model
initiates the observation for a specific query subspace Q* represented by the query
prototype w* with some w € {0,1} (i.e., initial state of the observation process). Then,
we define the function

J() = SUp B (w + )
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and ¢ ranges over all stopping times for I, I, . ... The problem is to find an optimal ¢*
for initial state w, that is a ¢* such that the sup, E[y!(w + S;)] is attained. Interestingly,
this problem has a solution given in [Haggstrom 1967] in which t* is evaluated by
adopting the principle of optimality [Bertsekas 2005] provided that: (i) I; are non-
negative, (ii) w = 0 at ¢ = 0, and (iii) y is constant. This refers to our case.

Now, from Lemma 2 [Lester E. Dubins 1967], J(w) is convex and nondecreasing;
i.e., there exists a unique number s > 0 such that w < J(w) < s for w < s and, for
w > 8, J(w) = w. Then, the application of the principle of optimality to such function
denotes that J(w) > E[yJ(w + I)] for all w; (Lemma 3 [Lester E. Dubins 1967]). Hence,
the process: J(w),vJ(w + S1),v*J(w + S2), . .. is a nonnegative, expectation decreasing
semi-martingale. Through this, J(w) > E[y*(w + S;)] for all stopping times ¢ (Lemma 4
[Lester E. Dubins 1967]).

For each z > 0, let 7(z) be the first stopping time ¢ such that S; > z. For w < s,
let r(t,w) = min(¢,7(s — w)). Based on Theorem 1 [Lester E. Dubins 1967] the pro-
cess {fy’“(t’“)J(w + Sr(tw))st = 0,1,...} is a uniformly integrable martingale and con-
verges certainly to 77 (5=%) J(w + S:-(s—w)) since J is continuous and r(¢,w) converges
to 7(s — w). In addition, for each w < s, 7(s — w) is optimal for w or, equivalently,
J(w) =E[" =) (w + S, (5_.))] (see also Theorem 1 [Lester E. Dubins 1967]).

For w = 0, we obtain J(0) = E[y"®)S,(,)] = E[Y, (5] and s is obtained from s =
E[y™ @ (s+S,0)] or s = E[y"S, )]/ (1—E[y"©]. The determination of the expectation
of 7 and S, ) has as follows: 7(0) is the minimum ¢ such that S; > 0. Since ! is non-
negative, thus, one sees that the problem is monotone, then 7(0) = 1 and S,y = I1.
That is because, the confidence for stopping s must be the same as the confidence for
continuing using the rule that stops the first time the sum of the future observations
is positive. Hence, in our case, we obtain the optimal stopping criterion s = ﬁE[I 1,
thus, from the one-stage look-ahead optimal rule [Li and Zhang 2005], our detection
model stops at the first time ¢ at which S; > s = "ZE[I] and then starts with updating

the w* prototype.

F. ANALYTICAL EXPRESSION OF P{I = 1} USING THE MARCUM Q-FUNCTION.
We have that:

PUI=1}) = Q(VC.V0)

According to [Sun et al. 2010], the Q, (k2,x3) function can be expressed in infinite
series with respect to the lower incomplete I" function by substituting the (k1, k2, k3) =

(%, NG \/@) in our case (37), we obtain:
_§ ZOO ¢ T+5.3)
AV = 2K T(k+ &)

where the lower incomplete function I'(z,z) = [~ e~*t*~!dt is defined in [Abramowitz

1974]; equation (6.5.3) and Euler function I'(z) = [;~t¢*"'e 'dt. Note, the dis-
cussed generalized Marcum Q-function is approximated using the Matlab function
marcumq (K2, K3, k1) using the algorithm developed in [Shnidman 1989].

G. NOMENCLATURE
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Table lll. Nomenclature

Notation Explanation

d data dimension

x multivariate data point in R?

B dataset of points in R?

|B] the cardinality (size) of the dataset B
q = [x,0] vectorial representation of radius query
[4 positive scalar

qa = [as,b5]¢_, | vectorial representation of range query
Ly p-norm

Sk k-th data node

p(x) probability density function of x

y answer set cardinality

&o, €1, Eo optimization functions

T training set

£ evaluation set

fr function estimation model of node Sy,
ag learning parameter for model M

n counter

n learning rate

B quantization parameter

© training termination criterion

€ accuracy threshold

N number of query subspaces

M number of (query/cardinality) prototypes
Q query space (R2? for range queries and Rt for radius queries)
weQ query prototype

w*eQ winner query prototype

u€R cardinality prototype

u* €R winner cardinality prototype

Ie{0,1} indicator function

p vigilance

v risk factor

t* optimal stopping time

Y confidence payoff

B number of histogram buckets
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